
Dear editor, 
 
Thanks for the opportunity to address the new round of reviews. Our response is detailed in 
the the account given below, which is followed by marked-up versions of the manuscript with 
tracked changes - both the paper and the supporting material. I hope this is OK. 
 
Yours sincerely 
 
Rasmus Benestad 

   
Response to the reviewer: NHESS 
 
Report #1 
 
In the response letter (reply to referee 1), the authors agree that “it is a bit misleading to call 
it [the obtained type of return-level estimate] an upper bound” and state that they use the 
term potential sensitivity instead. However, the terms “upper bound” and “upper limit” still 
occur at various places, particularly the abstract (l.9), method description (ll.90,92), 
conclusions (ll.285,290) and supplementary material (l.79). While I understand that it might 
be unavoidable to use such terms in some cases, it is still not fully clear from the reasoning 
presented in the manuscript why this “potential sensitivity” (of precipitation to temperature 
changes) is actually an upper bound for the expected precipitation changes and might not be 
further magnified by other (temperature-unrelated) effects. Clarifying this in the manuscript 
(with probably just a few more words) still appears necessary. 
 
Thanks for pointing this out. It is useful to learn that parts of our description was not 
sufficiently clear, and we have inserted some more text to clarify the issue about “upper 
bound” and “potential sensitivity”. The changes are visible through tracked changes.  
 
The order or figures in the Supplementary Material is not fully clear to me. If this order shall 
represent the order of appearance in the main manuscript (as I suppose) the correct order 
should be SM2, SM3, SM1, SM4, etc. Moreover, if I am not fully mistaken, the R scripts used 
for obtaining the presented results had been provided in the Supplementary Material of the 
discussion paper, but not in that of the final paper; thus, the corresponding statement and 
referencing in ll.100-101 should be corrected. 
 
Thanks for the suggestions. The SM figures have been rearranged according to the 
proposed order. The R-code is still part of the supporting material as supporting material, but 
we forgot to include them in the revised version. They will definitely be included in the final 
version.  
 
As has also been criticized in the discussion paper, the variable mu is used in different ways, 
i.e., for the annual wet-day mean precipitation (l.142) and the observed monthly mean 
(l.150), which is quite confusing. I suppose that the statistical exponential model of the 
wet-day mean precipitation as considered by the authors has firstly been developed on an 
annual basis, but is later being used separately for each calendar month. If this is correct, it 
would be helpful if the authors could state this explicitly within Section 2.2.  
 
Thanks for this comment. It was the mean seasonal variation in e​s​ that was used to train the 
model for mu, and some text has been added to clearify that.  



 
In ll.144-145, the authors state that they assume that “factors other than temperature that 
are affecting wet-day precipitation are stochastic and stationary”. However, the validity of the 
stationarity assumption seems to be tested only for the wet-day frequency (Section 1 of the 
Supporting Material). A few words on this aspect at the mentioned position in the text would 
be helpful. 
 
We have added a couple of lines about interdependencies and our heuristic physical picture 
of the atmosphere.  
 
Several references appear incomplete, especially Benestad et al. 2012a (pages missing, 
also in SM), Berg et al. 2013 (volume and pages missing, typo in journal name), Takayabu et 
al. (volume and pages missing) and Benestad 2008 (only SM – what is this reference?). 
 
These details have now been included. 
 
In general, the validity of the exponential approximation of the PDF of the wet-day 
precipitation might have been shown in the existing literature, but the quality of this 
approximation should still be discussed briefly in the manuscript or at least in the SM. 
Specifically, I understand the authors’ argument that they consider only moderate extremes 
(1 in 20 years, 95% quantiles, cf. p.2 of the response letter to the original reviews) – but 
then, they should state this explicitly in the text and emphasize that the approach is likely to 
perform less well if even rarer extremes are considered (say, 50 or 100-year return levels). 
 
This has now been added​.  
 
In connection with Fig. SM9, it would be good if the authors could highlight the stations with 
statistically significant trends (e.g., by a black circumference of the filled circles). In the 
caption of Fig. SM8, it is mentioned that there are regions with significant trends; these are, 
however, hard to assess in Fig. SM9. It should also be briefly stated how significance should 
be assessed here (i.e. if the statistical independence assumption of a classical t-test would 
hold or if there are sufficiently strong serial correlations in the historical records that would 
call for more complex testing approaches like block bootstrapping). 
 
In both Fig SM7 and SM9 the locations with significant trend (5%-level) have been 
highlighted. The test was based on a regression analysis and the p-value associated with 
the fitted slope of a linear fit.  
 
