

Reply to reviewers comments on

„Overview of the first HyMeX Special Observation Period over Croatia“

by Ivančan-Picek, Tudor, Horvath, Stanešić and Ivatek-Šahdan

We appreciate the thorough and detailed review, with useful suggestions. We have done our best to improve the manuscript in a considerable number of corrections and modifications, according to the Reviewers comments. We have been asked to make major revisions mainly in the language and presentation.

- English has been corrected and red by a native English speaker. Language proofreading certificate is attached.
- In the revised manuscript, we agree with both Reviewers and have reformulated Section 3. Additionally, we heavily shortened Section 2 and removed unnecessary details. In order to improve readability of the manuscript, we arrange the figures. Instead of previously Figure 4 A, B, C and D, in the revised version we have Figure 5, 6, 7 and 9.

Reply to Reviewer #1 comments:

The authors would like to thank the Reviewer for the through review of the manuscript. We have done our best to improve the manuscript, according to the comments.

General comments:

1. We agree with the reviewer that that the manuscript would be more readable if English language native speaker would proof-red the manuscript and correct the grammar. English text has been corrected by a native English speaker.
2. Accepted. We appreciate the comments made by the Reviewer, which pointed that the description of the different IOPs is difficult to follow in the information flow (particularly in Subsection 3.1). In the revised manuscript we remedy the problem. We reorganise the text in accordance to the reviewer comments. In the Subsection 3.1 we also highlight the different physical proceses that produced HPE during the different IOPs.

Minor points:

1. Line 139-141; Line 364 – Locations of radiosounding stations, radar sites and other places mentioned in the text added in Fig. 1b
2. Line 144: Majority of SYNOP stations are also equipped with an automatic station ... how many? We change the sentences in Line 143-145 in: *The meteorological measurements and observations on 58 SYNOP stations (31 of them are automatic stations) are done every hour and reported in real time during the SOP1.*

3. Line 152: The number of climatological stations of the network in Croatia is 120. Average distance between stations are 20 km. We add this information in the text.
4. Line 153: why are the synoptic observations not taken at the main synoptic hours? Our high- resolution analysis are based on the dense network of climatological stations that make the observations three times a day (06, 13 and 20 UTC).
5. Lines 165-167: It is not clear what SAP refers to: is it a technique to select relevant parameters?

Sensitive area prediction is a prediction of where might a more accurate definition of the initial state of the atmosphere benefit the quality of the forecast over the region in question. Sensitive areas are regions where extra observations are expected to have the largest impact on the forecasts for the verification area.

We reformulated the sentence accordingly:

The selection of sensitive area predictions (SAP), that is predictions of regions where observations are expected to have the largest impact on the forecasts for the verification, used methods developed by ECMWF and Meteo-France (Prates et al., 2009).

6. Line 199: Why is the convection parameterization employed at 2 km grid spacing? Why not using an explicit treatment?

As explained in the text and more elaborately in references that describe the 2km resolution operational forecast and its parametrisations in more detail: ALADIN is a spectral model and operationally we are using quadratic truncation. This means that gridpoint resolution is 2 km but the shortest resolved wave has a wavelength of 6 km. The 3MT convection scheme can be run in multiple scales and substantial amount of literature shows that substantial part of convection remains unresolved even in 1km resolution (e.g. Kajikawa et al., 2016).

Therefore, we add the reference: *“Kajikawa et al., 2016: resolution dependence of deep convections in a global simulation from over 10-km to sub-kilometer grid spacing. Progress in Earth and Planetary Science, DOI: 10.1186/s40645-016-0094-5”*

7. Accepted. Subsection 2.3.1 is devoted to the description of the well known operational 8 km ALADIN forecast. Therefore, we reduce the lenght of this section and remove unnecessary details which could find in the listed references. Details of the operational model characteristics are summarized in Table 1.
8. Line 218: What is biperiodization? The biperiodization is a numerical technique to facilitate spectral computations for dynamics in LAM Specific for spectral LAM uses FFT.
9. Line 312-316: We agree. The details about NAO are removed.
10. Line 390-391: Instead of sentence „*Large-scale conditions such as found in these IOPs help to generate mesoscale and local processes which modify additionally flow regimes leading to quite different precipitation patterns*“ we propose „*Similar large-*

scale conditions such as found in these IOPs help to generate mesoscale and local processes leading to quite different precipitation patterns“

11. Line 434: Accepted. We add proposed sentence.
12. Line 459: No. To clarify this we propose to include in the text: *ALADIN model at 2km grid spacing during SOP1 was assessed by comparing forecasts from the nearest model point with respect to the observation location with the measurements from Croatian surface observation network.*
13. Line 471-499: We agree. The definition of the verification measures (indices) used in Tables 2 and 3 have done in Appendix.
14. We appreciate the comments made by the Reviewer, which reminded the authors to the reference Migletta et al. (2016). We refer to this paper which focuses on the IOP2 over northeastern Italy.
15. Figure 6 - What is ARPEGE resolution? Figure 6 in the revised version of manuscript become Figure 4. In 2012, ARPEGE resolution over the western Mediterranean Sea was about 11 km and more than 14 km easward (stretched grid). This is gridpoint resolution since ARPEGE is also a spectral model.

Other points:

All accepted and problem corrected.

Reply to Reviewer #2 comments:

We appreciate the thorough review by the Reviewer and have done our best to improve the manuscript, according to the comments.

We agree with the reviewer that that the manuscript would be more readable if English language native speaker would proof-red the manuscript and correct the grammar. English has been corrected and red by a native English speaker.

We appreciate the comments made by the Reviewer, „*the paper lacks in clearly presenting the events making the readability quite low*“. In the revised manuscript we remedy the problem and reorganise the text in accordance to the reviewer comments.

Regarding the Reviewer comment that the two sentences are the same as in Ferretti et al., 2014, we are very sorry for that and confirm that this is accidental. During our work on this manuscript we consulted a lot of relevant references (many are cited in the paper) in which we found similar sentences construction. The content of these two sentences is general description of the Mediterranean region and well known convection as major source of heavy precipitation over the sea, and therefore does not have any influence on the presented results. In the revised manuscript we rewrite the mentioned sentences in our own words.

General comments:

Accepted. We appreciate the comments made by the Reviewer, which pointed that the description of the observations and models should be shortened. In the revised manuscript we remedy the problem. We remove unnecessary details on observations and summarize models details in a separate table.

We agree with the Reviewer that the presentation of the events in the Section 3 is difficult to read. This section was rewritten in accordance to the reviewer comments.

Specific Comments:

Line 40-42: Accepted. We rewrite the sentence.

Line 98: To explain where is Adriatic TA we refer to the HyMEX (www.hymex.org/?page=target_areas) where identified 3 main Mediterranean target areas: North-West (NW), Adriatic (A) and South-East (SE).

Line 138: Agreed. We add a figure with the location of the observations in Croatia (Figure 1b).

Line 226-231: Accepted. We reduce the lenght of this section and remove unnecessary details which could find in the listed references. Details of the operational model characteristics are summarized in Table 1.

Section 2 has been shortened.

Line 316: Accepted. We add suggested references and remove details about the NAO.

Lines 351: Acknowledged. In the revised manuscript we I remedy the problem

Line 393: Agreed. Modified.

Line 464: Accepted. We will specify the IOPs.

Line 605: Accepted. The squares show the precipitation. We prepare Figure 11, now Figure 14, where the squares are distinguishes from the shaded background.

Line 640: We agree. The information about the data used in the data assimilation has been added.

1 Overview of the first HyMeX Special Observation Period over Croatia

2
3 *Branka Ivančan-Picek, Martina Tudor, Kristian Horvath, Antonio Stanešić, Stjepan Ivatek-Šahdan*
4 Meteorological and Hydrological Service
5 Grič 3, 1000 Zagreb, Croatia
6

7 Abstract

8
9 The HYdrological cycle in the Mediterranean EXperiment (HyMeX) is intended to improve the
10 capabilities ~~to predict~~of predicting high-impact weather events. ~~In~~Within its framework, the aim
11 ~~of the~~ first Special Observation Period (SOP1), 5 September to 6 November 2012, was ~~aimed~~ to
12 study heavy precipitation events and flash floods. ~~Here~~Here, we present high-impact weather
13 events over Croatia that occurred during SOP1. ~~A~~p~~Particular~~ ~~articul~~ attention is given to eight
14 Intense Observation Periods (IOP~~s~~s) during which high precipitation occurred over the ~~e~~Eastern
15 Adriatic and Dinaric Alps. During the entire SOP1, the operational models~~s~~ forecasts generally well
16 represented ~~well~~ medium intensity precipitation, ~~while~~but heavy precipitation was frequently
17 underestimated by the ALADIN model at ~~an~~ 8 km grid spacing and ~~was~~ overestimated at ~~a~~ higher
18 resolution (2 km grid spacing). During IOP~~2~~2, intensive rainfall occurred ~~in~~over ~~a~~ wider area ~~of~~
19 ~~around~~ the city of Rijeka in the ~~N~~northern Adriatic. ~~Short~~The short-range maximum rainfall totals
20 ~~achieved maximum values were the largest~~ ever recorded at ~~the~~ Rijeka station since the beginning of
21 measurements in 1958. The rainfall amounts~~s~~ measured in intervals of 20, 30 and 40 minutes ~~are~~
22 ~~were~~ exceptional, with return periods ~~of more than~~that exceeded ~~a~~ thousand, ~~a~~ few hundreds and
23 ~~one~~ hundred years, respectively. The operational precipitation forecast using ~~the~~ ALADIN model at
24 ~~an~~ 8 km grid spacing provided guidance ~~on~~regarding the event but underestimated the rainfall
25 intensity. ~~Evaluation~~An evaluation of numerical sensitivity experiments suggested that ~~the~~ forecast
26 was slightly enhanced by improving the initial conditions through variational data assimilation. The
27 operational non-hydrostatic run at ~~a~~ 2 km grid spacing using ~~a~~ configuration with ~~the~~ ALARO
28 physics package further improved the forecast. This article highlights the need for an intensive
29 observation period in the future over the Adriatic region, to validate the simulated mechanisms and
30 improve numerical weather predictions~~s~~ via data assimilation and model improvements in
31 descriptions~~s~~ of microphysics and air-sea interactions~~s~~.

