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Anonymous referee no.1 
 
In the “interactive comment” published on the online procedure on Oct 25, 2016, anonymous referee 
no.1 points out few observations and questions: 
 
AR1: But even if the procedure provides a final distribution it still depends a lot on the quality 
of the field survey. The article should therefore bring a little more basics regarding the data 
acquisition. Which methods do exist and is a certain one recommended? What about the 
consideration of "modern" methods as e.g. decribed in - Mavrouli, O., Corominas, J., & 
Jaboyedoff, M. (2015). Size Distribution for Potentially Unstable Rock Masses and In Situ 
Rock Blocks Using LIDAR-Generated Digital Elevation Models. Rock Mechanics and Rock 
Engineering, 48(4), 1589-1604. or more simplified methods such as - Corominas, J., Mavrouli, 
O., Santana, D., & Moya, J. (2012). Simplified approach for obtaining the block volume 
distribution of fragmental rockfalls. Landslides and engineered slopes. Taylor and Francis, 2, 
1159-1164.  
AUTH: Basics on data acquisition have been provided in the manuscript. In particular, referring to 
the catalogue of the events, the various approaches suggested in the literature have been reported 
(page 5, lines 19 to 31). Referring to the distribution of the measured volumes, the basic survey 
techniques have been added to the manuscript (from page 5, line 32 to page 6, line 7). 
 
AR1: The volume distribution of the rockfalls strongly depends on the block volumes found 
in the field. Does the method presented consider that rock blocks often burst into fragments 
during the rockfall process?  
AUTH: The present analysis deals with the distribution of the values of the fallen blocks volumes. In 
this sense, a sentence has been added clarifying this point and the need of having a 
comminution/fragmentation model to correlate rockfall volume to blocks volume (page 6, lines 7 to 9). 
 
AR1: The formulation of a probabilistic distribution of rockfall events based on single 
samples is also reported in Straub, D., Schubert, M., (2008) Modeling and man- aging 
uncertainties in rockfall hazards, Georisk, Assessment and Management of Risk for 
Engineered Systems and Geohazards, Volume 2, Issue 1, pp. 1-15, DOI: 
10.1080/17499510701835696 Maybe, the article can critically compare the method presented 
there and the actual procedure.  
AUTH: The connection of the procedure presented in our manuscript to other risk assessments 
found in the literature has been pointed out in the “Introduction” section, in particular at page 2, lines 
1 to 5. 
 



Referee no.2 (Dr Hantz) 
 
In the “Interactive comment” and supplement PDF published on the online procedure on Oct 28, 
2016, Dr Hantz points out few observations and questions: 
 
R2: Title: The title is not adapted because the paper deals with the return period of blocks 
and not of rockfalls. I suggest to replace "rockfalls" by "fallen blocks".  
AUTH: The title of the manuscript has been changed according to the observation of Referee no.2 
 
R2: The section 2 (Power laws in rockfall analysis) is not well adapted because it focuses on 
studies of rockfall volume distribution (which is not the subject of the paper) instead of block 
volume distribution (subject of the paper). I suggest references on block volume distribution: 
Corominas et al., 2005 (already cited); Nocilla et al., 2008 (Rock Mech Rock Eng); Ruiz-Carulla 
et al., 2015 (already cited), 2016 (Int. Symp. on Landslides); Hantz et al., 2016 (Int. Symp. on 
Landslides). When reading the paper, it takes a long time before understanding if the 
analysis concerns rockfall volumes or block volumes. I suggest some corrections in the pdf 
to clarify this point. The assertion "small rock blocks…have been rarely reported in the 
archives" (page 4, line 1) is true but it must be mentioned here that terrestrial laser scanning 
allows to build catalogues including very small rockfalls. Examples -Rosser N.J., Petley D.N., 
Lim M., Dunning S.A., and Allison, R.J.: Terrestrial laser scanning for monitoring the process 
of hard rock coastal cliff erosion, Q. J. Eng. Geol. Hydrogeol., 38, 363-375, 2005 -Abellan, A., 
Calvet, J., Vilaplana, J.M., Blanchard, J.: Detection and spatial prediction of rockfalls by 
means of terrestrial laser scanner monitoring, Geomorphology, 119, 162-171, 2010. - Dewez, 
T.J.B., Rohmer, J., Regard, V., Cnudde, C. : Probabilistic coastal cliff collapse hazard from 
repeated terrestrial laser surveys : case study from Mesnil Val (Normandy, northern France), 
Journal of Coastal Research, 65, 702-707, 2013. The paragraph discussing the values of the 
exponent b must be rewritten according to the works dealing with the block volume 
distribution (Ruiz-Carulli et al., 2015, 2016; Hantz et al., 2016;…). The values for the rockfall 
volume distribution are useless in this paper. Particularly, the sentence "the only reliable 
studies in this range (less than 10 m3) have been performed by Gardner (1970) and Hungr et 
al. (1999)" must be removed because a lot of reliable studies have analyzed the volume 
distribution of smaller rockfalls, down to as 10-3 m3 (for example, Dewez et al. 2013, Journal 
of Coastal Research).  
AUTH: According to the observations of Referee no.2, a proper paragraph dealing with the values of 
exponent “b” in the power laws related to blocks volumes distribution has been inserted (from page 
4, line 16 to page 5, line 9). In parallel, the manuscript dealing with exponent “b” in the power laws 
related to rockfall volumes distribution has been rewritten following the suggestions of Dr Hantz: in 
particular, the values of “b” found in other studies on rockfall volumes distribution have not been 
reported. The paragraph, i.e., page 4, from line 9 to line 15, serves for completeness in the treatise 
of power laws in rockfall studies. 
 