In relation with Fig. SM10, please add a very short explicit statement on the selection criteria 
for the chosen stations. Was it just time series length and data quality? This is just to clarify 
that they might not be any selection bias. 
 
Only stations with more than 20000 valid data points were selected, and only the 1945--2015 
period was used. 
 
% Technical comments: 
% - Line 24: MunichRe is a reinsurance, not an insurance company.​ ​OK 
% - Line 41: “demands have limited”.​ ​Thanks! 
% - Data and Methods: Since the introductory paragraphs of this section set the stage for 
the details presented in the following subsections, use of past tense is rather unusual here. 



Please consider using present tense here instead. ​We use past tense to describe what we 
did and present tense for valid conditions irrespective of time.  
% - Line 122: remove “in the SM”. ​OK.  
% - Line 255: Table 4 should be Table 2.​ ​OK 
% - Line 281: better start the conclusions in present perfect tense, i.e., “we have 
proposed…”.​ ​OK 
% - SM, line 1: “additional analyses that address some…”. ​OK. 
% - SM, line 14: “influence”. ​OK. 
% - SM, line 20: “not too sensitive”.​ ​OK 
% - SM, line 26: “increase over southern Norway”.​ ​OK.  
% - SM, line 28: “typically by the order of 0.1 mm/day…”.​ ​OK.  
% - SM, line 41: “consistent with a near-constant…”.​ ​OK.  
% - SM, line 50: “suggest the highest”. ​OK. 
% - SM, line 57: it is not clear what “its density” refers to in this sentence. ​The vapour 
density. 
% - SM, line 59: “wet-day mean precipitation than temperature…”. ​OK.  
% - SM, line 90: “with predominantly orographic”.​ ​OK.  
% - SM, line 102: “South America”.​ ​OK.  
% - SM, line 125: “is often comparable…” – if this is really often the case, one or two 
corresponding references would be reasonable.​ ​OK. 
% - Fig. SM1, caption: please add a statement that the results refer to a single selected 
station only.​ OK.  
% - Fig. SM2, caption: please use \ln to suppress italics in the presentation of the 
logarithm functions​. Ok.  
% - Fig. SM4, caption: “the relative change in comparison to…”. ​OK.  
% - Fig. SM5, caption: “between the seasonal cycles in…”.​ ​OK.  
% - Fig. SM6, caption: “long-term linear trends”.​ ​OK. 
% - Fig. SM10, caption: “The inset shows…”.​ ​OK.  
 
Report #2.  
  
The authors present an improved version of their previous submission. However, there are 
still parts that are unclear and there is some poor writing in places. 
 
We have re-read and revised the paper.  
 
The conclusions section discusses the assumptions and the key outcome of the analysis. 
What is missing are some statements regarding the scope of validity of the study. Which 
assumptions have been shown to be consistent with the historical data? How robust is the 
result given the limited number of RCMs used and the focus on a single scenario?  
 
This paper only mentions RCMs in the introduction, but the results were not based on RCM 
simulations. The results presented here involve several emission scenarios (RCP 2.6, 4.5, 
and 8.5) in addition to multi-model ensembles.  The analysis was in large parts based on 
historical data. The comment does not make sense.  
 
 
% The other reviewer also highlights some poor writing. Examples of poor writing are: 
%  
% P.2 - "The use of RCMs ARE", should be is. 
% P.2 - "and phenomena but subject". Please add comma before but. 



%  
% Please have a careful read through your document for such issues. 
%  
% Further, there are some unclear sentences. For example: 
%  
% P.2 - "...associated with uncertainties from a number of sources, many of which are 
connected with methods..." What are the methods you are referring to here? 
%  
 
I cannot find these passages in our manuscript. These comments do not make sense.  
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Abstract. We present estimates of future twenty-year return-values for 24-hr precipitation based on

multi-model ensembles of temperature projections and a crude method to quantify c1how warmer c1 the potential sensitivity of
precipitation intensity to warmer
conditionsconditions may influence the precipitation intensity. Our results suggest an increase by as much as

40-50% projected for 2100 for a number of locations in Europe, assuming the high RCP8.5 emission

scenario. The new strategy was based on combining physical understanding with the limited avail-5

able information, and utilised the covariance between the mean seasonal variations in precipitation

intensity and the North Atlantic saturation vapour pressurec2. Rather than estimating the expected c2 to estimate its potential
sensitivity with respect to
temperature variationsvalues and interannual variability, we tried to c3estimate an "upper bound" for the response in the pre-
c3 estimate an upper bound based
on the potential sensitivitycipitation intensity based on the assumption that the seasonal variations in the precipitation intensity

are caused by the seasonal variations in temperature. Return-values were subsequently derived based10

on the estimated precipitation intensity through a simple and approximate scheme that combined the

one-year 24-hr precipitation return-value and downscaled annual wet-day mean precipitation for a

1-in-20 year event. The latter was based on the 95th percentile of multi-model ensemble spread of

downscaled climate model results. We found geographical variations in the shape of the seasonal

cycle of the wet-day mean precipitation which suggest that different rain-producing mechanisms15

dominate in different regions. These differences indicate that the simple method used here to es-

timate the response of precipitation intensity to temperature was more appropriate for convective

precipitation than for orographic rainfall.

