
Response to Reviewer 1, R Katz

Thank you for your thorough review. Our responses are in red italics below. Please note that there is considerable overlap with
the comments from the other reviewer, and we refer to our separate response to her). We propose to include a new Fig 6 which
looks at the CIs as a function of number of bootstrap resamples. We will also include a new paragraph to the Discussion. This
is outlined in our reply to Reviewer 2.5

GENERAL COMMENTS:
The focus of the manuscript is on efficient use of the bootstrap, a resampling technique, to quantify uncertainty (e.g., in the form
of a confidence interval) in estimated extreme statistics such as return levels. Justification is provided for a simplified bootstrap
procedure in which the resamples are generated through only drawing from the highest values in the original sample, not the
entire sample. This common sense result is consistent with conventional statistical modeling of extremes, with the common10
assumption that the uncertainty in estimating the rate of exceedance of a high threshold can be ignored (e.g., Chapter 4 in Coles,
2001). Perhaps the present paper serves to place this conventional approach on firmer footing. Nevertheless, there are a number
of alternative techniques for uncertainty quantification in extreme value analysis not even mentioned in the manuscript. These
alternatives include different implementations of the bootstrap, as well as ones in which no resampling need be performed (e.g.,
profile likelihood technique; Coles, 2001). At the least, these alternatives should be mentioned.15

We agree, and we now mention the weaknesses of non-parametric bootstrapping with reference to Kysely (2008) on page
1, line 13. We also include a brief discussion of the test inversion bootstrap method in the Discussion (page 7, lines 5-13).
However, we maintain that this is somewhat beside the point of the article as our main objective has been to investigate
how tail statistics can be bootstrapped, if, as the referee says, you must. We do not necessarily argue that non-parametric
bootstrapping is the best alternative, and we have made clearer where we think it is appropriate to use (see also our reply to20
Reviewer 2).

For this reason, I recommend that the manuscript be accepted for publication subject to minor revision.
SPECIFIC COMMENTS: (1) Nonparametric versus parametric bootstrap. A nonparametric bootstrap is used in which the

resamples are created by drawing with replacement from the original sample. When fitting extreme value distributions (e.g.,
the generalized Pareto in Sec. 3.3), it has been suggested that a parametric bootstrap would be preferable for constructing25
confidence intervals for return levels (i.e., resamples are created by Monte Carlo simulation from the fitted distribution) (Kysely,
2008).

We agree that, especially for small samples, parametric bootstraps are probably capable of better coverage than non-
parametric bootstrap techniques. However, we are looking at very large samples, indeed at samples that are so large that we
can perform in some cases in-sample estimates of 100-year return values. The paper now acknowledges the limitations of30
non-parametric bootstraps, and we stress that it should be seen as a study of how to efficiently handle the original data set if,
as the reviewers points out, you wish to perform a non-parametric bootstrap. We have included a paragraph in the Discussion
(page 7, lines 5-13) where we look at the caveats to using non-parametric bootstraps (see also our reply to Reviewer 2).

(2) Refined bootstrap techniques Bootstrap-based confidence intervals can be too short, especially for return levels with long
return periods. Consequently, alternative more involved bootstrap techniques (e.g., the so-called "test inversion" bootstrap)35
have been proposed to improve the performance of such confidence intervals (Schendel and Thongwichian, 2015).

This is an interesting technique, and Reviewer 2 also refers to a follow-up paper by the same authors. We have included a
short paragraph in the Discussion (page 7, lines 5-13) where we outline this alternative method (see also our reply to Reviewer
2).

(3) Alternatives to bootstrap When estimating the parameters of an extreme value distribution by maximum likelihood, an40
alternative technique for obtaining confidence intervals for return levels is profile likelihood (Coles, 2001). This technique does
not require any resampling, but does require repeated fits of the extreme value distribution under parameter constraints. It is
competitive with resampling for obtaining confidence intervals of return levels (e.g., Schendel and Thongwichian, 2015).

The profile likelihood technique is a well-known technique, but it falls outside the scope of this paper to investigate it as we
focus strictly on efficient methods for non-parametric bootstrapping.45
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Response to Reviewer 2, S Caires

Thank you for your thorough review. Our responses are in red italics below. Please note that there is considerable overlap
with the comments from the other reviewer, and we refer to our separate response to him). We propose to include a new Fig 6
(attached) which looks at the CIs as a function of number of bootstrap resamples. We will also include a new paragraph to the
Discussion. See below for details.5

General comments:
The authors show that in the non-parametric bootstrap procedure for obtaining confidence intervals of estimates based on the
k largest values in a sample, the computations can be carried out in a more computationally efficient way by drawing bootstrap
samples from the K0 (K0>k) largest values of the sample rather than from the entire sample. They propose that K0 be fixed
at a value leading to a very low probability of drawing fewer than the required k largest entries of the sample and provide10
the expression of that probability. The article is concise and well-written. The suggested approach appears to be useful for
applications such as those considered in examples 1 and 2 (empirical percentile). However, I have doubts about the correctness
of the non-parametric bootstrap procedure for obtaining confidence intervals of GPD return value estimates as described in
Example 3. I have two major comments that I would like the authors to address or at least consider that they, despite not being
covered by the article, should also be taken into consideration when bootstrapping to obtain confidence intervals estimates15
related to extremes.