32
33 **Keywords:** HyMeX SOP1, Adriatic TA, heavy precipitation, ALADIN mesoscale model, data
34 assimilation
35

36

37

1. Introduction

38

39

The Special Observing Period 1 (SOP1) of the *HYdrological cycle in the Mediterranean Experiment – HyMeX* project was performed from 5 September to 6 November 2012 (Drobinski et al., 2014). The main objective of SOP1 was ~~improving to improve the~~ understanding and forecasting of the processes ~~leading that lead~~ to heavy rainfall and floods (Ducrocq et al., 2014). The Mediterranean region frequently is affected by heavy precipitation and flash floods, especially during ~~the~~ late summer and autumn. Daily precipitation amounts above 200 mm have been recorded during this season (e.g. e.g., Romero et al. 2000; Buzzi and Foschini 2000; Jansa et al. 2001, Ducrocq et al 2008). Within small and densely urbanized areas, intensive and stationary precipitation events can rapidly result in dangerous floods, sometimes leading to disastrous consequences (e.g. e.g., Silvestro et al., 2012; Rebora et al. 2013; Ivančan-Picek et al. 2014). This stresses the importance of such events through their impacts on ~~the~~ social and economic circumstances of local communities. Numerical weather prediction (NWP) models have made ~~a~~ significant progress through the development of convection permitting systems. However, the ability to predict such high-impact events remains limited because of the contribution of fine-scale processes ~~that are~~ not represented in NWP models, ~~and~~ their interactions with the large-scale processes, ~~as well as and~~ limitations ~~of~~ ~~the in~~ data assimilation, ~~and~~ especially ~~for the~~ convective-scale data assimilation. HyMeX aims to improve our understanding of precipitating systems, especially processes responsible ~~to for~~ their formation and maintenance, ~~as well as and~~ to improve the ability of numerical weather prediction models ~~in for~~ forecasting the locations and ~~intensity intensities~~ of heavy precipitation events in the Mediterranean.

59

60

61

The orography and thermal contrasts of the Mediterranean basin together with approaching upper-level troughs frequently induce lee cyclogenesis (e.g. e.g., Buzzi and Tibaldi, 1978; Horvath et al., 2006) and provide a trigger mechanism for a range of extreme weather phenomena, such as local downslope Bora windstorms (known as Bura in Croatia) (e.g. e.g., Grisogono and Belušić, 2009), strong ~~winds~~ Scirocco and Tramontana ~~winds~~ (Jurčec et al. 1996; Pandžić and Likso 2005; Jeromel et al., 2009), orographic precipitation, thunderstorms, supercells and mesoscale convective systems (Ivančan-Picek et al. 2003; Mastrangelo et al., 2011), and water-spouts (Renko et al., 2012). Heavy precipitation occurs preferentially downstream of ~~a~~ cyclones aloft (Doswell et al., 1998).

68

69

70

71

The seasonal distribution of heavy precipitation suggests the relevant role of the high sea surface temperature (SST) of the Mediterranean Sea during the autumn season, when the lower layer of the atmosphere is loaded with water vapour. The large thermal gradient between the atmosphere and the

72 sea favours intense heat and moisture fluxes, which are the energy source for storms (Duffourg and
73 Ducrocq, 2013). ~~As-Because~~ the sea provides a large source of moisture and heat, the steep slopes
74 of the surrounding mountains ~~in the vicinity of~~^{near the} highly urbanized coastal areas of the
75 Mediterranean are the key factors in determining ~~the~~ moisture convergence and the rapid uplift of
76 moist and unstable air responsible for triggering condensation and convective instability processes
77 (e.g. e.g., Rotunno and Ferretti, 2001; Davolio et al., 2009). The coastal mountains, however, are
78 not the only sources of lifting. Favourable synoptic upper-level settings~~s~~, frontal lifting associated
79 with quasi-stationary frontal systems and lower tropospheric mesoscale convective lines may also
80 induce ~~the~~ convective instability.

81
82 ~~One of the~~^A key components~~s~~ of HyMeX is ~~the~~ experimental activity, which is ~~aimed at better~~
83 ~~quantification and understanding of~~^{intended to better understand and quantify} the water cycle in the
84 Mediterranean, with ~~an~~ emphasis on intense events. Over the ~~whole~~^{entire} Mediterranean region,
85 three target areas (TA) have been proposed for Enhanced Observational Periods~~s~~ (EOP~~s~~) to provide
86 detailed and specific observations for studying key processes of the water cycle
87 (<http://www.hymex.org>). ~~One of~~^{Among} them is the Adriatic Sea and Dinaric Alps (Adriatic TA),
88 which has been proposed for the study of heavy precipitation events and ~~flash-floods~~^{flash floods},
89 and considerable effort from the Croatian meteorological community was put into the campaign
90 (http://www.hymex.org/?page=target_areas).

91 The Adriatic Sea is a northwest–southeast elongated basin in the ~~C~~entral ^Mediterranean
92 ~~sea~~^Mediterranean ~~Sea, that is~~ approximately 200 km wide and 1,200 km long and is almost entirely
93 enclosed by mountains, namely the Apennines to the west and southwest, the Alps to the north and
94 the Dinaric Alps to the east and southeast. ~~These~~^{Those} topographic features play a large role in the
95 structure and evolution of the weather systems associated with heavy precipitation (e.g. e.g.,
96 Vrhovec et al., 2001; Ivančan-Picek et al. 2014). This area is ~~one of~~^{among} the雨iest in Europe,
97 with expected annual amounts of precipitation greater ~~then~~^{than} 5.000 mm in the mountainous
98 hinterland on the ~~southern~~^{south}(end) part of the Adriatic Sea ([Magaš](#)^{Mages}, 2002).

99
100 Although the Adriatic TA was not ~~a~~part of ~~the~~ extensive experimental activity during ~~the~~
101 ~~SOP1~~^{SOP1}, many events that affected the Western Mediterranean ~~also~~ expanded ~~at~~^{to} ~~into~~ the Adriatic
102 area~~too~~. During SOP1, 16 IOPs were dedicated to heavy precipitation events (HPE) over France,
103 Spain and Italy, and many of ~~these~~^{those} events subsequently affected the ~~E~~astern Adriatic Sea and
104 Croatia.

106 The aim of the paper is: ~~to (1.) to~~ provide a scientific overview of the HPEs that affected the
107 Adriatic TA during SOP1~~–, (2.) to~~ provide and examine the operational numerical models skill of
108 the precipitation forecasts in Croatia~~– and (3.) to~~ provide a detailed description of the
109 extraordinarily rare ~~and~~ heavy IOP2 precipitation event IOP2.
110

111 The remainder of this paper is ~~organised~~organized as follows. Section 2 describes the area of ~~the~~
112 Dinaric Alps and the Adriatic region~~– and the~~ measured and model data provided by ~~the~~ Croatian
113 Meteorological and Hydrological Service (DHMZ). Section 3 analyses the events during HyMeX
114 SOP1, ~~that which~~ produced more than 100 mm of precipitation during 24 hours on ~~the e~~Eastern
115 Adriatic ~~C~~eoastline. ~~Performance~~ The performance of the operational precipitation forecasts is
116 assessed through ~~the~~ verification of forecasts, ~~mostly primarily~~ with the Croatian surface
117 observation network. In Section 4, ~~an~~ additional attention is given to the extraordinarily rare ~~and~~
118 heavy precipitation IOP2 event IOP2.

119 Finally, we analyse and discuss the potentials for improving numerical weather predictions through
120 data assimilation using sensitivity experiments. The summary and conclusions are reported in
121 Section 5.
122

123 2. HyMeX SOP1 in Croatia: observations and models

124
125 ~~The~~ Mediterranean is ~~one of among~~ the ~~most~~ climatically ~~most~~ pleasant areas in the world.
126 Nevertheless, the area is prone to high-impact weather phenomena~~– affecting that affect~~ people's
127 lives and activities and ~~causing cause~~ extensive material damage. This context was favourable for
128 ~~an the~~ active participation of the Croatian scientific community in the HyMeX project. ~~The~~ Croatian
129 research community was active in the preparation of the scientific programme, ~~which~~ included the
130 identification of typical weather patterns over the regions and ~~the~~ target areas. During ~~the~~
131 SOP1~~SOP1~~, the national meteorological service supported the main HyMeX Operational Centre
132 (HOC) in Montpellier (France) ~~by, through~~ visiting scientists and ~~their providing~~ their providing
133 meteorological expertise~~– as well as providing~~ observations, numerical modelling products and
134 forecast data.
135

136 This section summarizes the observational network in Croatia ~~that was~~ operational during SOP1
137 and the operational forecasting modelling chain ~~producing that produced~~ numerical weather
138 predictions during SOP1.
139
140

141 2.1. Observations

142

143 The instrumentation deployed over the Adriatic TA during ~~the SOP1~~SOP1 belongs~~belonged~~ mainly
144 to the DHMZ observational network ~~of DHMZ~~. DHMZ deployed a ground observation operational
145 network that includes~~included~~ automatic, climatological and ~~rain~~gauges~~rain gauge~~ stations, two
146 radio-soundings (Zagreb-Maksimir (station ID = 14240, H = 123 m asl, $\varphi = 45^049'N$, $\lambda = 16^002'E$)
147 and Zadar-Zemunik (station ID = 14430, H = 88 m asl, $\varphi = 44^05'N$, $\lambda = 15^021'E$) and two radars
148 (Bilogora and Osijek). ~~Indication of the~~The locations mentioned in the text ~~is shown in the~~are
149 indicated in Figure 1b.

150

151 The meteorological measurements and observations ~~on from~~ 58 SYNOP stations (31 of ~~them which~~
152 ~~were~~ere automatic stations) ~~are done~~were made every hour and reported in real time during ~~the~~
153 SOP1. All the automatic stations measured data ~~with a~~at ~~10-minute~~10-minute ~~interval~~intervals and
154 reported the measured data in real time. However, not all 63 automatic stations measured all the
155 meteorological parameters. ~~There are 21~~Twenty-one ~~of the~~ automatic stations ~~that report only~~
156 ~~the only reported~~ wind parameters (average ~~10-10~~ minute speed and direction, and wind gust speed
157 measured in the ~~last previous~~ 10 minutes). Five ~~more additional~~ stations measured ~~measure~~ the
158 wind parameters, temperature and relative humidity. All ~~real time~~real-time surface measurements
159 (SYNOP, and automatic station data), and available radar figures ~~are were~~ stored in ~~at the~~ HyMeX
160 data centre.

161

162 The dense network of climatological stations (120 stations with an average distance of 20 km) ~~is~~
163 ~~was~~ the source of temperature, humidity and wind speed, ~~and~~ cloudiness and visibility ~~are were~~
164 estimated ~~by from~~ observations ~~only~~ 3 times ~~a per~~ day at 0600, 1300 and 2000 UTC, ~~and~~
165 accumulated rainfall and snow height ~~are were~~ measured at 0600 UTC (~~there were~~ more than 500
166 stations ~~reporting reported~~ accumulated 24-hourly rainfall).

