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Ref. No.: NHESS-2016-281
Title: EVALUATING SIMPLIFIED METHODS FOR LIQUEFACTION ASSESSMENT FOR LOSS
ESTIMATION

Author’s Response to the Reviewers’ Comments5

The authors would like to thank the reviewers for their efforts in reviewing this paper, the rapid review time and

the constructive comments made. We have made a number of revisions to strengthen the paper in light of the

reviewers’ comments and considering the overall positive nature of the reviewers’ comments to the first version

of the manuscript, we are confident that this improved version will be adequate for publication.10

In addition, whilst working through parts of the analysis again, we noticed an error in the process used to derive

Eq. 9 from the original equations of Boore (2004). Eq. 9 has been corrected in the revised text and this affects the

results corresponding to models LPI3 and LPI3b as follows:

 With the new form of Eq. 9, model LPI3 now does meet the diagnostic score criteria of TPR > 0.5 and TNR > 0.515

when the threshold is 5, albeit with some bias towards negative forecasts.

 Model LPI3b still meets the criteria but with bias towards positive forecasts.

 The optimum threshold for model LPI3 is now 4, while the optimium threshold for model LPI3b is now 10

 Based on Youden’s J-statistic, model LPI3 now outperforms model LPI3b

 In section 5, the liquefaction probability analysis of model LPI3b has been replaced by the equivalent analysis for20

model LPI3

Best Regards
Indranil Kongar, Tiziana Rossetto, Sonia Giovinazzi

Reviewer #1: The authors test various methods for the assessment of liquefaction using data collected following25

two recent earthquakes in New Zealand. The study is within the scope of Natural Hazards and Earth System

Sciences, it is generally well written, testing these methods using a large database of observations is a valuable

exercise and the analysis appears to be carefully performed. Therefore, I recommend that this paper is accepted

for publication but only after the following editorial changes are made

30

We thank the reviewer for his confirmation of the value of the research and recommendation for publication. Our
responses to specific comments are included below.

1. Abstract, first sentence: This sentence is grammatically incorrect. In addition, it is probably too long to be easy

understandable.35
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This sentence has been amended to correct the grammar and to make ot easier to understand

2. Abstract and throughout: “methods” or “procedures” are what is being talked about here. Therefore, these

words should be used rather than “methodologies”, which are the principles that guide research practices.

5

We have replaced “methodologies” with the word “method”

3. Abstract and throughout: The word “data” is plural and hence the sentences should read “although these data

may not” and “the input data are publicly”.

10

We have amended the text to ensure that the word “data” is used as a plural

4. P. 2, l. 8: This should probably read “both future risk assessments and post-event rapid response analyses”.

We have amended the text as suggested by the reviewer15

5. P. 2, l. 9: Should it not be “liquefaction effects and physical damage” rather than “liquefaction risk and

physical damage”?

We have amended the text as suggested by the reviewer20

6. P. 5, l. 12: USGS are not the only group to publish assessments of the ground motion following earthquakes so

this organisation should only be given as an example.

We have added a note to make clear that the USGS is only one possible source of post-earthquake ground motion25

data

7. P. 5, l. 13 (and elsewhere): Because of the high epistemic uncertainties in ground-motion prediction it is

generally considered best practice to use a logic tree comprised of a set of ground-motion models rather than a

single ground motion prediction equation. Hence I suggest slightly modifying this sentence.30
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We have modified this sentence to reflect the reviewer’s comment

8. P. 5, l. 15: I do not understand the comment “Although the use of Vs negates the requirement for ground

investigation” because to assess Vs requires measurements on site, although they could be non-invasive (e.g.

based on ambient noise approaches) as well as invasive (from boreholes). Vs30 could be estimated from geology5

or topographical slope, for example, but these would be uncertain and ideally should not be considered for site-

specific analyses (e.g. Lemoine et al., Bulletin of the Seismological Society of America, 102, 2585-2599 2012).

We thank the reviewer for highlighting this mistake. The original comment “Although the use of Vs negates the

requirement for ground investigation” applies only to the Christchurch case study for which Vs data already10

exist. However, more generally the reviewer is correct to point out that Vs assessment does require ground

investigation. In this instance, the authors’ intention was to talk about general approaches rather than a specific

case study, and so we have amended the text accordingly.

9. P. 5, l. 17: I would change “extrapolate” to “estimate” or “interpolate” as extrapolation should be avoided.15

We have amended the text as per the reviewer’s suggestion

10. P. 5, ll. 22-25: As noted in my comment 8 Vs30 from topographic slope (as provided by the USGS Global

Vs30 Map Server) is uncertain because of the weak correlation between these variables. This should be20

commented on as a weakness of this approach.

We have added a comment to highlight this weakness

11. P. 5, ll. 30: Boore et al. (Bulletin of the Seismological Society of America, 101, 3046-3059, 2011) update the25

relationships of Boore (2004) and other authors have proposed relationship for other parts of the world since

2004. I recommend making a comment that such relationships ideally should be regionally calibrated. Some

checking that the equations of Boore (2004) are appropriate for New Zealand would be useful.

We acknowledge that ideally relationships should be regionally calibrated. However, the rationale of the paper is30

to test simplified methods to be used for loss estimation, principally by insurers. In this case, part of the definition
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of a ‘simplified’ method is that the relationships that underpin it already exist in the literature and no new model

development is required. It should be noted that the relationships proposed by Boore et al. (2011) are not updates

of the relationships of Boore (2004) – rather they are alternative relationships specific to Japan, while the

original Boore (2004) relationships are specific to California. Nevertheless, we have added an investigation of

the appropriateness of the Boore (2004) relationship to Christchurch in section 3.2.5

12. P. 5, Equations 8 and 9: It is not statistically correct to invert equations based on standard regression analysis

(it would be acceptable if orthogonal regression had been used). I recommend adding a note that this inversion

could be a source of uncertainty. Ideally a set of equations predicting Vs0-10 from Vs30 and Vs10-20 from Vs30

should have been derived based on regression in the correct direction.10

The authors are not aware of any relationships that are derived in the correct direction, and as mentioned in the

previous comment, the development of new relationships contradicts the objectives of this study. We have added a

note to section 2.1 reflecting the reviewer’s comment regarding uncertainty due to inversion.

15

13. P. 7, ll. 5-6: There seems to be a problem with the phrase “and for the other zones are given”.

We have amended the text to make this sentence clearer

14. Section 2.3: Is it not circular to test this model on data from the Christchurch 2011 earthquake as data from20

this earthquake was used to develop it? I recommend adding a comment on this.

We acknowledge that there is some circularity in this test. However, it is worth noting that the datasets used to

develop the model and test the model have not come from the same source and so may not be identical.

Furthermore the original model has been calibrated to optimise estimation of the areal extent of liquefaction25

whereas in the case study exercise, site specific predictions are tested. A comment to this effect has been added at

the end of section 2.3.

15. P. 8, l. 23: “compatring” should be “comparing” and “eartqhuake” should be “earthquake”. Please spell check

before manuscript submission.30
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We have run a spell check and corrected these errors

16. P. 9, l. 3: What is the source of the moment magnitude of 6.2 for the 2011 earthquake? Both the USGS and

Global CMT give Mw 6.1 for this event. Perhaps it is GeoNet. This should be stated.

5

The source is indeed GeoNet and the reference (GNS Science, 2014) has been added at the end of the relevant

sentence.

17. Figure 2: What is the source of these contour maps?

10

The source is the Canterbury Geotechnical Database and the reference has been added in the caption

18. P. 9, ll. 24-25: Are the results of SPT after the ground has liquefied appropriate to assess whether the ground

is liquefiable? I would have thought that SPT values would be changed by liquefaction.

15

Firstly we should note that there is a mistake here since the LPI values have been obtained from CPT, not SPT,

data and so this has been corrected. Historically it has been thought that after liquefcation occurs, soils densify

and increase their resistance to future liqueaction. However, Lees et al. (Soil Dynamics and Earthquake

Engineering, 79, 304-314, 2015) conducted an analysis comparing CPT-based strength profiles and subsequent

liquefaction susceptibility at sites in Christchurch both before and after the February 2011 earthquake, and20

concluded that no significant strengthening occurred and that the liquefaction risk in Christchurch after the

earthquake remained the same as it was beforehand. The study by Orense et al. (Geotech Eng J SEAGS &

AGSSEA, 43(2), 8-17, 2012) came to similar conclusions and therefore our view is that the post-earthquake CPT

data is appropriate for assessing liquefaction susceptibility. This explanantion has been added to the text.

25

19. P. 10, ll. 1-5: Are Vs profiles at only 13 points sufficient to estimate Vs profiles for the entire region? This

may be appropriate if there are no changes in geology or topography across the city but it sounds too few for

accurate results. A brief discussion on the uncertainties with this approach would be useful here. It would be

useful tocheck the robustness of the interpolated profiles by removing one or more of the 13 profiles and

comparing the results.30
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We acknowledge that modelling Vs profiles for an entire city based on 13 samples has major limitations and the

resulting estimations therefore carry significant uncertainty. We have added a comment to this effect. However

we are not sure there is much value in carrying out the robustness check as suggested by the reviewer. Due to the

aforementioned limitations, the check will almost certainly show that the interpolated profiles are not robust.

However, testing the limitations/weaknesses of input data is not the point of this study. On the contrary, the point5

of this study is to show what can be done with weak/limited datasets and more specifically, to investigate how a

non-academic loss estimation analyst can use realistic, publicly avaiable (but weak) data, together with existing

models, to estimate liquefaction occurrence. The sample of 13 Vs profiles, acquired from an academic journal

paper, is excatly the type of realistic dataset that a non-academic analyst can expect to have access to and the

case study analysis has shown that despite its limitations, the resulting LPI model that corresponds to it performs10

better than most other simplified models. There is little that an analyst can do if an input dataset is weak and

nothing better is available – they can either make use of what they have or not conduct the analysis at all. It is

not clear what value there is to be gained simply by proving that the input dataset is weak.

20. Section 4: It could help readability to split this section up into subsections for each of the tests.15

We agree that Section 4 would benefit from being split into sub-sections and this has been done

21. Section 4: Why are the Zhu et al. (2015) models performing poorly when the Christchurch data was used in

their development? There is a little discussion of this on pp. 14-15 but more discussion could be useful.20

There are two possible reasons for this. One is that the model development and test datasets have come from

different sources and so may not be identical. The second, which has already been identified in the discussion, is

that the Zhu et al. model has been optimised for quantification of the areal extent of liquefaction, whereas in the

case study, site specific predictions are being tested. In light of this, the authors are keen to stress that the results25

of the case study do not contradict or invalidate the findings of Zhu et al. (2015) and a comment has been added

to this effect.

22. P. 5, l. 28: There is a problem with the grammar in the phrase “in both models though that the observed rates

that are”.30
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The sentence has been amended to make this clearer

23. P. 17, l. 19, “tectonic uplift”: Could it not also be “tectonic subsidence”? What about just saying “tectonic

movements”?