R2: As the hazard (and the risk) is defined for a given point, the Catalogue C should be 
associated to an element at risk or to a line: Only the blocks which have stopped beyond a 
defined line should be considered in the analysis. So the notion of "representative area" 



(page 5, line 2) should be developped.  
AUTH: The notion of representative area has been clearly detailed. In particular, a sentence has 
been added (page 5, lines 15 and 16) in the appropriate paragraph. 
 
R2: The explanation of Equation (5) is not evident. So I suggest to explain it as follow: 
Knowing the annual mean number of blocks bigger than Vt () and the cumulative distribution 
function of the block volume (FV(v)), the temporal frequency (the inverse of the return period 
T) of blocks bigger than v is: (1- FV(v)) = 1/T Inversely, the volume with return period T (vT) 
is: vT = FV-1(1-1/T) Moreover I suggest to remove the sentence "The combination of the two 
proposed statistical laws allows to determine the return period . . ." (page 6, line 1), because 
the Poisson’s law is not used (the annual mean number of blocks can be estimated without 
it). 
AUTH: The manuscript has been rewritten according to the observations of Referee no.2 (page 7, 
lines 1 to 4). 
 
R2: Equation (6) is not evident and should be explained.  
AUTH: The explanation of Equation (6), which is labelled as (7) in the updated version of the 
manuscript, has been reported in page 7, lines 23 to 26. In order to better explain the temporal 
extension of the observation interval, Figure 2 has been slightly modified showing that the first event 
with volume larger than threshold volume Vt occurs when the observation period starts. 
 
R2: Section 4 (Examples) As the annual mean number of blocks () depends of the extent of 
the considered deposit area, more information should be given (at least the horizontal width 
and the inclined length of the area). As stated in section 2, the exponent of the power law 
(and) probably depends on the properties of the rock mass. So the geological and structural 
context of the Buisson site should be described (rock type and rock mass structure). The 
orientation of the foliation plane is useless if the orientation of the rock wall is not given 
(page 11, line 2). 
AUTH: Geological details on bedding plane orientation, discontinuity sets and slope face 
orientations have been added in page 9, lines 24 to 26. 
 
R2: As the power law (Equation 2) is commonly used to describe the distribution of the block 
volume, it should be of interest to compare the volume-annual frequency relations for both 
Generalized Pareto Distribution (Equation 13) and power law (1/T = (v/Vt)ˆ-b).  
AUTH: The choice of using Generalized Pareto Distribution as well as its similarities with power law 
distribution have been discussed in “Discussion and conclusion” section, in particular from page 14, 
line 11 to page 5, line 3. 
 
R2: Minor corrections are in the pdf.  
AUTH: The manuscript has been modified accordingly. 
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Abstract. With reference to the rockfall risk estimation and the planning of rockfall protection devices one of the most critical

and most discussed problems is the correct definition of the design block taking into account its return period. In this paper, a

methodology for the assessment of the design block linked with its return time is proposed and discussed, following a statistical

approach. The procedure is based on the survey of the blocks already detached from the slope and accumulated at the foot of

the slope and the available historical data.5

1 Introduction

Rockfall is one of the most critical slope instabilities because it can be highly destructive and unpredictable. The analysis of

this phenomenon is very difficult because it is affected by aleatory variability (irreducible natural variability) and epistemic

uncertainty (lack of knowledge). For these reasons, probabilistic methods are the suitable approaches for modeling rockfall.

When risk analysis has to be performed for forecasting and protection purposes, the size of the involved blocks and the10

corresponding return period are the most important variables among the ones that characterize the phenomenon (Peila et al.,

1998, 2006; Peila and Ronco, 2009).

Modern design approaches for buildings, for example, aim at guaranteeing the structural safety throughout its expected life.

In such reliability-based framework, the buildings have to be robust, i.e., to support forces due to anthropic and natural hazards

without being significantly damaged. Proper design processes for common natural hazards, such as extreme winds or seisms,15

are already present in the building codes (Elishakoff, 1999; ISO, 1998; Leporati, 1979; Madsen et al., 2006; Melchers, 1999);

these define the magnitude of the external force on the base of the probability of exceeding such intensity during the design

life of the structure. In addition, the structural safety must be guaranteed on the base of the consequences caused by natural

hazards on the structure (vulnerability).

Dealing with natural hazards, one of the common ways to input the external forces applied to the structures is to establish a20

link between the magnitude of the forces and the corresponding return period. Larger return period implies higher intensity in

the force. In a recent work, De Biagi et al. (2016a) have proposed a reliability-based design procedure for structures subjected

to snow avalanche hazard.
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The magnitude-frequency relationship is at the basis of the probabilistic hazard analysis. In seismic analysis, Gutenberg-

Richter’s law expresses such relationship. Straub and Schubert (2008) proposed a probabilistic approach for rockfall risk

assessment based on a frequency law, but not investigating about its nature. Lari et al. (2014) considered the annual frequency

of occurrence of a rockfall volume as a ‘given’ data. The proposed approach intends to be the base for more complex and

complete probabilistic hazard assessments.5

In the design of engineering works that must protect a village or a road from falling rocks, e.g., net fences or embankments,

at present, the size of the falling block used in the modeling is not linked to its probability of occurrence, i.e., the return period

of a block with such volume. The most frequently applied approaches refer to an analysis of the blocks already collapsed

integrated with the site surveying on the slope and a choice of the design falling block among them. The adaptation of the well-

known procedures to the modern design practice requires that the size of the falling blocks has to be related to its probability10

of occurrence, and viceversa.

