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Abstract. Experience has shown that river floods can significantly hamper the reliability of railway networks and cause 

extensive structural damage and disruption. As a result, the national railway operator in Austria had to cope with financial 

losses of more than one hundred million euros due to flooding in recent years. Comprehensive information on potential flood 10 

risk hot spots as well as on expected flood damage in Austria is therefore needed for strategic flood risk management. In 

view of this, the flood damage model RAIL (RAilway Infrastructure Loss) was applied to estimate 1) the expected structural 

flood damage, and 2) the resulting repair costs of railway infrastructure due to a 30-year, 100-year and 300-year flood in the 

Austrian Mur River catchment. The results were then used to calculate the expected annual damage of the railway 

subnetwork and subsequently analysed in terms of their sensitivity to key model assumptions. Additionally, the impact of 15 

risk aversion on the estimates was investigated, and the overall results were briefly discussed against the background of 

climate change and possibly resulting changes in flood risk. The findings indicate that the RAIL model is capable of 

supporting decision-making in risk management by providing comprehensive risk information on the catchment level. It is 

furthermore demonstrated that an increased risk aversion of the railway operator has a marked influence on flood damage 

estimates for the study area and, hence, should be considered with regard to the development of risk management strategies. 20 

1 Introduction 

The railway transportation system in Austria is of major importance for the European transit of passengers and goods from 

north to south and east to west. In addition, the railway lines are essential for the accessibility of lateral alpine valleys and, 

thus, contribute to economic and societal welfare. However, experience has shown that river floods can significantly hamper 

the reliability of railway networks and cause extensive structural damage to parts of the infrastructure and disruption in the 25 

network (Nester et al., 2008; Moran et al., 2010a, b; Kellermann et al., 2015). Particularly in recent years, the national 

railway operator in Austria, the Austrian Federal Railways (ÖBB), had to cope with financial losses of more than one 

hundred million euros due to flooding. For example, the 100-year March River flood in Lower Austria in 2006 washed parts 

of the Northern Railway away and caused repair costs of more than EUR 41.4 million (Moran et al., 2010a; ÖBB-

Infrastruktur AG, personal communication, 2014b) and a complete shutdown of passenger and freight operations for several 30 
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months along the Austrian Northern Railway (Moran et al., 2010b; Kellermann et al., 2015). The severe flooding in central 

Europe in May and June 2013 had even more serious consequences for the ÖBB costing a total of more than EUR 75 million 

(ÖBB Infrastruktur AG, 2014a) entailed by heavy direct damage at multiple track sections as well as extensive service 

disruptions, whereby loss due to further rainfall-triggered events (e.g. debris flows, torrential processes) are also included. 

Such events clearly show that railway infrastructure and service are highly vulnerable to floods and furthermore point out the 5 

importance of a comprehensive flood risk management.  

Given the significance of flood hazards as well as other natural hazards, e.g. debris flows and extreme weather events (e.g. 

Fuchs et al., 2015; see Fig. 1), the ÖBB maintains an own department for natural hazard management and additionally 

cultivates partnerships with various stakeholders at different administrative levels. Figure 1 provides a schematic overview 

of the ÖBB risk management cycle and the most important partners involved. In the context of risk reduction, the ÖBB 10 

follows two main strategies (Otto et al., 2014; see Fig. 1). One strategy focusses on structural risk reduction measures, i.e. 

planning, design, implementation and maintenance of technical protection measures such as embankments and torrent 

control structures. This strategy is mainly applied to reduce risks from avalanches, rock falls and torrents, particularly in 

alpine areas, but also in lowland river catchments, where appropriate. However, the implementation of technical protection 

measures is often not feasible for either economic reasons or aspects of nature and landscape conservation (Brauner, 2011). 15 

Moreover, technical measures are limited in ensuring a commensurate level of safety for railway operations in Alpine 

topography (Kellermann et al., 2016a). Hence, in recent years, natural hazard and risk management has shifted from pure 

technological and protective approaches towards a more integrated risk management strategy including a variety of non-

structural measures in order to mitigate (residual) risks from natural hazards. Accordingly, the second main risk management 

strategy of the ÖBB also puts strong emphasis on non-structural, precautionary, and preparatory risk mitigation measures, 20 

i.e. monitoring and early warning systems with organisational measures such as speed limits and track closures in dangerous 

situations (Kellermann et al., 2016a).    

To support strategic flood risk management and decision-making with a focus on structural measures, reliable information 

on potential flood risk hot spots as well as on expected flood damage is needed. However, modelling flood damage to 

transportation infrastructure is either neglected in natural hazards and risks research or only roughly estimated by a fixed 25 

percentage share of property losses – as practised, for example, in the Multi-Coloured Manual (MCM) (e.g. Penning-Rowsell 

and Chatterton, 1977; Penning-Rowsell et al., 1992, 2005, 2010, 2013). Although a few established flood damage models 

such as the Rhine Atlas damage model (RAM) (ICPR, 2001) and the Damage Scanner model (DSM) (Klijn et al., 2007) 

consider direct flood damage to infrastructure by dedicated depth-damage curves, their estimations are based only on 

aggregated, low-resolution CORINE land cover data containing a large variety of urban infrastructure and lifeline elements 30 

(Bubeck et al., 2011; Jongman et al., 2012). As a consequence, the model outputs of RAM and DSM only insufficiently 

reflect damage to linear structures and furthermore provide no detailed information on the individual shares of damage to 

transport infrastructure (Bubeck et al., 2011).  
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Kellermann et al. (2015) aimed at closing the gap of more targeted flood risk analyses for the railway transportation sector 

by developing a flood damage model for the estimation of both structural damage to railway infrastructure and incurred 

direct economic losses, i.e. repair costs. This model named Railway Infrastructure Loss (RAIL) was derived from empirical, 

i.e. photo documented, flood damage data collected during and after the March River flood in Lower Austria in 2006. The 

model RAIL is capable of estimating 1) the expected structural damage for the standard cross-section of railway tracks using 5 

water depths as a basis, and 2) resulting repair costs. This two-step approach allows us to not only estimate direct economic 

loss, which is a widespread research practice, but also structural damage types. The latter capacity of the RAIL model 

enables the user to obtain new information on the occurrence of specific grades of structural flood damage at individual track 

segments and, hence, to identify potential hot spots of flood risk at railway tracks and to support the decision-making with 

regard to flood risk management tasks, e.g. the strategic planning and prioritisation of technical protection measures. A 10 

similar approach was implemented by Maiwald & Schwarz (2014a,b) for residential buildings damaged by river floods. A 

comparative study of methods to assess the physical vulnerability of structures is given in Papathoma-Köhle (2016). 