1 Introduction

Extreme precipitation is associated with flooding and landslides and can have detrimental effects on20

infrastructure and society (Trenberth et al., 2003), as for example during the unusually intense cloud-
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burst in central Copenhagen on July 2, 2011 which caused massive flooding, and the 2002 floods in

central and eastern Europe (Hov et al., 2013). Return-values are commonly used in planning and

design of weather-resilient infrastructure by quantifying the magnitude of a typical extreme event.

However, the return-values are not stationary, and according to the c4reinsurance company Munich c4 Text added.25

Re (Hov et al., 2013), there has been an increase in the annual number of loss events related to

weather. Assessments carried out by the Intergovernmental Panel on Climate Change (IPCC) indi-

cate that heavy precipitation will become more severe in already wet areas in the future (Stocker,

T.F. et al., 2013; Field et al., 2012). These assessments have largely been based on global climate

model (GCM) output and have not made use of additional local information such as meteorolog-30

ical observations. One of the difficulties of using observational data is the patchy character of the

information because of missing data and short records. GCMs are not designed to represent local

precipitation statistics corresponding to rain gauge data, but are expected to reproduce the nature

of large-scale (regional and global) phenomena and processes seen in the atmosphere and oceans.

Also, some elements are reproduced with higher skill than others. In other words, GCMs provide a35

more reliable picture of the temperature aggregated over larger spatial scales than of grid-box pre-

cipitation estimates (Takayabu et al., 2015), and their ability to simulate large-scale features can

be utilised for inferring changes to local precipitation through downscaling (Benestad, 2008). This

caveat also applies to regional climate models (RCMs), which too have a minimum skillful scale

(Takayabu et al., 2015), and have a limited ability to reproduce the observed precipitation statistics40

(Orskaug et al., 2011; Benestad and Haugen, 2007). Nevertheless, RCMs have been used to study

precipitation extremes (Frei et al., 2006, e.g.), although the heavy computational demands c5have c5 has

limited the analysis to a small number of GCMs which means that the ensembles do not provide a

realistic range of possible outcomes associated with natural variability and model uncertainty (Deser

et al., 2012).45

Traditional methods of estimating return-values that make use of the extreme value theory (EVT)

are sensitive to sampling fluctuations and require long data records to avoid extrapolation of the

extreme characteristics (Coles, 2001; Papalexiou and Koutsoyiannis, 2013). Extreme precipitation

modeled through EVT usually describes amounts that are far out in the tail of the distribution and

associated with low probability, and the estimates may change when new extremes are sampled.50

Most uses of EVT also assume stationarity, although there are ways to account for trends (Cheng

et al., 2014).

Local precipitation has been notoriously difficult to predict (Stocker, T.F. et al., 2013; Field et al.,

2012; Arkin et al., 1994), and one reason may be that it has involved quantities such as the monthly

mean precipitation that are calculated from a blend of different (both dry and wet days) conditions55

and phenomena without accounting for these differences. There are many different types of phenom-

ena that generate precipitation, e.g., the formation of stratonimbus, mid-latitude cyclones, fronts,

atmospheric rivers, convection, as well as warm and cold initiation of rain (Fleagle and Businger,
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1980; Berg et al., 2013; Trenberth et al., 2003). Some of these are more strongly present in certain

regions and seasons. For instance, convective precipitation is typically a summer phenomenon at60

mid-to-high latitudes, whereas mid-latitude cyclones are more pronounced in autumn, winter, and

spring. Another reason for the limited success may be the small sample size in calculations of the

mean precipitation for locations and seasons where it rains rarely. For example, if it rains less than

30% of the total number of days in a month, the monthly average precipitation is based on less than

10 values. The quantification of future extreme precipitation is associated with uncertainties from65

a number of sources, e.g., model imperfections, sparsity of data, sensitivity to random variations in

small samples constituting the tail of the distribution, and non-stationarity, as well as the representa-

tion of natural variability. Large multi-model ensembles can be used to explore the natural variability

of the climate system, although the range of the ensembles also includes other sources of uncertainty

and variability, and some ensemble members may be inter-dependent (Sanderson et al., 2015).70