Major comments:
1. I was not aware of the idea of the bootstrap being applied to the entire dataset rather than to a sample of cluster peaks as in
the computation of confidence intervals of Example 3. In the usual form of the parametric bootstrap one does not return to the
entire sample, but considers the (much smaller) sample to which the GPD was fitted. In any case, ensuring that the coverage20
rates - the percentage of times that a confidence interval really contains the true parameter in (hypothetical) repetitions of
the same sampling and estimation process - of bootstrap confidence intervals are sufficiently correct has, in my view, priority
over the computational effi- ciency of those intervals. Both Coles and Simiu (2003, J. Engrg. Mech., 129 (11), 1288-1294)
and Schendel and Thongwichian (2017, Adv. Water Resour., 99, 53-59, http://dx.doi.org/10.1016/j.advwatres.2016.11.011)
consider the shortcomings of bootstrap intervals with respect to coverage, the first paper offering an ad hoc solution and the25
second suggesting the use of Test Inversion Bootstrap. I wonder if the authors could add information to the article about the
coverage rates of their confidence intervals.

The reason we return to the entire sample in Example 3 is that the data set represents independent forecasts (taken at long
lead times, as described by Breivik et al, 2013, 2014). We are thus in the situation where we are not limited to a peaks-over-
threshold technique but can (and should) resample from the entire sample and then set a threshold (note the difference between30
a POT and a threshold). It was the magnitude of this data set that motivated us to explore which simplifications can be made
in order to speed up the bootstrapping for tail statistics. We have elaborated on this in our revision of Example 3 (see p 5,
lines 25-27) to make clearer why it is important to revisit the entire sample. As for the question of whether a non-parametric
bootstrapping method will underestimate the width (coverage) of CIs, we agree in general, but note that our examples involve
very large data sets. See also our reply to Reviewer 1.35

2. The results shown in Figs 3, 4 and 5 are based on M=10,000 bootstrap replications, while those shown in Fig 8 are
based on M=1,000. I wonder if the authors could say something about how M should be chosen. According to Efron and
Tibshirani (1993, Monographs on Statistics Applied Probability 57), 200 bootstrap replications are usually enough for obtaining
reasonable estimates of the standard error. Could optimizing the number of bootstrap replications be a possible solution to some
of the computational problems pointed out by the authors?40

Although it is certainly true that M=10,000 bootstrap replications is excessive, 200 may in some cases be on the low side.
We found in our global study of return values for marine wind and significant wave height (Breivik et al, 2014, supplementary
figure 7) that the confidence intervals tend to stabilize around 500 bootstrap replications when we look at GPD return estimates.
We have chosen a very high number of bootstrap replications here for no better reason than because we could afford it, and
because for some tail parameters it is desirable. We have included a new Fig 6 which shows the convergence of the CIs as a45
function of the number of bootstrap resamples from 50 to 10,000 for non-parametric in-sample estimates of the 100-year return
value for significant wave height. The figure shows that indeed for the data set considered we can settle for 1,000 or perhaps
slightly fewer bootstrap replications, but probably not as little as 200. To go with Fig 6 we include the following text (page 5,
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lines 4-9):
“It is also of interest to investigate just how many bootstrap resamples are actually needed to obtain CIs from a non-parametric
bootstrap technique. In Fig 5 we chose M = 10,000. As Fig 6 shows, this is clearly excessive for reasonable thresholds K0. In
fact, Efron and Tibshirani (1993) state that 200 resamples are normally enough.We find this to be on the low side in our case,
as Fig 6 shows. However, 1000 resamples is sufficient in this case, but this should be investigated in each case. Breivik et al.5
(2014) found (see their Supplementary Fig 7) that for a similar data set, 500 resamples would be sufficient when employing a
Generalized Pareto Distribution (GPD) on threshold exceedances.”

Specific comments:
Page 1, Line 3: "confidence intervals . . . can be estimated". I would replace "estimated" with "obtained" everywhere, since the
intervals are random variables and not parameters.10
Agreed.

Page 1, Line 13: In the light of my Major Comment 1, I would not say that ?This is a straightforward procedure?; it is not
the computational or algorithmic aspects of a method that matter most, but its validity.

We agree, and we have rewritten the Introduction to emphasize that the procedure is straightforward, but the method of
non-parametric bootstrapping has been found to lead to too narrow CIs (low coverage), see page 1, line 13-14. We have also15
included the following text in the Discussion (page 7, lines 5-15): “As mentioned in the Introduction, an important question is
whether non-parametric bootstraps yield CIs with sufficient coverage, ie, CIs that are wide enough. This has been extensively
studied by Kysely (2008) who found that non-parametric bootstraps in particular, but also parametric bootstraps tend to have
too low coverage. This problem is not addressed by our study, and it is clear that alternative methods are often called for. In
particular, the Test Inversion Bootstrap (Carpenter, 1999) is a promising method where the test inversion refers to the duality20
between hypothesis 10 testing and confidence intervals. Schendel and Thongwichian (2015, 2017) show how this method,
originally developed for estimation of statistics of single parameters in the presence of nuisance parameters, can be extended
to handle return levels which depend on three parameters for both the Generalized Extreme Value Distribution and GPD by
utilizing a maximum likelihood technique. However, non-parametric bootstraps represent a quick and hypothesis-free approach
to obtaining CIs, and as the results presented show we can comfortably assume that the results will remain unchanged if we25
select a small subset of the original sample, provided we follow the procedure outlined in Section 2.??

Below is a full account of the differences between this version and the previous version of the manuscript.