So far, a large-scale estimation of flood damage explicitly to railway infrastructure is still missing, since both appropriate 

flood damage models and suitable exposure data were lacking. However, such risk information is needed for comprehensive 

flood risk assessment, as well as for support of the decision-making within railway operations management. The objective of 15 

the study at hand was to fill this research gap. Thus, the RAIL model was applied to the Austrian railway subnetwork located 

in the Mur River catchment and the model uncertainties of RAIL were investigated by analysing the sensitivity of the model 

results to the modification of the key assumptions in the model framework. In a subsequent step, three different degrees of 

risk aversion of the ÖBB were assumed and implemented in the calculation of the expected annual flood damage in order to 

investigate its impact in the risk quantification. In the context of natural risk management, the term risk aversion stands for 20 

the aversion of the railway operator (or also the general public) towards catastrophes and distress (BABS, 2003). 

Accordingly, the implementation of risk aversion in the risk quantification of flood risk for railway infrastructure allows 

putting special emphasis on the ultimate premise of the ÖBB to ensure safety of passengers and personnel (see 

Eisenbahngesetz §19b, 2016). Finally, since climate change might have a certain impact on future flood risk in Austria and, 

hence, relativize the risk information obtained in this study, related research findings were briefly evaluated. In doing so, we 25 

aim at obtaining indications on the sustainability of the current flood risk characterisation as well as respective management 

approaches. 

2 Data and methods 

2.1 The Mur River catchment 

The Mur River catchment was selected as an application area for the RAIL model due to 1) availability of both DEM and 30 

hydraulic simulation data, 2) an appropriate spatial scale for a large-scale test approach, and 3) the significant importance of 

the regional infrastructure subnetwork for the ÖBB railway service (see Sect. 2.4). The Mur River is the main river of the 
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province of Styria located in southern Austria (see Fig. 2). Originating in the Salzburg Alps, the Mur runs through the 

province of Styria and its capital Graz, crosses the borders to Slovenia, Croatia and Hungary and empties into the Drau River 

after a total water course length of approx. 453 km (thereof approx. 350 km in Austria) (Fartek et al., 2001). Draining an area 

of approx. 10,340 km² of Austrian national territory, the average flow of the Mur at the gauge Mureck is 147 m³ s-1 and the 

highest ever measured flow reached 1251 m3 s-1 in August 2005, which corresponds approximately to a 10-year flood event 5 

(BMLFUW, 2013). The flow of a 100-year flood event was estimated to 1800 m3 s-1 (Fartek et al., 2001). 

2.2 The RAIL model  

The flood damage model RAIL was empirically derived from the March River flood event in 2006 at the Austrian Northern 

Railway and designed to estimate both structural damage at a railway track`s standard cross-section and the resulting repair 

costs (see Sect. 1). A railway track’s standard cross-section consists of the elements substructure, superstructure, catenary 10 

and signals. Depending on the water level at exposed track sections, different degrees of structural flood damage can be 

expected at one (or more) of those elements. In order to estimate these, the RAIL model distinguishes three structural 

damage classes. The classes are designed for the purpose of fast and practical in-field damage assessments and scaled 

ordinally (Kellermann et al., 2015). In damage class 1, the track’s substructure is (partly) impounded, but no or only little 

notable damage is expected. When being classified as damage class 2, the substructure and superstructure of the affected 15 

track section is fully inundated and significant structural damage at least to the substructure must be expected. Consequently, 

additional damage to the superstructure, catenary and/or signals is expected in damage class 3 and, hence, the standard cross-

section of the affected track section is assumed to be completely restored.  

For the estimation of the financial losses due to the repair of damaged track sections, the following standard costs were 

considered (Kellermann et al., 2015): (1) costs of loss assessment/documentation, (2) cost for track cleaning per running 20 

metre (rm) and (3) standard cross-section repair costs per rm as defined by Austrian railway infrastructure experts 

(BMLFUW, 2008). These three cost types were individually combined for each damage class according to the corresponding 

structural damage pattern. Therefore, the standard repair costs for a damage class 1 amount to EUR 11 700, the costs for 

damage class 2 are EUR 135 550, and the costs for damage class 3 are totalling to EUR 702 200, whereby all values refer to 

a 100 m section of a double-tracked railway line. For single-tracked railway lines, these values have to be adapted.  25 

The substructure is the most expensive element of a railway standard cross-section and, hence, has a notably high weight 

within the estimation of repair costs. Therefore, the damage grade of a damaged substructure can significantly bias the loss 

estimation, since the defined standard repair costs only consider a full restoration providing no further graduation of costs for 

minor repairs (e.g. tamping of the substructure). However, since it is not assured that a full restoration of the substructure is 

required when a track section is classified as damage class 2, the loss estimates had to be calibrated (Kellermann et al., 30 

2015). Hence, a proportional factor for damage to the substructure in damage class 2 was determined on the basis of the 

empirical damage data of the March River flood in 2006. This approach resulted in a cost calibration factor for damage class 

2 amounting to 0.25. More detailed information on the RAIL model can be found in Kellermann et al. (2015). 
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2.3 Exposure analysis 

Comprehensive flood hazard information, i.e. area-wide data on water depths at affected track sections, is required to apply 

the RAIL model at the catchment scale. In the framework of the implementation of the European Floods Directive 

(2007/60/EC), a series of flood hazard maps that basically meet those data requirements were produced for Austria. More 

detailed information on Austria`s flood hazard maps can be found in BMLFUW (2015). The maps are also publicly 5 

accessible via the web-GIS tools Wasserinformationssystem Austria (WISA) (http://wisa.bmlfuw.gv.at). 

However, the flood hazard maps are not sufficient as input data for the RAIL model for two reasons: First, the flood hazard 

maps are produced on a spatial scale of 1:25 000. This scale is seen as being inadequate to provide detailed spatial 

information on linear structures such as railway lines. Second, the flood hazard maps feature a rather low information level 

with respect to water depths, since this decisive flood impact parameter is only provided on the basis of three categories of 10 

water depths, i.e. <0.6 m, 0.6 – 1.5 m, and >1.5 m. Using this classification for water depths, it is not possible for the RAIL 

model to determine the resulting structural damage class at affected track segments unambiguously.  