Examples of volume-frequency laws are proposed in the literature. These relationships are obtained from the analysis of a

large number of rockfall events for which each observed event is dated and the volume of the fallen blocks is estimated. This

allows to draw a volume frequency curve in which each point corresponds to an observation. In general, precise catalogues with

a large number of events are rare because the road owners or the territorial administrations started the records of events, which15

have large return periods, only some tens of years ago. For common uses, e.g., design of protective devices or risk estimation,

for which there are no long records of events nor detailed surveys onsite, no operative procedures are consolidated and the

designer develops the project following his personal experience. In any case, the choice of the “characteristic block volume”

(design volume) has to be done by designer’s own engineering judgement. For this reason, it is affected by subjectivity.

With the aim to contribute to the overcoming of this design problem, this paper proposes a methodology for estimating the20

block volume frequency relationship that can be used for deriving the size of the design falling block having a prescribed return

period. The procedure, which is described in detail in Section 3, is based on the data reported in rockfall inventories and on

surveys at the foot of the slope, managed following a statistical procedure.

2 Power laws in rockfall analysis

Statistical analysis of historical data or experimental tests related to a certain natural phenomenon gives evidence that it is25

possible to deduce power laws that link the magnitude of the event to its frequency. These mathematical relationships can be

used for predicting type, extent, return time and magnitude of future events.

In the Fifties, Gutenberg and Richter (1956) observed that there was a relationship between cumulative number of earthquake

events exceeding a given value of magnitude N (m≥M) and the magnitude itself. They formulated the following law:

logN (m≥M) = α−βM (1)30

where α and β are site-dependent constants. More recently, as for earthquakes, statistical analyses of historical data sets have

been widely applied to derive the recurrence rate of events of given magnitude for other natural phenomena such landslides,

rockfalls, snow avalanches, etc. (Dussauge-Peisser et al., 2002; De Biagi et al., 2012; Corominas et al., 2014).
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The analysis of historical data, which are available in public archives or catalogues, is therefore extremely important for the

study of natural phenomena. With particular reference to landslides and rockfalls, this statistical approach has been recently

studied and applied by several authors in many mountain sites. Research has mainly focused on the analysis of the volume

distribution of rockfall events for the sites of Grenoble, Yosemite Valley, Arly gorges, British Columbia, Hong Kong, Italian5

Apennines, Aosta Valley, Christchurch-Canterbury and La Réunion Island (Dussauge-Peisser et al., 2002; Dussauge et al.,

2003; Keith Turner and Schuster, 2012; Abbruzzese et al., 2009; Brunetti et al., 2009; De Biagi et al., 2016b; Guzzetti et al.,

1994; Lari et al., 2014).

The comparison of the previous studies showed that negative power laws well fit all rockfall recurrence volume distributions.

However, some variability in the values assigned to the power law coefficients does appear. This has been mainly attributed to10

the variability in the sampling procedures of the landslide volumes. At present, no proper test equipment (which provide, as

for earthquakes, objective and reliable values that are comparable from one site to another) and standard procedures have been

defined for the different geological and structural settings where rockfalls may occur (Brunetti et al., 2009).

Rockfall inventories do not always contain quantitative and detailed information and the description of historical events

is often characterized by a low degree of accuracy. For example, in the Yosemite rockfall inventory (Wieczorek and Snyder,15

2004; Guzzetti et al., 2003), which can be considered as one of the largest detailed rockfall inventory, the exact locations

where rockfalls occurred, the detachment areas and the block volumes (or weights) are not always given. More often, size

and triggering information of the events is given in a qualitative and incomplete way; temporal information is not precise.

Rockfalls that occurred within a few hours from the same source area are sometimes listed as the same event, overestimating

its magnitude. In general, a lack of data on smaller rock blocks subsists while large and more damaging rockfalls were recorded20

regularly. Thus, it is clear that a certain degree of uncertainty and lack of homogeneity in the collected data exist.

Previous considerations, which have to be taken into account in treating historical data, are related to Yosemite Valley but

can be easily referred to almost all of the historical archives (Corominas et al., 2014; Brunetti et al., 2009; Corominas et al.,

2005).

In addition, the temporal length of the observations can affect the recurrence volumetric distribution. In particular, a few25

years time window underestimates larger collapses. Many authors examined the frequency-size distribution of both rockfalls

and fallen blocks and noted that the cumulative frequency is linearly related to the magnitude (block volume or rockfall volume)

on a log-log plot. In mathematical terms, the following power law relationship subsists:

n(v ≥ V ) = aV −b (2)

where n(v ≥ V ) is the frequency of blocks with size larger than V (generally, the size is expressed in m3), while a and b are30

constants: a relates to the frequency of blocks larger than a unit volume (i.e., 1 m3) and b represents the slope of the regression

line, or the fractal dimension (Turcotte, 1997), as sketched in Figure 1. With reference to the example of Figure 1, if the

volumes are expressed in cubic meters, a is the annual frequency of occurrence of a rockfall involving a block larger than 1

m3. In this case, supposing V =2.5 m3, n(v ≥ V ) is the annual frequency of blocks larger than 2.5 m3.
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Figure 1. Sketch of a n= aV −b power law relationship.