167

168 In addition to operational radio-soundings in Zadar-Zemunik at 0000 and 1200 UTC, several extra
169 radiosoundings were deployed through the Data Targeting System (DTS) upon request of the HOC.
170 ~~These~~Those targeted radiosoundings, among others in the ~~w~~Western Mediterranean, were activated
171 during IOP16, which caused heavy precipitation, strong winds and snow in the Eastern Adriatic.
172 ~~The r~~Requests ~~e~~quests for additional radiosoundings at 0600 and 1800 UTC were carried out under
173 the EUMETNET Observation Programme. Sounding data measured at Zadar-Zemunik, located on
174 the eastern coast of the Adriatic Sea at the southern end of Velebit Mountain, provided information
175 on the vertical structure of the troposphere ~~in order~~ to monitor the upstream flow of the precipitation

176 events in the Adriatic region. The selection of sensitive area predictions (SAP), that is, predictions
177 ~~of for~~ regions where observations are expected to have the largest impact on the forecasts for the
178 verification, used methods developed by ECMWF and Meteo-France (Prates et al., 2009). The
179 verification area selected for SAP calculations was centred over the ~~N~~northern and/or ~~C~~entral
180 Adriatic.

181
182 To complement the ground-based observations, the data from two radars in Croatia (Bilogora
183 (H=270 m asl, $\phi = 44^0 53' N$, $\lambda = 17^0 12' E$) and Osijek (H=89 m asl, $\phi = 45^0 30' N$, $\lambda = 18^0 34' E$) and
184 one in Slovenia (Lisca; H=944 m asl, $\phi = 46^0 04' N$, $\lambda = 15^0 17' E$) ~~are were made~~ available
185 operationally in ~~a graphical graphic~~ form. ~~The estimation Estimates~~ of the instantaneous surface rain
186 rates~~s~~ from ~~the~~ Lisca and Bilogora radars were provided to the HyMeX web server in real time.
187 Northwest Croatia, particularly Rijeka and Istria~~s~~ are covered by operational radars in Croatia,
188 Slovenia and Italy~~s~~, but the area is on the edge of the ranges and behind a mountain obstacle.

189
190 ~~The s~~~~Standard standard~~ Meteosat Second Generation (MSG) Spinning Enhanced Visible and Infrared
191 Imager (SEVIRI) data are available ~~with in an interval~~~~s~~ of 15 minutes~~s~~ and Rapid Scan Service
192 (RSS) data are available ~~with in~~ 5 minute intervals~~s~~. The abundance of remote sensing data on the
193 HyMeX server encourages detailed analyses of all the cases that produced HPEs over Croatia
194 during SOP1.

195
196 Satellite~~s~~ derived precipitation data ~~from the Tropical Rainfall Measuring Mission~~ ~~are were~~ used as
197 ~~provided from the Tropical Rainfall Measuring Mission~~ (TRMM, Huffman et al., 2007). In
198 particular~~s~~, we used the ~~3-3-hourly~~ accumulated precipitation data from the 3B42RT product to
199 compute the 24 hourly accumulated rainfalls for the period from 0600 UTC to 0600 UTC the next
200 day, and ~~4-1-hourly~~ precipitation data from ~~the~~ 3B41RT product ~~to compare it were compared~~ with
201 the precipitation ~~forecasts forecast by developed using~~ operational numerical weather prediction
202 models.

203
204
205 **2.3 Mesoscale models**
206
207 A short description of the models~~s~~ characteristics and the operational~~set up~~ ~~setup~~ during SOP1 is
208 given here.
209 During ~~the~~ SOP1, DHMZ provided the products from the operational forecast (Tudor et al., 2013).
210 At the time~~s~~, the numerical weather prediction system (NWP) ~~is was~~ based on the hydrostatic and
211 non-hydrostatic ALADIN models.

212 The ALADIN hydrostatic model (Aladin International Team, 1997; Tudor et al. 2013) ~~is-was~~ run
213 twice per day on a domain ~~in-with~~ ~~8-8~~ km resolution (Figure 1a), starting from 0000 and 1200 UTC
214 analyses up to ~~a~~ ~~72-72~~ hours lead time. The operational suite used lateral boundary conditions from
215 the global model ARPEGE run operationally ~~in-by~~ Meteo-France. The initial fields ~~are-were~~
216 obtained using ~~a~~ data assimilation procedure (Stanešić, 2011). The operational ALADIN model is a
217 limited-area model that applies Fourier spectral representation of the model variables using fast
218 Fourier transforms (FFTs) in both directions with a quadratic elliptic truncation (Machenauer and
219 Haugen, 1987), ~~that~~~~which~~ ensures an isotropic horizontal resolution and that the nonlinear terms of
220 the model equations are computed without aliasing. The forecast ~~in-at an~~ ~~8-8~~ km resolution ~~is-was~~
221 run on a domain with 240x216 grid points that ~~includes-included~~ a band of 11 points along ~~the~~
222 northern and eastern boundaries, with unphysical terrain created for the biperiodization (Figure 1a).
223 The dynamical computations ~~are-were~~ performed using semi-implicit semi-lagrangian ~~Lagrangian~~
224 discretisation (Robert, 1982) to solve the hydrostatic dynamics and finite difference method on 37
225 levels of hybrid pressure type eta ~~coordinates coordinate~~ (Simmons and Burridge, 1981) in the
226 vertical. The operational physics package at the time used prognostic TKE, cloud water and ~~an~~ ice,
227 rain and snow and diagnostic scheme for deep convection. The prognostic equations for
228 condensates ~~are-were~~ solved using the ~~barycentric~~ ~~barrycentric~~ approach (Catry et al., 2007).
229

230 Upon numerous case studies of severe weather events (~~e.g.~~ ~~e.g.~~, Tudor and Ivatek-Šahdan, 2010), ~~an~~
231 additional operational forecast run was established in July 2011 that ~~uses-used~~ ALADIN with non-
232 hydrostatic dynamics and a complete set of physics parameterisations, including the convection
233 scheme. The high 2 km resolution forecast using ALADIN model with non-hydrostatic dynamics
234 (Benard et al 2010) with the physics package that included the convection scheme was running
235 operationally during the HyMeX SOP1 campaign (Figure 1b). The convection scheme used in the
236 high-resolution model is modular multiscale ~~misrophysics-microphysics~~ and ~~a~~ transport (3MT)
237 scheme for precipitation and clouds (Gerard and Geleyn, 2005; Gerard, 2007; Gerard et al., 2009).
238 Both runs used ~~SSTs~~ from the initial file of the global model ARPEGE forecast. ~~More-Additional~~
239 details ~~on-of the~~ model characteristics can be found in Table 1.
240
241

242 3. Heavy precipitation events over the Adriatic TA during SOP1

243
244 In ~~the~~ late summer and early autumn ~~of~~ 2012 (from 5 September to 6 November), Hymex SOP1,
245 which was dedicated to heavy precipitation and flash floods, ~~took placeoccurred~~ over the ~~W~~estern
246 Mediterranean (Ducrocq et al, 2014). During SOP1, 20 IOPs were declared, and 8 of ~~these-those~~

247 events affected the Adriatic TA (Table 2). Most of ~~these-the~~ events (6 IOPs) were related to HPEs
248 over the ~~n~~Northern Adriatic (city of Rijeka).

249 Figure 2a shows the total precipitation amounts measured by the Croatian rain gauge network
250 ~~cumulated-accumulated~~ over the ~~whole_entire~~ SOP1. The total precipitation for ~~the SOP1SOP1~~ was
251 above the corresponding climatology (Zaninović et al., 2008) for September and October for ~~the~~
252 Adriatic TA. ~~Similar_A similar situation~~ was found over the Apennine peninsula (Davolio et al.,
253 2015). ~~Maximum-The maximum of~~ precipitation during SOP1 was recorded ~~on-in~~ the ~~No~~northern
254 Adriatic (city of Rijeka) and its mountainous hinterland of Gorski Kotar (~~more than~~~~exceeding~~ 1000
255 mm at some locations). There were 15 days with daily rainfall accumulations exceeding 100 mm at
256 locations in the Adriatic TA (Figure 2b). There were more IOPs dedicated to HPEs over the Adriatic
257 TA in October than in September 2012, which was also the case in the ~~W~~western Mediterranean
258 (Ducrocq et al., 2014). Several of ~~these-those~~ events caused local urban flooding (Rijeka, Pula and
259 Zadar), with considerable material damage.

260
261 Some of the IOPs were embedded in a synoptic setting conducive to heavy rainfall and
262 characterized ~~with-by~~ cyclones over the Western Europe and Mediterranean (e.g. e.g., Dayan et al.
263 2015). The storm tracks of these cyclones ~~coming_travelingtravelling~~ from the North Atlantic to
264 Europe depend on the direction and strength of the westerly winds ~~that are~~ controlled by the relative
265 positions of the permanent Azores High and Icelandic Low. Based on Ferretti et al. (2014) and
266 Pantillon et al. (2015), a small positive or negative North Atlantic Oscillation (NAO) index
267 ~~contributed_econtribute~~ to the evolution of the weather systems associated with heavy precipitation
268 and possibly reduced the ~~long term~~~~long-term~~ predictability over ~~the~~ Mediterranean.

269 270 3.1 Overview of IOPs over the Adriatic TA

271
272 The influence of different meteorological characteristics and physical processes that produced HPEs
273 over ~~the~~ Adriatic target area and Dinaric Alps are briefly analysed and summarized. Previous
274 research on ~~the occurrence of~~ HPEs ~~oe~~ccurrence in the wider Adriatic region (e.g. e.g., Doswell et
275 al., 1998; Romero et a., 1998; Vrhovec et al., 2001; Kozarić and Ivančan-Picek, 2006; Horvath et
276 al., 2006; Mastrangelo et al., 2011; Mikuš et al., 2012) highlighted cyclonic activity in the
277 ~~W~~western Mediterranean and ~~in the~~ Adriatic as a triggering mechanism for a range of extreme
278 weather phenomena, including HPE. ~~Position-The positions~~ of cyclones that appear in the Adriatic
279 Sea basin strongly influence the climate and weather conditions in the area (Horvath et al., 2008).