5

We have amended the text accordingly

24. P. 18, ll. 26-27: There is something missing from the sentence “To calculate duration, there are 19 strong-

motion accelerograph stations in Christchurch that record ground motions at 0.02s intervals” as the stations are

not there just to calculate duration.10

We have amended this sentence to make it clearer that duration can be measured from stations but this is not

their primary purpose.

25. P. 19, l. 18: It could be useful to say that even though the methods based on LPI are the best approaches15

tested that they still do not predict very well.

We acknowledge this is a fair conclusion and have added a comment to this effect

26. Figure 1: More information could be added to this map, e.g. the faults that ruptured in these earthquakes, the20

locations of the strong-motion stations used to estimate the durations, the locations of the 13 Vs profiles and the

main areas of liquefaction (Figure 3). Currently, this map is not that useful and could be removed or combined

with Figure 2 and/or Figure 3.

We have added the suggested information to Figure 125

27. Table 4: It would be useful to combine this with Table 5.

Table 4 relates to section 3 (Model test application) and Table 5 relates to section 4 (Results). Furthernore,

Table 4 is referenced in the text much earlier than Table 5. We do not believe it would be appropriate to combine30

these tables
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28. Table 6: This could be added as an additional two lines to Table 5.

We agree and these two tables have been combined

5

29. Table 7: Is there not space to include these results in Table 5?

It is important to stress the difference between Tables 5 and 7. The results in Table 5 are based on specified fixed

thresholds, whereas the results in Table 7 are based on optimised thresholds. Therefore combining the two tables

would necessitate the addition of two columns to identify the relevant treshold in each case. Therefore it may be10

possible to combine the tables if it can be published in landscape format - in portrait the combined table would

appear very cluttered. At this stage we feel it is better and clearer to keeo these two tables distinct.

30. Table 9: Could these numbers be added to Table 3 after conversion to SI units (e.g. cm)?

15

We have added this data to Table 3

31. Tables 10 and 11: Give the units of the values reported here. Metres?

Yes, this is metres and the tables have been updated accordingly20

32. In addition to my comments yesterday, it would also significantly improve this manuscript to include some

maps showing the areas predicted to liquefy by each of the methods. That would help understanding of the

differences between the results rather than relying on statistical tests.

25

We have added the type of maps suggested by the reviewer, however due to the number of models tested in this

paper, we believed it was appropriate to only include a selection of maps for the best performing models (LPI1,

LPI3, ZHU1 and ZHU2)

30

Reviewer #2: This is a review of "Evaluating Simplified Methods for Liquefaction Assessment for Loss

Estimation". This paper is overall well written, interesting, and needing only minor revisions.
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We thank the reviewer for his/her confirmation of the quality of the paper and recommendation for publication.

Our responses to specific comments are included below.

My comments, in no order of importance are as follows:5

(a) Abstract. Please put more quantitative description of data/results into the abstract, not just qualitative.

As per the reviewer’s suggestion, we have added more quantitative information to the abstract relating to data

and comparison of model performance10

(b) Section 1. Although there is a good ’motivation’ and letting the reader know how the paper is organized in the

last paragraph, can you refer to what the paper is about early on? Perhaps in or at the end of the paragraph a

sentence that says "Here we investigate ....".

15

We have added a short description of the paper’s topic at the end of the second paragraph of the introduction

(c) Prediction. Please evaluate throughout the use of the word prediction (time, place, magnitude) if that is meant,

or probabilistic forecasting. If prediction really is meant, then make this clear why, and to what degree.

20

We do not use the word ‘prediction’ in the sense that the reviewer defines it and therefore acknowledge that the

use of the word ‘prediction’ may be misleading and other terms should be used. Although the Hazus and Zhu

models estimate liquefaction probabilities, the LPI models do not and furthermore, the final outputs from all the

models are deterministic estimates of liquefaction occurrence, which are conditional on an earthquake of

specified place and magnitude having occurred. Therefore the description of the forecasts as probabilistic is not25

necessarily appropriate here and we have therefore amended the text to replace instances of the word

‘prediction’ with either ‘forecast’ or ‘estimate’.

(d) Testing. I am not a fan of the use of the word ’testing’ in the natural hazard community. See the following

paper for why: http://www.nssl.noaa.gov/users/brooks/public_html/feda/papers/Oreskes1.pdf30
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We thank the reviewer for pointing us towards this interesting and insightful article, which offers the view that

words such as ‘testing’ are misused in the scientific community to give a false view of model perfection. With

respect to our case study, we are clear throughout our paper that the objective is to compare the relative

quality/performance of the range of models with respect to a set of observations. We are not claiming that any

one model is ‘right’ and believe we are using the word ‘testing’ correctly. Nevertheless, it may be open to5

misinterpretation and for that reason, we have removed the words ‘test’ and ‘testing’ where appropriate (i.e. not

where it refers to the name of a test) and have replaced with a suitable alternative. Most commonly we have used

‘compare’ or ‘comparison’ to emphasise this aspect of the study.

(e) Where possible, avoid acronyms in Figure captions/Table headers (or spell them out the first time) to make10

the paper a tad less ’jargon’ rich. Figures and tables should be as stand-alone as possible so if someone uses them

(without the paper) one can tell from the figure caption/table header what it is about. Particularly important for

this is your figure comparing all the methods–you need to then state what all the acronyms mean.

We acknowledge that the paper does contain a large number of acronyms and have added more information to15

some figure captions and table headers. Where tables/figures contain model acronyms, writing out the full model

names is no more informatve and writing out the full descriptions is impractical and so instead we have added a

reference to Table 4 in the caption.

(f) Would it be possible to provide an overview table of all the acronyms, and what data is being put into each20

one? This would be a nice ’tutorial’ table that is more likely to be cited by people.

We are not entirely clear what the reviewer means by this since a list of acronyms and list of variables are

already provided in Tables 1 and 2 respectivley. However we have added a column to Table 2 identifying the

variable input data that goes into evaluating each of the listed variables.25

(g) Sensitivity of models to data input. It would be very nice to see more on how much the outputs (what you call

prediction) are sensitive to slight changes in the inputs. Again, a comparison between different types of

liquefaction models would be very useful.

30
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We have carried out two sensitivity tests involve variation of shear wave velocity and peak ground acceleration.

However due to the number of models tested in this paper, we have only carried out the sensitivity testing for two

of the best performing models (e.g. the two best models or similar) and have added a summary to the revised

manuscript. We would also like to point out that the optimisation of threshold, already carried out for the

original paper, is also a type of sensitivity test.5
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Evaluating Simplified Methods for Liquefaction Assessment for Loss

Estimation

Indranil Kongar1, Tiziana Rossetto1, Sonia Giovinazzi2

1Earthquake and People Interaction Centre (EPICentre), Department of Civil, Environmental and Geomatic Engineering,

University College London, London, WC1E 6BT, United Kingdom5

2Department of Civil and Natural Resources Engineering, University of Canterbury, Christchurch, 8140, New Zealand

Correspondence to: Indranil Kongar (ucfbiko@ucl.ac.uk)

Abstract. Currently, some catastrophe models used by the insurance industry account for liquefaction simply by applying a

simple factor to shaking-induced losses. The factor is based only on local liquefaction susceptibility and this highlights so

there is athe need for a more sophisticated approach to incorporating the effects of liquefaction in loss models is needed.10

This study compares eleven unique models, each based on one of three principal simplified liquefaction assessment

methodologiesmethods: liquefaction potential index (LPI) calculated from shear-wave velocity; the HAZUS software

methodologymethod; and a methodologymethod created specifically to make use of USGS remote sensing data. Data from

the September 2010 Darfield and February 2011 Christchurch earthquakes in New Zealand are used to compare observed

liquefaction occurrences to predictions forecasts from these models using binary classification performance measures. The15

analysis shows that the best performing model is the LPI calculated using known shear-wave velocity profiles, which

correctly forecasts 78% of sites where liquefaction occurred and 80% of sites where liquefaction did not occur, when the

threshold is set at 7. However, although theseis data may not always be available to insurers. The next best model is also

based on LPI, but uses shear-wave velocity profiles simulated from the combination of USGS VS30 data and empirical

functions that relate VS30 to average shear-wave velocities at shallower depths. This model correctly forecasts 58% of sites20

where liquefaction occurred and 84% of sites where liquefaction did not occur, when the threshold is set at 4. These scores

increase to 78% and 86% respectively when forecasts are based on liquefaction probabilities that are empirically related to

the same values of LPI. This model is potentially more useful for insurance since the input data areis publicly available.

HAZUS models, which are commonly used in studies where no local model is available, perform poorly and incorrectly

forecast 87% of sites where liquefaction occurred, even at optimal thresholds. This paper also considers two models25

(HAZUS and EPOLLS) for estimaprediction of the scale of liquefaction in terms of permanent ground deformation but finds

that both models perform poorly, with correlations between observations and forecasts lower than 0.4 in all cases. and

thusTherefore these models potentially provide negligible additional value to loss estimation analysis outside of the regions

for which they have been developed.
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1 Introduction

The recent earthquakes in Haiti (2010), Canterbury, New Zealand (2010-11) and Tohoku, Japan (2011) highlighted the

significance of liquefaction as a secondary hazard of seismic events and the significant damage that it can cause to buildings

and infrastructure. However, the insurance sector was caught out by these events, with catastrophe models underestimating

the extent and severity of liquefaction that occurred (Drayton and Verdon, 2013). A contributing factor to this is that the5

method used by some catastrophe models to account for liquefaction is based only on liquefaction susceptibility, a

qualitative parameter that considers only surficial geology characteristics. Furthermore, losses arising from liquefaction are

predictestimated by adding an amplifier to losses predictestimated due to building damage caused by ground shaking

(Drayton and Vernon 2013). There is a paucity of past event data on which to calibrate an amplifier and consequently,

significant losses from liquefaction damage will only be predictestimated if significant losses are already predictestimated10

from ground shaking, whereas it is known that liquefaction can be triggered at relatively low ground shaking intensities

(Quigley et al., 2013).

Therefore there is scope within the insurance and risk management sectors to adopt more sophisticated approaches for

predictforecasting liquefaction for both future risk assessments and post-event rapid response analyseis. It is also important15

to develop a better understanding of the correlation between liquefaction effectsrisk and physical damage of the built

environment, similar to the fragility functions that are used to predict estimate damage associated with ground shaking. This

is particularly the case for critical infrastructure systems since, whilst liquefaction is less likely than ground shaking to be

responsible for major building failures (Bird and Bommer, 2004), it can have a major impact on lifelines such as roads,

pipelines and buried cables. Loss of power and reduction in transport connectivity are major factors affecting the resilience20

of business organizations in response to earthquakes as they can delay the recommencement of normal operations.