Moderate extremes in 24-hr precipitation amounts (X) can be approximated with an exponential

distribution (Benestad et al., 2012a, b; Benestad, 2013), which is described with one parameter - the

wet-day mean µ - and its percentile (qp) can be estimated as qp = − ln(1− p)µ. The exponential

distribution can be used to estimate changes in the moderate upper tail of the statistical distribution,

assuming that these follow changes in the bulk characteristics where the probability adds up to unity75

(Benestad and Mezghani, 2015). This approximation has been tested against daily rain-gauge records

from around the world, confirming that the exponential distribution (qp = − ln(1− p)µ) predicts

the observed precipitation percentiles with high accuracy for low to moderately heavy precipitation

amounts (Figure SM1). This means that µ is useful for risk analysis, to estimate upper percentiles

of 24-hr precipitation amounts, because the 95th percentile q95 is expected to change proportionally80

with µ (Benestad, 2013; Benestad and Mezghani, 2015).

2 Data and Method

Our objective was to get estimates of future extreme precipitation that were robust to outliers in

situations when local observations are limited and to avoid some of the caveats described above. We

therefore explored a method of extracting information about extreme precipitation from the mul-85

titude of data sources available while reducing the uncertainty associated with small sample sizes

and blended conditions. Our analysis drew on available and relevant information concerning pre-

cipitation, for instance geographical variations, seasonal variations, ensemble spread, and different

physical processes present during wet and dry days, respectively.

The estimated precipitation change was based on the change in temperature and did not explicitly90

take atmospheric circulation changes or feedback processes into consideration. c1This change can c1 It

c2for all intents and purposes be interpreted as c3a zeroth-order measure of an"upper bound" of c2 Text added.
c3 an upper limitchange c4in precipitation intensity associated with increased temperature, rather than the most likely
c4 Text added.

value. c5Attributing all of the seasonal variations in the precipitation intensity to its covariance with c5 Text added.
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temperature may inflate the role of the temperature, as other factors exhibit a similar mean seasonal95

cycle and may have an influence on the precipitation intensity. For this reason, we use the terms "up-

per bound" and "potential sensitivity". It is also true that other unaccounted-for processes possibly

may influence the precipitation intensity in a nonlinear fashion and possibly result in even higher in-

tensities if they also change in the future. However, as long as (a) such factors have an approximately

linear dependency on the temperature and (b) the temperature may be taken as a proxy for climate100

change, then this simple assumption may provide a reasonable figure. c6This simple method differs c6 Hence, it differed

from traditional methods in that rather than attempting to specify the most likely value, it estimates a

kind of upper c7bound of the systematic response of extreme precipitation to changes in temperature. c7 limit

We henceforth describe this relation as the potential sensitivity (PS) since the calibration used the

covariance of the mean annual variation that may exaggerate the effect of the temperature. This is105

described in more details below.

Our approach was based on empirical-statistical downscaling (ESD) applied to a large multi-

model ensemble to provide estimates of return-values for heavy precipitation, and is an alternative

to EVT-based approaches. It provided an estimate that was more approximate and crude, but less

sensitive to outliers because a larger portion of the data sample is used.110

The supporting material (SM) provides more details and explanations of the strategy, as well as

the R-scripts used to perform the analysis. The calculations and graphics were produced with the

open-source R-package ’esd’ (Benestad et al., 2015).

2.1 Data

Precipitation observations were obtained from the daily ECA&D dataset (Klein Tank et al., 2002)115

for 1032 stations in northern Europe with data available for the time period 1961–2014 (Figure 2).

Surface temperature data from the NCEP/NCAR reanalysis 1 (Kalnay et al., 1996) over a selected

North Atlantic domain (100◦W-30◦E/0◦N-40◦N; see Figure SM2) were used to calculate the pre-

dictors for the downscaling, and corresponding projections from the CMIP5 ensembles of GCMs

assuming the RCP 2.6, 4.5, and 8.5 scenarios (?) were used for the projections of future change120

(Table 1). We used the NCEP/NCAR reanalysis 1 because the data covered the 1961–2014 period

and because it provided a representation for the surface temperature that was comparable to that of

the CMIP5 GCMs.