280
281 During ~~the~~ SOP1, several upper-level troughs entered the ~~W~~western Mediterranean and induced

283 cyclogenesis over the Gulf of Genoa, ~~the~~ Tyrrhenian Sea and ~~over the~~ Adriatic Sea. Figure 3 shows
284 the mean sea level pressures and low-level horizontal winds for IOP4, IOP9, IOP13, IOP16, IOP18
285 and IOP19. ~~While~~ ~~Although~~ most of the events were related to cyclone activity in the region, some
286 events were not characterized ~~with~~ ~~by~~ ~~a~~ cyclone moving over the area. In the following text, we
287 summarize the analyses of selected characteristic IOPs that affected the Adriatic area. ~~Similar~~ ~~large~~
288 ~~scale~~ ~~Large-scale~~ conditions ~~such as~~ ~~similar to those~~ found in ~~these~~ ~~the~~ IOPs ~~helped~~ ~~help to~~ generate
289 mesoscale and local processes, leading to quite different precipitation patterns.

290

291 3.1.1 IOP4

292

293 This event was caused by a mesoscale cyclone associated with a potential vorticity (PV) anomaly
294 over the Adriatic Sea, and ~~was~~ enhanced by the low-level convergence of the Bora flow over the
295 ~~N~~orthern Adriatic Sea and warm southerly wind ~~on~~ ~~in~~ the ~~S~~southern Adriatic (Figure 3a).
296 ~~Mesoscale~~ ~~The mesoscale~~ cyclone moved slowly southeastward, inducing instability over ~~C~~entral
297 Adriatic Sea, with intense convective phenomena on both sides of the basin.

298 Several rain gauges stations reached maxima of over 150 – 200 mm/24 h along the ~~E~~astern Italian
299 ~~C~~oast (Maiello et al., 2014), and more than 100 mm/24 h was recorded over ~~the~~ southeast coast of
300 the Adriatic, with ~~the~~ ~~a~~ maximum over ~~the~~ Pelješac peninsula (Figure 1b). As inferred from the
301 satellite data, there were also other local precipitation maxima ~~in~~ ~~precipitation~~ ~~above~~ ~~over~~ the sea
302 (Figure 4b). Previous studies (e.g. e.g., Buzzi and Foschini, 2000; Ivančan-Picek et al., 2014;
303 Davolio et al., 2016) ~~show~~ ~~have shown~~ that the largest component of the mountain-range-scale
304 precipitation appears to be due to the orographic ~~lifting~~ ~~lift~~ of ~~the~~ moist and impinging low-level
305 flows. Consequently, the vertical uplifts forced by the Dinaric Alps area were favourable for ~~the~~
306 initiation and maintenance of convection. ~~However, the coastal~~ ~~Coastal~~ mountains close to the
307 Adriatic Sea were ~~however~~ not the only sources source of lift. ~~The~~ ~~I~~Low-level circulation over
308 the sea frequently generates low-level convergence responsible for convective initiation (Jansa et
309 al., 2001; Davolio et al. 2009). The mesoscale cyclone over the Adriatic and frontal system moved
310 slowly ~~south~~ ~~eastward~~ ~~southeastward~~ and induced instability over ~~the~~ ~~e~~Central Adriatic Sea due to
311 the strong low-level convergence between the southerly *jugo* (sirocco) and northeasterly *bora*
312 wind wind. This ~~resulted~~ ~~in~~ ~~caused~~ more than 100 mm/24 h ~~to~~ ~~be~~ recorded over the ~~S~~southeast
313 Adriatic ~~e~~Coast and ~~above~~ ~~over~~ the open sea (Figure 4b).

314

315 In IOP4, heat loss caused by a strong *bora* wind was very intensive. ~~The~~ ~~Bora~~ was severe on
316 ~~N~~orthern Adriatic, ~~exceeding~~ ~~and~~ ~~exceeded~~ 24 m/s. Strong *bora* winds wind bring brings cold and
317 dry continental air over the warm Adriatic basin, ~~which~~ ~~generating~~ ~~generate~~ intense air-sea heat

318 exchanges and a rapid sea surface cooling (e.g. e.g., Grisogono and Belušić, 2009). The proper
319 representation of sea surface temperatures (SSTs) in the numerical models, especially in small and
320 shallow basins, like such as the Adriatic Sea, is necessary for improving the short-range
321 precipitation forecasts (e.g. e.g., Davolio et al., 2015b; Stocchi and Davolio, 2016; Ricchi et al.,
322 2016). The response of heavy precipitation to a SST change is complex and mainly involves
323 the modification of modification to the boundary layer characteristics, flow dynamics and its
324 interaction with the orography. In the numerical modelling, the SST representation is generally
325 unrealistic and usually keeps the SST fixed at its initial value. Furthermore, especially
326 in a narrow and inhomogeneous basin, like such as the Adriatic, small-scale SST variations cannot
327 be properly represented in the coarse large-scale analysis, especially near the coasts. Figure
328 4a shows SST measured on-at the station Bakar station close to the city of Rijeka for the whole
329 entire SOP period. During IOP4 (13 – 14 September 2012), the SST rapidly decreased for by 10 °C
330 on-at the Bakar station Bakar in comparison to representation in the operational model which
331 used LBC from the global ARPEGE model ARPEGE. Therefore, the SST near the coast was
332 colder than that in the ALADIN model forecast, affecting which affected the ability of the forecast
333 model to properly forecast the meteorological fields there. In addition to operational SST, a control
334 simulation is was driven by the SST field provided through from the OSTIA analyses (Donlon et al.,
335 2012), which better corresponded to in situ observations during this event. The daily
336 accumulated precipitation for the operational 2 km model run and the control simulation with
337 modified colder SST from OSTIA are presented at Figures 4d and 4e. In this case, the control
338 simulation using the OSTIA analysis is was more realistic (see Figure 4b) and generally drier than
339 the operational with a warmer SST. Colder The colder SST resulted with decreasing of caused a
340 decrease in precipitation over the mountainous Adriatic Coast.

341 IOP4 shows the needs for further improvements of in the role of SST and surface (latent and
342 sensible) heat fluxes over the Adriatic Sea, which attain large values during strong *bora* events.
343 However, a more detailed analysis of the impact of SST on precipitation is ongoing.

345 3.1.2 IOP-13

346
347 Several events were characterized by frontal lifting associated with quasi-stationary frontal systems
348 that which help the release of helped release convective instability (IOP9, IOP12, and IOP13). Here
349 Here, we will focus on the IOP13 event, that which affected the entire Eastern Adriatic Coast and
350 all three Italian target areas (Ferretti et al., 2014).

351 Smooth troughs entering the Western Mediterranean Sea that produced a south westerly flow over
352 the Adriatic TA were observed producing a south westerly flow over the Adriatic TA. A cold front

353 moved eastward, supporting the advection of moist air ~~on the~~ low levels towards the coastline.
354 This warm and moist air ahead of the front organized intensive convective activity that formed a
355 rain band stretching from Tunisia over ~~s~~Southern Italy to ~~S~~southeast Croatia. ~~In~~During the evening
356 of 15 October, ~~a~~ Genoa cyclone developed and with ~~an~~ associated frontal system moved rapidly
357 over Italy. The advection of the moist air from over the sea caused deep convection and another cut
358 off low that developed over ~~N~~Northern Italy and moved eastward. This weather regime (Figure 3c)
359 provided a favourable environment for HPE~~s~~, with thunderstorms over the ~~N~~Northern Adriatic Sea,
360 where 127.4 mm/~~24h~~24 h was recorded in the city of Rijeka in the ~~N~~Northern Adriatic. Figure 5a
361 shows ~~the~~ daily accumulated rainfall on 16 October recorded by the Slovenian and Croatian rain
362 gauge networks and ~~the~~ interpolation with ~~the~~ 3B42RT product. The low-level wind field was
363 dominated by a low-level jet stream that carried the warm and humid Mediterranean air to the
364 Adriatic Sea (Figure 3c). This situation was favourable for the strong S-SE sirocco wind, ~~which is~~
365 known as the *jugo* in Croatian (e.g. e.g., Jurčec et al., 1996). ~~Advection~~The advection of warm and
366 moist Mediterranean air caused intensive precipitation, ~~with more than~~which exceeded 100 mm/24
367 h ~~above over~~ the ~~N~~Northern Adriatic and open sea and several outermost islands (Mali Lošinj, Silba,
368 Hvar, ~~and~~ Mljet).

369 In less than 24 h, intense precipitation exceeding 120 mm affected the ~~N~~Northern Adriatic area. The
370 precipitation timing and the location of the maxima ~~are were~~ reproduced quite well in the model
371 forecasts (Figures 5-b and 5c). ~~Operational~~The operational forecast at ~~a~~2-2 km grid resolution
372 ~~better~~ simulated ~~better~~ the extreme amounts in the Rijeka area than operational forecast at ~~an~~8-8 km
373 grid resolution. However, both models overestimated ~~the~~ rainfall ~~above over~~ the ~~S~~southern Adriatic
374 ~~M~~mountains.

375

376 3.1.3 IOP16 and IOP18

377

378 These events represent excellent cases for the science issues identified in HyMeX program for ~~the~~
379 ~~western~~the Western Mediterranean (convection initiation, cloud-precipitation processes, ~~and~~ air-sea
380 coupled processes). These situations produce favourable conditions for HPE~~s~~ on the southern side
381 of the Alpine ridge, ~~s~~ including the ~~N~~Northern Adriatic region.

382 During these events, the Adriatic TA was strongly affected by the Genoa cyclone (IOP16) and ~~the~~
383 intensive ~~W~~western Mediterranean cyclone (IOP18) inducing low-level ~~southeasterly south-easterly~~
384 and south-westerly flow over the Adriatic area.

385 Figures 3d and 3e show the sea level pressure and low-level wind vectors at 1200 UTC on 27 and
386 31 October. This situation was favourable for the strong S-SE *jugo* wind (IOP18), ~~s~~ which carried the
387 warm and humid Mediterranean air to the Adriatic Sea. The cyclone during IOP16 caused the

388 lowest pressure recorded over the Adriatic TA during the ~~whole~~entirety of SOP1. ~~Advection~~The
389 ~~advection~~ of the warm air combined with intensive advection of cyclonic vorticity contributed to the
390 strong upward motion in the area of the ~~N~~northern Adriatic and the adjacent mountains, ~~resulted~~
391 ~~resulting in with~~ 180 mm of precipitation ~~in over the~~ city of Rijeka and ~~the~~ mountainous hinterland
392 (Figure 6a). Very intensive convective activity during IOP18, with heavy showers and
393 thunderstorms, ~~again~~ produced more than 170 mm/24 h again in Rijeka ~~more than 170mm/24h~~
394 (Figure 7a).