However, to achieve an appropriate level of detail for issuing targeted flood warnings for the railway service and for 

analysing flood risks in the railway infrastructure network, the ÖBB planned to reanalyse and improve the available flood 

hazard information by the following approach: First, taking the Austrian flood hazard maps as reference, an exposure 15 

analysis was performed by superimposing the Austrian railway network with the designated inundation areas for flood return 

periods of 30, 100 and 300 years using a GIS. Thereby the network is subdivided into track sections of a length of 100 m 

each, which follows the standard distances between the waypoints along a railway track (i.e. the chainage) and, hence, is in 

accordance with the standard dimensioning approach used in railway infrastructure planning and design. In a second step, 

the degree of potential affectedness of the exposed track sections was further analysed by determining the height difference 20 

of the altitude of the top edge of the relevant track section and the water level line – the so-called freeboard. However, since 

the Austrian flood hazard maps are inappropriate for this purpose due to the coarse vertical resolution of water depths, a set 

of hydraulic simulations delivering an appropriate vertical resolution of water depths was used by the ÖBB to calculate the 

freeboard values.  

On the basis of the exposure analysis approach described above, the degree of potential affectedness of the regional railway 25 

subnetwork (i.e. the freeboard) was determined for exposed track sections. Since the freeboard values each represent a 100 m 

track section, they are in accordance with the design of the RAIL model, which uses the same track section length as a 

spatial reference for flood damage estimates. 

2.4 Damage estimation 

In order to estimate structural flood damage to railway infrastructure and resulting repair costs for a 30-year, 100-year and 30 

300-year flood in the Mur catchment, the RAIL model developed by Kellermann et al. (2015) was applied (see Sect. 1). 

Therefore, the freeboard values derived from of the ÖBB exposure analysis (see Sect. 2.3) were considered as input. 
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However, the RAIL model uses absolute water depths to estimate structural flood damages to the rail track (Kellermann et 

al., 2015). Hence, since the freeboard values only give a relative indication of the hazard potential and provide no absolute 

values of water depths and since the original hydraulic simulations were not provided for use in this study, the data had to be 

converted accordingly. For this purpose, due to the necessity of determining the absolute construction height of the affected 

track sections referring to the ground level and due to the fact that no elevation profiles were accessible, assumptions had to 5 

be made about the standard construction characteristics of the railway subnetwork in the Mur catchment. A rail track consists 

of two major structures: the substructure and the superstructure. According to the ÖBB technical code for conventional track 

systems in Austria, the standard construction height for the superstructure is 50 cm. For the construction height of the 

substructure, however, no standard is defined, since this parameter is dependent on a variety of local terrain characteristics 

such as soil bearing capacity and ground inclination (Rahn, 2007). For example, on soils having a low load-bearing capacity, 10 

the construction height of the rail track`s substructure must be kept low to avoid structural instabilities. With increasing 

ground inclinations, however, the height of the substructure must necessarily increase in order to obtain an inclination-free 

track layout. As a general principle and not least to save bulk material and thus costs, the height of the substructure (or rail 

embankment) should be kept as low as possible. According to Rahn (2007), a common construction height in a lowland area 

with an average soil bearing capacity is in the range of 1 m. Considering the standard construction heights of both the 15 

substructure (i.e. 1 m) and the superstructure (i.e. 50 cm) as constantly given in the study area, we used the resulting total 

construction height of the railway subnetwork of 1.5 m as a basis for the conversion of freeboard values into absolute water 

depths. 

First, the derived water depths were fed into the RAIL model and both the structural damage and the resulting repair costs 

(or direct economic loss) caused by the given flood scenarios were estimated for the entire railway subnetwork situated in 20 

the Mur catchment. The estimated structural damage classes were then cartographically mapped and the repair costs were 

used to calculate the expected annual damage (EAD), which is a common risk metric (Merz et al., 2009). The EAD is 

defined as the average monetary loss that is to be statistically expected each year and is estimated on the basis of selected 

discrete hazard scenarios with different probabilities. It is calculated as follows (Merz et al., 2009): 

��� =  � ∆�	�	




	��
                                                                                                                                                                                           (1) 25 

where D_j and P_j are the average flood damage and the exceedance probability increment for the j-th interval, respectively, 

and m is the number of probability increments (Merz et al., 2009): 

�	 =  1
2 ���ℎ	� + ��ℎ	����                                                                                                                                                                        (2) 

∆�	 =  �(ℎ	) − �(ℎ	��)                                                                                                                                                                                (3) 

Since the EAD has been criticized for underrepresenting extreme events (see Merz et al., 2009), risk aversion is considered 30 

as described in section 2.6.  
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In a second step, the RAIL model was separately applied to five predefined operational sections within the subnetwork and 

the individual EAD values were recalculated in order to provide more targeted risk information. Those operational sections 

were selected by consideration of important network junctions and marked out by major rail stations with in the Mur 

catchment railway subnetwork. To assess the relative importance of operational sections, the number of trains running on 

each section was used as an indicator. Therefore, the track utilization figures of 2013 for the ÖBB railway network serves as 5 

a basis. The data contains the daily mean number of trains running on each operational section, whereby all types of train 

used in Austria (e.g. regional trains, express trains, freight trains) are considered. By sorting the numbers in descending 

order, a ranking of the importance of the operational sections within the study area was established. Hence, the operational 

section with the highest volume of train traffic in 2013 was classified as the most important one etc. The resulting ranking of 

importance of operational sections was then compared to the ranking resulting from their individual EAD values in order to 10 

identify potential lacks of prioritisation in the implementation of risk reduction measures. 

2.5 Sensitivity analysis 

The flood damage model RAIL implies two key assumptions in the model application, namely: 1) the constant construction 

height of the substructure of 1 m (see Sect. 2.4), and 2) the cost calibration factor of 0.25 for the loss estimates referring to 

damage class 2 (see Sect. 2.2 and Kellermann et al., 2015). Since these simplifications may involve significant model 15 

uncertainties and, hence, lead to potential misinterpretations, the sensitivity of the model results was analysed. For this, both 

factors of uncertainty were modified based on two variants: Modification variant A stands for the “best case” variant, where 

the assumed standard construction height of the substructure was increased from 1 m to 1.2 m and the cost calibration factor 

was decreased from 0.25 to 0.2. In modification variant B, the substructure height was decreased from 1 m to 0.8 m and the 

cost calibration factor was increased from 0.25 to 0.3, which is equivalent to a “worst case” model variant. The EAD was 20 

recalculated on the basis of each variant and resulting values were compared in order to assess the appearing variances. 