2.2 Downscaling method

2.2.1 Predictand: the annual wet-day mean precipitation125

A traditional approach for modeling and analysing precipitation typically involves the monthly mean

precipitation (X̄), but in this study, we instead downscaled the wet-day mean, µ. c1In this analysis c1 Text added.

we used µ to represent the wet-day mean precipitation in general, reflecting both the annual wet-day

mean precipitation and the mean seasonal variations in the wet-day mean precipitation estimated

for the 12 calendar months. The mean precipitation was not the optimal quantity for describing130
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precipitation statistics because in most places, it doesn’t rain every day, and the proportion of wet

days to total number of days in a monthly sample can have implications for the estimation of the

statistical parameters describing the distribution. The mean precipitation can be expressed as the

product of the wet-day frequency (fw) and µ according to X̄ = fwµ. A comparison between the

seasonal dependence of X̄ , µ, and wet-day frequency fw indicated a stronger seasonal cycle in µ135

than in fw and X̄ (see Figure SM3c2). The weaker seasonal cycle in X̄ was due to the blending c2 in the SM

of different types of weather conditions in the mean precipitation. The strong seasonal cycle of

µ indicated a sensitivity to climatological variations, which is an important requirement for the

statistical downscaling strategy proposed here.

2.2.2 Predictor: the saturation vapour pressure140

We assumed that the vapour saturation pressure, es, is more linearly related to the atmospheric water

content and precipitation than the temperature, and hence used es as a predictor in the downscaling

of the annual wet-day mean precipitation µ (Fujibe, 2013; Pall et al., 2007; Benestad and Mezghani,

2015). The saturation vapour pressure was estimated from the surface temperature c1(0.995 sigma c1 Text added.

level), T .145

es = 10(11.40−2353/T ) (1)

This approximation was based on integration of the Clausius-Clapeyron equation, assuming a

constant latent heat of vaporisation (see Equation 2.89 in Fleagle and Businger (1980)). The c2mean c2 Text added.

seasonal variations in the regional average es over the North Atlantic domain was used as predictor

for µ c3, based on its mean seasonal variation (Figure 1) and c4 the motivation c5was that it can be c3 Text added.
c4 with
c5 Text added.

150

considered as the source region for humidity in Europe. The domain was set after some trials for

a few test stations, but no systematic study or tuning of the predictor domain was conducted. The

predictor index was calculated from gridded temperature data from reanalyses and global climate

models (GCMs) and then spatially and temporally aggregated, where monthly gridded es values
c6were estimated according to equation 1 and surface temperatures from the multi-model ensemble c6 Text added.155
c7and used to downscale an ensemble of local results of annual wet-day mean precipitation µ̂ c8(here c7 were

c8 Text added.µ̂ is used for predicted annual mean).

2.2.3 The empirical-statistical model

A model for predicting the annual wet-day mean precipitation µ̂ c9 can be constructed as a sum of a c9 (here µ̂ is used for predicted
annual wet-day mean
precipitation)constant, β0, a term depending on the saturation vapour pressure, βT es, and a Gaussian noise term,160

N(0,σ), assuming that factors other than temperature that are affecting wet-day precipitation are

stochastic and stationary:

µ̂= β0 +βT es +N(0,σ). (2)
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c10The assumptions about other factors being stationary and stochastic is partly based on the c10 Text added.

heuristic notion of physical interdependencies between various aspects of the planetary atmosphere165

in general and that the temperature is a proxy for such influences. One example may be the cloud

top height which is expected to be influenced by the convective available potential energy (CAPE)

that is sensitive to temperatures. We used the observed standard deviation of µ in the month with the

highest inter-annual variability as an estimate of the standard deviation σ of the noise termN , which

in this case was August. We calculated the coefficients β0 and βT by linear regression between the170

mean seasonal cycle of the observed monthly mean µ and the corresponding seasonal cycle of the

regionally averaged es calculated from reanalysis temperature data from the Atlantic domain, as de-

scribed in Section 2.2.2. The coefficient βT is the scaling ratio which we refer to as the potential

sensitivity.

Annual mean time series µ̂ were then derived by applying the downscaling models to annual175

mean es time series obtained from reanalysis or GCM temperature data from the same domain.

The GCM results were not bias-adjusted, however, the use of large-scale (100◦W-30◦E/0◦N-40◦N)

spatially and annually aggregated mean helped mitigating the effects from systematic model biases.

The model represented an approximation of the systematic effect that temperature changes can have

on µ, rather than a most likely value. It is possible that other factors that play a role in precipitation180

also exhibit a seasonal cycle and interfere with the regression analysis so that the coefficient is

weaker or stronger than the true influence of temperature on precipitation.

A 90% uncertainty range for µ̂ was estimated for the projections based on the ensembles of down-

scaled results, taken as the limit between the 5th and 95th percentiles (see, e.g, Figure SM4). This

interval included the noise term N(0,σ), and captured the observed year-to-year variations as well185

as model differences (Deser et al., 2012). We assumed that the multi-model ensemble spread for any

given year could approximately represent the typical year-to-year variance, which meant that the

95th percentile for µ̂, which we henceforth refer to as µ̂95, could be used as a proxy for the value

to be exceeded once in 20 years (Benestad, 2011). (The 1-in-20 year event has a probability of 0.05

(1/20) of occurring in a given year, and the 95th percentile represents a limit that only 5% (1 in 20)190

of the distribution exceeds.)