395 During IOP16, targeted radio-soundings ~~aimed at both~~intended for data assimilation, case analysis
396 and verification were deployed over the ~~C~~entral Mediterranean area and Adriatic area. The time
397 evolution of the vertical structure of troposphere on the ~~E~~astern Adriatic ~~C~~oast ~~is~~was inferred by
398 DTS deployed and standard radiosoundings at Zadar-Zemunik during 26-28 October (Figure 8).
399 ~~Gradual~~A gradual moistening of the lower troposphere occurred on 26 October during the
400 ~~occurrence of a south easterly southeasterly~~ near-surface *jugo* wind in the Adriatic basin and ~~south~~
401 ~~westerly southwesterly~~ flow aloft. The air column below 500 hPa was nearly saturated ~~and also~~ and
402 rather moist above. On 26 October, this moistening was still not associated with significant values
403 of convective available potential energy (CAPE). On the next day, however, CAPE increased to
404 over 1200 J/kg on 1200 UTC and over 1000 J/kg on 1800 UTC 27 October. The winds strengthened
405 throughout the troposphere, and the highest intensity was observed in the layer between 300 and
406 200 hPa. ~~Strong~~A strong ~~south westerly~~southwesterly shear of approximately 20 m/s in the first 2
407 km of the troposphere was also present over this area.

408

409 Both IOPs (IOP16, ~~and~~ IOP18) were fairly well forecast (Figures 6 and 7). The precipitation timing
410 and the location of the maxima were reproduced quite well in the ~~models~~forecasts. In less than 24
411 h, intense precipitation exceeding 170 mm affected the ~~N~~northern Adriatic area. ~~Operational~~The
412 ~~operational~~ forecast of the 2 km model resolution run overestimated rainfall above mountains, but it
413 ~~is~~was consequently closer to the extreme amounts in the Rijeka area.

414 The sirocco wind is the cause of a piling up of Adriatic water near the northernmost coasts that
415 occasionally floods the city of Venice (Orlić et al., 1994). This was the case also during the IOP16
416 and IOP18. The Venice Lagoon was hit by ~~the~~ “acqua alta” (high water), the warning level was
417 exceeded twice, with more than 120 mm on 27 and 28 October (Ferretti et al., 2014), and more than
418 140 mm was measured on 1 November 2012.

419

420 **3.1.3 IOP19**

421

422 During the ~~whole~~entirety of IOP19 (3-5 November 2012), ~~the~~ ~~south westerly~~southwesterly

advection of warm and humid air produced convection over the ~~n~~Northern Adriatic and orographic precipitation along the Kvarner ~~B~~ay. A south-westerly flow over the ~~whole~~entire region of the ~~W~~estern Mediterranean was produced by a baroclinic wave that formed over ~~N~~orthwest Europe to ~~N~~orthern Africa due to weakened westerlies and low NAO. Strong southwest flow in the lower troposphere ahead of the cold front supported the advection of moist and warm air. ~~A more detailed~~Additional details on the synoptic situation ~~is~~are described in Ferretti et al. (2014) and Davolio et al. (2016). More rainfall was recorded on rain gauges on the ~~north~~eastern~~N~~ortheastern Adriatic ~~C~~oast. During this event, 177.0 mm/~~24h~~24 h was recorded in Klana, the hinterland of the city of Rijeka (Figure 9), and the precipitation was mainly ~~orographic~~orographic-forced with a strong southeast *jugo* (sirocco) wind (Figure 3f). This represents a typical event in this area, which ~~are~~ generally well forecasted by operational models that ~~are able to~~can describe the main orographic forcing properly. Both versions of the ALADIN operational models (8 and 2 km resolution) produced maximum precipitation over the mountainous hinterland of the city of Rijeka (Figures 9-b and 9c). The amount of precipitation was slightly underestimated. In addition, the 2 km non-hydrostatic version of the model produced the second maximum over the Velebit mountain, which was not observed. This result implies that ALADIN 2 km overestimated the orographic forcing associated with the higher Dinaric Alps ridges.

3.2. Verification of the precipitation forecasts during SOP1

~~Performance~~The performances of the operational precipitation forecasts with the ALADIN model at 8 km and ALADIN model at 2 km grid spacing during SOP1 ~~were~~assessed by comparing the forecasts with the measurements from the Croatian surface observation network. ~~Model~~The model results were compared with 24-hour accumulated precipitation measured by the rain gauges. Before the calculation of the verification scores results for ALADIN 2 km, the model was upscaled to an ALADIN 8 km grid to avoid double penalty errors and make a more direct comparison. Contingency tables (Tables 3 and 4) were evaluated with three categories defined according to the amount of ~~24h~~24 h accumulated precipitation and classified as dry, medium and strong. An event was defined as dry if the 24 h accumulated precipitations on the rain gauge station ~~were~~was less or equal 0.2 mm/~~24h~~24 h. The ALADIN model at a 2 km grid spacing during SOP1 was assessed by comparing the forecasts from the nearest model point with respect to the observation location with the measurements from the Croatian surface observation network. The border between the medium and strong categories was defined as the 95th percentile of the measured ~~24h~~24 h accumulated precipitation (50.42 mm/~~24h~~24 h) during the ~~SOP1~~SOP1 period, but with the dry events excluded.

459 Figure 10 presents the 24-hour accumulated precipitation histograms from both the models and rain
460 gauges during the wholeentire SOP1 period and during the specific days corresponding to the 8
461 IOPs indicated in Table 1. The Measurementsmeasurements show that during the entire SOP1
462 period, a large percentage of the events waswere dry (64.7%) during the entire SOP1 period. Value
463 The value corresponding to the 95th percentile (50.4 mm) is indicated atonthe graph, and it appears
464 as to be a reasonable threshold for the heavy precipitation events that we want to verify. Histogram
465 As expected, the histogram for only the IOP days only (8 IOP cases) as expected show that the
466 number of dry events iswas reduced (18.1%) and the relative frequency of events shiftsshifted
467 towards events with higher amounts of precipitation.

468

469 While forAlthough the whole SOP1 period the ALADIN 8 km model distribution iswas in rather
470 good agreement with the rain gauge measurements during the entire SOP1 period, with the
471 exception of theexcept for most intensive rain, the model distribution for the IOP days only shows
472 that the model tendstended to underestimate the frequency frequencies of weakthe weak and
473 strong precipitation events, whilewhereas it overestimatesoverestimated the frequency of moderate
474 precipitation events. For ALADIN 2 km SOP1 and IOP days only, the histograms shows similar
475 results; where the model tendstended to underestimate moderate precipitation, whilewhereas at
476 the same time it tendstended to overestimate strong precipitation. ComparisonA comparison of the
477 two models shows athat the better agreement of ALADIN 22kmkm model withbetter agreed with
478 the measurements, especially for very weakweak and strong precipitation.

479 In Table 3 and 4The verification measures (Wilks, 2006) calculated from the comparison of the 24
480 hour24-hour accumulated precipitation from the rain gauges and model, for the three categories and
481 for different periods are summarized in Tables 3 and 4. The definition of the indices used here is
482 availableare defined in Appendix. AsBecause most of the measures are Base Rate (BR) sensitive
483 and they can be safely used only to compare two models for the same event, the polychoric
484 correlation coefficient (PCC; Juras and Pasarić, 2006) as an additional measure was calculated
485 because PCC does not depend on BR or on frequency bias (FBIAS). For both ALADIN models,
486 PCC showed rather high levels of association between the observations and forecast for the
487 wholeentire SOP1, whilewhereas it hashad a smaller value for only the IOP days.

488 For both models, the smallest value of PCC iswas for IOP 9, where both models overestimated the
489 number of strong precipitation events, especially ALADIN 2 km, which can be seen from the much
490 higher FBIAS than the onethat from the ALADIN 8 km model. Comparing the performances of the
491 two ALADIN models, it can be seenobserved that ALADIN 2 km hashad higher levels of
492 association between the observations and forecasts for IOP13 and IOP19 compared to ALADIN 8
493 km. For IOP13, ALADIN 2 km wasas relatively more accurate in all three categories, which can be

494 seen from the higher values of the critical success index (CSI). For IOP19, the FBlAS values show
495 that ALADIN 2 km ~~overestimates overestimated the~~ frequency of strong precipitation, but at the
496 same time it ~~is-was~~ relatively more accurate for the other two categories (higher CSI). For the dry
497 category, ALADIN ~~22km km has had~~ better scores for almost all the selected cases (higher CSI;
498 FBlAS closer to 1). For medium precipitation, ALADIN 8 km ~~has had~~ better scores, except for
499 IOP13 and IOP19. For the strong category, the scores show that ALADIN 2 km ~~tends tended~~ to
500 overestimate the frequency of strong events, whereas while ALADIN 8 km ~~tends tended~~ to
501 underestimate the frequency of strong events, with only exception for the sole exception of IOP19,
502 where both models overestimated the number of strong precipitation events (especially ALADIN 2
503 km).

504
505

506 | 4. IOP2 over the north-eastern~~N~~northeastern Adriatic TA

507
508

509 Although the Adriatic TA was not ~~a~~ part of the extensive experimental activity during ~~the~~SOP 1,
510 many events that affected the Western Mediterranean also expanded ~~at into~~ the Adriatic area~~too~~.
511 During ~~the~~IOP 2, in the late evening hours of September 12, a rainy episode with very heavy
512 rainfall ~~rain falling~~ over only a few hours ~~have been was~~ recorded over the city of Rijeka, ~~at on~~ the
513 northern coast ~~cost~~ of Kvarner Bay in the ~~E~~astern Adriatic ~~s~~ea and ~~in~~ its mountainous hinterland
514 of Gorski ~~K~~otar. According to ~~the a~~ report ~~of from~~ the Municipal Water and Sewer Company of the
515 city of Rijeka, ~~-~~some major city roads became rivers and streams, sewage manhole covers were
516 discharged, ~~and~~ massive caps flew into the air up to two ~~meter metres~~, and ~~then~~ a spate of them
517 were then carried up to one hundred ~~meter metres~~ ~~away~~ from ~~the their~~ shafts.

518 Ferretti et al. (2014) described IOP2 in north-eastern~~N~~northeastern Italy (NEI) and analysed the
519 meteorological characteristics and synoptic situation. A shallow orographic cyclone developed in
520 the lee side of the Alps, extending from the Genoa Gulf to the Northern Adriatic. Simultaneously
521 Simultaneously, with the Genoa cyclogenesis, a twin type of cyclone (Horvath et al., 2008)
522 developed in the Northern Adriatic (Figures 11-a, and 11b). The Croatian Coast of the Northern
523 and middle-Central Adriatic was influenced by the strong moist southwestern ~~south western~~ flow on
524 the leading side of the cyclone(s). The air was moist due to southwest advection and evaporation
525 from the Mediterranean. Below 2 km, there was strong convergence over the Northern Adriatic.
526 Due to its specific position deep in Kvarner bay, which is open from the southwest and, at the same
527 time, in the very pedestal of the Velebit mountain chain, the city of Rijeka and its surroundings have
528 ~~the~~ geographic preconditions for pronounced convection, with extensive precipitation in under such
529 specific synoptic conditions (e.g., Ivančan-Picek et al., 2003).