Evaluating the seismic performance of infrastructure is therefore critical to understanding indirect economic losses caused by

business interruption and to achieve this it is necessary to assess the liquefaction risk in addition to that posed by ground

shaking. Therefore in this paper we investigate the performance of a range of models that can be applied to forecast the

occurrence and scale of liquefaction based on simple and accessible input datasets. The performances are evaluated by25

comparing model forecasts to observations from the 2010-11 Canterbury earthquake sequence,

Bird and Bommer (2004) surmised that there are three options that loss estimators can select to deal with ground failure

hazards. They can either ignore them; or use a simplified approach; or conduct a detailed geotechnical assessment. The first

of these options will likely lead to underestimation of losses in earthquakes where liquefaction is a major hazard and lead to30

recurrence of the problems faced by insurers following the 2010-11 Canterbury earthquakes in particular. The last option,

detailed assessment, is appropriate for single-site risk analysis but is impractical for insurance loss estimation purposes

because: 1) insurers are unlikely to have access to much of the detailed geotechnical data required as inputs to these
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methods; 2) they may not have the in-house expertise to correctly apply such methods and engaging consultants may not be a

viable option; and 3) loss estimation studies are often conducted on a regional, national or supra-national scale for which

detailed assessment would be too expensive and time-consuming.

There are three stages to predict forecasting the occurrence of liquefaction and its scale (Bird et al., 2006). First it is5

necessary to determine whether soils are susceptible to liquefaction. Liquefaction susceptibility is based solely on ground

conditions with no earthquake-specific information. This is often done qualitatively and currently this is also the full extent

to which liquefaction risk is considered in some catastrophe models (Drayton and Verdon, 2013). The next step is to

determine liquefaction triggering, which determines the likelihood of liquefaction for a given earthquake based on the

susceptibility and other earthquake-specific parameters. Finally the scale of liquefaction can be predicted estimated as a10

permanent ground deformation (PGDf). Since current catastrophe modelling practice is to consider only the first stage,

liquefaction susceptibility, this paper focuses primarily on the extension of this practice to include liquefaction triggering.

The models assessed in this paper have been selected because their input requirements are limited to data that are in the

public domain or could be easily obtained without significant time or cost implications, arising for example from detailed15

site investigation. Furthermore, the models are appropriate for regional-scale analysis and although some engineering

judgment is required in their application, they do not require specialist geotechnical expertise. In section 2, each of the

models assessed in this paper are described and section 3 presents a summary of the liquefaction observations from the

Canterbury earthquake sequence and the methodologymethod used to test compare the predictive capabilities of the model

forecasts against observations. The results and statistical analysis of the model assessment are presented in section 4, in20

relation to deterministic predictionsforecasts, and in section 5, in relation to probabilistic predictionsforecasts. Finally section

6 briefly considers the predictive capabilityperformance of simplified models for quantifying PGDf.

2 Liquefaction assessment models

Nine liquefaction prediction forecasting models are tested compared in this paper, including three alternative

implementations of the liquefaction potential index method proposed by Iwasaki et al. (1984); three versions of the25

liquefaction models included in the HAZUS®MH MR4 software (NIBS, 2003); and three distinct models proposed by Zhu et

al. (2015). This section summarises how each of the models are applied to make site-specific liquefaction

predictionsforecasts. This paper presents a large number of acronyms and variables. For clear reference, Table 1 lists the

acronyms used in this paper and Table 2 lists the variables used.
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2.1 Liquefaction potential index

The most common approach used to predict forecast liquefaction triggering is the factor of safety against liquefaction, FS,

which is defined as the ratio of the cyclic resistance ratio, CRR, and the cyclic stress ratio, CSR, for a layer of soil at depth, z

(Seed and Idriss, 1971). CSR can be expressed by:

5
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CRR is normally calculated from geotechnical parameters based on cone penetration test (CPT) or standard penetration test

(SPT) results. However, Andrus and Stokoe (2000) propose an alternative method for calculating CRR based on shear-wave

velocity, VS, where:
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where VS1 is the stress-corrected shear wave velocity; V*
S1 is the limiting upper value of VS1 for cyclic liquefaction

occurrence, which varies between 200-215m/s depending on the fines content of the soil; and MSF is a magnitude scaling

factor. VS1 is given by:
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where ௪ܯ is the moment magnitude of the earthquake. Liquefaction is predicted forecast to occur when FS ≤ 1, and 

predicted forecast not to occur when FS > 1. However Juang et al. (2005) found that Eq. (3) is conservative for calculating

CRR, resulting in lower factors of safety and over-prediction estimation of the extent of liquefaction occurrence. To correct

for this, they propose a multiplication factor of 1.4 to obtain an unbiased estimate of the factor of safety, FS*:

5

* 1.4
CRR

FS
CSR

  (6)

FS* is an indicator of potential liquefaction at a specific depth. However, Iwasaki et al. (1984) noted that damage to

structures due to liquefaction was affected by the severity of liquefaction at ground level and so propose an extension to the

factor of safety method, the liquefaction potential index, LPI, which predicts estimates the likelihood of liquefaction at

surface-level by integrating a function of the factors of safety for each soil layer within the top 20m of soil. They calculate10

LPI as:

 
20

*

0

10 0.5LPI F z dz  (7)

where F* = 1 – FS* for a single soil layer. The soil profile can be sub-divided into any number of layers (e.g. twenty 1m

layers or forty 0.5m layers), depending on the resolution of data available. Using site data from a collection of nine Japanese15

earthquakes between 1891 and 1978, Iwasaki et al. (1984) calibrated the LPI model and determined guideline criteria for

determining liquefaction risk. These criteria propose that liquefaction risk is very low for LPI = 0; low for 0 < LPI ≤ 5; high 

for 5 < LPI ≤ 15; and very high for LPI > 15.

One of the critical considerations for insurers is availability of model input data. For post-event analysis, ground20

accelerations may be available from various online sources, with one example being the USGS ShakeMaps (USGS, 2014a).,

However if they are not, then but otherwise it would be necessary to apply engineering judgment in the selection of an

appropriate ground motion prediction equations (either a single equation or multiple equations applied in a logic tree). The

LPI model also requires water table depth and soil unit weights. If these are not known exactly, engineering judgment needs

to be applied to estimate these based on information in existing literature. For the specific case study presented in this paper,25

some VS data are available from published sources. Although the use of VS negates the requirement for ground investigation,

However, more generally VS data itself areis not commonly in the public domain and would require ground investigation to

acquire. Even in cases where VS data are available, may not necessarily be available across the entire study area, thus

requiring geostatistical techniques to extrapolateinterpolate. Consequently this method may only be applicable in a small

number of study areas.30
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To extend the applicability of the LPI model, two approaches are proposed to approximate VS from more readily available

data. The first approach uses VS30, the average shear wave velocity across the top 30m of soil, as a constant proxy for VS for

all soil layers. Global estimates for VS30 at approximately 674m grid intervals are open-access from the web-based US

Geological Survey Global VS30 Map Server (USGS, 2013), so this is an appealing option for desktop assessment. TheOne5

disadvantage of this approach is that the likelihood of liquefaction occurrence in the LPI method is controlled by the

presence of soil layers near the surface with low VS. Furthermore there is a maximum value of VS at which liquefaction can

occur. Hence the use of VS30 as a proxy for all layers will result in an overestimation of VS, CRR and FS* at layers closer to

the surface, and therefore an underestimation of LPI and liquefaction risk. This is compounded by the weakness of the USGS

VS30 dataset, since the data are estimated from topographic slope and the correlation between these two variables is weak.10

The second approach proposes the manipulationuse of the same VS30 data but manipulates it to simulate a more realistic VS

profile in which velocities decrease towards the surface rather than being constant. Boore (2004) proposes simple linear

empirical functions to extrapolate VS30 values in situations where shear wave velocity data are only known up to shallower

depths, based on observations from the United States and Japan. . It is proposed to use invert the Boore (2004)se empirical15

functions in reverse and use them– to back-calculate shallower average shear wave velocities from VS30 data from the USGS

Global Server (USGS, 2013). However, it should be noted that since the original function was not developed using

orthogonal regression, this inversion is an additional source of uncertainty. For simplicity it is proposed to only use the

empirical functions to calculate VS10 (average shear wave velocity across top 10m) and VS20 (average shear wave velocity

across top 20m). The calculated value for VS10 can then be used as a proxy for VS at all soil layers between 0-10m depth and20

both the VS10 and VS20 values can be used to determine an equivalent proxy for all soil layers between 10-20m. From

manipulation of the Boore (2004) empirical functions and the formula for calculating averaged shear wave velocities, the

following equations determine the proxies to be used in the two depth ranges:

 

30log 0.042062

1.0292

0 10
10

SV

S
V

 
 
 


 (8)25

30log 0.025439

1.0095
(10 20) (0 10)2 10

SV

S SV V

 
 
 

    (9)

In this study, both of these approximations are adopted in addition to the use of known VS profiles, resulting in the

assessment of three implementations of the LPI model.
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2.2 HAZUS

HAZUS®MH MR4 (from here on referred to as HAZUS) is a loss estimation software package produced by the National

Institute of Building Sciences (NIBS) and distributed by the Federal Emergency Management Agency (FEMA) in the United

States. The software accounts for the impacts of liquefaction and the Technical Manual (NIBS, 2003) describes the

methodologymethod used to evaluate the probability of liquefaction.5

HAZUS divides the assessment area into six zones of liquefaction susceptibility, from none to very high. This can be done

by either, interpreting surficial geology from a map and cross-referencing with the table published in the Manual, or by using

an existing liquefaction susceptibility map. Surface geology maps are generally not open-access or free to non-academic

organizations and some basic geological knowledge is required to be able to cross-reference mapped information with the10

zones in the HAZUS table. Hence, the first approach may be problematic for insurers who do not have the requisite in-house

expertise. Where liquefaction susceptibility maps are available, unless they use the same zonal definitions as HAZUS, it will

be necessary to make assumptions on how zones translate between the third party map and the Manual.

For a given liquefaction susceptibility category, the probability of liquefaction occurrence is given by (NIBS, 2003):15

 
 |

ml

M W

P Liq PGA a
P Liq P

K K


 (10)

where P[Liq | PGA=a] is the conditional probability of liquefaction occurrence for a given susceptibility zone at a specified

level of peak horizontal ground motion, ;ܽ ெܭ is the moment magnitude correction factor; ௪ܭ is the ground water correction

factor; and ௠ܲ ௟ is the proportion of map unit susceptible to liquefaction, which accounts for the real variation in20

susceptibility across similar geologic units. The conditional probability is zero for the susceptibility zone ‘None’. and fFor

the other susceptibility zones, the conditional probabilities are given by linear functions of acceleration (distinct for each

zone), which are not repeated here. The moment magnitude and ground water correction factors are given by:

3 20.0027 0.00267 0.2055 2.9188M W W WK M M M    (11)25

0.022 0.93W wK d  (12)

where dw is the depth to ground water. The map unit factor is a constant for each susceptibility zone, with values of 0.25,

0.20, 0.10, 0.05, 0.02 and 0, going from ‘Very high’ to ‘None’. In addition to the problems identified for determining
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liquefaction susceptibility, the HAZUS method also requires water table depth to be known or estimated and judgment on

selection of appropriate ground motion prediction equation if ShakeMap or equivalent data areis not available.