This formulation implies that (i) larger rockfall events are less frequent than those characterized by smaller size and (ii)

frequency-size distributions are well fitted by a power law only over a given range of volumes. In addition, (iii) the power

law exhibits a deviation from the observed distribution for volumes smaller than a certain value. This discrepancy has been

discussed in the literature. It can be the result of under-sampling of the smallest rockfall events (Brunetti et al., 2009; Stark5

and Hovius, 2001). While collapses of considerable sizes are easily identifiable and are almost always recorded, collapses of

very small rock blocks, mainly causing no damage, are unnoticed and, especially in the past, they have been rarely reported in

the archives. In addition, the formulation implies that rockfalls of huge sizes can be considered more reliable as much as the

recording time increases.

Referring to power laws applied to rockfall volumes, the values of the parameters of Eqn. 2 are variable. Dussauge-Peisser10

et al. (2002) analyzed a range of volumes spanning from 101 m3 to 106 m3 and suggested that b is not dependent on the scale of

study, slope lithology and fracture systems. Other authors propose different values of b, depending on the degree of fracturing:

the lesser the rock mass fracturing, the smaller the b value. Various studies have been performed for rockfalls less than 10 m3

(Gardner, 1970; Hungr et al., 1999), also by means of topographical techniques down to as 10−3 m3 (Dewez et al., 2013). Dai

and Lee (2001) studied 2811 landslides and rockfalls and Rousseau (1999) used seismic monitoring technique. On the contrary,15

coefficient a exhibits relevant fluctuation from one site to another.

As mentioned, Eqn.(2) can be related to the distribution of the volumes of the fallen blocks. The values of the parameters

a and b are variable. Parameter b could assume different values in the range 0.5 to 1.3. Various examples can be found in

literature. Crosta et al. (2007) determined different fractal dimensions in analyzing grain size curves obtained from different

spots of the deposit of a large rock avalanche occurred in 1987 in Central Italian Alps. Ruiz-Carulla et al. (2015) performed a
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detailed survey in order to highlight the differences in blocks distribution in various portions of the deposit of a rockfall and

found a b value ranging from 0.89 to 1.28. The same authors analyzed the dependency between the free fall height and the

value of b for various well documented rockfall events in Spain. They got that b increases as much as the falling height of the5

blocks increases (Ruiz-Carulla et al., 2016). Observing the data reported in the previously mentioned paper, it emerges that

the lithology of the rock mass affects the value of parameter b. For similar free fall heights, b=0.72 was computed for rockfall

in limestones and b=0.92 for rockfall in schists. The larger the b-value, the more comminuted the deposit. Hantz et al. (2016)

surveyed four deposits in the area of Grenoble, France, and found b-values ranging from 0.63 to 1.12. Parameter a exhibits

relevant variability from one site to another and it is essentially linked to the number of blocks counted on the deposit of the10

rockfall.

3 Proposed method

A three-steps procedure for deriving a volume-frequency relationship for falling blocks with a reduced number of available data

is built up and discussed in the following. Some aspects of the proposed methodology result from hydrological approaches in

flood frequency analyses (see Claps and Laio (2003)). The main hypothesis of the procedure is that the temporal occurrences15

(i.e., the events) are considered separately from the deposit volumes distribution in a representative area where the rockfall

phenomenon occurs. A representative area is defined as the portion of deposit beyond a defined line, in which the hazard is

computed. We consider the foot of the slope as a representative area.

As described in detail in this section, the required data for deriving a volume-frequency relationship are:

(i) a catalogue of events, i.e., events with quantitative rockfall volume estimates observed in the representative area. The20

catalogue is denoted as C. Referring to such input, at present, no real-time automatic systems able to detect the occurrence

of a rockfall event are diffused. Few examples of monitoring through sensors able to detect microseismic activity are

present in the literature. Unfortunately, the calibration of such systems is difficult and the results largely depends on

the environmental noises. Other non-real-time methodologies exist. For example, if the phenomena occur in a forested

area, the continuous growing of plants can give information about potential impacts (and tree damages) occurred in25

the past (Dorren et al., 2007). Anyway, this method suffers many epistemic uncertainties: the same rockfall event can

damage more than one tree, or, is not possible to distinguish between one or more events occurred during the same plant

growing season (Moya et al., 2010). In alternative, topographical approaches, e.g., laser scanning, are largely used to

monitor rock faces (Abellán et al., 2010, 2011), but a lasting survey campaign is required to get a robust catalogue of

events. The direct observation is still the most common, being a simple and cheap solution for drawing up a catalogue30

of rockfall events. Usually, local government, road supervisors or forestry service agents are involved in the collection

of data related to rockfall events, as reported by Dussauge-Peisser et al. (2002). Since direct observation is affected by

errors, in the proposed procedure, a threshold volume is considered, as described in the following;

(ii) a list of measured volumes that may have fallen down at any time. The list is denoted as F . Referring to such input,

different counting procedures have been developed. The simplest method consists in counting the fallen blocks and

5



classifying them into volume classes. Different approaches have been proposed, depending on the size of the rockfall.

For example, Corominas et al. (2012) directly counted (and classified) all the fallen blocks in small-size rockfall events5

occurred in Andorra. For larger phenomena, Ruiz-Carulla et al. (2015) proposed a methodology for obtaining a rockfall

block size distribution (RBSD) essentially based on block counting in small sampling plots and homogenization to the

whole debris cover. More complex methods make use of topographic techniques (Digital Elevation Models, orthophotos)

to identify the existing discontinuity sets and to compute the volume of the unstable rock blocks on the slope face

(Jaboyedoff et al., 2009; Mavrouli et al., 2015). In such cases, the time-magnitude relationship would refer to the release10

of blocks and fragmentation and comminution should be considered in the propagation analysis. In order to avoid this

problems, the authors suggest to consider a distribution of volumes obtained from surveys in the representative area.