530 During the day in the late afternoon, cold air ~~errupted~~ erupted along the Alpine slopes, and together
531 with the passage of the cold front over NEI and ~~the north-eastern~~ ^Nnortheastern Adriatic Sea,
532 resulted ~~with~~ in intensive convective processes.

533
534

535 **4.1. Extreme value analysis of ~~the~~ short-term precipitation maxima**

536

537 ~~Spatial~~ The spatial distribution of the daily rainfall amounts for the IOP2 rain episode indicates that
538 the largest amounts ~~fall~~ fell over the city of Rijeka (220 mm at the Rijeka meteorological station,
539 ~~which is~~ Rijeka located 120 m above sea level), and the surrounding mainland hilly slopes and
540 mountainous hinterland. According to the ~~recorded~~ rainfall data recorded by ombrograph at the
541 Rijeka meteorological station, ~~Rijeka~~ the more ~~detailed~~better~~detailed~~ insight into the temporal
542 rainfall distribution during the short-term interval of this heavy rainfall event is possible (Figure
543 12). The rainfall episode that occurred during the six-hour period between 6 pm and midnight,
544 ~~experienced its most intense part~~was most intense between 9 pm and 11 pm. ~~Maximum~~ The
545 maximum 20, 30, 40, 50, 60 and 120 minutes rainfall totals, which ~~belong to this~~would have been
546 within the most intense part of the rainfall episode, have not been recorded at the Rijeka station
547 since the beginning of measurements in 1958 (Table 5). ~~Especially intense were the~~The rainfall
548 intervals of 20, 30 and 40 minutes were especially intense and that could be expected once in a
549 more than a thousand, a few hundreds and a hundred years, respectively, and ~~they belong to~~they belong to
550 ~~the~~correspond to an extraordinarily rare event, ~~as~~ computed ~~from over~~ the period 1958 – 2011
551 (Patarčić et al., 2014). The maximum amounts that ~~fall~~ fell in the ~~interval of~~ two- and four-hour
552 hour intervals could be expected ones in every forty and fifty years, respectively.

553

554 **4.2 Observational analysis**

555

556 On 12th September 2012, a sequence of convective events hit the northeastern part of Italy and, in
557 particular, the eastern part of the Veneto region and the plain of the Friuli Venezia Giulia regions.
558 During ~~the~~that day, at least two of the events could be classified as supercells, and the first one
559 ~~being~~was also associated with ~~a~~ heavy hail ~~fall~~ (Manzato et al., 2015; Miglietta et al., 2016). -After
560 a few hours, a third storm system, ~~that~~resemblingresembled a ~~squall lines~~squall line, although of
561 limited dimensions, swept over the area.

562

563 EUMETSAT was conducting its first experimental 2.5-minute rapid scan with the MSG-3 satellite,
564 ~~with~~and data are available from early morning until 0900 UTC of the IOP2 day. Unfortunately, the
MSG-3 satellite (renamed Meteosat-10) experimental rapid scan data, which have intervals of~~with~~

565 2.5 minutes ~~interval, taken by MSG 3 satellite (renamed to Meteosat 10) were~~ available ~~only~~
566 until only 0900 UTC on 12 September 2012.

567 ~~Nearby~~ The nearby area of Istria and Rijeka ~~received the first~~first received rain in the early
568 afternoon, which that soon stopped before the torrential rain in the evening, between 2100 and 2300
569 UTC. The last one ~~is was~~ connected to ~~the a~~ third storm over Italy (as discussed in Manzato et al.
570 2015), which that was an elongated storm moving along the coast of the North Adriatic.
571 Convection developed over the Northern Adriatic, and warm and moist advection produced
572 intensive precipitation triggered by the orography inland.

573

574 Satellite data show ~~that formation of~~ cumulonimbus clouds formed (Figure 13). This intensive
575 rainfall band reached Trieste and Slovenia according to the radar figures (not presented) and merged
576 with the rainfall band that formed above Trieste at 1800 UTC. Another rainfall band formed above
577 the Istria peninsula at 1930 UTC. Intensive rainfall spread to Rijeka and ~~remained persisted~~
578 there for several hours. During that time, other rainfall bands formed and moved over Rijeka, intensifying
579 the precipitation and prolonging the period of high precipitation intensity.

580 According to the hourly amounts, the largest precipitation intensity ~~was the highest~~occurred from
581 2100 to 2200 UTC (85.3 mm/h), with 20.6 and 51.7 mm/h in the previous and ~~the next~~following
582 hour (Figure 12).

583

584 Sounding data measured at Zadar-Zemunik, which is located ~~about approximately~~ 150 km south-
585 southeast of the area where the largest rainfall was recorded, ~~are shown to can~~ provide information
586 on the vertical structure of the troposphere. Although the ~~thermodinamic thermodynamic~~ profile
587 characteristics are not completely representative of the pre-convective environment over the study
588 area, this is the only available sounding data ~~on for~~ the Eastern Adriatic. The soundings featured a
589 low-level moist atmospheric layer from the surface to approximately 850 hPa ~~that was~~ connected
590 with SE *jugo* wind, confirming ~~a that there was a~~ suitable environment for strong convective
591 activity (not presented). ~~Winds~~ The winds strengthened throughout the troposphere, and the highest
592 intensity was observed at 400 hPa.

593

594 4.3. Operational model forecasts

595

596

597 During ~~the SOP1~~SOP1, DHMZ made available the operational forecast ~~by from the~~ ALADIN
598 operational forecasts model ~~in at~~ 8 km and non-hydrostatic 2 km horizontal resolutions (Section
599 2.3). ~~A comparison between~~The two versions of the ALADIN model ~~is presented are compared~~ here,
600 and the comparison and shows the capability ~~in for~~ forecasting ~~the~~ intense convective activity in the

601 area.

602 ~~Short~~The short-range forecasts well reproduced well the large-scale and mesoscale features
603 responsible for the event (Figure 11). The low-level wind field is-was dominated by two low-level
604 jet stream-streams (LLJs) and caused the appearance of the low-level wind convergence over the
605 North Adriatic and that was associated with the main Genoa cyclone (Figure 11b). In this case, the
606 performance of the model is-was rather successful in comparison with the ECMWF reanalysis (not
607 presented). One SW LLJ was elongated from Italy towards the middle Adriatic that carry the and
608 carried warm and humid Mediterranean air to the Adriatic Sea, and another NE LLJ (*bora* wind)
609 was modified and intensified by the pressure gradient across the southern flank of the Alps (Figure
610 11a). This convergence was responsible for the convective triggering in the late afternoon.
611 Although the mesoscale characteristics are-were correctly reproduced, the location and timing of the
612 precipitation was-were not as well so-predicted good. The intensive precipitation event was predicted
613 by both models, with precipitation close to or exceeding 100 mm/24 hours inland of Rijeka (Figure
614 4), but the amount of precipitation was underestimated for the city of Rijeka, that which lies on the
615 coastline for-in all operational models, possibly due to an absence of the cold pool that formed after
616 the showers in the early afternoon or the low level low-level wind from northeast that started earlier
617 than in the model forecast.

618 ~~Operational~~ The operational forecast set up setup of the ALADIN 2 km resolution run
619 overestimates overestimated the rainfall above mountains (at least when compared to the 3B41
620 products from the TRMM data server), but it is-was consequently closer to the extreme amounts
621 measured in the Rijeka area (Figure 14). Although the 3B41 product is an estimate of precipitation
622 intensity that also suffers from errors, the rain over the Southern Velebit Mountain was an
623 overestimate overestimated, while although it was correct for the mountains inland of Rijeka. In the
624 hours of peak precipitation intensity in Rijeka, the satellite measurement data-derived precipitation
625 (TRMM 3B41RT product available from NASA's Giovanni web service) was also considerably
626 lower than the one that measured in situ in situ.

627 The high-resolution high-resolution, non-hydrostatic operational forecast shows showed upward
628 motions along the coastal mountains of Croatia and associated to that were associated with the
629 convergence line and the rain band over the sea (Figure 15). The wave of the upward motion moves
630 moved from the Po valley eastward and reaches reached Rijeka area one hour after the recorded
631 maximum intensity in precipitation, so and the model might, be little therefore, have been slightly
632 late behind later than the real weather events. There is also a permanent wave formed over
633 Southern Velebit (and several other mountains) that and persisted persist throughout the night. This
634 That wave is-was responsible for triggering the precipitation there, and its intensity is-was probably
635 overestimated. Apparently, small but tall topographic obstacles are able to can trigger too much

636 precipitation; and this issue remains an issue to solve must still be solved.

637

638 Figure 16 presents a scatter plot of the 24h24 h accumulated precipitation from rain gauges over
639 Croatia and the forecast values from the ALADIN model taken from the nearest grid points for IOP
640 2. The ALADIN 8 km model underestimated precipitation and forecasted up to 92 mm/24h24 h of
641 rainfall, while whereas the measurements reached 220 mm/24h24 h. Much better results were ere
642 obtained for from the ALADIN 2 km model; where the values predicted by the model were reached
643 200 mm/24h24 h. A location error is also evident for both models, especially for the area where the
644 most intense precipitation occurred (Istria peninsula; red dots), but it is was smaller for the
645 ALADIN 22km km model. Medium The medium precipitation amounts are were better forecast
646 than the strong precipitation amounts one but were still slightly overestimated for the ALADIN 8
647 km model, and much more spread is noticeable can be seen for the ALADIN 2 km model, with both
648 overestimation and underestimation, but with better results for the Istria peninsula. From Tables
649 Table 3 and Table 4, it can be seen observed that ALADIN 2 km was relatively more accurate
650 (higher CSI) for the dry and strong categories, but not for the medium category, than ALADIN 8
651 km. FBIAS is was better for ALADIN 2 km for the medium category in addition to the dry and
652 strong categories but also for medium category compared to the ALADIN 8 km results.

653

654

655

656 4.4 Influence of the data assimilation

657

658 Since, Because the lack of model skill in when simulating HPE may could be partially attributed to
659 imperfect initial conditions, we performed perform several numerical weather prediction
660 experiments to assess the impact that of data assimilation had on the IOP2 forecast accuracy.