2.3 Zhu et al. (2015)

Zhu et al. (2015) propose empirical functions to predict estimate liquefaction probability specifically for use in rapid

response and loss estimation. They deliberately use predictor variables that are readily accessible, such as VS30 and do not5

require any specialist knowledge to be applied. The functions have been developed using logistic regression on data from the

earthquakes that occurred in Kobe, Japan on January 17th 1995 and in Christchurch, New Zealand on February 22nd 2011.

Forecasts from Tthe resulting functions have been tested oncompared to observations from the January 12th 2010 Haiti

earthquake. Since these functions have been developed using data from the Christchurch earthquake, there is an element of

circularity in assessing their performance against observations from the same event. However, it is worth noting that the10

datasets used to develop these functions have not come from the same source as the observations used in this case study.

Furthermore, the functions have been calibrated to optimise estimation of the areal extent of liquefaction, whereas in this

case study, it is the ability of the functions to make site specific forecasts that is being assessed.

For a given set of predictor variables, the probability of liquefaction is given by the function:15

 
1

1 X
P Liq

e



(13)

where X is a linear function of the predictor variables. Zhu et al. (2015) propose three linear models that are applicable to the

Canterbury region and are adopted in this study: a specific local model for Christchurch; a regional model for use in coastal

sedimentary basins (including Christchurch) and a global model that is applicable more generally. For the global model, the20

linear predictor function, XG, is given by:

, 3024.1 ln 0.355 4.784 lnG M SM SX PGA CTI V    (14)

where, isܫܶܥ the compound topographic index, used as a proxy for saturation, and which can be obtained globally from the

USGS Earth Explorer web service (USGS, 2014b); VS30 is obtained from the USGS Global Server (USGS 2013); and25

PGAM,SM is the product of the peak horizontal ground acceleration from ShakeMap estimates (USGS 2014a) and a

magnitude weighting factor, MWF, given by:
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2.56

2.2410
WM

MWF  (15)

For the regional model, the linear predictor function, XR, is given by:

, 3015.83 1.443ln 0.136 9.759 2.764 lnR M SM SX PGA CTI ND V     (16)

where additionally, ND is the distance to the coast, normalized by the size of the basin, i.e. the ratio between the distance to5

the coast and the distance between the coast and inland edge of the sedimentary basin (soil/rock boundary). The location of

the inland edge can be estimated from a surface roughness calculation based on a digital elevation model (USGS, 2014b) or

by using VS30 data such that the inland edge is assumed to be the boundary between NEHRP site classes C (soft rock) and D

(stiff soil), (i.e. at VS = 360m/s). For the Christchurch-specific local model, the linear predictor function, XL, is given by:

10

,0.316 1.225ln 0.145 9.708L M SMX PGA CTI ND    (17)

For applicability within the insurance sector, this model presents an advantage over LPI and HAZUS since the only

parameter that requires engineering judgment is the selection of ground motion prediction equation if ShakeMap or

equivalent data areis not available.

3 Model test assessment application15

This section summarises the procedure for compatring the model predictions forecasts to observations from the Canterbury

eartqhuakeearthquake sequence. A brief description is provided of the liquefaction observation dataset and the additional

datasets accessed in order to provide the required inputs to the nine models. This is followed by a discussion on the

conversion of quantitative model outputs to categorical liquefcationliquefaction predictions forecasts and an

explanantionexplanation of the test diagnostics used to assess model performance.20

3.1 Liquefaction observations

The methods described in the previous section are tested compared for two case studies from the Canterbury earthquake

sequence: the MW 7.1 Darfield earthquake on September 4th 2010 and the MW 6.2 Christchurch earthquake on February 22nd

2011 (GNS Science, 2014), as identified in Figure 1Figure 1. The corresponding peak horizontal ground acceleration

contours for each earthquake are shown in Figure 2.25
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Surface liquefaction observation data haves been obtained from two sources: ground investigation data provided directly

from Tonkin & Taylor, geotechnical consultants to the New Zealand Earthquake Commission (EQC) (van Ballegooy et al.,

2014) and maps stored within the Canterbury Geotechnical Database (CGD, 2013a), an online repository of geotechnical

data and reports for the region set up by EQC for knowledge sharing after the earthquakes. The data provided by Tonkin &

Taylor includes records from over 7,000 geotechnical investigation sites across Christchurch. After each earthquake, a land5

damage category is attributed to each site, representing a qualitative assessment of the scale of liquefaction observed. There

are six land damage categories, but since this study only investigates liquefaction triggering, the categories are converted to a

binary classification of liquefaction occurrence. Theseis data areis supplemented by the maps from the CGD which show the

areal extent of the same land damage categories. To ensure equivalence in the teststudy, all models are applied to the same

test study area for each earthquake, which is the region for which the input data for all models areis available. The test study10

area is divided into a grid of 100m x 100m squares, generating 25,100 test observation sites. It is noted however that at some

locations within Christchurch, no liquefaction observations are available so these sites are excluded from the subsequent

analysis. As a result, the test study area consists of 20,147 sites for the Darfield earthquake and 22,803 sites for the

Christchurch earthquake. The observations from the two events are shown in Figure 3Figure 3.

15

3.2 Prediction Forecast model inputs

This study includes three implementations of the LPI model: 1) using known VS profiles (referred to as LPI1 in this paper);

2) using VS30 as a proxy for VS (LPI2); and 3) using ‘realistic’ VS profiles simulated from VS30 and the Boore (2004) functions

(LPI3). The geotechnical investigation data provided by Tonkin & Taylor also includes values of LPI calculated at each site

from CSPT data rather than VS. Although this approach is not feasible for insurers, for reference its predictive forecasting20

power is also tested compared here. and Tthis implementation is referred to as LPIref. Historically it has been thought that

after liquefaction occurs, soils densify and increase their resistance to future liquefaction. However, Lees et al. (2015)

conducted an analysis comparing CPT-based strength profiles and subsequent liquefaction susceptibility at sites in

Christchurch both before and after the February 2011 earthquake. They concluded that no significant strengthening occurred

and that the liquefaction risk in Christchurch after the earthquake remained the same as it was beforehand. The study by25

Orense et al. (2012) came to similar conclusions and therefore for the purposes of this case study, post-earthquake CPT data

is appropriate for assessing liquefaction susceptibility.

A water table depth of 2m has been assumed across Christchurch, reflecting the averages described by Giovinazzi et al.

(2011) – 0-2m in the eastern suburbs and 2-3m in the western suburbs – and soil unit weights of 17kPa above the water table30

and 19.5kPa below the water table are assumed, as suggested by Wotherspoon et al. (2014). VS30 data for LPI2 and LPI3

areis taken from the USGS web server, with point estimates on an approximately 674m grid.
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Wood et al. (2011) have published VS profiles for 13 sites across Christchurch obtained using surface wave testing methods.

These sites are identified in Figure 1. In GIS, the profiles are converted to point data for each 1m depth increment from 0-

20m, so that each point represents the VS at that site for a single soil layer and there are a total of 13 points for each soil

layer. Ordinary kriging (with log transformation to ensure non-negativity) is applied to the points in each soil layer to create5

interpolated VS raster surfaces for each layer. Interpolation over a large area from such a small number of points is likely to

result in estimations carrying significant uncertainty. However from the perspective of commercial loss estimation, this is

typical of the type of data that an analyst may be required to work with and so there is value in investigating its efficacy.

Whilst Andrus and Stokoe (2000) advise that the maximum VS1 can range from 200-215m/s depending on fines content,

subsequent work by Zhou and Chen (2007) indicates that the maximum VS1 could range between 200-230m/s. In the absence10

of specific fines content data, a median value of 215m/s is assumed to be the maximum. In practice, a soil layer may have a

value of VS1 below this threshold but not be liquefiable because the soil is not predominantly clean sand. Because of the

regional scale of this analysis though, site-specific soil profiles (as distinct from VS profile) are not taken into account in

determining whether a soil layer is liquefiable. Goda et al. (2011) suggest the use of ‘typical’ soil profiles to determine the

liquefaction susceptibility of a soil layer at a regional scale. Borehole data at sites close to the 13 VS profile sites are available15

from the Canterbury Geotechnical Database (CGD, 2013c). These indicate that in the eastern suburbs of Christchurch, soil

typically consists predominantly of clean sand to 20m depth, with some layers of silty sand. On the western side of

Christchurch however there is an increasing mix of sand, silt and gravel in soil profiles, particularly at depths down to 10m.

Therefore it is possible, particularly in western suburbs, that the calculated VS1 values may indicate liquefiable soil layers

when they are in fact not, which would lead to overestimation of LPI and the extent of liquefaction.20

For the implementation of model LPI3, it could be argued that rather than using the Boore (2004) relationships to estimate

VS profiles at shallower depths from VS30, the local VS data published by Wood et al. (2011) could be used to develop a

locally calibrated model. This would be preferable from a purely scientific perspective. However, the purpose of this study is

to investigate the potential for a simple ‘global’ model for commercial application, and this is defined in part as a model that25

makes use of methods already in the literature and does not require additional model development. Nevertheless, when using

existing models it is useful to assess their applicability to a study area, and the VS profiles published by Wood et al. (2011),

can be used to assess the suitability of the Boore (2004) relationships in Christchurch. Figure 4 shows plots of VS30 against

VS10 and VS20 as calculated from the observed profiles and compares these to the Boore (2004) functions. The plots show that

that the relationships exhibit a small bias towards the underestimation of VS30. When inverted, the application of these30

relationships to Christchurch may therefore result in the overestimation of VS at shallower depths and therefore

underestimate liquefaction occurrence. However, the majority of observed values are within the 95% confidence intervals

and so the relationships can be deemed to be applicable.
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For application of the HAZUS method, liquefaction susceptibility zones have to be identified to determine the values of

model input parameters. In this paper liquefaction susceptibility zones are adopted from the liquefaction susceptibility map

available from the Canterbury Maps web-resource operated by Environment Canterbury Regional Council (ECan, 2014).

From the map it is possible to identify four susceptibility zones: ‘None’, ‘Low’, ‘Moderate’ and ‘High’. However, six

susceptibility zones are defined by HAZUS (NIBS, 2003). Since the Canterbury zones cannot be sub-divided, it is necessary5

to map the Canterbury zones onto four of the HAZUS zones. In HAZ1 the zones are mapped simply by matching names; in

HAZ2, the ‘Low’ and ‘High’ zones in Canterbury are mapped to the more extreme ‘Very low’ and ‘Very high’ zones in

HAZUS; and in HAZ3, the relevant input parameters for each zone are taken to be the average of those identified in HAZ1

and HAZ2. The mapping between susceptibility zones in each of the implementations described in Table 3. As with the LPI

model, depth to water table is assumed to be 2m across Christchurch.10

Three models proposed by Zhu et al. (2015) are tested compared in this paper: 1) the global model (referred to as ZHU1); 2)

the regional model (ZHU2); and 3) the local model (ZHU3). The PGA ‘shakefields’ from the Canterbury Geotechnical

Database (CGD, 2013b) are used as equivalents to the USGS ShakeMap. CTI (USGS, 2014b), at approximately 1km

resolution and VS30 (USGS, 2013) are downloaded from the relevant USGS web resources. In total nine model15

implementations are being testedcompared, based on three general approaches (see Table 4).