2.3 Return-value probabilities

To estimate future return-values based on the downscaled µ̂, we again assumed that the wet-day

precipitation-amount was exponentially distributed and that the probability for 24-hr precipitation

exceeding a critical threshold x could be calculated as follows:195

Pr(X > x) ≈ fwe
−x/µ, (3)

where fw was the wet-day frequency (Benestad and Mezghani, 2015). c1Previous analysis suggest c1 Text added.

that the exponential distribution gives a reasonable description of the probabilities for moderate pre-

6



cipitation events such as the 95-percentile, but is not expected to be suitable for rare extremes much

beyond the 20-year return level (Benestad, 2013).200

The probability associated with the one-year return-value of 24-hr precipitation is approximately

Pr(X > x) = 1/365.25, and the corresponding threshold value was approximated according to

x1yr ≈ µ ln(365.25 fw). (4)

Previous comparison between the return-values based on Equation 4 and general extreme value

theory, has suggested that they give roughly similar results (Benestad and Mezghani, 2015). A test205

of Equation 4 indicated that the return-values scale with µ: values of x1yr that were associated with

high percentiles and low values of µ̂ approximately corresponded to x1yr with low percentiles and

high values of µ̂ (Figure ??). Based on Equation 4, we made a rough estimate of the 20-year return-

value for the 24-hr precipitation amount (x20yr) by replacing µ with the 20-year return-value of

the annual wet-day mean. The estimate for x̂20yr was calculated based on the downscaled annual210

wet-day mean precipitation, using the 95th percentile µ̂95 as a proxy for the 20 year return values:

x̂20yr = µ̂95 ln(365.25 fw). (5)

In calculating future return-values, we neglected changes in fw and simply assumed that it will

remain constant. Previous analysis has indicated that the wet-day frequency is strongly influenced by

circulation patterns (Benestad and Mezghani, 2015), and that it is closely connected to slow natural215

variations such as the North Atlantic Oscillation (NAO) (Hurrell, 1995). Such natural variations

are difficult to predict and there is little evidence of a systematic shift in the frequency of different

circulation patterns.

2.4 Principle component analysis of the seasonal cycle

Principal component analysis (PCA) was used to extract the most dominant shapes of the seasonal220

cycle in µ amongst the observation sites (2). The mean seasonal cycle was estimated for each site

and used to construct a data matrix X with 12 columns (one for each month) and n rows (one for

each site). Singular value decomposition (SVD) was then used to compute the principal components:

UΣV T =X , where U is the left inverse, V the right inverse, and Σ is a diagonal matrix holding the

eigenvalues (Press et al., 1989; Strang, 1988). The procedure deconstructed the data into a set of225

shapes of the seasonal cycle, corresponding eigenvalues that described the explained variance, and a

spatial matrix that described the relative strength of each shape at the different locations.
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3 Results and discussion

3.1 Potential sensitivity and the seasonal cycles in µ and es

The mean seasonal cycles of µ at many European locations co-varied with the mean seasonal cycle230

of es in the North Atlantic domain. This can be seen as a validation of the assumptions underlying

the empirical model, because the downscaling models were based on the regression between the

seasonal cycles of es and µ (Equation 2). Figure 1 provides an example of a scatter plot between the

mean seasonal variations in es (x-axis) and the corresponding cycle in µ (y-axis) for one location

(Velikie Luki, Russia). The example in Figure 1 was not unique: there was a high and statistically235

significant correlation (R2 > 0.6; Figure SM5) between the seasonal cycle of these two quantities

for many of the rain gauge records (612 of the 1032 stations). The majority of the locations with

a poor fit (R2 < 0.6) were found along the Norwegian west coast and southeast of the Alps, while

inland sites and locations in central Europe had higher R2 values (see Figure 2 where the size of the

markers is proportional to R2). This indicated that a linear relationship between µ and es could not240

be expected in regions where orographic precipitation was dominant. Downscaled projections were

carried out only for the locations with a good fit (R2 > 0.6).

It was also evident that there were pronounced year-to-year variations in the wet-day mean (ver-

tical error bars in Figure 1) which were not related to the temperature, suggesting that factors other

than temperature also played a role in precipitation variations. The downscaling strategy adopted245

here was designed to evaluate the maximum potential effect of temperature changes on the wet-day

mean precipitation, and the scaling factor between the two is described as the potential sensitivity.