661

662 Comparison A comparison of the measurements with an operational forecast and simulations
663 without data assimilation is shown in Figure 17. Rain The rain gauges showed that along Croatia-
664 Slovenia border an elongated area of stronger precipitation along the Croatia-Slovenia border is was
665 present, and this that pattern is was better forecasted with by the operational run that incorporating
666 incorporated data assimilation. Also In addition, over Istria peninsula higher amounts of the
667 medium rain category over the Istria peninsula are were found in the operational run, which is in
668 better accorded accordance with measurements. This is also visible at can also be seen in Figure 13,
669 where for the run with data assimilation the points are less scattered, and more points with higher
670 values of precipitation over Istria are present. Maximum The maximum recorded around the town
671 of Rijeka is was not adequately represented by either of the models.

672 **Verification** The verification measures (Table 3) show that ~~slightly better results are found for the~~
673 simulation with data assimilation produced slightly better results. **Scores** The scores for the entirety
674 of Croatia show that the strong precipitation category results in strong precipitation category
675 ~~are~~were improved for the operational run (CSI=0.28) compared to the run without data assimilation
676 (CSI=0.23). **Also** In addition, PCC shows showed that there is the better association of model and
677 observations for the run with data assimilation were better associated. **Impact** The impact of data
678 assimilation for this that IOP was is rather small, but it still gives yielded an improvement in the 24-
679 hours precipitation forecast. It should be taken into account considered that for the selected case,
680 better results were obtained with the higher resolution model and that the data assimilated in the
681 operational ALADIN 8 km model ~~is was~~ mainly synoptic data. Thus, implementing data
682 assimilation in the higher resolution model and adding additional ~~high resolution~~high-resolution
683 temporal and/or spatial data to the data assimilation system ~~seems as are apparently good ways to~~
684 ~~good way to~~ further enhance operational forecasts.

687 Summary and conclusions

688
689 In this paper, an overview of the IOPs that affected the Adriatic TA during the SOP1 HyMeX
690 campaign (5 September to 6 November 2012) is presented. During SOP1, 20 IOPs were declared,
691 and 8 of these those events affected the EOP Adriatic TA. All of All these the events produced
692 localized heavy precipitation and often were properly forecast by the available ALADIN
693 operational model, ALADIN but uncertainties existed in the exact prediction of the amounts amount,
694 precise times time and locations location of maximum intensity. The total precipitation amounts for
695 the SOP1 were above exceeded the corresponding climatology for the Adriatic TA. Maximum
696 The precipitation maximum of precipitation (more than 1.000 mm in 61 days at some locations) was
697 recorded on in the Northern Adriatic (city of Rijeka) and its mountainous hinterland of Gorski
698 Kotar. This region experiences climatic maxima of the annual precipitation greater than 3.000 mm
699 on average. **Analysis** The analysis was done mostly by the performed primarily using measurements
700 from the operational meteorological network maintained by the Meteorological and Hydrological
701 Service of Croatia.

702 There were 15 days when the accumulated rainfall on any of the at least one rain gauge rain gauges
703 in the Adriatic TA exceeded 100 mm in 24 hours. Most the HPEs containeded similar ingredients and
704 synoptic settings but of had different intensity intensities as follows: an a extensive deep upper level
705 through, cyclone strengthening over the Mediterranean (or developing over the Gulf of Genoa,
706 Lyon or the Tyrrhenian Tyrrhenian sSea), a strong southwesterly low-level jet stream that advects

707 | ~~the~~ moist and warm air towards the orographic obstacles along the Mediterranean coastline and
708 | destabilizes the atmosphere as the strong wind picks up the moisture from the sea.
709 |

710 | ~~Verification~~ The verification of the operational precipitation forecasts during SOP 1 suggests the
711 | operational ALADIN ~~at 8 km grid spacing~~ model with 8 km grid spacing may be useful for issuing
712 | early warnings ~~to for~~ severe precipitation events in the region. For most of the events, ~~there was~~
713 | ~~high level of association between the~~ precipitation forecast and measurements were highly
714 | associated. From the verification statistics and different precipitation related figures, it can be seen
715 | that ~~one an~~ obvious limitation of the ALADIN 8 km model is its inability to produce high amounts
716 | of precipitation and ~~also its~~ tendency to underestimate the frequency of dry events. ~~Having Both~~
717 | issues can be ameliorated using a non-hydrostatic model at a higher resolution (ALADIN 2 km)
718 | ~~brings improvement for both of those issues. Still~~ Nevertheless, the exact precipitation amounts ~~were~~
719 | were not always well simulated. ~~Verification~~ The verification methods used in this work ~~have their~~
720 | limitation where for are limited because the utilized calculation of scores calculation method ~~used~~ is
721 | a point based comparison and is thus ~~it is~~ prone to location errors, and other methods that are used
722 | are based on subjective comparisons comparison of different precipitation plots. ~~Next~~ A next step
723 | would be implementation to implement an object-based verification method, e.g., SAL (Wernli et
724 | al., 2008), which could provide more objective verification measures, but for this local spatial
725 | precipitation analysis, the method must first be developed first.
726 |

727 | During ~~the~~ IOP2 on 12 September 2012, several thunderstorms formed, including a supercell and a
728 | possible tornado outbreak. The warm and moist air advected ~~at in~~ the low levels over the Adriatic
729 | (and Mediterranean before that) ~~was feeding~~ fed the storms, ~~while but apparently~~ one storm
730 | apparently produced downdrafts that would in turn ~~form have formed~~ form a convergence zone with the
731 | moist flow from the sea and triggered trigger the next storm. ~~Intensive~~ The intensive precipitation
732 | event in Rijeka and the surrounding area resulted from the influence of the coastal mountains on the
733 | movement of a convergence line. The atmosphere contained ~~a lot of much~~ moisture, ~~being close to~~
734 | saturated and was nearly saturated up to 6 km. The air flow converged above Northern Adriatic in
735 | the layer up to 2 km. The convergence line moved ~~south eastward southeastward~~, ~~while whereas~~
736 | rainfall intensified in the Rijeka area due to local terrain. The peak intensity was underestimated by
737 | the model forecast.
738 |

739 | Such a chain of events poses a challenge with respect to predictability. The fact that the surrounding
740 | mountains represent physical obstacles that modified the flow and determined the position of the
741 | convergence zones made forecasting the location of such a chain of events more predictable. AnA

742 abundance of available real-time measured data, including radar measurements,
743 aircraft data and targeted radio soundings, can improve the initial conditions for the NWP models.
744 The ambiguities in the sea surface fluxes, that pose which were an important source of energy for
745 this event, could be the factor that limits the abilities of a deterministic forecastsforecast.
746

747 The numerical sensitivity experiments with respect to the mesoscale data assimilation suggested the
748 precipitation forecast during IOP 2 was improved by using data assimilation to produce initial
749 conditions, compared to forecasts when initial conditions were derived from the global model data.

750 Use The use of mesoscale data assimilation for initial conditions enhanced both the precipitation
751 structure and intensity. This is also evident also through given the improvement of in the objective
752 verification measures, such as including the critical success index and PCC. Data The data
753 assimilation system could be further enhanced by using additional observations (e.g., radar data,
754 and ground based GNSS data), shorter data assimilation cycles (e.g., 3 hours instead of 6 hours) or a
755 B matrix computed with using more advanced methods (an ensemble B matrix instead of NMC
756 based). Also work on Work also continues onto implementing a data assimilation system to a higher
757 resolution model is ongoing.

758 Furthermore, the operational non-hydrostatic model at a 2 km grid spacing is was able to predict the
759 intensity of an HPE more accurately than the hydrostatic model at an 8 km grid spacing.
760 Nevertheless, a higher resolution forecast can misplace the position of the peak precipitation and
761 overestimate the precipitation over a narrow but high mountains such as the s Southern Velebit. This
762 may be an artefact of the excessive sea surface temperature in the model in that region. These
763 results suggest that precipitation forecasts in the Adriatic TA may be improved by both using
764 mesoscale data assimilation and by decreasing the grid spacing of the model.

765 Heavy precipitations over the Adriatic area are is often associated with sirocco (jugo) or bora
766 winds, thus involving and thus involves intense air-sea interactions. In IOP4 was an IOP4 provided
767 an excellent example for of very intensive heat loss caused by a strong bora wind. In this that case,
768 the control simulation run was more realistic with colder SSTs and was generally drier than the
769 operational run with a warmer SSTs. IOP4 shows illustrates the needs for further improvements of
770 the role of the SST and surface (latent and sensible) heat fluxes over the Adriatic Sea, which attain
771 large values during strong Bora events. However, a more detailed analysis of the impact
772 of SST on precipitation is ongoing.

773

774 Therefore, this This paper, therefore, highlights the need for enforcement to enforce an intensive
775 observation period in the future over the Adriatic region, to better understand the relevant processes,
776 and validate the simulated mechanisms as well as to and improve numerical forecasts via data

777 assimilation and improvements ~~of in~~ model ~~representations representation~~ of moist processes and
778 sea-land-atmosphere ~~interactions~~interaction. There is also a need for collaborative ~~efforts~~ effort
779 within the Italian and other HyMeX scientific and forecast communities to achieve a better
780 understanding of the complex processes ~~caused the that cause~~ extreme events over the Adriatic
781 region.

782

783

784

785 Acknowledgements

786 *This work is a contribution to the HyMeX program. The authors are grateful to the participating*
787 *institutions for providing the measured and model data. This work is partially supported by the Hymex-*
788 *COOP project (ENVIMED regional programme) and IPA2007/HR/16IPO/001-040510 grant. The authors*
789 *would also like to thank Jean-Francois Geleyn (deceased), the former project manager of ALADIN,*
790 *for his ideas, energy, drive and persistence that made us an active party in developing a state of the*
791 *art model system and enabled us to participate in such an important research programme. We thank*
792 *Marjana Gajić-Čapka for her precipitation extreme value analysis. We thank Iris Odak Plenković for*
793 *providing valuable advices and suggestions regarding precipitation verification. The authors are grateful to*
794 *NASA for providing valuable satellite derived products through the GIOVANNI web interface, and as well as*
795 *the TRMM, OMI and MODIS scientists and developers.*

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

813

814

815

816

817

818

819 APPENDIX

820

821 ~~Indiees~~ The indices used in the statistical analysis of verification quality are briefly described and
822 defined below. -All the indices mentioned in Table~~s~~ 2 ~~and~~ Table 3 ~~was~~were calculated from ~~a~~ 3x3
823 contingency table, ~~with~~the general form indicated ~~of which is shown~~ in Table 6.

824 Contingency ~~A~~ contingency table with three categories (dry, medium, ~~and~~ strong) was defined

according to the amount of 24 h accumulated precipitation (Table 6). An event was defined as dry if the 24 h accumulated precipitation on the rain gauge station was less than or equal to 0.2 mm/24 h. The border between the medium and strong categories was defined as the 95th percentile (50.42 mm/24 h) of measured 24 h accumulated precipitation during the the SOP4SOP1 period, but with dry events excluded.