3.3 Site-specific predictionforecasts

When using probabilistic prediction forecasting frameworks, one can interpret the calculated probability as a regional

parameter that describes the spatial extent of liquefaction rather than discrete site specific predictionsforecasts, and indeed

Zhu et al. (2015) specifically suggest that this is how their model should be interpreted. So for example, one would expect20

30% of all sites with a liquefaction probability of 0.3 to exhibit liquefaction and 50% of all sites with a liquefaction

probability of 0.5, etc. However, when using liquefaction predictions forecasts as a means to estimate structural damage over

a wide area, it is useful to know not just the number of liquefied site but also where these sites are. This is particularly

important for infrastructure systems since the complexity of these networks means that damage to two identical components

can have significantly different impacts on overall systemic performance depending on the service area of each component25

and the level of redundancy built in.

There are two ways to generate site specific predictions forecasts from probabilistic assessments. One approach is to group

sites together based on their liquefaction probability, and then randomly assign liquefaction occurrence to sites within the

group based on that probability, e.g. by sampling a uniformly distributed random variable. This method is good for ensuring30

that the spatial extent of the site specific predictions forecasts reflect the probabilities, but since the locations are selected
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randomly it has limited value for comparison of predictions forecasts to real observations from past earthquakes. It can be

more useful for generating site specific predictions forecasts for simulated earthquake scenarios.

Another method is to set a threshold value for liquefaction occurrence, so all sites with a probability above the threshold are

predicted forecast to exhibit liquefaction and all sites with a probability below the threshold are predicted forecast to not5

exhibit liquefaction. The disadvantage of this approach is that the resulting predictions forecasts may not reflect the original

probabilities. For example if the designated threshold probability is 0.5 and all sites have a calculated probability greater than

this (even if only marginally), then every site will be predicted forecast to liquefy. Conversely if all sites have a probability

below 0.5, then none of the sites will be predicted forecast to liquefy. However since there is no random element to the

determination of liquefaction occurrence, the predictions forecasts are more definitive in spatial terms and hence more useful10

for the model testing in this comparative site-specific study. Although not strictly a probabilistic framework, thresholds can

also be used to assign liquefaction occurrence based on LPI, by determining a value above which liquefaction is assumed to

occur.

For all of the methods however, the issue arises of what value the thresholds should take. No guidance is given for HAZUS,15

whilst Zhu et al. (2015) propose a threshold of 0.3 to preserve spatial extent, although they also consider thresholds of 0.1

and 0.2. In their original study, Iwasaki et al. (1984) suggest critical values of LPI of 5 and 12 for liquefaction and lateral

spreading respectively. However other localized studies where the LPI method has been applied have found alternative

criteria that provide a better fit for observed data as summarized by Maurer et al. (2014). Since there is uncertainty in the

selection of threshold values, this study tests investigates a range of values for each model. Both the observation and20

prediction forecast datasets are binary classifications, so standard binary classification measures based on 2 x 2 contingency

tables are used to test compare performance.

3.4 Test Performance diagnostics

Comparison of binary classification predictions forecasts with observations is made by summarizing data into 2 x 2

contingency tables for each model. The contingency table identifies the true positives (TP), true negatives (TN), false25

positives (FP, Type I error) and false negatives (FN, Type II error). A good predictive forecasting model would predict

forecast both positive (occurrence of liquefaction) and negative (non-occurrence of liquefaction) results well. Diagnostic

scores for each model can be calculated based on different combinations and functions of the data in the contingency tables.

The true positive rate (TPR or sensitivity) is the ratio of true positive predictions forecasts to observed positives. The true

negative rate (TNR or specificity) is the ratio of true negative predictions forecasts to observed negatives. The false positive30

rate (FPR or fall-out) is the ratio of false positive predictions forecasts to true negatives. The bestA useful model would have

a high TPR and TNR (> 0.5) and low FPR (< 0.5).
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The results presented in a contingency table and associated diagnostic scores assume a single initial threshold value.

However, further statistical analysis is undertaken to optimize the thresholds in accordance with the observed data. For a

single model, at a specified threshold, the Receiver Operating Characteristic (ROC) is a graphical plot of TPR against FPR.

The line representing TPR = FPR is equivalent to random guessing (known as the chance or no-discrimination line). A good5

model has a ROC above and to the left of the chance line, with perfect classification occurring at (0,1). The diagnostic scores

for each model are re-calculated with different thresholds and the resulting ROC values are plotted as a curve for the model.

Since better models have points towards the top left of the plot, the area under the ROC curve, AUC, is a generalized

measure of model quality that assumes no specific threshold. Since the diagonal of the plot is equivalent to random guessing,

AUC = 0.5 suggests a model has no value, while AUC = 1 is a perfect model. For a single point on the ROC curve, Youden’s10

J-statistic is the height between the point and the chance line. The point along the curve which maximizes the J-statistic

represents the TPR and FPR values obtained from the optimum threshold for that model.

As well as comparing the performance of simplified models to each other, it is also useful to measure the absolute quality of

each model. Simply counting the proportion of correct predictions forecasts does not adequately measure model performance15

since it does not take into the account the proportion of positive and negative observations, e.g. a negatively biased model

will result in a high proportion of correct predictions forecasts if the majority of observations are negative. The Matthews

correlation coefficient, MCC, is more useful for cases where there is a large difference in the number of positive and

negative observations (Matthews, 1975). It is proportional to the chi-squared statistic for a 2 x 2 contingency table and its

interpretation is similar to Pearson’s correlation coefficient, so it can be treated as a measure of the goodness-of-fit of a20

binary classification model (Powers, 2011). From contingency table data, MCC is given by:

    

TP TN FP FN
MCC

TP FP TP FN TN FP TN FN

  


   
(18)

4 Results

This section summarises the results of the model applications using contingency table analysis. The results are first presented25

for analysis using a set of initial assumed thresholds for positive forecasts and subsequently for analysis in which thresholds

are optimised for performance. The sensitivity of the forecasts to variation of VS30 and PGA inputs is also assessed.
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4.1 Contingency table analysis – initial thresholds

An initial set of results using 5 as a threshold value for the LPI models, 0.3 as a threshold for the ZHU models and 0.5 as a

threshold value for the HAZUS models is shown in Table 5, alongside the corresponding diagnostic scores.

The LPI1 and LPIref models are the only models that meet the criteria of having TPR and TNR > 0.5 and FPR < 0.5, with the5

LPI1 model performing better despite being based on VS rather than ground investigation data. Table 3 shows that all

HAZUS models are very good at predicting forecasting non-occurrence of liquefaction. However, this is only due to the fact

that they are predicting forecasting no liquefaction all the time, and so their ability to predict forecast the occurrence of

liquefaction is extremely poor. The high TNR but relatively low TPR of the three ZHU models indicate that they all show a

bias towards the predictionforecasts of non-occurrence of liquefaction. The difference between TPR and TNR is indicative of10

the level of bias in the model and this regard ZHU2, the regional model shows less bias than in ZHU1, the global model, as

would be expected. The bias in the ZHU2 and ZHU3 models is approximately similar although the predictive power of

ZHU2 performsis slightly better.

The LPI2 model, using VS30 as a proxy, also shows a very strong bias towards predicting forecasting non-occurrence, which15

is expected since VS30 generally provides an overestimate of VS for soil layers at shallow depth. At sites where the soil profile

of the top 30m is characterized by some liquefiable layers at shallow depth with underlying rock or very stiff soil (e.g. in

western and central areas close to the inland edge of the sedimentary basin), VS30 will be high. Hence, this leads to false

classification of shallow layers as non-liquefiable. The LPI3 model with simulated VS profiles exhibits good performance in

the prediction offorecasting non-occurrence of liquefaction but onlyand correctly predicts forecasts just over half of the20

positive liquefaction observations, indicating bias towards negative predictionsforecasts. Although the VS profiles generated

through this approach are more realistic than using a constant VS30 value, the VS at each layer is related to VS30. Therefore, at

sites characterized by a high VS30 value with low VS values at shallow depths, even using Eq. (8) and Eq. (9) may not predict

estimate sufficiently low values of VS1 to classify the shallow layers as liquefiable. Another factor in the LPI models is the

use of the bias-correction factor proposed by Juang et al. (2005). Whilst this correction factor is appropriate when actual VS25

profiles are used, as in LPI1, it may not be appropriate for LPI2 and LPI3 where non-conservative proxies for VS are used

and the resulting misclassification of liquefiable soil layers balances the conservativeness of the Andrus and Stokoe (2000)

CRR model. The sensitivity of the models to the correction factor is tested investigated by reproducing the contingency

tables for LPI2 and LPI3 with the same threshold values but ignoring the correction factor for FS. These models are referred

to as LPI2b and LPI3b and the new contingency table analysis is presented in Table 6Table 5.30

These results show that not using the bias correction makes little difference to the performance of LPI2, as LPI2b still

exhibits an extremely strong bias towards predicting forecasting non-occurrence of liquefaction. For LPI3 however, the
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difference is more significant. Without the correction factor, the TPR and TNR values for LPI3b reverse, with only just over

half negative liquefaction occurrences being correctly forecast meets the criteria of having both TPR and TNR values greater

than 0.5. LPI3b therefore exhibits a The bias towards positive liquefaction forecasts and so it confers no advantage over

LPI3. towards the prediction of non-occurrence of liquefaction is still present although greatly reduced. However, the

improved capability of predicting the occurrence of liquefaction is offset by a reduction in the capability of predicting non-5

occurrence of liquefaction.

4.2 Contingency table analysis – optimised thresholds

The results in Table 3 and Table 4 demonstrate the performance of each model with a single initial threshold value. ROC

analysis is used to optimize the thresholds and curves for the eleven simplified models and reference model are generated

using the ROCR package in R (Sing et al., 2005), as shown in Figure 5Figure 4. For this study, the threshold for the LPI10

models is assumed to be a whole number, while for the HAZ and ZHU models, the threshold is assumed to be a multiple of

0.05 subject to a minimum value of 0.1, which is the minimum tested applied by the Zhu et al. (2014). The AUC values,

maximum J-statistics, optimum thresholds and corresponding TPR and TNR values for all models are shown in Table 6Table

7.

15

With optimized thresholds all the LPI models, except LPI2 and all the ZHU models meet the TPR and TNR criteria (>0.5).