Yours sincerely,
Øyvind Breivik and Ole Johan Aarnes,30
Bergen, 2017-02-21
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Abstract. Bootstrap resamples can be used to investigate the tail of empirical distributions as well as return value estimates

based on
::::
from

:
the extremal behaviour of the distribution

:::::
sample. Specifically, the confidence intervals on return value esti-

mates or bounds on in-sample tail statistics can be estimated
:::::::
obtained

:
using bootstrap techniques. However,

::::::::::::
non-parametric

bootstrapping from the entire data set
::::::
sample

:
is expensive. It is shown here that it suffices to bootstrap from a small subset

consisting of the highest entries in the sequence to make estimates that are essentially identical to bootstraps from the entire5

sequence
::::::
sample. Similarly, bootstrap estimates of confidence intervals of threshold return estimates are found to be well ap-

proximated by using a subset consisting of the highest entries. This has practical consequences in fields such as meteorology,

oceanography and hydrology where return estimates are routinely made
:::::
values

:::
are

::::::::
calculated

:
from very large gridded model

integrations spanning decades at high temporal resolution
::
or

::::
from

:::::
large

:::::::::
ensembles

::
of

::::::::::
independent

::::
and

:::::::::
identically

:::::::::
distributed

:::::
model

::::::
fields. In such cases the computational savings are substantial.10

1 Introduction

Bootstrap resamples of time series are commonly used to estimate confidence intervals
:::::
obtain

:::::::::::::
non-parametric

::::::::::
confidence

:::::::
intervals

:::::
(CIs) on return values (Naess and Clausen, 2001; Naess and Hungnes, 2002) and to investigate the behaviour of

the tail of the empirical distribution (Coles, 2001; Beirlant et al., 2006; Qi, 2008). This is a straightforward procedure, but

one which
:::::::
Although

:::::::::::::
non-parametric

:::
CIs

::::
tend

:::
to

::
be

:::
too

:::::::
narrow,

:::
see

:::::::::::::
Kyselý (2008) ,

:::
the

::::::::
procedure

:::::
itself

::
is

::::::::::::
algorithmically

::::
and15

::::::::::
numerically

:::::::::::::
straightforward

::
to

:::::::::
implement

:::
and

::
is
::::

thus
::

a
:::::::::
convenient

:::::::::
technique

:::
for

::::::
rapidly

::::::::
assessing

:::
the

:::::
width

:::
of

:::
CIs

:::::::
without

:::::
having

:::
to

::::::
assume

::
a

::::::
certain

:::::::::
parametric

::::::::::
distribution.

::::::::
However,

::::
this

::::::::
approach quickly becomes cumbersome for large data sets

as it demands random draws from the entire data set
::::::
sample which subsequently must be sorted to get to the upper percentiles.

When handling long model integrations in meteorology
:
,
::::::::
hydrology

:
and oceanography with spatially gridded fields of typically

106 grid points this brute-force approach becomes impractical. Such quantities are regularly encountered when estimating20

return levels from atmospheric reanalyses (Kalnay et al., 1996; Saha et al., 2010; Compo et al., 2011; Dee et al., 2011; Poli

et al., 2016), wave hindcasts (Swail and Cox, 2000; Caires and Sterl, 2005; Gaslikova and Weisse, 2006; Breivik et al., 2009;

Reistad et al., 2011; Aarnes et al., 2012) and long climate integrations that cover decades or even centuries (Hersbach et al.,

2015). When even larger data sets are used, such as the ensembles of seasonal integrations (Stockdale et al., 2011; Molteni

et al., 2011), as was done by Van den Brink et al. (2005) on a data set
::::::
sample amounting to nearly 1,000 years, the data25
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processing becomes nearly intractable and finding ways to reduce the size of the data sets
::::::
samples

:
becomes essential. That is

the subject of this paper.

We will present a simple argument for why it is sufficient to retain only a small subset K0 consisting of the highest entries in

a data set
::::::
sample when estimating tail statistics such as return levels and their associated confidence intervals

::
CIs

:
by means of

::::::::::::
non-parametric

:
bootstrapping. These highest entries will normally only represent a small fraction of the total data set

:::::
sample.5

This reduces the need for sorting and storage by several orders of magnitude. The method also reduces the task of sorting the

original data set
::::::
sample as only the K0 highest entries are kept.

This paper is organised as follows. Sec 2 presents the binomial argument for why we can bootstrap from a small subset

consisting of the highest entries in the original data set
::::::
sample. Sec 3 presents three examples of bootstrapped confidence

intervals
:::
CIs

:
of various tail statistics for a data set of significant wave height from the central North Sea. Here we also show10

how the method laid out in Sec 2 can be used in practice to determine how many entries must be kept in order to perform an

unbiased bootstrap. Sec 4 summarises the results and presents the conclusions.