Obviously, both the catalogue and the list must be related to the same area of the slope, i.e., its foot. All the blocks in

catalogue C are elements of the list F . In addition, the list F contains also fallen blocks that have not been observed neither

recorded. Because of that, its cardinality, i.e., the number of elements, is larger than the one of C.15

The first step of the analysis consists in choosing “relevant” events within the catalogue C. To this aim, a threshold volume

Vt is identified (details on the choice of Vt are provided in Section 3.1) and the elements of the catalogue C are split into two

sets. The events corresponding to a volume equal or larger than the threshold volume Vt are included in a reduced catalogue

C∗ mathematically described as:

C∗ = {e : e ∈ C ∧V (e)≥ Vt}, (3)20

where V (e) is the volume associated to falling event e. The events not satisfying this condition were discarded and, thus, not

considered in the analysis. The list F is treated in the same way: a list F∗ including all the volumes equal or larger than the

threshold volume Vt is set up:

F∗ = {s : s ∈ F ∧V (s)≥ Vt}, (4)

where V (s) is the volume associated to the s-th record of the survey at the foot of the slope (in the representative area). As25

before, the surveyed volumes smaller than Vt are not further considered in the analysis.

The second step of the analysis consists in the choice of two probabilistic models. One should be able to describe the

temporal occurrences of the events of catalogue C∗, the other to describe the distribution of the surveyed volumes in the list

F∗. It is assumed that the observed events are considered independent if the threshold value, Vt, is sufficiently high. Thus, the

temporal occurrences can be described with a rare events probabilistic law, i.e., a Poisson distribution. The block sizes at the30

foot of the slope follow a power law, as previously detailed. A Generalized Pareto Distribution (GPD) is adopted to describe

the sizes of the surveyed blocks in the list F∗. The GPD has two degrees of freedom and represents a good compromise

between the quality of the fitting (which, in general, increases as much as the number of degrees of freedom increases) and the

robustness of the model (which depends on the number of observations). GPD is chosen since it well fits the records of the

list F∗, being a power-like distribution, but other probabilistic distributions can be adopted and the proposed procedure easily5

adapted (Burnham and Anderson, 2003).
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Knowing the annual mean number of blocks bigger than Vt (i.e., λ) and the cumulative distribution function of the block

volume FV (v), the temporal frequency (the inverse of the return period T ) of blocks bigger than v is:

1−FV (v) =
1

T
(5)

Inversely, the volume with return period T (vT) is:10

vT = F−1
V

(
1− 1

λT

)
, (6)

where F−1
V (·) is the inverse of the cumulative density function of the probabilistic distribution describing the size of the

surveyed blocks, i.e., the Generalized Pareto Distribution, λ is the annual mean number of events.

The third step of the analysis consists in the estimation of the parameters of the statistical laws by means of the measured

rockfall data contained in C∗ and F . The former gives the parameter of Poisson distribution, while the latter the parameters of15

the Generalized Pareto distribution.

3.1 Definition of the threshold volume

The catalogue of the events C contains all the recorded events gathered in a time window, i.e., the beginning and the end of

the observation period. For sake of simplicity we consider that the end of the catalogue C coincides with the present time. The

catalogue has a temporal length τ (C) = t and is composed by events related to both small and large rockfall phenomena.20

Since the recording of the events is related to in-situ observations after the occurrence, events involving small rock blocks

are not always recorded. Therefore, there is the possibility that the catalogue C contains only a part of these small events. This

fact was considered in the proposed analysis with the introduction of a threshold volume, Vt, defined as the minimum size of

a fallen block that has always been observed and recorded (after its occurrence). This means that the threshold volume is not

necessarily the smallest volume in the catalogue of the events C. This concept is similar to the so called perception threshold25

in flood frequency analysis (Claps and Laio, 2003).

A reduced catalogue, which is mathematically described by Eqn. (3), is created. The cardinality of C∗, i.e., |C∗|, is equal to

n∗ and, as already specified, the events are considered independent. The value of the threshold volume influences the temporal

length of C∗. Since the decision of monitoring a rockfall prone slope usually begins after the occurrence of an event larger

than the threshold volume, it is possible to consider that, in a previous time interval of about half the annual mean frequency30

of the events of the reduced catalogue, i.e t/n∗, no events were recorded. This means that the temporal length of the reduced

catalogue is

t∗ = τ(C∗) = t+
t

2n∗
. (7)

The term t/n∗ represents the annual mean frequency of the events of the reduced catalogue.

3.2 Probabilistic model describing the temporal occurrence of the events in C∗5

Under the hypothesis of independence between the observations, the rockfall phenomenon is considered to be a complete

random process for which any realization consists of a set of isolated stochastically independent points in time (McClung,

7



Time

n
ow

S
T
A
R
T

ob
s.

V

Vt

C∗
V1 V2 V3 V4 Vn∗

t

t∗

C

Figure 2. Sketch of the catalogues of events C and C∗. The events which volume V (e) is larger than the threshold volume Vt are indicated

with blue bullets, those smaller than the threshold volume Vt are indicated with black bullets.