All HAZ models and both versions of LPI2 have AUC values closer to the ‘no value’ criterion, suggesting that the problems

with these models lie not just with threshold selection, but more fundamentally with their composition and/or relevance to

the case study being tested (noting that the HAZ models have been developed for analysis in the United States). The reason

these are to the left of the chance line is because they are predicting forecasting non-occurrence of liquefaction at nearly20

every site and hence they are guaranteed a low FPR value. LPI1 is the best performing model according to both of the ROC

diagnostics and although the optimum threshold value of 7 is higher than proposed by Iwasaki et al. (1984), it is within the

range for marginal liquefaction – 4 to 8 – proposed by Maurer et al. (2014) and so may be considered plausible. The two

versions of the LPI3 model perform similarly and have reasonable diagnostic scores but LPI3b, without the correction factor,

produces a more plausible optimum threshold value of 4. It is noted however that although the optimum threshold for LPI3b25

is 10, the TPR and TNR criteria are met with a threshold of 4 but with a lower model performance and greater

positivenegative prediction forecast bias (J-statistic = 0.403344, TPR = 0.523806, TNR = 0.880538).

The ZHU1 and ZHU2 models perform reasonably with AUC values and J-statistics slightly lower than the LPI3 models, but

the optimum thresholds are at the minimum of the tested range that has been investigated, confirming the degree to which30

these models under-predict estimate liquefaction occurrence. The ZHU2 model also meets the TPR and TNR criteria with a

threshold value of 0.2, albeit with a greater prediction forecast bias (J-statistic = 0.370, TPR = 0.555, TNR = 0.815). The

ZHU3 model, despite being specific to Christchurch, does not perform as well as ZHU1 or ZHU2. There are potential
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reasons for this anomaly, such as that may be because the ZHU models were calibrated to preserve the extent of liquefaction

rather than to make site-specific predictionsforecasts or because the data used to develop the models has not come from the

same source as the observation data used for comparison. Therefore these results do not contradict or invalidate the original

findings of Zhu et al. (2015).

5

The absolute quality of models is tested evaluated by calculating MCC. In the preceding analysis, the best performing model

is LPI1 and this has a value of MCC = 0.48. The correlation is only moderate, but nevertheless indicates that the model is

better than random guessing. As part of a rapid assessment or desktop study for insurance purposes, this may be sufficient.

LPI3 and LPI3b have MCC = 0.38039 and 0.35748 respectively, whilst LPIref has MCC = 0.29.

4.3 Mapping of model forecasts10

The maps in Figure 6 and Figure 7 show how forecasts of liquefaction occurrence, relating to the Darfield and Christchurch

earthquakes respectively, are distributed across the city for four of the best performing models identified in Table 6: LPI1,

LPI3, ZHU1 and ZHU2. Figure 3 shows that a greater extent of liquefaction was observed in the Christchurch earthquake

than in the Darfield earthquake and this is reflected by all four models represented in Figure 6 and Figure 7. However for

both earthquakes, each of the models forecasts a greater extent of liquefaction than was observed. In the Darfield earthquake,15

most of the liquefaction was observed in the north and east of the city. Whilst to some degree, this spatial distribution is

matched by model LPI1, the remaining models do not represent the observed distribution well, with In particular the models

ZHU1 and ZHU2 estimate a greater proportion of liquefaction in the south of the city. In the Christchurch earthquake,

liquefaction was mostly observed in the eastern suburbs of the city. All the models forecast the majority of liquefaction to

occur in these areas, although model ZHU2 forecasts more liquefaction occurring in western suburbs than actually occurred,20

while model ZHU1 forecasts no liquefaction occurring to the west of the city at all. The spatial distributions of the forecasts

from the LPI models exhibit only limited accuracy, yet they are better than the forecasts from the two ZHU models. This can

be explained partly by the fact the LPI method is designed for site-specific estimation, whereas the ZHU models have been

calibrated to optimise the extent rather than the location of liquefaction.

4.4 Sensitivity test – VS3025

The sensitivity of the forecasts to variation in VS30 is assessed for models LPI3 and ZHU1. LPI3 is the best performing model

that requires VS30 and ZHU2 is the best performing ZHU model. The forecasting procedure and contingency table analysis

for the two models are repeated for two scenarios, one where VS30 is decreased by 10% at all sites and one where VS30 is

increased by 10% at all sites.

30

In the scenario where VS30 is decreased, the TPR for model LPI3 increases to 0.819 with a threshold of 4 (the optimised

threshold from Table 6), while the TNR decreases to 0.536, effectively reversing the bias demonstrated by the original
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model. The J-statistic reduces significantly to 0.356 indicating lower performance than the original model. With the new VS30

values, the optimised threshold increases to 9, with J-statistic = 0.426, which is higher than the original model, TPR = 0.654

and TNR = 0.773. When VS30 is increased, TPR = 0.308 with a threshold of 4, which is lower than criterion for good

performance (TPR > 0.5), TNR = 0.974. This demonstrates a strengthening of the negative bias in the original model and

poor performance since the J-statistic reduces to 0.282. The optimum threshold changes to 1, yet even with this threshold,5

while the J-statistic improves to 0.388, TPR = 0.489, which is still below the performance criterion. These results show that

LPI3 forecasts are sensitive to variation in VS30. Therefore, although currently the optimum LPI3 threshold for Christchurch

has been identified as 4, if in the future more accurate VS30 becomes available, then the analysis presented in this paper

should be repeated to recalibrate model LPI3 with a new optimum threshold.

10

Model ZHU2 experiences much smaller changes as a result of changes to VS30. When VS30 is decreased, and with a threshold

of 0.1 (the optimised threshold from Table 6), TPR = 0.820, TNR = 0.532 and J-statistic = 0.352. When VS30 is increased,

TPR = 0.700, TNR = 0.662 and J-statistic = 0.362. For both scenarios all performance criteria are met and there only small

reductions in J-statistic. When the models are optimised, the thresholds change to 0.25 for the decrease (J-statistic = 0.370)

and to 0.15 for the increase (J-statistic = 0.368). These results suggest that ZHU2 forecasts are relatively stable in response15

to variations in VS30, but if more accurate VS30 becomes available in the future, then some performance improvement can be

achieved through recalibration of the optimum threshold.

4.5 Sensitivity test – PGA

The sensitivity of the forecasts to uncertainty in PGA measurements is also assessed for models LPI3 and ZHU1. In the two

sensitivity test scenarios, The forecasting procedure and contingency table analysis are repeated for two scenarios, where20

PGA is decreased by 10% at all sites and where PGA is increased by 10% at all sites.

In the scenario where PGA is decreased, the TPR for model LPI3 decreases to 0.503 with a threshold of 4, while the TNR

increases to 0.905 and there is only a small reduction in J-statistic to 0.408. The optimised threshold decreases to 2, with J-

statistic = 0.424, which is higher than the original model, TPR = 0.594 and TNR = 0.830. When PGA is increased, TPR =25

0.652 with a threshold of 4 and TNR = 0.765, with corresponding J-statistic = 0.417. The optimum threshold changes to 6,

with J-statistic = 0.419, TPR = 0.576 and TNR = 0.843. In general, changes in PGA do affect the scores but in all cases, the

changes are relatively small, particularly with respect to the J-statistic, and the performance criteria are still met.

Model ZHU2 also experiences small changes as a result of changes to PGA. When PGA is decreased, and with a threshold of30

0.1, TPR = 0.725, TNR = 0.637 and J-statistic = 0.362. When PGA is increased, TPR = 0.798, TNR = 0.574 and J-statistic =

0.372, which is a small increase over the original model. For both scenarios all performance criteria are met and there only

small changes to J-statistic. When the models are optimised, the threshold changes to 0.2 for the decrease scenario (J-
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statistic = 0.369), but for the increase scenario, the optimum threshold is still 0.1. These results suggest that both LPI3 and

ZHU2 forecasts are relatively stable in response to variations in PGA and so while small uncertainties in PGA measurements

will change the rates of true positive and true negative forecasts, overall performance in terms of J-statistic remains similar.

5 Probability of liquefaction

When Tthe threshold-based approach to liquefaction occurrence identification usingis applied to the LPI models, it provides5

a deterministic predictionforecast. This may be considered sufficient for the simplified regional-scale analyses conducted for

catastrophe modelling and loss estimation. However, a modeller may also want to establish a probabilistic view of

liquefaction risk by relating values of LPI to probability of liquefaction occurrence. Since the occurrence of liquefaction at a

site is a binary classification variable, it can be modelled by a Bernoulli distribution with probability of liquefaction, p,

which depends on the value of LPI. With data from past earthquakes, functions relating p to LPI can be derived using a10

generalized linear model with probit link function. The probability of liquefaction occurring given a particular value of LPI,

λ, is given by: 

   | *LPIp P Liq LPI Y      (19)

where Φ is cumulative normal probability distribution function and Y* is the probit link function given by:15

0 1*Y     (20)

The link function is a linear model with LPI as a predictor variable and is derived from the individual site observations.

Figure 8Figure 5 displays the relationships between liquefaction probability and LPI fit by this method for the two best

performing LPI models, LPI1 and LPI3b, including 95% confidence intervals. The relationships are accompanied by plots of20

the observed liquefaction rates, aggregated at each value of LPI. The plot for model LPI3b shows greater scatter of observed

rates around the fit line than the plot for model LPI1, although in both cases the confidence interval is very narrow, which is

a reflection of the large sample size. The confidence interval for LPI1 (±0.0014) is slightly narrower that the confidence

interval for LPI3b (±0.0021), indicating that LPI1 is the better predictor model of for estimating liquefaction probability, just

as it is better at predicting forecasting liquefaction occurrence by LPI threshold. For both models, It is noted in both models25

though that the observed rates that are furthest away from the best-fit line are mostly predominantly those that are based on

smaller sample sizes (arbitrarily defined here as 100). and which therefore These have less influence on the regression –

since the use of individual site observations implicitly gives more weight to observations in the region of LPI values for

which sample sizes are larger. Furthermore, the observed rates are themselves more unreliable for smaller sample sizes. For
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example, for model LPI1, observations based on more than 100 samples have an average margin of error of 0.05 whereas the

average margin of error for smaller samples is 0.19. For model LPI3b, observations based on more than 100 samples have an

average margin of error of 0.05 and this increases to 0.2231 when considering the observations based on smaller samples.

The Hosmer-Lemeshow test (Hosmer and Lemeshow, 1980) is a commonly used procedure for assessing the goodness of fit5

of a generalized linear model when the outcome is a binary classification. However, Paul et al. (2013) show that the test is

biased with respect to large sample sizes, with even small departures from the proposed model being classified as significant

and consequently recommend that the test is not used for sample sizes above 25,000. Pseudo-R2 metrics are also commonly

used to test model performance (Smith and McKenna, 2013), but these compare the proposed model to a null intercept-only

model rather than comparing the model predictions forecasts to observations. Although the purpose of the analysis in this10

section is to relate LPI to liquefaction probabilistically, contingency table analysis with a threshold probability to determine

liquefaction occurrence remains an appropriate technique to test the fit of the model (Steyerberg et al., 2010). Assuming a

threshold probability of 0.5, Table 7Table 8 presents summary statistics from the contingency table analysis of each model

and also the coefficients of the corresponding probit link function.