2 Bootstrapping from the K0 highest entries in a data set
::::::
sample

Consider the sequence
::::::
sample

:
D0 of independent and identically distributed (iid) random numbers X1,X2, . . . ,XN . Let

XN,1 ≤XN,2 ≤ ·· · ≤XN,N denote the order statistics onD0. When investigating a statistic θ which is a function of the k high-15

est entries in D0, ie θ = f(XN,N−k+1,XN,N−k+2, . . . ,XN,N ), it is common to form M bootstrap resamples D1,D2, . . . ,DM ,

each of length N (Diaconis and Efron, 1983; Efron and Gong, 1983). This method can be used to compute the confidence

intervals
::
CIs

:
around extreme value estimates (Breivik et al., 2013, 2014). The procedure is computationally intensive and

memory-consuming, as it involves bootstrapping and storing M ×N numbers and performing M sorts, each a process of

O(N logN) operations
::::::::::
O(N log2N)

:::::::::
operations

::::::::::::::::
(Press et al. 2007 ,

::
pp

:::::::::
423–427). Since we are only interested in combina-20

tions of the k highest entries in the resamples D1,D2, . . . ,DM , we will explore the possibility of instead resampling from

only the highest XN,N−K0+1,XN,N−K0+2, . . . ,XN,N−k+1, . . . ,XN,N ::::::::::::::::::::::::::::::::::::::::::::
XN,N−K0+1,XN,N−K0+2, . . . ,XN,N−k+1, . . . ,XN,N

entries in D0 (K0 > k). This will be referred to as the resample threshold and is sometimes more conveniently written as the

percentage of data left out, P0 = 100(1−K0/N).

The probability of drawing one of the highest K0 entries in D0 is a binomial problem with probability p=K0/N . The25

probability of making exactly k draws (with replacement) from the highest K0 in N draws is thus given by the binomial

probability mass function [Zwillinger 1996, p 581]

fbinom(k;N,p) = P(X = k) =

(
N

k

)
pk(1− p)N−k. (1)

where X is a random variable representing the number of draws. The probability of drawing fewer than the required k entries

from the highest K0 is given by the binomial cumulative distribution function30

Fbinom(k− 1;N,p) = P(X < k) =

k−1∑
i=0

(
N

i

)
pi(1− p)N−i. (2)
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A full bootstrap resample Di of length N from D0 will contain Ki entries from the highest K0, and Ki ∼ Binom(N,p)

where E[Ki] =K0 since the expected
::::::
(mean) value of the binomial distribution (1) is

µbinom =Np=K0. (3)

The variance is

σ2
binom =Np(1− p) =K0−K2

0/N ≈K0 when K0�N. (4)5

Denote a short bootstrap resample from the K0 highest entries in D0 as D̃i. Two conditions must be met for D̃i to be an

unbiased substitute for Di:

1. The number K0 must be set large enough that the probability that we miss entries smaller than XN,N−K0+1 in D0 is

below a chosen threshold pc.

2. The length K̃i of D̃i must have the same mean and variance as Ki (Eqs 3–4).10

To fulfil
::::
fulfill

:
Condition (1) it is sufficient to decide on an acceptable level for pc. This probability can be found by consulting

Eq (2). It is important to note that choosing K0 too small will bias the statistic θ̃ = f(D̃i) since it will be estimated from boot-

strap samples that miss entries smaller thanXN,N−K0+1. We will for this reason refer to pc as the probability of contamination

as it gives the probability that the bootstrap estimate is biased because we have kept too few entries from the original data set

::::::
sample D0. A very conservative bound on p, and thus on K0 =Np, can be found quickly by consulting Hoeffding’s formula15

(Hoeffding, 1963),

F (k;N,p)≤ exp

(
−2

(Np− k)2

N

)
, (5)

valid when k ≤Np. A useful quantity is the ratio r =K0/k of upper entries retained (K0) and the minimum number k required

to form a bootstrap estimate of the statistic in question for a given probability of contamination pc. This can be estimated
:::::
found

from Eq (2), but when N is large the Poisson distribution is a good approximation and more practical to work with,20

FPoisson(k− 1;rk) = P(X < k) = e−rk
k−1∑
i=0

(rk)i

i!
. (6)

Fig 1 shows the minimum acceptable ratioK0/k as a function of k for levels of pc ranging from 10−5 to 0.05. The probabilities

can be computed from Eq (2) [or more conveniently from Eq (6)]. As can be seen, for all values of k, the ratio is comfortably

below 15, and for values of k larger than 10 a ratio of 3 is sufficient even for a confidence level of 10−5. See the appendix for

a more detailed explanation of the ratio curves used throughout.25

Condition (2) can be handled by randomly perturbing the size of the resamples, K̃i, such that it mimics the number of draws,

Ki ∼ Binom(N,p), that would have been made from the upper K0 entries of D0 in a full bootstrap Di. In practice, as we shall

see, the statistics are quite insensitive to these perturbations as long as K0 has been chosen sufficiently large.
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3 Bootstrapping confidence intervals

Here we present worked examples of how the two conditions presented above can reduce the problem of estimating confidence

intervals
:::
CIs on tail statistics for a data set of independent ensemble forecasts at long lead time (N = 330,000). We use archived

ensemble forecasts (Molteni et al., 1996) of significant wave height in the central North Sea (near the Ekofisk oil field at 56.5◦

N, 003.2◦ E; a histogram of the data set used is shown in Fig 2) at a forecast lead time of 240 hours. 100-year return values from5

these ensembles have previously been reported by Breivik et al. (2013) and Breivik et al. (2014)
::::::::::::::::::::::
Breivik et al. (2013, 2014) .