2.6 The aspect of risk aversion 

In the context of natural hazards and risks, the term risk aversion stands for the aversion towards catastrophes and distress 

(BABS, 2003). Hence, according to BABS (2003), one natural event causing devastating damage and loss is much more 

strongly perceived and evaluated by the general public than numerous events causing in total the same amount of damage, 25 

while the damage of each event is comparatively small. Against the background that the ultimate premise of the railway 

operator is to ensure safety of passengers and personnel and, hence, to prevent that people are exposed to natural hazards 

(Thieken et al., 2013), different degrees of risk aversion were assumed and implemented in the calculation of the EAD in 

order to investigate its impact on the risk quantification.  

In accordance with BABS (2003), three different risk aversion factors, i.e. 10, 50 and 100, were added as weighting factors 30 

to the computation of the share of EAD of the low probability events (HQ100-HQ300). Expressed mathematically, the 
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solution of the variable D_j for 〖∆P〗_j=0.0067 (see Equation 2 and 3) was separately multiplied with each risk aversion 

factor and the EAD was recalculated (see Equation 1). 

3 Results 

3.1 Damage and loss on the catchment scale 

In a first step, the potential damage and loss of the Austrian railway subnetwork within the Mur catchment were investigated. 5 

Using the derived water depths as input (see Sect. 2.3 and 2.4), the RAIL model was applied to produce scenario-based 

estimates of the structural damage at flood-affected track sections as well as direct monetary losses in terms of repair costs. 

The model estimates on structural damage are mapped in Figure 3 showing the classified damage for each 100 m track 

section. The maps indicate that significant damage has to be expected not only for long stretches along the course of the Mur 

River (see Fig. 2 and 3), but also at track sections being located adjacent to certain tributaries: for example, it is estimated 10 

that the Liesing River flowing into the Mur River in the north of the study area also causes extensive damage, i.e. in most 

cases classified as damage class 3, already on the basis of a 30-year flood scenario. The flood damage maps furthermore 

reveal that both the number of affected track sections and the share of higher damage classes increase with decreasing flood 

event probability.  

The total number of potentially damaged track sections per damage class and per flood scenario as well as resulting repair 15 

cost estimates are given in Table 1. It is striking that the proportion of track sections classified as damage class 3 is very high 

already for the 30-year flood scenario. This ratio changes only slightly with decreasing event probability, since the increase 

in the number of track sections classified as damage class 1 or 2 then outweighs the increase in the damage class 3. However, 

the absolute number of affected track sections classified as damage class 3 remains the highest in all scenarios. 

The large proportion of track sections encountering heavy structural damage is also reflected in the resulting repair costs of 20 

the infrastructure, since the overall costs of damage class 3 for all flood scenarios account for more than 93 % (see Tab. 1). 

Considering the available scenario bandwidth (HQ30-HQ300) for this RAIL application, the EAD for the entire railway 

subnetwork amounts to EUR 8,780,000 (rounded to three significant digits), wherein the loss proportion of the low-

probability events (HQ100-HQ300) equals to 25 % and 75 % for the high-/medium-probability events (HQ30-HQ100). 

Accordingly, the share of three-quarters of high-/medium probability events in the EAD corroborates the results obtained 25 

from the flood damage maps which also demonstrate a high (structural) damage potential for this event intensity.     

3.2 Damage and loss on the operational level 

With the aim of providing more targeted information on the risk potentials, the railway network under study was further 

differentiated into operational sections by means of important network junctions as well as major rail stations (see Sect. 2.4). 

Figure 4 shows the five operational sections identified by these two selection criteria. It has to be noted that, as indicated in 30 

the map, some parts of the network (e.g. two sections in the north of the study area) are no longer taken into consideration in 
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this step of the analysis, since either (at least) one selection criterion is not fulfilled or the operational section is not entirely 

located within the catchment area. After the identification of important operational sections, the EAD values were calculated 

for each section.  

The change of the investigation level leads to more detailed insights regarding the shares of structural damage classes as well 

as the distribution of losses within the railway subnetwork (see Tab. 2). First, it emerged that the large proportion of damage 5 

class 3 identified on the network level, does not apply to all operational sections. In particular, the section Bruck a. d. Mur – 

Graz particularly shows segments with are classified as damage class 1 (i.e. with no or only little notable structural damage), 

whereas the damage classes 2 and 3 occur relatively seldom. However, the opposite can also be found: the section Bruck a. 

d. Mur – Mürzzuschlag shows no damage meeting the criteria for damage class 1 and 2 for all scenarios, but only track 

sections exhibiting damage class 3 (see Tab. 2). The largely differing structural damage patterns are also reflected in the 10 

individual EAD values, ranging from 110,000 EUR to 2,690,000 EUR per year (rounded to three significant digits).  

A further objective of this study was to investigate the potential need for action in terms of risk reduction measures by 

comparison of the grade of track utilization of individual operational sections and their specific risk potential (see Sect. 2.4). 

Therefore, the operational sections were ranked 1) on the basis of their individual train numbers of 2013, and 2) on the basis 

of their EAD values. The resulting ranking is depicted both in Table 2 and Figure 4. Interestingly, the comparison shows that 15 

the ranking of EADs is ordered mirror-inverted to the ranking of track utilization. Hence, for example, the operational 

section Unzmarkt – St. Michael is ranked No. 1 with respect to its EAD value and shows the lowest rank with respect to the 

track utilization, whereas the section showing the highest rank of utilization, i.e. the section St. Michael – Bruck a. d. Mur, is 

ranked last in terms of its EAD value. 

3.3 Sensitivity of RAIL estimates 20 

In order to get insights in the sensitivity of the RAIL estimates, the two key assumptions for the model application were 

modified in two different variants and, subsequently, the EADs of the operational sections were recalculated (see Sect. 2.5). 

The resulting values of both variants and, in order to facilitate the comparison, also the EAD values resulting from the 

original model assumptions are depicted in Table 3. The application of variant A, i.e. the increase in the assumed standard 

construction height of the substructure from 1 m to 1.2 m along with the decrease in the cost calibration factor for damage 25 

class 2 from 0.25 to 0.2 (see Sect. 2.5), led to a reduced EAD in most cases. Conversely, the modification of the key model 

assumptions towards more unfavourable preconditions, i.e. a decrease in the standard construction height from 1 m to 0.8 m 

along with an increase in the cost calibration factor for damage class 2 from 0.25 to 0.3, results in augmented EAD values. 