Table 6: General form of a multi-category (3x3) contingency table along with a marginal distribution.

		OBSERVATIONS				Σ
		Dry	Medium	Strong		
FORECAST	Dry	a	b	c	d	
	Medium	e	f	g	h	
	Strong	i	j	k	l	
	Σ	m	n	o	p	

Formulas The formulas for calculating the verification measures used in Tables 2 and Table 3 are given hereafter provided here, where the subscripts D, M and S indicate dry, medium and strong category categories, respectively.

BASE RATE (BR) – provides information on the observed event frequency. Does not depend on the forecasted values.

$$BR_D = \frac{a}{p}; BR_M = \frac{b}{p}; BR_S = \frac{c}{p};$$

FREQUENCY BIAS (FBIAS) – indicates how well the forecast frequency of an event corresponds to the observed frequency of the event. Perfect score is FBIAS=1 for a perfect score. If FBIAS>1, the model has a tendency to overforecast events, while whereas FBIAS<1 indicates that the model has a tendency to underforecast events.

$$FBIAS_D = \frac{d}{m}; FBIAS_M = \frac{h}{n}; FBIAS_S = \frac{l}{p};$$

CRITICAL SUCCESS INDEX (CSI) – measures the relative accuracy of a forecast. It is defined as the ratio of the number of correct forecasts of an event for some category and the sum of the number of correct forecasts of the event in that category, the number of events that were forecasted in that category and that were not observed and the number of observed events that were not forecasted in that category. CSI has values in the interval [0,1], with 1 being is a perfect forecast.

$$CSI_D = \frac{a}{m+d-a}; CSI_M = \frac{f}{n+h-f}; CSI_S = \frac{k}{o+l-k};$$

POLYCHORIC CORRELATION COEFFICIENT (PCC) – represents a measure of the association between an observation and forecast in the contingency table. Main The main idea is to make appropriate transformations of forecasted and observed values together with category thresholds and then to seek the parameter (PCC) of the bivariate density function for which the volumes of the discretized bivariate distribution is equal to the corresponding joint probabilities of the contingency table, with the assumption that their joint probability density function is the bivariate normal. For contingency tables with more than two categories, several methods for estimating PCC exist. In this work, the Maximum Likelihood method (Olsson, 1979) was used. More Additional information on using PCC for the verification of meteorological fields can be found in Juras and Pasarić, 2006. PCC has values in the interval [-1,1].

869 **List of Tables:**

870

871 **Table 1.** Details of the operational model characteristics.

872

873 **Table 2:** HPEs over the Adriatic TA during SOP1. The column titled Rainfall lists the maximum ~~24~~
874 ~~hour~~~~24-hour~~ accumulated precipitation (from 0600 UTC to 0600 UTC). Weather regime gives ~~the~~
875 associated ~~large scale~~~~large-scale~~ weather.

876

877 **Table 3:** Verification measures calculated for ~~the~~ ~~24~~~~24~~-hour accumulated precipitation and for ~~the~~
878 ALADIN ~~8~~~~8~~-km model (second column) for three categories (first column) and for ~~the~~ ~~whole~~~~entire~~ SOP1
879 period (5 September to 6 November 2012), only IOP days (IOPavg) and for selected (IOP)s corresponding ~~to~~
880 ~~to the~~ time periods indicated in -Table 1 and for IOP2 without data assimilation experiment (IOP2 no DA).
881 Verification ~~The verification~~ measures include Base Rate (BR), Frequency Bias (FBIAS), Critical Success
882 Index (CSI) and polychoric correlation coefficient (PCC). Due to zeros in ~~the~~ contingency table, some PCC
883 scores could not be calculated (IOP4 and IOP16 for ~~the~~ ALADIN 8-km model).

884

885 **Table 4:** Same as Table 2, but ~~the~~ verification measures ~~are~~~~were~~ calculated for ~~the~~ ALADIN ~~2~~~~2~~-km
886 model.

887

888 **Table 5:** Annual maximal precipitation amounts (R_{max}) recorded in different intervals t (minutes)
889 throughout the period 1958-2011 and during the heavy rainfall event on September 12, 2012 at
890 Rijeka and their return values (T) according to the GEV distribution applied to the period 1958-
891 2011.

892

893

894 **List of figures:**

895

896 **Figure 1:** ALADIN model domain and terrain height ~~in~~~~with~~ 8 km (a) and 2 km (b) horizontal
897 ~~resolutions~~~~resolution~~.

898

899 **Figure 2:** a) Total precipitation measured by the Croatian rain gauge network, cumulated over the
900 ~~whole~~~~entire~~ SOP1 period; b) Maximum 24-h rainfall totals at each rain gauge station during ~~the~~
901 ~~SOP1~~~~SOP1~~.

902

903 **Figure 3:** Horizontal wind at 10 m (arrows coloured according to wind speed) and mean sea level
904 pressure (blue isolines) forecasts by the ALADIN -8 km resolution run for 1200 UTC for: a) IOP4
905 (13 September); b) IOP9 (1 October); c) IOP13 (15 October); d) IOP16 (27 October); e) IOP18
906 (31 October); f) IOP19 (4 November).

907

908 **Figure 4:** a) Sea surface temperature measured in situ (red) ~~on~~~~at~~ ~~the~~ Bakar station, ~~which was~~
909 ~~Bakar~~ close to the city of Rijeka, and the nearest sea point data used in the ALADIN 8 km resolution
910 model from the global ARPAGE model (light blue) and OSTIA (blue) for ~~the~~ SOP1 from 5
911 September to 8 November 2012.

912

913 For IOP4 (14 September) b) Accumulated 24 hourly rainfall measured on rain gauges (circles) and
914 interpolated using data from rain gauges and 3B42RT3 hourly product for periods starting at 0600
915 UTC; c) accumulated 24 hourly precipitation forecasts from the ALADIN 8 km resolution ~~run~~; d)
916 accumulated 24 hourly precipitation forecasts from the ALADIN 2 km resolution run with SST from
917 OSTIA; e) accumulated 24 hourly precipitation forecasts from the ALADIN 2 km resolution ~~run~~ with
918 SST from ~~the~~ ARPAGE global model.

919

920 **Figure 5:** IOP13 (16 October): accumulated 24 hourly rainfall measured on rain gauges
(circles) and interpolated using data from rain gauges and ~~the~~ 3B42RT3 hourly product for periods

921 starting at 0600 UTC (a); accumulated 24 hourly precipitation forecasts from the ALADIN 8 km
922 resolution run (starting from 000 UTC on the same day (b) and for the ALADIN 2 km resolution run
923 (c).
924

925 | **Figure 6:** same as Figure 5 but for IOP16 (28 October)

926 | **Figure 7:** same as Figure 5 but for IOP18 (1 November)

927 | **Figure 8:** Radiosounding data for Zadar 26 October 2012 at 0600 and 1200 UTC (first row), 26
928 | October 2012 at 1800 and 27 October 2012 at 0000 UTC (second row).

931 | **Figure 9:** same as Figure 5 but for IOP19 (4 November)

932 | **Figure 10:** Normalized histogram of rain events (24h24 h accumulated precipitation on rain gauge
933 | station greater or equal 0.2 mm/24h24 h) for the wholeentire SOP1 period (5 September to 6
934 | November 2012) (left column) and for days of selected (IOP)s within the same period (right
935 | column). In order to have readable histogram first histogram bin starts from 0.2 mm, while
936 | whereas the number of dry days forfor a given period is indicated aton the graph. LocationThe
937 | location of the 95th percentile of the SOP1 rain events distribution (50.42 mm/24h24 h) is shown.
938 | AreaThe area of the histogram after the 95th percentile is zoomedenlarged and shown as an inset
939 | to enhanceimprove readability. FrequencyThe frequency of the precipitation events for rain gauge
940 | is colouredcoloured in blue andin, formodel light green forthe model, whilewhereas dark green
941 | indicates the overlapping of the model and rain gauge data. First row: ALADIN 8 km, Second row:
942 | ALADIN 2 km upscaled to an ALADIN 8 km grid.
943

944 |
945 |

946 | **Figure 11:** Mean sea level pressure (a) and 850 hPa geopotential height (blue isolines), wind speed
947 | (background shading) and direction (vectors) (b) according to the ALADIN model operational
948 | forecast on 2100 UTC 12 September 2012 (starting from the 0000 UTC analysis of the same day).

949 |
950 | **Figure 12:** Hour precipitation amounts recorded from 1 pm on 12 September 2012 to 1 pm on
951 | September 13, 2012 recorded at the Rijeka meteorological station.
952 |

953 | **Figure 13:** IR temperature enhanced satellite image for 2100 UTC on 12 Sep 2012, which was the
954 | operational MSG product used in DHMZ at the time.
955 |

956 | **Figure 14:** High resolution forecast of hourly accumulated precipitation (shaded background) and
957 | TRMM 3B41RT precipitation estimates (squares) for 1900 (a), 2000 (b), 2100 (c), 2200 (d) and
958 | 2300 (e) UTC 12 and 0000 (f) UTC 13 September 2012, ; this was the period of highest
959 | precipitation intensity. SatelliteThe satellite derived precipitation data arewere used as provided from the
960 | Tropical Rainfall Measuring Mission (TRMM, (Huffman et al. 2007~~11~~)); in particular, we used the hourly
961 | precipitation intensity data from the 3B41RT product.
962 |

963 | **Figure 15:** Vertical velocity omega (Pa/s) at the 850 hPa level from the operational 2 km resolution
964 | forecast for 2200 (a) and 2300 (b) UTC on 12 and 0000 (c) and 0100 (d) UTC on 13 September
965 | 2012, ; upward motions are shown in shades of red, and downward motions are shown in blue.
966 |

967 | **Figure 16:** Scatter plot of 24h24 h accumulated precipitation from rain gauges over Croatia and
968 | the model equivalentequivalents from the ALADIN 8 km (left), ALADIN 8 km without data
969 | assimilation (middle), and ALADIN 2 km (right) modelsmodel and from the point nearest tothe
970 | location of the rain gauge for IOP2. Withred colourThe locations from the Istria peninsula are
971 | marked in red.

972

| **Figure 17:** The 24h24 h accumulated precipitation from 12 Sep 0600 UTC until 13 Sep 0600 UTC (IOP12). Left: rain gauge measurement, middle: ALADIN 8 km operational forecast with data assimilation, right: ALADIN 8 km forecast without data assimilation.

973

974

975