3.1 Example 1: Confidence intervals on in-sample return estimates

Consider as an example the problem of how to calculate in-sample return estimates from the data set
::::::
sample

:
of independent

forecasts presented above. These forecasts can be considered iid (as they are not from correlated time series). An in-sample

return estimate is calculated directly from the tail of the empirical distribution rather than by applying extreme value analysis.10

As explained by Breivik et al. (2013) the independent forecasts presented in Fig 2 add up to the equivalent of 229 years

under the assumption that each forecast represents a time interval ∆t= 6 hours. A 100-year return estimate is then a linear

interpolation between XN,N−1 and XN,N−2 (the second and third highest entries in D0),

H100 = 0.67XN,N−1 + 0.33XN,N−2. (7)

Now, clearly k = 3 since we need the second and third highest entries in our resamples to form a return estimate. Let us now15

tentatively keep the K0 = 1,000 highest entries and bootstrap from these instead of from the entire sequence to compute the

confidence intervals
:::
CIs on the linear combination of the second and third highest entries given by Eq (7). The size K̃i of

the resamples, D̃i, is drawn from the binomial distribution (Eqs 3–4) with µ=K0 and σ2 ≈K0. What is the probability pc

that one of the three highest entries in a bootstrapped sequence should not have come from the 1,000 highest entries that we

have retained (i.e. should depend on entries contained in the bulk of the data set
::::::
sample

:
that we discarded)? It is clear that the20

probability of drawing one of the highest 1,000 entries is p= 1,000/330,000, and from Eq (2) we find that the probability of

picking too few (< 3) entries from the K0 highest is

F (2;330,000,p) = P(X ≤ 2) =

2∑
i=0

(
330,000

i

)
pi(1− p)330,000−i, (8)

which is indistinguishable from zero to double precision. Reducing the number K0 to 10 (r ≈ 3) raises the probability of

contaminating the resamples by entries from the lowerN−K0 to 0.002. This can also be confirmed by consulting Fig 1 for the25

combination k = 3, r = 3. For M = 1,000 resamples we may thus expect on average 2 resamples to be contaminated by values

from the lower N −K0 values in the original sequence. A very safe compromise in this case is K0 = 100 (r ≈ 33). Consulting

Fig 1 shows that for k = 3, r = 33 we are well below a probability of contamination of 10−5. The quantile-quantile (QQ) plot

in Fig 3 shows that resampled return estimates of significant wave height from the full data set
:::::
sample

:
D0 (see Fig 2) have

practically the same distribution as resamples from the upper K0 = 100 entries.30
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Condition (2) given above states that the length
:::
size of the reduced resamples D̃1,D̃2, . . . ,D̃M should be randomly perturbed

around the mean value K0. In practice this condition turns out to be rather insignificant as long as K0 is chosen sufficiently

large. This is demonstrated in the QQ plot in Fig 4 where we see that perturbed-length estimates (abscissa) closely match the

distribution of fixed-length estimates (ordinate). However, choosing K0 too small will bias the statistic in question. This is

illustrated in Fig 5 where we see that bootstrap estimates from too-short data sets
::::::
subsets

::
of

:::
the

:::::::
original

::::::
sample (K0 chosen too5

small) are biased high. As K0 approaches 30 (r = 10), the mean and standard deviation of the return estimates approach their

asymptotic values. These findings are in accordance with what we find by consulting Fig 1 where we see that k = 3, r = 10

has a probability of contamination pc less than 10−5.
:
It

::
is

::::
also

::
of

::::::
interest

::
to

:::::::::
investigate

::::
just

:::
how

:::::
many

::::::::
bootstrap

:::::::::
resamples

:::
are

::::::
actually

::::::
needed

::
to
::::::
obtain

:::
CIs

:::::
from

:
a
:::::::::::::
non-parametric

::::::::
bootstrap

::::::::
technique.

::
In

::::
Fig

:
5
:::
we

:::::
chose

:::::::::::
M = 10,000.

:::
As

:::
Fig

:
6
::::::
shows,

::::
this

:
is
::::::
clearly

:::::::::
excessive

:::
for

:::::::::
reasonable

:::::::::
thresholds

:::
K0.

:::
In

::::
fact,

:::::::::::::::::::::::::::
Efron and Tibshirani (1993) state

::::
that

:::
200

:::::::::
resamples

:::
are

::::::::
normally10

::::::
enough.

::::
We

:::
find

::::
this

::
to

::
be

:::
on

:::
the

:::
low

::::
side

::
in

:::
our

:::::
case,

::
as

:::
Fig

::
6

::::::
shows.

::::::::
However,

::::
1000

:::::::::
resamples

::
is

::::::::
sufficient

::
in

:::
this

:::::
case,

:::
but

:::
this

::::::
should

::
be

::::::::::
investigated

::
in

::::
each

:::::
case.

::::::::::::::::::::::
Breivik et al. (2014) found

::::
(see

::::
their

::::::::::::
Supplementary

::::
Fig

::
7)

:::
that

:::
for

::
a

::::::
similar

:::
data

::::
set,

:::
500

::::::::
resamples

::::::
would

::
be

::::::::
sufficient

:::::
when

:::::::::
employing

::
a

::::::::::
Generalized

:::::
Pareto

::::::::::
Distribution

::::::
(GPD)

:::
on

::::::::
threshold

:::::::::::
exceedances.