However, there are two exceptions, namely the operational sections “Bruck a.d. Mur - St. Michael” and “Bruck a.d. Mur  - 

Mürzzuschlag”, for which the modifications show no effect and can thus be regarded as rather robust. In general, the 30 

comparison of the EAD resulting from the modifications with the default EAD values reveals no marked deviations ranging 

from approx. 4 % to approx. 10 % in relative terms, and from 99,000 EUR to 160,000 EUR in absolute terms. Accordingly, 
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the apparent low sensitivity of results indicates a robust estimation of flood damage by the RAIL model, at least in this study 

area.  

3.4 Impacts of risk aversion 

In a final step of the study, the impact of risk aversion on the estimation of flood risks was investigated in order to put 

special emphasis on the ultimate premise of the ÖBB to ensure safety of passengers and personnel. In detail, three different 5 

risk aversion factors were implemented in the calculation of the EAD values, whereby only the lower probability events, i.e. 

the HQ100-HQ300 scenario bandwidth, were of relevance (see Sect. 2.6). Table 4 presents the results for all risk aversion 

factors. It can be seen that the consideration of risk aversion against low probability (or high impact) events by adding a 

weighting factor leads to an extensively increased EAD value for all operational sections within the Mur catchment. In 

detail, the risk aversion factor 10 already caused an increase of more than three times the default value, whereas the factor 50 10 

even brought an increase of more than tenfold, and the factor 100 led an the increase in the EAD value of well over 25 times 

the default value. In view of the fact that the HQ100-HQ300 scenario bandwidth accounts for a proportion of only 25 % of 

the EAD on average (see Sect. 3.1), the consistently large increases underline the considerable influence of the aspect of risk 

aversion on flood risk estimates for the study area, in particular with regard to the development of risk management 

strategies. 15 

4 Discussion 

In this study, flood damage to railway infrastructure was estimated on the large scale (i.e. the catchment level) with the 

objective of obtaining new flood risk information for railway infrastructure and, consequently, supporting strategic planning 

and decision-making of the ÖBB with regard to structural protection measures. For this, both the structural damage and 

resulting repair costs were estimated for the railway subnetwork located in the Mur catchment on two different spatial scales, 20 

i.e. the catchment level and the operational level, using the flood damage model RAIL. As a further goal, the sensitivity of 

estimates of the economic flood loss as provided by the EAD was analysed by a modification of the key model assumptions. 

Three different degrees of risk aversion were furthermore implemented in the calculation of the EAD in order to investigate 

its impact on the flood damage estimates in the study area and, hence, on the potential decision-making in a risk management 

context.  25 

Different aspects of the achieved results are discussed in this section. First, the limitations of the flood damage model RAIL 

and associated uncertainties are reflected in order to allow a sound interpretation and evaluation of the results presented 

thereafter. Accordingly, the potential benefits for a railway operator from the given information basis are portrayed and 

recommendations for action are outlined next. Finally, the achieved risk information is briefly discussed against the 

background of climate change and possibly resulting changes in flood risk.  30 
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4.1 Model limitations and uncertainties 

In general, the case study demonstrates that the RAIL model can be applied to estimate flood damage to railway 

infrastructure in larger areas (e.g. river catchments, national territories). This can be done if the following conditions are met: 

1) the general construction characteristics of the railway infrastructure must be the same as (or very similar to) the 

characteristics of the Northern Railway, on the basis of which the RAIL model was derived (Kellermann et al., 2015). 5 

Accordingly, slab tracks (i.e. high-speed railway lines), for example, are not suitable to be investigated by RAIL without 

amendments since their construction design is significantly different from the design of the Northern railway line and, hence, 

the derived correlations of flood impact and resulting damage would be no longer valid. Different empirical data would be 

needed to adapt the RAIL model to such types of railway tracks. 2) The RAIL model was derived from flood impacts caused 

by rather low flow velocities, i.e. river floods occurring in flat areas, which was the case at the March river flood in Lower 10 

Austria in 2006. However, around 65% of Austria is located in Alpine areas mainly characterized by high relief energy and 

steep slopes. In such topography, fluvial natural events often show hydraulic characteristics being significantly different to 

river flooding, in particular with regard to the flow velocity. Accordingly, since the RAIL model has not yet been tested for 

varying flood types, it is assumed that the RAIL model is in a first instance valid for lowland rivers and, hence, might be 

limited in estimating flood damage on the national level of a country like Austria providing a high topographic complexity 15 

(Kellermann et al., 2015). Indeed, the Mur catchment also features considerable portions of land with complex topography – 

first and foremost in the western part of the catchment area – and, hence, may obviously introduce uncertainties in the RAIL 

model estimates. Therefore, the robustness of the model results was tested. 

The main model uncertainties of RAIL lie in the two key assumptions made within the model design, which are 1) the 

construction height of the railway substructure and 2) the cost calibration factor for the estimation of economic loss linked to 20 

damage class 2 (see Sect. 2.5 and 3.3). The first assumption had to be made in order to convert the available impact data, i.e. 

the freeboard values, from relative water levels to absolute water depths being the required input data format for the RAIL 

model. It can be assumed that fixing the construction height to a constant value involves uncertainties, since in reality the 

substructure height can vary significantly within larger areas, in particular in complex topographic areas. The second 

assumption rests on the empirical damage data of the March flood event in 2006 at the Austrian Northern Railway. In 25 

principle, this empirical factor represents the average of observed damage to the substructure of the Northern Railway 

(Kellermann et al., 2015). However, it may change for different study areas due to e.g. changing flood event or rail track 

construction characteristics, and, thus, may also entail epistemic uncertainty. In order to analyse the potential impact of the 

uncertainties described above, the sensitivity of results was investigated by modifying the key model assumptions. Results 

show that the modifications only lead to marginal variations of the estimates and, hence, suggest a certain degree of 30 

robustness (see Sect. 3.3). A closer look at the results further reveals that the construction height of the substructure has an 

overall higher influence on the loss estimates in comparison to the cost calibration coefficient, which on the one hand 

confirms that assuming a fixed construction height might considerably bias the results and, on the other hand, endorses the 



12 
 

practicality of the cost calibration factor. It should be noted though that the presented sensitivities of results can only be 

presumed as being valid for the study area at hand, since the individual impact of all factors of uncertainty may change 

markedly in other study areas. For example, the damage class 2 may be better represented in other large-scale damage 

patterns and, hence, the influence of the calibration coefficient could increase substantially.  