1999). In statistics, such process is known as Poisson point process. Therefore the events of the reduced catalogue C∗ within

the temporal range t∗ are considered as a realization of a Poisson point process. The mathematical relationship between the

probability of occurrence of n events during the observation period t∗, i.e., the probability mass function, is:10

p(n) =
e−λt

∗
(λt∗)n

n!
, (8)

where λ > 0 is the so-called parameter of the Poisson distribution. The hypothesis of independent and Poisson distributed

rockfall events is essential to relate the cumulative density function of the sizes of the surveyed blocks, FV (v), to that of the

annual maxima, GV (v), by means of:

GV (v) = e−λ[1−FV (v)]. (9)15

GV (v) represented the annual probability of occurrence of a rockfall characterised by a block of volume smaller than v.

3.3 Probabilistic model describing the record distribution in F∗

The probabilistic model of the volumes distribution at the foot of the slope is determined using the records contained in the

list F∗. As discussed, only blocks larger than the threshold volume, Vt, are considered. The Generalized Pareto Distribution

(GPD) is used and it has cumulative density function equal to:5

FV (v) = 1−
(
1+ ξ

v−µ
σ

)−1/ξ

, (10)
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where σ, ξ and µ are scale, shape and location parameters, respectively. The scale parameter is always positive and the distri-

bution has support v ≥ µ for ξ ≥ 0 or µ≤ v ≤ µ−σ/ξ for ξ < 0. The location parameter bounds the distribution. Since the

volumes smaller than Vt are not considered, the location parameter is equal to threshold volume, i.e., µ= Vt. The inverse of

Eqn.(10), to be used in Eqn.(6), is equal to:10

v(FV ) = F−1
V (FV ) = µ+

[
(1−FV )−ξ − 1

] σ
ξ
. (11)

In the present framework, substituting FV = 1− 1
λT , the volume, v(T ), corresponding to a return period T years is:

v(T ) = µ+
[
(λT )

ξ − 1
] σ
ξ

(12)

and the return period, T (v), corresponding to a volume v is:

T (v) =
1

λ

(
1+ ξ

v−µ
σ

)1/ξ

. (13)15

By consequence, the annual frequency of occurrence, which is the reciprocal of the return period, is:

1

T
= λ

(
1+ ξ

v−µ
σ

)−1/ξ

(14)

3.4 Evaluation of the parameters of the distributions

An estimate of the parameter λ of the Poisson distribution was obtained through the maximum likelihood method. The maxi-

mum likelihood estimate is an unbiased estimator of λ and was determined as:20

λ=
n∗

t∗
, (15)

i.e., as the ratio between the cardinality and the length of the time window of the catalogue C∗.

While the estimates of the scale and shape parameters, ξ and σ respectively, are determined through a maximum likelihood

scheme after imposing that the location parameter, µ, is equal to the threshold volume.

4 Examples25

With the aim to better explain the proposed methodology, it was applied to two areas affected by rockfalls. Both are located in

Aosta Valley, Northwestern Italian Alps, as shown in Figure 3: Buisson and Becco dell’Aquila.

4.1 Buisson site

Buisson site (UTM: 392267, 5077165, 32, T) is located on the left bank of Marmore torrent in the municipality of Antey-Saint-

André in Valtournenche at an altitude ranging from 1130 m to 1612 m a.s.l. The source area is composed of gneiss, which

are fine to medium grained rocks with the dominant bedding plane orientation 195/35. Discontinuity sets are observed along

270/85 and 320/80 planes, the latter being the orientation of the slope face. The study slope is mainly composed of debris5

9



Matterhorn

Breuil-Cernivia

Valtournenche

Chamois

4478 m
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Mont-Blanc
4810 m
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(b)

Figure 3. Map of the two test sites location in the Northwestern Italian Alps. “Buisson” site is shown with red bullet in subfigure (a), “Becco

dell’Aquila” site is shown with red bullet in subfigure (b).

which extends down the slope to the alluvial plain and is covered by irregular (from scanty to very dense) vegetation. The site

is close to a camping area, for which protection works and, thus, records of rockfall events, were performed since 1994, when

a large block (3 m3) hit a part of the area.

A detailed survey in the deposition area was performed: 60 blocks with volume ranging from 0.02 to 308 m3 were observed

and their position recorded through GPS. These data constitute the list F (Table 1). The analysis of the occurrences was done10

after the historical catalogue of the Geological Service of Aosta Valley region that reports 5 events in the site from 1994 (Sep

1994, Mar 1995, Sep 1996, Apr 1998, Oct 2002). Because of the continuous monitoring after the construction of the camping,

all the events occurred after 1994 were recorded and, thus, considered in the catalogue C and the reduced catalogue C∗, which

are coincident. The threshold volume Vt was set equal to 0.5 m3, i.e., the minimum size of the observed events in C. The

number of events considered in the analysis is equal to n∗ = n= 5. The corrected time t∗ is computed through Eqn. (7) and is

equal to 25.3 years. Eqn. (15) gives λ= 0.1976.5

10



smaller than 0.5 m3 larger than 0.5 m3

0.02 0.08 0.32 0.58 1.9 8.0 58.8

0.03 0.10 0.39 0.59 4.1 8.0 132.2

0.03 0.11 0.40 0.66 4.1 10.0 308.6

0.03 0.11 0.40 1.1 4.2 11.8

0.04 0.12 0.40 1.1 4.5 18.0

0.04 0.14 0.42 1.3 4.8 18.2

0.05 0.19 0.48 1.4 5.0 18.6

0.05 0.20 1.6 5.1 19.2

0.07 0.21 1.8 6.9 21.6

0.07 0.24 1.8 7.5 24.0

Table 1. Volumes of the surveyed blocks in the deposition area of Buisson site. The blocks are divided into two classes, depending on their

size (smaller or larger than Vt). All the blocks belong to the list F ; blocks larger than Vt belong to the reduced list F∗.