3.2 Example 2: Confidence intervals on upper percentiles

A similar problem to the estimation of confidence intervals
:::
CIs

:
for in-sample return values is how to estimate the confidence15

interval
:::::
obtain

:::
the

::
CI

:
for the highest percentiles, e.g. the 99th percentile (P99). The upper percentile is frequently used when

investigating trends in for example the wind and wave height climate [see e.g. Wang and Swail (2001, 2002)]. In order to

construct a bootstrap estimate of P99 brute force it is necessary to resample the entire data set
::::::
sample

:
D0 and sort the

bootstrap to get to the N/100-th highest entry. However, Fig 1 tells us that when k =N/100 is large (as it will be when N

is large), we can with extremely high certainty say that keeping the K0 = 2k highest entries is enough to perform a bootstrap20

resample exercise for the confidence interval
::
CI

:
on P99. In fact, K0 = 1.2k is sufficient for all significance levels plotted in

Fig 1. This means that in order to estimate a confidence interval
:::::
obtain

:
a
:::
CI for P99 we need only find the entry XN,N−k that

corresponds to P99 from the original data set
::::::
sampleD0 and retain entries higher thanXN,N−1.2k. Fig 7 shows how the ratio r

decreases as the sample size N increases. It is clear that for all probabilities of contamination investigated, a ratio of K0/k = 2

is sufficient when N is larger than 2,000. Obviously, samples smaller than O(103) do not pose computationally demanding25

problems anyway and are of no interest to us in this context. Fig 8 illustrates for a fixed probability of contamination pc = 0.01

that even as we go to higher percentiles (the uppermost curve shows P99.9), a ratio K0/k = 2 is sufficient as the sample size

N exceeds 104 (see the appendix for more details on the ratio curves).

3.3 Example 3: Confidence intervals on return estimates from threshold exceedances

Consider now the problem of estimating confidence intervals for threshold exceedances. The Generalized Pareto distribution30

(GPD )
:::
CIs

:::
for

:::::
return

::::::::
estimates

:::::
from

::::::::
threshold

:::::::::::
exceedances

::::
from

::
a
::::
data

:::
set

::
of

:::::::::::
independent

::::::::
forecasts.

:::::
This

:::::
differs

:::::
from

::
a

:::::::::::::::::
peaks-over-threshold

::::::::
approach

:::::
which

::
is
::::
how

:::::::::
correlated

::::
time

:::::
series

:::::
must

::
be

:::::::
handled

::
to

::::::::
estimate

:::::
return

:::::
levels

:::::::::::::
(Coles, 2001) .
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::::
GPD

:
gives the relevant extreme value distribution for independent exceedances above a threshold u (Coles 2001, pp 75–77),

H(y) = 1−
(

1 +
ξy

σ̃

)−1/ξ

. (9)

Here y =Xi−u, y > 0 are exceedances above an entryXk,
:
a
::::::::
threshold

:::::::::::::
u=XN,N−k+1:::::::::

(remember
::::
that

:::::::::
XN,N−k+1::

is
:::
the

::::
k-th

::::::
highest

::::
entry

::
in
:::
the

:::::::
sample

:::
D0)

:::
and

:
σ̃ is a scale parameter which is a function of the threshold u, and ξ is the shape parameter.

A brute-force approach would be to make N draws from D0 (with replacement) and repeat this procedure M times. Then,5

GPD return estimates would be computed for each of the resulting bootstrap sequences D1,D2, . . . ,DM . Say we want to try to

instead keep
:::::
retain only the K0 entries exceeding a threshold

:::
U0,

:::::
where

:
U0 < u,

:
corresponding to the entry XK0 :::::::::::

XN,N−K0+1

in the original data set
:::::
sample

:
D0. From these we need to draw at least k entries, from which we will make return estimates.

The question is again how many entries (K0) must be kept to arrive at an acceptably low probability pc that the statistic should

really be based on entries below the threshold U0.10

This problem arises when estimating GPD return values from the independent ensemble forecasts (Fig 2). For such a data set

::::::
sample all exceedances above a given threshold can be used to form GPD return value estimates (9). Confidence intervals

:::
CIs

on the return values can likewise be estimated
:::::::
obtained

:
by bootstrapping from all entries exceeding this threshold. For a large

data set
::::::
sample

:
this is orders of magnitude faster than bootstrapping from the entire data set

:::::
sample. Assume again that we have

kept all forecasts exceeding P99.1, ie the K0 = 3,000 highest entries (cf Fig 2). To form a return estimate we assume that we15

need at least k = 1,000 entries, corresponding to P99.7. The probability of drawing (with replacement) k or fewer entries from

the highestK0 inN draws can again be found from Eq (2) and is indistinguishable from zero to double precision with the given

choice of N , K0 and k. This is easy to verify by consulting Fig 1 where we see that for k = 1000, r = 3 we are well above

the 10−5 level. Fig 9 shows that the confidence interval and the mean return value based on M = 1,000 bootstrap resamples

for various choices of resample threshold 100(1−K0/N) (i.e. the percentage of data omitted) are practically identical to the20

confidence intervals based on the full data set
:::
CIs

:::::
based

::
on

:
D0 (marked as asterisks). Only when r =K0/k comes close to

unity do we experience fluctuations and biases (i.e., the resample threshold nearly coincides with the number of tail entries

required to form a return estimate, in this case the threshold P99.7).