Initially, the RAIL model was derived on the basis of preliminary work of Moran et al. (2010a), who distinguished between 5 

five different structural damage classes to estimate the degree of flood damage for exposed track sections. The (statistical) 

results, however, were not satisfactory on the basis of such a detailed classification. Hence, after discussing and evaluating 

the initial results with railway experts, we revised the classification of Moran et al. (2010a) and reduced the number of 

categories from five to three with the aim to focus on structural damage to the substructure being the most important and 

expensive element of the standard cross-section. This approach led to a markedly increase in the statistical correlations of 10 

flood impact and structural damage and, furthermore, confirms the supposition that a finer classification of structural (and 

economic) damage is not required, since from the engineering perspective there is no significant difference between certain 

grades of damage to the track, e.g. minor, medium and major erosion damage to the substructure. In case the railway track`s 

substructure is (at least somehow) damaged, the train service is disrupted and the segment has to be repaired.  

The uncertainty entailed by a fixed construction height of a substructure could theoretically be removed by revising the 15 

model approach. Hence, instead of using absolute water depths as the decisive flood impact parameter, the RAIL model 

could be newly derived on the basis of relative water levels. However, impact data providing freeboard values of railway 

infrastructure for a given flood scenario are usually not available, wherefore the scope of application of the RAIL model in 

practice would be very limited. It is therefore appropriate to initially strive for a validation of the RAIL model in order to 

clarify its performance in different areas. This would require a better and comprehensive documentation of damaging flood 20 

events. 

Additionally, flood damage should also be estimated for more dynamic flood events and subsequently validated on the basis 

of documented damage in order to obtain targeted performance indicators of the damage model for higher flow velocities. 

Due to data scarcity, however, this validation tasks could not yet be implemented. 

4.2 Insights for railway operation and natural hazard management 25 

A particular added value of the RAIL model is seen in its two-step modelling approach, i.e. the estimation of both, structural 

damage at exposed track sections and resulting repair costs. The estimation of structural damage is usually neglected in 

existing flood damage models, i.e. only (relative or absolute) monetary losses are computed. However, the localization of 

significant structural damage potentials at specific track sections and, coupled therewith, the identification of risk hot spots is 

valuable information for railway constructors and operators in terms of network and risk management. Such information 30 

allows e.g. the targeted planning and implementation of (technical) risk reduction measures. For instance, the flood damage 

maps for the Mur River catchment clearly show a considerable increase in both the number of affected track sections and the 
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share of higher damage classes with decreasing flood event probability. Furthermore, besides the main risk areas along the 

course of the Mur River, additional risk areas along certain tributaries can be easily identified (see Fig. 3 and Sect. 3.1).  

To effectively prioritize the implementation of technical protection measures at the risk hot spots identified, decisive aspects 

such as the EAD or the importance of affected operational sections could be used as a basis. In the study at hand, the EADs 

were computed on the operational level, ranked in ascending order and compared to the equally ranked track utilization 5 

figure of the respective section (reference year 2013) in order to assess the current prioritization of risk reduction measures 

(see Sect. 3.2). The comparison of the rankings indicates that–from a risk management perspective–the (past) prioritization 

of risk reduction measures reflects the exposure to floods, as for the operational sections showing a comparatively high EAD 

only relatively low track utilization was recorded, and vice versa  (see Tab. 2). In other words, the most important sections 

with regard to their specific train frequencies already present comparatively low economic flood risks, whereas the sections 10 

that are faced with higher risk values (i.e. EAD values) only have a comparatively minor relevance with respect to railway 

service.  

Besides economic risks, however, there are further substantial aspects to be considered in the decision-making process. 

Herein, safety for passengers and personnel is the key premise for a railway operator. Three degrees of increased risk 

aversion were thus implemented in the estimation of the EAD in order to investigate their impact on the risk quantification 15 

and, in particular, to provide a revised foundation for decision-making with regard to the implementation of risk reduction 

measures (see Sect. 2.6). Results show that the consideration of a risk aversion factor of 10 already induces a triplication of 

the EAD value of all operational sections, although the overall share of low-probability events only amounts to 25 % in the 

Mur River catchment (see Tab. 4, Sect. 3.1 and 3.2). The increase in EAD values is on a similar scale for the risk aversion 

factors 50 and 100. As the findings show, risk aversion has a strong impact on the economic risk of railway infrastructure in 20 

the Mur catchment – and probably also in the rest of Austria. Hence, the consideration of risk aversion against low-

probability flood events in the context of risk management is seen as expedient as it gives new incentives for the planning 

and implementation of risk reduction measures. 

In recent years, the railway operation in Austria had to cope with serious financial losses as a result of flooding and other 

natural hazards. The March flood event in Lower Austria in 2006, for instance, caused direct economic losses of more than 25 

EUR 41 million (Moran et al., 2010a; ÖBB Infrastruktur AG, 2014b, Kellermann et al., 2015), and the severe flooding in 

May and June 2013 in large parts of Austria even led to costs of more than EUR 75 million (see Sect. 1). As the examples 

demonstrate, natural events can cause serious economic loss and, hence, require appropriate risk-financing solutions. 

Therefore, the superordinate institution of the Austrian (state-owned) railway operator, i.e. the Federal Ministry of Transport, 

Innovation and Technology (BMVIT), offers a risk compensation mechanism that aims at enabling the railway operator to 30 

better cope with the economic impacts of natural hazards. In other words, the BMVIT sporadically accumulates financial 

reserves, which may be drawn upon by the railway operator in case of disastrous natural events. A review of recent annual 

reports of the railway operator reveals that such hazard-related funds were provided in 2006 (no amount specified), in 2013 

(EUR 18.4 million) and in 2014 (EUR 7.2 million) to support the recovery from damage caused by natural events.  
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In order to illustrate the potential benefit of comprehensive risk information for the development as well as for the evaluation 

of risk compensation strategies, a simple thought experiment can be carried out: If we assume that the exposure of the 

Austrian railway network to flooding is equal (or very similar) to the exposure of the subnetwork within the Mur catchment, 

the flood risk information obtained for the Mur catchment can be used to estimate the theoretical annual demand of the 

railway operator for risk compensation of the entire railway network in Austria. More specifically, the EAD of the 5 

subnetwork can be extrapolated on the basis of the ratio between the length of the entire railway network of Austria (approx. 