The reduced list, F∗, was determined after the definition of the threshold volume, see the right-hand side column of Table 1.

The volumes of the reduced list served for the evaluation of the parameters of the Generalized Pareto Distribution, which

estimates are reported in the bottom part of Table 2.

Obs. 1994-2016

t 23 yrs

Vt 0.5 m3

n 5

n∗ 5

t∗ 25.30 yrs

λ 0.1976

ξ 0.994

σ 4.418

µ 0.5

Table 2. Input and results of the analyses performed on Buisson site. The estimates of the parameters of the distribution are reported in the

bottom rows.

Figure 4 plots the volume-annual frequency of occurrence relationship given in Eqn. (14). Even if the theory allows the def-

inition of all the possible sizes bigger than Vt, an upper threshold value can be introduced taking into account the geostructural10

surveying of the rock slope that can give evidence of the maximum block size.
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Figure 4. Volume-annual frequency of occurrence plot related to Buisson site.

4.2 Becco dell’Aquila site

Becco dell’Aquila site (UTM: 341345, 5074157, 32, T) is located on the eastern side of Mont Chétif (2343 m a.s.l.) in the

municipality of Courmayeur at an altitude ranging from 1230 m to 1800 m a.s.l. The study area is largely composed of

Mont Chétif gneisses, which are fine to medium grained rocks, with the dominant bedding planes orientation of the foliation15

N 140/50. The site is close to a deposit of aggregates used for concrete production onto which a 20 m3 block fell on May 5,

2012. Despite a large rockfall event was recorded in 1903, systematic observations and monitoring activities on the site started

in 1998. An onsite survey was performed in the framework of a risk analysis for the activities at the foot of the slope the block

volumes were estimated by rough measurements and through the experience of the geologist. Block sizes are grouped into size

classes in a geometric progression following 21/2 with volume, as reported in Table 3.20

The historical catalogue of the Geological Service of Aosta Valley region reports 3 events in this site since 1998 (Apr

1998, Apr 2001, May 2012). The size of the fallen blocks is always larger than 5 m3. Considering that the slope is constantly

monitored it is evident that any event bigger than 5 m3 can be immediately observed and recorded. For this reason a threshold

volume Vt = 5 m3 was adopted. The catalogue C and the reduced catalogue C∗ are coincident, see Table 4 for details.

The number of events considered in the analysis is equal to n∗ = n= 3. The corrected time t∗ is computed through Eqn. (7)5

and is equal to 22.17 years. Eqn. (15) gives λ= 0.1353.

Referring to the distribution of the volumes, the reduced list, F∗, was determined after the definition of the threshold volume

(Table 3). The neglected data, i.e., belonging to volume classes smaller than 5 m3, are in italic in Table 3. The estimates of the

GPD are reported in Table 4.

Based on the previously discussed data it was possible to obtain the volume-annual frequency of occurrence that is reported

in Figure 5 (grey line). A detailed survey of the potential instabilities in the source area showed that the maximum size of the

12



Volume (m3) No. records Volume (m3) No. records

1.000 10 16.000 6

1.414 0 22.627 5

2.000 8 32.000 2

2.828 0 45.255 3

4.000 3 64.000 0

5.657 0 90.510 1

8.000 26 128.000 1

11.314 4 181.019 1

Table 3. List of the grouped volumes of the surveyed blocks on the slope of Becco dell’Aquila site. All the blocks belongs to the list F ; the

blocks that are larger than Vt, in normal font, belong to the reduced list F∗

Obs. 1998-2016

t 19 yrs

Vt 5 m3

n 3

n∗ 3

t∗ 22.17 yrs

λ 0.1353

ξ 0.5509

σ 7.7836

µ 5.0

Table 4. Input and results of the analyses performed on Becco dell’Aquila site. The estimates of the parameters of the distribution are reported

in the bottom rows (the standard deviations are detailed into brackets).

detachable block is about 200 m3. Similarly, an additional truncated volume-annual frequency of occurrence relationship is5

plot (dashed black line).

5 Discussions and conclusions

The definition of the relationship between the volumes that can detach from a slope and their return period is a parameter of

paramount importance for a correct design procedure. The proposed methodology allows to compute a volume-frequency law

that can be used in engineering calculations. Two different probabilistic models are considered: one for the Poisson’s point10

process related to the occurrences of the events, the other for the fallen block volumes distributions (the Generalized Pareto
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Figure 5. Volume-annual frequency of occurrence plot related to Becco dell’Aquila site.

Distribution, which is independent from the rockfall year of occurrence). In order to make these considerations and use these

probabilistic models, hypotheses are necessary.

The two probabilistic models are merged considering the hypothesis that the annual frequency of a rockfall related to the

threshold volume is the parameter λ of the Poisson distribution.15

The events described by Poisson’s probabilistic models need to be independent. In other words, no causality links have to

subsist. Under this hypothesis, the process is random (Moller and Waagepetersen, 2003). In the framework of rockfalls, the

validity of hypothesis was discussed by McClung (1999) who stated that the interaction between a natural hazard and anthropic

elements (say, vehicles, buildings) is a rare event that can be ascribed to a Poisson process. Similarly, Lari et al. (2014) and

Hantz and colleauges (Hantz et al., 2003; Hantz, 2011) invoke the same assumption.