Since other processes also influenced precipitation, the method could not be expected to reproduce

past interannual variability, but it could be used to obtain a rough estimate of the effect of temperature

changes on precipitation.250

Figure 2 presents maps showing the two major components of the mean seasonal cycle in µ,

which together accounted for 94% of the variability for the 1032 locations examined. The spatial

patterns in the principle components (PC) revealed different seasonal cycles of precipitation along

the mountainous western coast of Norway and close to the Alps compared to the rest of Europe,

probably related to orographic effects. There was a gradient in the shape of the mean seasonal cycle255

in µ with the distance from the coast that was particularly visible over the Netherlands. Inland sites

indicated higher precipitation intensities during July and August, which could be associated with

convective rainfall. We found a positive correlation between the spatial vector of the leading PCs

and R2 of the seasonal cycles of es and µ: 0.82 (with a 90% uncertainty range of 0.80, 0.84), but

negative correlation for mode 2 (-0.84; -0.86,-0.82) and no significant correlation for mode 3 (0.00;260

-0.06, 0.06). This indicated that the dominant shapes of the seasonal cycle of µ in Europe were

associated with a strong connection to the North Atlantic temperature.
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3.2 Projections of future precipitation

Projected values of the annual mean wet-day mean, µ̂, based on the downscaling model (Equation 2)

applied to the CMIP5 ensemble, are shown in Figure 3. The downscaled results suggested an increase265

of up to 13% in the wet-day mean from 2010 to 2100, assuming the RCP 4.5 emission scenario

(Stocker, T.F. et al., 2013), and as much as 38% at many of the locations given the high emission

scenario RCP8.5. The most extreme estimate was an 85% increase at Sihccajavri (Norway). Since the

wet-day precipitation amount approximately followed an exponential distribution, the proportional

change in any percentile was the same as for µ. The insert in Figure 3 shows estimated changes for270

the emission scenarios RCP4.5, RCP2.6 and RCP 8.5, respectively, for both the ensemble mean and

95th percentile.

An analysis of historical observations provided some indication of skill of the downscaling mod-

els in terms of predicting trends of µ based on the North Atlantic temperature (Figure SM6). The

historical trends exhibited a more pronounced scatter than the predicted trends, suggesting that fac-275

tors other than the sea surface temperature also had influenced the long-term changes. For most

locations, there has been an increase in µ between 1961 and 2014, typically 0.1 mm/day per decade

(Figure SM6–SM7).

Estimates of future 20-year return-values (Equation 5) based on µ̂95 and assuming a constant value

of the wet-day frequency, fw, are shown in Table 2. Based on downscaling of the RCP4.5 scenario,280

the 20-year return values may increase by between 7% and 28% by 2100 (ensemble median: 11%),

or assuming the high emission scenario RCP8.5, between 22% to 85% (ensemble median: 33%).

Nevertheless, changes in fw may also influence the return-values, and an increase in the number of

rainy days would imply an even stronger change in return-values.

The historical fw trends at the stations tend to cluster roughly around zero (Figure SM8). How-285

ever, studying the geographical pattern of trends, we saw a general increase in southern Scandinavia

and the Netherlands for the period 1961–2014, but a less coherent pattern elsewhere (Figure SM9).

This implied that factors other than the North Atlantic temperature may also have played a role for

past trends and future precipitation changes. The wet-day frequency was strongly influenced by the

circulation patterns (Benestad and Mezghani, 2015) and could potentially be predicted based on the290

mean sea-level pressure, but here we have focused on the influence of temperature changes on the

precipitation.

3.3 Validation of results

In order to assess the veracity of our results, we performed an independent test to examine the

dependency of µ to temperature, consisting of a regression analysis comparing the spatial variations295

of the mean of µ and es calculated from local temperature measurements (Benestad, 2007) (see

Figures SM10–SM11). The test was limited to locations where both temperature and precipitation

observations were available and did not involve the regionally averaged temperature of the North
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Atlantic domain. The geographical variations in the relationship between µ and es was consistent

with the regression coefficients from the downscaling models (Equation 2, Figure 3) within the range300

of estimated error margins (Figure SM11). An exception was seen in stations located in western

Norway and south of the Alps, where the seasonal cycle regression also showed a weak relationship

between µ and es. The fact that the link between µ and es was found in both time and space provided

a stronger indicator of a physical link than if it were limited to only the time dimension.