4 Conclusions

Confidence intervals
:::
CIs and other statistics on

::
of

:
the extremes and the tail of empirical distributions are commonly found using25

::::::::::::
non-parametric

:
bootstrap techniques. Here we have shown that it is unnecessary to bootstrap from the entire data set

::::::
original

::::::
sample. The actual numberK0 highest entries that must be kept to make unbiased bootstrap estimates for the tail of an empirical

distribution depends on K0 =Np as well as on the number k highest entries that are required for the statistic in question. The

examples in the previous sections calculated pc given a predetermined number K0 of tail entries that have been kept. This is a

realistic approach as in practice we often retain a larger part of the tail of an empirical distribution than what is strictly needed30

since the same data set is used to compute other statistics. It is then sufficient to consult Eq (2) to determine whether K0 is

sufficiently large. A quick estimate of the probability of contamination can be made by consulting Fig 1.
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The advantages of restricting resamples to a small subset K0 consisting of the highest entries in D0 can be summarised as

follows. First, only the upper K0 entries need be kept and sorted in the original data set. This offers substantial savings in

cases like those described by Breivik et al. (2013, 2014) where a very large number of forecasts (>300,000) are handled, each

consisting of more than 60,000 grid points in space. Second, the size of the resamples is also reduced from N to an average

size K0, where K0 is usually a very small fraction of N , typically less than 1%. Third, this reduction in resample size also5

means that the cost of sorting the resamples to get to the highest entries is greatly reduced
:
,
::
as

:::
the

:::::::
problem

::
is

::::
now

:::::
linear

::
in

:::
the

::::::
number

::
of

::::::::
bootstrap

:::::::::
resamples

:::
M

::::
since

::::
each

::::
sort

::
is

:::::::::::::
O(K0 log2K0),

::::::
which

:
is
::::
now

::
a
:::::::
constant

:::::::
number

::::::::::
independent

::
of

:::
the

::::
size

::
of

:::
the

::::::
original

::::::
sample

:::
(or

::
a
:::::
small

::::::
fraction

::
of

:::
it,

::
as

::
in

:::
the

::::
99th

::::::::
percentile

::::::
shown

::
in

:::::::
Example

:::
2).

:::
We

::::
have

::::::::::
investigated

:::
the

:::::::::
conditions

::::
that

::::
must

:::
be

::::
met

::
to

::::
form

::
a
:::::::::::::
non-parametric

::::::::
bootstrap

:::
for

:::
tail

::::::::
statistics

::::
such

::
as

::::::
return

:::::
levels

::::::
(which

:::::::
depend

::
on

:::
all

:::::
three

::::::::::
parameters

::
of

::::
the

::::::::::
Generalized

::::::::
Extreme

:::::
Value

:::::::::::
Distribution

::
or

::::
the

:::::
GPD)

:::::
from

::
a

:::::
small10

:::::
subset

::
of
::::

the
::::::
highest

:::::::
entries

::
in

:::
the

:::::::
original

:::::::
sample.

:::
As

::::::::::
mentioned

::
in

:::
the

:::::::::::
Introduction,

:::
an

:::::::::
important

:::::::
question

::
is
::::::::

whether

::::::::::::
non-parametric

:::::::::
bootstraps

:::::
yield

:::
CIs

::::
with

::::::::
sufficient

::::::::
coverage,

:::
ie,

:::
CIs

::::
that

:::
are

::::
wide

:::::::
enough.

::::
This

:::
has

:::::
been

:::::::::
extensively

:::::::
studied

::
by

::::::::::::::::
Kyselý (2008) who

::::::
found

:::
that

:::::::::::::
non-parametric

:::::::::
bootstraps

:::
in

:::::::::
particular,

:::
but

::::
also

:::::::::
parametric

:::::::::
bootstraps

:::::
tend

::
to

::::
have

::::
too

:::
low

::::::::
coverage.

:::::
This

:::::::
problem

:::
is

:::
not

:::::::::
addressed

:::
by

:::
our

::::::
study,

::::
and

::
it

::
is

::::
clear

::::
that

::::::::::
alternative

:::::::
methods

::::
are

::::
often

::::::
called

::::
for.

::
In

:::::::::
particular,

:::
the

::::
Test

::::::::
Inversion

:::::::::
Bootstrap

:::::::::::::::::
(Carpenter, 1999) is

:
a
:::::::::

promising
:::::::

method
::::::
where

:::
the

::::
test

::::::::
inversion

:::::
refers

::
to
::::

the15

::::::
duality

:::::::
between

:::::::::
hypothesis

::::::
testing

:::
and

:::::::::
confidence

::::::::
intervals.

:::::::::::::::::::::::::::::::::::::::
Schendel and Thongwichian (2015, 2017) show

:::
how

::::
this

:::::::
method,

::::::::
originally

::::::::
developed

:::
for

:::::::::
estimation

:::
of

:::::::
statistics

::
of

::::::
single

:::::::::
parameters

::
in

:::
the

::::::::
presence

::
of

:::::::
nuisance

::::::::::
parameters,

::::
can

::
be

::::::::
extended

::
to

::::::
handle

:::::
return

:::::
levels

::::::
which

::::::
depend

:::
on

::::
three

::::::::::
parameters

:::
for

::::
both

:::
the

::::::::::
Generalized

::::::::
Extreme

:::::
Value

::::::::::
Distribution

:::
and

:::::
GPD

:::
by

:::::::
utilizing

:
a
:::::::::
maximum

::::::::
likelihood

:::::::::
technique.

::::::::
However,

::::::::::::
non-parametric

:::::::::
bootstraps

::::::::
represent

:
a
:::::
quick

:::
and

:::::::::::::
hypothesis-free

::::::::
approach

::
to

::::::::
obtaining

::::
CIs,

:::
and

::
as

:::
the

::::::
results

::::::::
presented

:::::
show

:::
we

::::
can

::::::::::
comfortably

::::::
assume

::::
that

:::
the

::::::
results

::::
will

::::::
remain

:::::::::
unchanged

::
if

:::
we20

:::::
select

:
a
:::::
small

:::::
subset

::
of

:::
the

:::::::
original

:::::::
sample,

:::::::
provided

:::
we

::::::
follow

:::
the

::::::::
procedure

:::::::
outlined

::
in
:::::::
Section

::
2.