5841 km) and the length of the subnetwork (approx. 408 km). In terms of figures, the resulting ratio of approx. 14.3 can be 

used as a multiplier for the EAD value of the subnetwork (see Tab. 1), which results in an EAD value of approx. EUR 125.7 

million of the entire railway network of Austria. A comparison of this value with the actual demand in recent years (see 

above) indicates a realistic dimension of the RAIL model estimates. Furthermore, the substantial amount of potential annual 10 

economic loss provides important indications of the decision-making towards an enhanced risk financing strategy, in 

particular with regard to climate change and possible consequences. This aspect will require close attention and might 

become of growing importance, as climate change could jeopardize the sustainability of current flood risk management 

practices. 

4.3 Flood risk and climate change  15 

The hypothesis that frequencies of river floods in Europe may increase in the future due to climate change is widely 

discussed among scientists (Hall et al., 2014; Blöschl et al., 2015). Lehner et al. (2006) as well as Dankers and Feyen (2008), 

for example, concluded that the frequency (and magnitude) of flooding in large parts of Europe is projected to increase in 

future, i.e. in the period 2071-2100 using the period 1961-1990 as reference. In particular, flash and urban floods, triggered 

by local intense precipitation events, are likely to be more frequent throughout Europe (Kundzewicz et al., 2006; Christensen 20 

and Christensen, 2007;). In accordance therewith, the study on future frequencies of (hydro-) meteorological extremes in 

Austria by Kellermann et al. (2016a) revealed an increase in the frequency of heavy rainfall events (≥ 100 mm/24 h) until 

2040. However, the IPCC (2012) stated that the projections of changes in flood frequencies (and magnitudes) are subject to 

considerable uncertainties, since e.g. only limited evidence can be produced from river discharge simulations due to the 

complexity of the causes of regional changes of river flooding. Furthermore, future trends of climatic extremes cannot be 25 

projected with sufficient reliability, in particular with respect to heavy rainfall, which considerably contributes to rain-

generated local flooding in most cases (Hanel and Buishand, 2010; IPCC, 2012).  

Blöschl et al. (2011) presented a study addressing the issue of changing flood frequencies in Austria due to climate change. 

According to them, the above-mentioned complexities and uncertainties also apply on the national level, which makes a 

reliable projection of future trends nearly impossible against current knowledge. Therefore, they used five different ´if-then´ 30 

scenarios to describe possible future trends in Austria. For example, one scenario is based on the assumption that the 

intensity of convective rainfall events will increase in future (2021-2050, in comparison to 1976-2007), and another one 

implies a rising snow line in the same period. In order to consider the regional complexities of flood generation, the Austrian 
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territory was divided into ten regions taking into account the hydro-climatic situation and, subsequently, every region was 

analysed individually each represented by a typical, yet hypothetical area of approx. 500 km². Therein, one region is 

considered as being representative for the Mur river catchment. Blöschl et al. (2011) concluded that, in general, the 

consistency of trend analyses for Austria depends heavily on the underlying observation period, which indicates that the high 

natural variability of flooding in the past may remain significantly higher than the expected impacts due to climate change. 5 

With regard to the Mur river region, no significant trends in the time series of flood events of the Mur River and its 

tributaries were identifiable. However, the consideration of the scenario of increasing convective rainfall intensities led to an 

increase in the magnitude of a 100-year flood by around 7 %, whereas the other scenarios have no significant influence 

(Blöschl et al., 2011). Accordingly, the question rises whether (and to what extent) this 7 % increase might bring 

implications for the current flood risk situation in the catchment. This question cannot be answered unambiguously due to 10 

the above mentioned uncertainties in the projection of climate extremes. However, since research provides some indications 

for an increase both in the frequency of heavy rainfall (see Kellermann et al., 2016) and floods (see Lehner et al., 2006; 

Dankers and Feyen, 2008), an exacerbation of the current flood hazard profile in Austria must be considered. Consequently, 

the damage and loss estimates presented in the study at hand might be no longer representative and, if no action is taken, the 

costs due to flood events must be expected to rise in the future. 15 

5 Conclusions 

The main objective of this study was to provide information on potential flood risk hot spots as well as on expected flood 

damage on the large scale in order to support strategic flood risk management and decision-making of the Austrian railway 

operator ÖBB. Therefore, the flood damage model RAIL was applied to estimate structural damage as well as direct 

economic loss to railway infrastructure in the Mur River catchment. The risk information obtained was then investigated in 20 

terms of its sensitivity to changes in model assumptions and, furthermore, evaluated while also taking into consideration 

different degrees of risk aversion.  

The mapped results of the damage estimation (see Fig. 3 and Sect. 3.1) indicate that the RAIL model is basically capable of 

identifying and localizing risk hot spots at larger spatial scales. Such information can create added value for a railway 

operator, for example, with regard to supporting the planning and implementation of structural risk reduction measures (e.g. 25 

embankments). Further possible application fields of RAIL within flood risk management include the calculation of EAD 

values on the operational level (see Tab. 2 and Sect. 3.2). As the study demonstrated, the potential economic loss of an 

operational section, in conjunction with the individual importance, can be used to effectively prioritize the implementation of 

such measures or to assess the current status of prioritization, respectively. Finally, the RAIL model also allows the user to 

investigate the impact of risk aversion on the quantification of risk and, thus, to revise the basis for decision-making with 30 

regard to costs and benefits of implementing risk reduction measures. Indeed, the results show that the consideration of risk 

aversion has a marked impact on the economic flood risk of railway infrastructure in the study area (see Tab. 4 and Sect. 
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3.4). Against the background that the key premise of the ÖBB is to ensure safety for passengers and personnel, the risk-

adjusted EAD values can be a key argument within decision-making processes.  

Looking at the results of the sensitivity analysis (see Tab. 3 and Sect. 3.3), it appears that the model uncertainties of RAIL 

are at an acceptable level as the loss estimates revealed no marked sensitivity to the modification of the two key assumptions 

within the model application. Accordingly, since the results can be regarded as rather robust, an application on the national 5 

level is striven for in order to enlarge and strengthen the information basis for risk management of railway infrastructure in 

Austria. 

However, the validity of the results could not yet be properly assessed due to the lack of documented damage and loss data 

from the Mur River catchment. Although the ÖBB already established an event and damage documentation system for 

natural hazards in Austria, the given data quality is still not sufficient to provide detailed and process-oriented information 10 

on the impacts of flooding (and other hazards) and, hence, hampers the model validation. Therefore, in order to afford a 

deeper understanding of natural hazards and damaging processes as well as in order to facilitate the derivation of reliable 

flood damage models, future risk management activities should put special emphasis on the enhancement of standardized 

event and damage documentation procedures.  
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Table 1. Estimated number of damaged track sections per damage class and per flood scenario as well as related repair costs on 
the Mur catchment level. The EAD is rounded to three significant digits. 