15

Both models have values of TPR and TNR above 0.5 and the values are of a similar order to those obtained in Table 5 and

Table 6 for the same models. The exception is the TPR for model LPI3, which is significantly higher when the threshold

probability is used and eliminates much of the bias towards negative forecasts. but using a value of LPI as a threshold. In

particular however, values of TNR are now higher, which indicates that the probabilistic LPI model is better at predicting

non-occurrence of liquefaction. This is important as over 80% of observations in this study are negative. The difference in20

values of AUC between Table 6Table 7 and Table 7Table 8 are negligible but the J-statistic for LPI3b with a threshold

probability of 0.5 is considerably higher than the J-statistic forthat the optimal threshold found for LPI3b in Table 6Table 7.

This suggests that LPI3b is best implemented as a probabilistic model for liquefaction occurrence. Overall these statistics

indicate that both of the probabilistic LPI models proposed are good fits to the observed data.

6 Permanent ground deformation25

The preceding sections have analysed methods for predicting forecasting liquefaction triggering, but for assessing the

fragility of structures and infrastructure, it is more informative to be able to predict estimate the scale of liquefaction, in

terms of the permanent ground deformation (PGDf). In fact, fragility functions for liquefaction-induced damage are

commonly expressed in these terms (Pitilakis et al., 2014). A summary of the available approaches for quantifying PGDf is

provided by Bird et al. (2006), which also compares approaches for lateral movement, settlement and combined movement30

(volumetric strain). The majority of these approaches require detailed geotechnical data as inputs, (e.g. median particle size,

fines content). The likelihood that insurers possess or are able to acquire such data is low, which means that these approaches
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are not suitable for regional-scale rapid assessment. The lack of simplified models is not surprising given the small number

of models that exist for liquefaction triggering assessment and that by definition measuring the scale of liquefaction is more

complex. From the available models in the literature, there are three that can be applied without the need for detailed

geotechnical data: the EPOLLS regional model for lateral movement (Rauch and Martin, 2000) and the HAZUS models for

lateral movement and vertical settlement (NIBS, 2003). To demonstrate the challenge faced by insurers looking to improve5

their liquefaction predictionmodelling capability, these models are compared to PGDf observations from the Darfield and

Christchurch earthquakes. It should be noted that the HAZUS model has been developed specifically for the United States

and the empirical data used to develop its constituent parts comes mainly from California and Japan. The EPOLLS model is

based on empirical data from the United States, Japan, Costa Rica and the Philippines.

6.1 Vertical settlement10

A time series of LiDAR surface data for Christchurch has been produced from aerial surveys over the city, initially prior to

the earthquake sequence in 2003, and subsequently repeated after the Darfield and Christchurch earthquakes. The surveys

are obtained from the Canterbury Geotechnical Database (2012a). The LiDAR surveys recorded the surface elevation as a

raster at 5m-cell resolution. The difference between the post-Darfield earthquake survey and the 2003 survey represents the

vertical movement due to the Darfield earthquake. Similarly the difference between the post-Christchurch earthquake and the15

post-Darfield earthquake surveys represents the movement due to the Christchurch earthquake. In addition to liquefaction,

elevation changes recorded by LiDAR can also be caused by tectonic movementsuplift. Therefore, to evaluate the vertical

movement due to liquefaction effects only, PGDfV, the differences between LiDAR surveys have been corrected to remove

the effect of the tectonic movement. Tectonic uplift movement maps have been acquired from the Canterbury Geotechnical

Database (2013d). The only simplified method for calculating vertical settlement is from HAZUS (NIBS, 2003) in which the20

settlement is the product of the probability of liquefaction, as in Eq. (10), and the expected settlement amplitude, which

varies according to liquefaction susceptibility zone, as described in Table 3Table 9.

The HAZUS model is applied with each of the three implementations used for predicting forecasting liquefaction probability

in the liquefaction triggering analysis. Summary statistics of the PGDfV predictions estimates from each implementation are25

presented in Table 8Table 10. This shows that the HAZUS model significantly underestimates the scale of liquefaction,

regardless of how liquefaction susceptibility zones are mapped between the Canterbury and HAZUS classifications. The

residuals have a negative mean in each implementation indicating an underestimations bias. Furthermore, the maximum

value predicted estimated by HAZ1 and HAZ3 is smaller than the observed lower quartile. The coefficient of determination

is also extremely low in each case, implying that there is little or no value in the predictionsestimates. It is important to note30

that there is a measurement error in the LiDAR data itself of up to 150mm, as well as a uniform probability prediction

interval around the HAZUS predictionestimates. However, even when using the upper bound of the HAZUS prediction

Field Code Changed
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estimates (two times the mean), only around 50% of predictions estimates fall within the observation error range. These

results suggest that the HAZUS model for predicting estimating vertical settlement is not suitable for application in

Christchurch.

6.2 Lateral spread

The LiDAR surveys for Christchurch also record the locations of reference points within a horizontal plane and the5

differences between these data have been used to generate maps identifying the lateral displacements caused by each

earthquake on a grid of points at 56m intervals. Similarly to the elevation data, the lateral displacements have to be corrected

for tectonic movements, although in this case the corrected maps have been obtained directly from the Canterbury

Geotechnical Database (2012b).

10

The HAZUS model (NIBS 2003) for predicting estimating ground deformation due to lateral spread is given by:

 | /H SCPGDf K E PGD PGA PL a     (21)

where, KΔ is a displacement correction factor, which is a cubic function of earthquake magnitude, and the term on the right

hand side is the expected ground deformation for a given liquefaction susceptibility zone, which is a function of the15

normalized peak ground acceleration (observed PGA divided by liquefaction triggering threshold PGA for that zone). The

formulae for calculating these terms are not repeated here but can be found in the HAZUS manual (NIBS, 2003).

The EPOLLS suite of models for lateral spread (Rauch and Martin, 2000) includes proposed relationships for predicting

estimating ground deformation at a regional scale (least complex), at site specific scale without detailed geotechnical data20

and at site specific scale with detailed geotechnical data (most complex). In the regional EPOLLS model, PGDfH is given by:

 
2

0.613 0.0139 2.42 0.01147 2.21 0.149H W f dPGDf M R PGA T      (22)

where, Rf is the shortest horizontal distance to the surface projection of the fault rupture, and Td is the duration of ground

motion between the first and last occurrence of accelerations ≥ 0.05g at each site. To calculate durationDurations have been25

calculated from ground motion records (at 0.02s intervals) obtained , there arefrom 19 strong-motion accelerograph stations

in Christchurch, identified in Figure 1 that record ground motions at 0.02s intervals. The records from each station for both

earthquakes are available from the GeoNet website (GNS Science, 2014). Td is calculated at each station and then the value

at intermediate sites is interpolated by ordinary kriging. Summary statistics of the predictions estimates from the regional
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EPOLLS and HAZUS models are presented in Table 9Table 11. The statistics show that none of the models predict estimate

PGDfH well. The EPOLLS model overestimates the scale of liquefaction, while the HAZUS models each show an

underestimation bias. The mean residuals and root mean square error (RMSE) are higher for the EPOLLS model, suggesting

that the HAZUS models perform slightly better, but this is of little significance since the coefficients of determination of the

HAZUS models are all extremely low. A mitigating factor is that the LiDAR data haves a very large error – up to 0.5m – in5

the horizontal plane. Taking this into account, over 90% of HAZUS predictions estimates are within the observation error

range, although this needs to be interpreted in the context of the mean observed PGDfH being 0.269m. Since the HAZUS

model underestimates PGDfH, and PGDfH cannot be negative, the fact that so many predictions estimates are within this

error range is more a reflection of the size of the error relative to the values being observed. Consequently the statistics in

Table 9Table 11 are more informative and these show that the simplified models all perform poorly.10

7 Conclusions

This study compares a range of simplified desktop liquefaction assessment methods that may be suitable for insurance sector

where data availability and resources are key constraints. It finds that the liquefaction potential index, when calculated using

shear-wave velocity profiles (LPI1) is the best performing model in terms of its ability to correctly predict forecast

liquefaction occurrence both positively and negatively, although it must be noted that its predictive power is not high. Shear-15

wave velocity profiles are not always available to practitioners and it is notable therefore that the analysis shows that the next

best performing model is the liquefaction potential index calculated with shear-wave velocity profiles simulated from USGS

ௌܸଷ଴ data (LPI3b). Since it is based on USGS data, which areis publicly accessible online, this method is particularly

attractive to those undertaking rapid and/or regional scale desktop assessments.

20

The HAZUS methodologymethod for estimating liquefaction probabilities performs poorly irrespective of triggering

threshold. This is significant since HAZUS methodologiesmethods (not only in respect to liquefaction) are often used as a

default model outside of the US when no specific local (or regional) model is available. Models proposed by Zhu et al.

(2015) perform well reasonably and since they are also based on publicly accessible data, represent another viable option for

desktop assessment. The only issue with these models is that they perform optimally with a low threshold probability of 0.1,25

which may lead to over-prediction estimation of liquefaction when applied to other locations.

As an extension of the liquefaction triggering analysis, this study also uses the observations to relate LPI to liquefaction

probability for the two best-performing models. In the case of LPI3b, the model performance (as measured by Youden’s J-

statistic) actually improves significantly when employed with a threshold based on corresponding probability rather than30

based directly on LPI. The final stage of liquefaction assessment is to measure the scale of liquefaction as PGDf. This study

only briefly considers this aspect but shows that existing simplified models perform extremely poorly. Existing models show
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very low correlation with observations and strong predictestimation bias – underestimation in the case of HAZUS and

overestimation in the case of regional EPOLLS. Based on this analysis the predictions estimations from these simplified

models are highly uncertain and it is questionable whether they genuinely add any value to loss estimation analysis outside

of the regions for which they have been developed.
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40

Figure 1 – Locations of epicentres and fault planes (Beaven et al., 2012) of the Darfield and Christchurch earthquakes, strong

motion stations from which recordings are used to estimate shaking durations and locations at which shear wave velocity (VS)

profiles are known (Wood et al., 2011). Note that locations of VS profiles coincide with strong motion stations. in relation to the

Christchurch urban area and central business district.5
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Figure 2 – Contours of peak horizontal ground acceleration (PGA) for the Darfield and Christchurch earthquakes (source:

Canterbury Geotechnical Database, 2013b).

5

Figure 3 – Location of surface liquefaction observations (brown) in Christchurch and surrounding areas due to the Darfield and

Christchurch earthquakes, based on data provided by Tonkin and Taylor and published within the Canterbury Geotechnical

Database (CGD 2013a).
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Figure 4 – Plots comparing observed VS30 with VS30 estimated from Boore (2004) equations, with respect to observed VS10 (left) and

observed VS20 (right). The dashed lines represent the 95% confidence interval around the Boore (2004) relationships. VS30 is the

average shear wave velocity in the top 30m of ground and VS10 and VS20 are the equivalents at 10m and 20m depth respectively.
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Figure 5 – Receiver Operating Characteristic (ROC) curves for prediction forecasting models. Refer to Table 4 for descriptions

corresponding to model acronyms.
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Figure 6 – Maps of liquefaction forecasts from selected models for the Darfield earthquake, where the brown areas represent

positive liquefaction forecasts, the grey areas represent negative liquefaction forecasts and the white areas are where no forecast

was made due to lack of input data. Refer to Table 4 for descriptions corresponding to model acronyms.