Appendix: Consulting the ratio curves

The ratio curves presented in Figs 1, 7 and 8 are convenient for quickly establishing how many entries (K0) must be kept in

order to form an unbiased resample that depends on the highest k entries. The relationship between Fig 1 and Fig 7 can be

illustrated as follows. If we assume N large we can use Fig 1. In practice we can choose N = 2× 103 without violating the25

assumption that N is large. Now assume that the statistic in question is the 99th percentile, i.e. k =N/100 = 20. Let us choose

a probability of contamination pc = 0.01 (this corresponds to the red curve marked with diamonds in Fig 1). We find the ratio

to be 1.6, i.e. we will need to keep 60% more entries than the entry corresponding to P99. The corresponding curve in Fig 7 is

also marked in red. Here, the location on the x-axis to read off is N = 2× 103 which lies on the y-axis, and the ratio is again

found to be 1.6. A more realistic example in terms of sample size would be N = 105 (and k =N/100 = 103). Now we find30

from either Fig 1 or Fig 7 that with a probability of contamination pc = 0.01 that the ratio is 1.13, i.e. we need only keep 13%

more entries than the one representing the 99 percentile. Figs 1, 7 and 8 clearly illustrate that in almost all cases it is sufficient

7



to retain at most twice as many entries K0 from the tail of the sample distribution D0 than what is required (k) for the statistic

in question.
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Figure 1. The ratio K0/k as a function of k, the minimum number of bootstrapped entries needed for the statistic in question, for levels

of probability of contamination ranging from 10−5 (uppermost curve) to 0.05 (lowermost curve). The curve representing 1% probability of

contamination is marked in red (with diamonds) as it is a reasonable confidence level.
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Figure 2. Histogram of the significant wave height from archived ensemble forecasts in the central North Sea (Ekofisk, 56.5N, 003.2E) at

+240 h lead time. Entries above P99.1, corresponding to threshold U0, are coloured red whilst entries exceeding P99.7, corresponding to the

upper threshold, u, are in black. The highest entries are individually marked with asterisks.
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Figure 3. A quantile-quantile comparison of 10,000 bootstrapped direct 100-year return estimates of significant wave height taken from a

forecast ensemble (Breivik et al., 2013) versus a bootstrap from the upper 100 entries in the data set
:::::
sample. The 45◦ line is shown in red.
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Figure 4. A quantile-quantile (QQ) comparison of M = 10,000 bootstraps D̃1,D̃2, . . . ,D̃M of variable length K̃1, K̃2, . . . , K̃M against

bootstraps of fixed length K0, all from the upper 100 entries in the original sequence D0. The difference is very small.
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Figure 5. Mean and standard deviation on 100-yr in-sample return estimates based on M = 10,000 bootstrap resamples for various choices

of resample threshold K0 for the data set
:::::
sample

:
in Fig 2. A minimum of k = 3 entries are required to form the return estimate [see Eq (7)].

For choices of K0 smaller than 30 (corresponding to a ratio r =K0/k = 10) the bootstrap resamples are biased high.

15



0 2000 4000 6000 8000 10000
Number of bootstrap resamples, M

11.0

11.5

12.0

12.5

13.0

13.5

14.0

S
ig

n
if
ic

a
n
t 

w
a
v
e
 h

e
ig

h
t 

[m
]

In-sample 100-year return level estimates

Mean
Std dev

Figure 6.
::::
Mean

:::
and

:::::::
standard

:::::::
deviation

:::
on

:::::
100-yr

::::::::
in-sample

:::::
return

:::::::
estimates

::::
with

::
a
:::::::
threshold

::::::::::
K0 = 1,000

::
as

::
a

::::::
function

::
of
:::::::

number
::
of

:::::::
bootstrap

::::::::
resamples,

:::
M .

:::
For

::::::::
M > 1000

:::
the

:::
CIs

::
are

::::
quite

:::::
stable.

:
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Figure 7. Bootstrapping the 99th percentile, P99. The ratio r =K0/k is shown as a function of sample size N . Here, the minimum number

of entries required is simply the upper 1% (P99), so k =N/100. Various levels of probability of contamination pc are shown, and for sample

sizes larger than approximately 2,000, a ratio r = 2 is sufficient. The curve representing 1% probability of contamination is marked in red

(with diamonds) as it represents a reasonable confidence level.
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Figure 8. Bootstrapping the upper percentiles P = P90,P95,P97,P99 and P99.9. The ratio r =K0/k is shown as a function of sample

size N . Here, the minimum number of entries required is k = (1−P )N/100. The probability of contamination is kept fixed at pc = 0.01.

At sample sizes larger than approximately 104, a ratio r = 2 is sufficient for all percentiles investigated. The curve representing the 99th

percentile is marked in red (with diamonds) and corresponds to the red curve in Fig 7.
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Figure 9. The upper and lower 95% confidence intervals
::
CIs

:
and the mean 100-yr return estimates (dashed) based on M = 1000 bootstrap

resamples for various choices of resample threshold K0 for the data set
:::::
sample in Fig 2. Upper panel: a GPD with shape parameter ξ = 0

(exponential distribution). Lower panel: a GPD with freely varying shape parameter. Individual bootstrap estimates are marked in grey.

Estimates based on the full data set
:::::
sample D0 are marked as asterisks on the ordinate.
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