 
Damage Class 1 Damage Class 2 Damage Class 3 Total 

 

No. of affected sections 175 36 364 575 
HQ 30 

Repair costs 2,047,500 € 4,879,800 € 255,600,800 € 262,528,100 € 

No. of affected sections 297 118 404 819 
HQ 100 

Repair costs 3,474,900 € 15,994,900 € 283,688,800 € 303,158,600 € 

No. of affected sections 321 183 457 961 
HQ 300 

Repair costs 3,755,700 € 24,805,650 € 320,905,400 € 349,466,750 € 

EAD      8,780,000 €  
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Table 2. Flood damage estimation on the level of selected operational sections. The table furthermore provides the individual 
rankings according to the EAD as well as the track utilization figure of 2013. 

    
Damage Class 1 Damage Class 2 Damage Class 3 Total 

 Flood 

scenario 
Rank 

of EAD 
Rank of 

utilization 

U
n

zm
a

rk
t 

- 
S
t.

 M
ic

h
a

el
 

No. of affected  
sections 

31 16 112 159 
HQ 30 

1 5 

Repair costs  362,700 € 2,168,800 € 78,646,400 € 81,177,900 € 

No. of affected  

sections 
59 38 123 220 

HQ 100 
Repair costs  690,300 € 5,150,900 € 86,370,600 € 92,211,800 € 

No. of affected  

sections 
56 56 140 252 

HQ 300 
Repair costs  655,200 € 7,590,800 € 98,308,000 € 106,554,000 € 

Expected Annual 

Damage (EAD) 
   2,690,000 €  

S
t.

 M
ic

h
a
el

 -
 B

ru
ck

 a
. 
d

. 
M

u
r 

No. of affected  

sections 
1 0 7 8 

HQ 30 

4 2 

Repair costs  11,700 € 0 € 4,915,400 € 4,927,100 € 

No. of affected  
sections 

2 0 8 10 
HQ 100 

Repair costs  23,400 € 0 € 5,617,600 € 5,641,000 € 

No. of affected  

sections 
6 1 9 16 

HQ 300 
Repair costs  70,200 € 135,550 € 6,319,800 € 6,525,550 € 

EAD    164,000 €  

B
ru

ck
 a

. 
d

. 
M

u
r 

- 
M

ü
rz

zu
sc

h
la

g
 No. of affected  

sections 
0 0 5 5 

HQ 30 

5 1 

Repair costs  0 € 0 € 3,511,000 € 3,511,000 € 

No. of affected  
sections 

0 0 5 5 
HQ 100 

Repair costs  0 € 0 € 3,511,000 € 3,511,000 € 

No. of affected  

sections 
0 0 7 7 

HQ 300 
Repair costs  0 € 0 € 4,915,400 € 4,915,400 € 

EAD    110,000 €  

B
ru

ck
 a

. 
d

. 
M

u
r 

- 
G

ra
z 

No. of affected  

sections 
93 3 30 126 

HQ 30 

3 3 

Repair costs  1,088,100 € 406,650 € 21,066,000 € 22,560,750 € 

No. of affected  
sections 

167 26 44 237 
HQ 100 

Repair costs  1,953,900 € 3,524,300 € 30,896,800 € 36,375,000 € 

No. of affected  

sections 
190 49 61 300 

HQ 300 
Repair costs  2,223,000 € 6,641,950 € 42,834,200 € 51,699,150 € 

EAD    981,000 €  

P
u
n

ti
g
a

m
 -

 B
a
d

 

R
a
d

ke
rs

b
u

rg
 No. of affected  

sections 
30 14 96 140 

HQ 30 
2 4 Repair costs  351,000 € 1,897,700 € 67,411,200 € 69,659,900 € 

No. of affected  
sections 

25 45 108 178 HQ 100 
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Repair costs  292,500 € 6,099,750 € 75,837,600 € 82,229,850 € 

No. of affected  
sections 

32 49 115 196 
HQ 300 

Repair costs  374,400 € 6,641,950 € 80,753,000 € 87,769,350 € 

EAD    2,340,000 €  
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Table 3. Expected Annual Damage (EAD) for different model settings. Modification variant A comprises of an assumed 
substructure height of 1.2 m and a cost calibration factor of 0.2. Modification Variant B comprises of an assumed substructure 
height of 0.8 m and a cost calibration factor of 0.3. All values are rounded to three significant digits. 

 
Expected Annual Damage (EAD) 

 
Modification A Default settings Modification B 

St. Michael - Unzmarkt 2,590,000 € 2,690,000 € 2,850,000 € 

Bruck a.d. Mur - St. Michael 164,000 € 164,000 € 164,000 € 

Bruck a.d. Mur  - Mürzzuschlag 110,000 € 110,000 € 110,000 € 

Bruck a.d. Mur - Graz 919,000 € 981,000 € 1,080,000 € 

Puntigam - Bad Radkersburg 2,210,000 € 2,340,000 € 2,490,000 € 

 

  5 
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Table 4. Expected Annual Damage (EAD) for operational sections and for varying risk aversion factors. 

  
Expected Annual Damage (EAD) 

Operational section Default settings 
Risk aversion 

factor 10 

Risk aversion 

factor 50 

Risk aversion 

factor 100 

St. Michael - Unzmarkt 2,690,000 € 8,600,000 € 35,200,000 € 68,300,000 € 

Bruck a.d. Mur - St. Michael 164,000 € 500,000 € 2,160,000 € 4,200,000 € 

Bruck a.d. Mur  - 

Mürzzuschlag 
110,000 € 400,000 € 1,500,000 € 2,900,000 € 

Bruck a.d. Mur - Graz 981,000 € 3,100,000 € 15,400,000 € 25,200,000 € 

Puntigam - Bad Radkersburg 2,340,000 € 7,400,000 € 30,100,000 € 58,400,000 € 
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Figure 1: Risk management cycle and strategies of the ÖBB. 
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Figure 2. Location of the Mur catchment and the railway network under consideration. 
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Figure 3. Estimation of damage potentials. The map shows the RAIL model results for synthetic flood events of return periods of 
30 years (left), 100 years (middle) and 300 years (right). 
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Figure 4. Operational sections of the railway subnetwork. The yellow boxes provide the individual rankings according to the EAD 
value and the track utilization figure of 2013. 