Formatted: Centered

Formatted Table

Formatted: Centered

Formatted: Centered, Keep with next

Formatted: Caption, Line spacing:
1.5 lines



45

Figure 7 – Maps of liquefaction forecasts from selected models for the Christchurch earthquake, where the brown areas represent

positive liquefaction forecasts, the grey areas represent negative liquefaction forecasts and the white areas are where no forecast

was made due to lack of input data. Refer to Table 4 for descriptions corresponding to model acronyms.
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Figure 8 – Plots of liquefaction probability against Liquefaction Potential Index (LPI) derived from site specific observations by

generalized linear model with probit link function for two best performing LPI models. Plots also display the observed liquefaction

rates at each LPI value and classified by sample size

5
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Table 1 – Reference list of acronyms used in this paper

Acronym Description

AOC Area under ROC curve

CGD Canterbury Geotechnical Database

CPT Cone penetration test

CRR Cyclic resistance ratio

CSR Cyclic stress ratio

CTI CompundCompound topographic index

EQC Earthquake Commission

FN False negative model predictions forecasts (no.)

FP False positive model predictions forecasts (no.)

FPR False positive rate ( = FP / Observed negatives)

FS Factor of safety against liquefaction

LPI Liquefaction potential index

MCC Matthew’s correlation coefficient

MSF Magnitude scaling factor

MWF Magnitude weighting factor

NEHRP National Earthquake Hazards Reduction Program

PGA Peak ground acceleration

PGDf Permanent ground deformation

PGDfH Horizontal permanent ground deformation

PGDfV Vertical permanent ground deformation

RMSE Root mean square error

ROC Receiver operating characteristic

SPT Standard penetration test

TN True negative model predictions forecasts (no.)

TNR True negative rate ( = TN / Observed negatives)

TP True positive model predictions forecasts (no.)

TPR True positive rate ( = TP / Observed positives)

USGS United States Geological Survey
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Table 2 – Reference list of variables used in this paper

Variable Description Units Input variables

amax Peak horizontal ground acceleration m/s2 -

CRR Cyclic resistance ratio - MSF, VS1, V*
S1

CSR Cyclic stress ratio - amax, σv, σv', rd

CTI CompundCompound topographic index - -

dw Depth to groundwater m -

FS Factor of safety against liquefaction - CRR, CSR

KM HAZUS moment magnitude correction factor - MW

KW HAZUS ground water correction factor - dw

KΔ DisplacdementDisplacement correction factor - MW

LPI Liquefaction potential index - FS, z

MSF Magnitude scaling factor - MW

MW Moment magnitude - -

MWF Magnitude weighting factor - MW

ND Normalised distance to coast (Zhu et al., 2015) - -

PGA Peak horizontal ground acceleration (non USGS) g -

PGAM,SM Peak horizontal ground acceleration (from USGS

ShakeMap)

g -

PGD | (PGA / PLSC) HAZUS expected PGDf for a given

liquefcationliquefaction susceptibility zone

m PGA, liquefaction

susceptibility

PGDf Permanent ground deformation m -

PGDfH Horizontal permanent ground deformation m -

PGDfV Vertical permanent ground deformation m -

Pml HAZUS proportion of map unit susceptible to

liquefactionfor a given liquefaction

susceptibility zone

- Liquefaction

susceptibility

rd Shear stress reduction coefficient - z

Rf Horizontal distance to surface projection of fault km -
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rupture

Td Duration between first and last occurrence of

PGA ≥ 0.05g 

s -

VS Shear wave vlocityvelocity m/s -

VS1 Stress-corrected shear wave velocity m/s VS, σv'

V*
S1 Limiting upper value of VS1 for cyclic

liquefaction occurrence

m/s Fines content

VS(0-10) Average shear wave velocity in top 10m m/s -

VS(10-20) Average shear wave velocity between 10m and

20m

m/s -

VS30 Average shear wave velocity in top 30m m/s -

z Depth m -

σv Total overburden stress kPa z, soil density

σv' Effective overburden stress kPa σv, z

Table 3 – Conversion between Canterbury and HAZUS liquefaction susceptibility zones for three implementations of HAZUS

methodologymethod. Refer to Table 4 for descriptions corresponding to model acronyms.

Canterbury

liquefaction

susceptibility

zones

Equivalent HAZUS liquefaction susceptibility zone and expected settlement amplitude

Model HAZ1 Model HAZ2 Model HAZ3

Zone

Expected

settlement

(cm)

Zone

Expected

settlement

(cm)

Zone

Expected

settlement

(cm)

None None 0 None 0 None 0

Low Low 2.5 Very low 0
Average low

and very low
1.25

Moderate Moderate 5 Moderate 5 Moderate 5

High High 15 Very high 30
Average high

and very high
22.5

5
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Table 4 – Liquefaction prediction forecasting models tested compared in this paper

Model Description

LPI1 Liquefaction potential index (LPI) with known shear wave velocity, VS, profiles

LPI2 LPI with average shear wave velocity in the top 30m, VS30, as a proxy for VS proxy

LPI3 LPI with simulated VS profiles

LPIref LPI calculated from standard penetration test (SPT) results

HAZ1 HAZUS with ‘direct’ conversion of susceptibility zones

HAZ2

HAZ3

HAZUS with ‘extreme’ susceptibility zones

HAZUS with ‘average’ conversion of susceptibility

ZHU1 Global model by Zhu et al. (2015)

ZHU2 Regional model by Zhu et al. (2015)

ZHU3 Local model by Zhu et al. (2015)

Formatted Table
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Table 5 – Summary of contingency table data and diagnostic scores for all models using initial threshold estimates, including ‘LPI’

models subject to sensitivity test without Juang et al. (2005) correction factors being applied to the factor of safety. Refer to Table

4 for descriptions corresponding to model acronyms.

Model

True

Positives

(TP)

True

Negatives

(TN)

False

Positives

(FP)

False

Negatives

(FN)

True

Positive

Rate (TPR)

True

Negative

Rate (TNR)

False

Positive

Rate (FPR)

LPI1 6345 25685 9442 1478 0.811 0.731 0.269

LPI2 147 35063 64 7676 0.019 0.998 0.002

LPI3 37374287 3198230578 31454549 40863536 0.478548 0.910870 0.0900.130

LPIref 5964 20826 14301 1859 0.762 0.593 0.407

HAZ1 0 35127 0 7823 0.000 1.000 0.000

HAZ2 0 35127 0 7823 0.000 1.000 0.000

HAZ3 0 35127 0 7823 0.000 1.000 0.000

ZHU1 1880 33483 1644 5943 0.240 0.953 0.047

ZHU2 3135 31931 3196 4688 0.401 0.909 0.091

ZHU3 2754 31017 4110 5069 0.352 0.883 0.117

LPI2b 610 34902 225 7213 0.078 0.994 0.006

LPI3b 6068 20509 14618 1755 0.806 0.584 0.416

5

Table 6 – Summary of contingency table data and diagnostic scores for LPI models subject to sensitivity test without Juang et al.

(2005) correction factors being applied to FS

Model TP TN FP FN TPR TNR FPR

LPI2b 610 34902 225 7213 0.078 0.994 0.006

LPI3b 5002 27136 7991 2821 0.639 0.773 0.227

10
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Table 6 – Model quality diagnostics and optimum threshold values for each model from ROC curves. Refer to Table 4 for

descriptions corresponding to model acronyms.

Model
Area Under

Curve (AUC)
J-statistic Threshold

True Positive

Rate (TPR)

True Negative

Rate (TNR)

LPI1 0.845 0.573 7 0.774 0.799

LPI2 0.630 0.122 1 0.131 0.991

LPI2b 0.630 0.206 1 0.224 0.982

LPI3 0.76272 0.41420 14 0.671581 0.742839

LPI3b 0.76166 0.4154 410 0.64617 0.76997

LPIref 0.748 0.366 6 0.689 0.678

HAZ1 0.679 0.238 0.1 0.073 0.999

HAZ2 0.608 0.316 0.1 0.134 0.997

HAZ3 0.661 0.315 0.1 0.133 0.998

ZHU1 0.753 0.355 0.1 0.556 0.799

ZHU2 0.760 0.371 0.1 0.767 0.604

ZHU3 0.718 0.306 0.1 0.712 0.594

Table 7 – Coefficients of link function and summary of contingency table analysis for the two best performing LPI models. Refer5

to Table 4 for descriptions corresponding to model acronyms.

Model β1 Β0

True Positive

Rate (TPR)

True Negative

Rate (TNR)
J-statistic

Area Under

Curve (AUC)

LPI1 0.067 -1.555 0.683 0.869 0.551 0.843

LPI3b 0.08298 -

1.376299

0.70484 0.86056 0.564641 0.7606

Table 9 – Expected settlement amplitudes for liquefaction susceptibility zones from HAZUS methodology (NIBS, 2003)

Liquefaction susceptibility zone Expected settlement amplitude (inches)

Very high 12

High 6
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Moderate 2

Low 1

Very low 0

None 0

Table 8 – Summary statistics of vertical ground deformation (PGDfV) predictions estimates for Darfield and Christchurch

earthquakes from HAZUS models. Refer to Table 4 for descriptions corresponding to model acronyms.

Score Observed Vertical permanent ground deformation, PGDfV (m)

HAZ1 HAZ2 HAZ3

Pearson R2 n/a 0.064 0.051 0.058

Mean 0.118 0.003 0.008 0.005

Minimum 0.000 0.000 0.000 0.000

Lower quartile 0.051 0.000 0.000 0.000

Median 0.100 0.001 0.000 0.000

Upper quartile 0.162 0.004 0.004 0.004

Maximum 1.464 0.022 0.066 0.043

Residual mean n/a -0.114 -0.110 -0.112

Root-mean-square

errorRMSE

n/a 0.146 0.142 0.144

5

Table 9 – Summary statistics of horizontal permanent ground deformation (PGDfH) predictions estimates for Darfield and

Christchurch earthquakes from EPOLLS and HAZUS models. Refer to Table 4 for descriptions corresponding to model

acronyms.

Score Observed

Horizontal permanent ground deformation, PGDfH (m)

Observed EPOLLS HAZ1 HAZ2 HAZ3

Pearson R2 n/a 0.000 0.022 0.032 0.027

Mean 0.269 0.682 0.141 0.172 0.150

Minimum 0.001 0.149 0.000 0.000 0.000

Lower quartile 0.124 0.418 0.000 0.000 0.000
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Median 0.206 0.748 0.084 0.050 0.067

Upper quartile 0.312 0.964 0.184 0.191 0.182

Maximum 3.856 1.989 1.872 3.205 2.443

Residual mean n/a 0.413 -0.128 -0.096 -0.118

Root-mean-square

errorRMSE

n/a 0.582 0.345 0.438 0.376
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