Generalized Pareto Distribution has been chosen for fitting the values of the list F for various reasons:

– Pareto family distributions are very similar to power law distribution except for the fact that the former are bounded

distributions. The bound is represented by the location parameter µ in Equation (9);5

– GPD differs from the classical Pareto model for the introduction of a location parameter, which does not affect the slope

of the right part of the plot, being governed by the exponent −ξ−1;

– GPD is suitable for extreme value analysis. Pickands (1975) introduced it in the extreme value framework, as the distri-

bution of a sample of exceedances above a certain high threshold.

In rockfall studies, the main distinction between GPD and power law can be observed when the value of the volume tends to10

zero. GPD is finite for v→ 0, while power law diverges to ∞, as required by scale invariance (Turcotte, 1997). That is, for

the calculations proposed in the present paper, GPD and power law have the same right tail (linear in a log-log plot), while for

14



small volumes, the former is able to catch the fact that, as much as the volumes are close to the threshold value, Vt, a finite

number of blocks is counted in the representative area.

The degree of precision of the estimates of the parameters of Generalized Pareto Distribution is determined through a15

bootstrap analysis (Efron and Tibshirani, 1994; Bengoubou-Valerius and Gibert, 2013). This analysis allows to determine the

variance and the confidence bounds of the parameters of the GPD that fit each reduced list F∗ of the previously considered

rockfall sites. A hundred thousand bootstrap replications are made for each reduced list. For each replication, a bootstrap

sample, i.e., a resampling of the reduced list, is generated and an estimate of the parameters ξ and σ of the fitting Generalized

Pareto Distribution is made.20

From the set of the estimates of the parameters the bootstrap mean, variance and median and the values of 90% and 95%

confidence bounds are determined (Table 5). Note that the estimates of the parameters reported in Tables 2 and 4 are close to

bootstrap medians.

Buisson Becco dell’Aquila

ξ σ ξ σ

Mean 0.937 4.919 0.511 8.104

Variance 0.166 4.511 0.032 2.226

Median 0.944 4.610 0.520 7.897

90% conf.b. (0.186, 1.572) (2.247, 8.481) (0.196, 0.783) (6.088, 10.871)

95% conf.b. (0.093, 1.705) (1.932, 9.563) (0.103, 0.831) (5.821, 11.587)

Table 5. Bootstrap statistical parameters of the estimates of the parameters of the Generalized Pareto distribution related to the two example

sites.

In addition, for each bootstrap replication, once parameters ξ and σ are estimated, the volumes related to different (25 in

total) return periods between 10 and 1000 years are computed through Eqn. (12). As an example, the histogram of Figure 6

shows the frequency of the 1000 years return period volumes obtained at Becco dell’Aquila: they are well fit by a lognormal

law (red dashed line). The empirical distribution function is plot in the box of Figure 6. The values corresponding to cumulative

probability of 0.05 and 0.95 are identified with squares. These corresponds to the bounds of the 90% confidence interval: in

other words, this means that 90% of the volumes are larger than 73.8 m3 and smaller than 473.2 m3. Similarly, the bounds are5

determined on both sites for all the return periods considered in the range 10-1000 yrs. They are reported in dashed in Figure 7.

It results that the width of the 90% confidence interval increases as much as the return period increases. This implies a spread

of the value of the volumes of the blocks. Detailed and long records of the occurred events as well as a proper survey of the

volumes of the blocks would permit to increase the quality of the volume-frequency law and, by consequence, to reduce the

statistical errors in the procedure.

The proposed method allows to define the relationship between the return period and the volume of the blocks. This is a key

aspect in land management and planning, design of protection devices (Peila et al., 1998, 2007; Keith Turner and Schuster,5

15



Volume (m3)

0 500 1000 1500 2000

F
re

q
u

e
n

c
y
 (

1
0

3
)

0

1

2

3

4

5

Volume (m3)

0 500 1000 1500 2000

C
u

m
u

la
ti
v
e

 p
ro

b
a

b
ili

ty

0

0.2

0.4

0.6

0.8

1

Figure 6. Histogram of the volumes having 1000 years return period fitted by a lognormal law (red dashed line). The empirical distribution

function is plot in the box: the squares bound the 90% confidence interval.

Volume (m3)

10
0

10
1

10
2

10
3

A
n

n
u

a
l 
fr

e
q

u
e

n
c
y
 o

f 
o

c
c
u

rr
e

n
c
e

 (
y
r-1

)

10
-3

10
-2

10
-1

10
0

Volume (m3)

10
0

10
1

10
2

10
3

A
n

n
u

a
l 
fr

e
q

u
e

n
c
y
 o

f 
o

c
c
u

rr
e

n
c
e

 (
y
r-1

)

10
-3

10
-2

10
-1

10
0

Buisson Becco dell'Aquila

Figure 7. Results of the bootstrap analysis on the records on Buisson and Becco dell’Aquila sites. The continuous lines are plot from
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2012; Mignelli et al., 2012, 2013; Dimasi et al., 2015) and for for the modern design approaches based on return period of

natural hazards (De Biagi et al., 2015, 2016a) and on structural robustness (Cennamo et al., 2015; De Biagi and Chiaia, 2013;

De Biagi, 2016). The bootstrap analysis has shown that the quality of the input data can affect the results particularly when

long return periods are considered. Hence, in these cases, a critical analysis of the estimated volumes is required in the design

process.10
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