4 Summary and conclusions305

We changeproposehave proposed a novel and simple method for obtaining an approximate estimate

of changes in the return-values for 24-hr precipitation caused by a temperature change, taking all

precipitation relevant processes into account. This method made use of the information embedded in

the seasonal cycle, physical conditions, and multi-model ensembles, to provide a rough estimate of

the potential sensitivity of precipitation intensity to temperature. The results suggested that the c1ze- c1 Text added.310

roth-order estimate for an upper bound of the twenty-year return-value for many European locations

increases by 40-50% by 2100 for the RCP8.5 scenario, rather than the exact or most likely value.

One of the benefits of the proposed strategy for downscaling µ is that the description of the sea-

sonal cycle does not require long data records and hence may provide a means for estimating c2a c2 the

zeroth-order value for the potential sensitivity and an c3"upper limit" to the change in rainfall statis- c3 upper limit315

tics in regions with limited observations. This strategy can be used for other mid-latitude locations,

but further analysis is needed to see if it is applicable to the monsoon regions where the temperature

is at maximum before the rains start. An alternative approach could be to estimate future changes in

µ based on downscaled local temperature from GCMs and a similar regression model as used in the

test described above.320

The approach was based on a set of assumptions: (a) the maximum seasonal mean response of the

wet-day mean precipitation to the seasonal variations in temperature is represented by a proportional

change, (b) the 95th percentile of the annual wet-day mean precipitation from large multi-model

ensembles (e.g., CMIP5) can be used to represent a 20-year event, and (c) the wet-day frequency is

stationary. On the one hand, this new strategy is less rigorous than traditional extreme value statistics,325

but on the other hand, it is more robust to outliers even in cases when the available information is

limited.

Another potential weakness of the study is the use of the multi-model ensembles as a repre-

sentation of natural climate variability. These "ensembles of opportunity" involve non-independent

members and cannot really be considered as a random sample of data (Sanderson et al., 2015). How-330

ever, internal variability dominates the variance on regional and local scales and gives a spread that

is comparable to the observed variations even in single-model ensembles (Deser et al., 2012).
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Figure 1. A comparison between the mean seasonal cycle in the saturation vapour pressure (x-axis) and the
wet-day mean (y-axis) for the site Velikie Luki, Russia. The error bars indicate two standard deviations of the
year-to-year variations in the two variables. An insert show the standardised seasonal cycles, both variables
peaking in July-August (red line = es, blue line = µ).
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Figure 2a
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Figure 2b

Figure 2. The weights for the two leading principal components (panels a and b) of the seasonal cycle of the wet-
day mean precipitation µ in the 1032 rain gauge records. The colour of the symbols indicate how strongly the
shape is present in the local seasonal cycle, and the size reflectsR2 from the regression analysis between es and
µ (see Figure SM5). Filled circle symbols were used for locations with R2 > 0.6, empty rings 0.6≥R2 > 0.4,
and crosses indicate locations with R2 < 0.4. The shape of the seasonal cycle principal component for µ is
shown in the insert (top right of each panel).
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Figure 3

Figure 3. Projected local change from 2010 to 2100 in the ensemble mean and 95th percentile annual mean µ
for the RCP4.5 emission scenario. The colour of the inner part of the symbols indicate changes in the ensemble
mean and the outer part the 95th percentile in terms of percentages since 2010. The insert shows a boxplot of the
projected change in µ, both for the ensemble mean (left) and the 95th percentile (right) of emission scenarios
RCP4.5, RCP2.6, and RCP8.5, respectively.
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Table 1. Summary of the CMIP5 experiments. The RCP4.5 was used as default here, whereas RCP2.6 and 8.5
were taken as lower and upper limits based on different emission scenarios.

Ensemble Total ensemble size (with duplicated models)

RCP4.5 108 runs

RCP2.6 81 runs

RCP8.5 65 runs

Table 2. Summary of the projected change from 2010 to 2100 in the 20-year return-value for 24-hr precipita-
tion under the assumption of stationary wet-day frequency. The sample comprises the 615 locations shown in
Figure 3. The numbers represent the change in percentage with respect to year 2010.

Ensemble Min. q25 Median Mean q75 Max.

RCP2.6 4% 5% 6% 6% 7% 14%

RCP4.5 7% 10% 11% 13% 15% 28%

RCP8.5 22% 28% 33% 38% 44% 85%
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Supporting material - figure captions

Figure SM1. Test for assessing the consistency between the percentiles taken from observations and estimated
values using qp =−ln(1− p)µ where the values of qp are estimated using different values of p to compensate
for variations in annual mean µ. A critical threshold x can correspond to different percentiles according to
x= qp1 =−ln(1− p1)µ1 = qp2 =−ln(1− p2)µ2.
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Figure SM2. The mean air temperature at 2m of the NCEP reanalysis data set over the chosen predictor domain
100W-30E/0N-40N.

Figure SM3. A comparison between the seasonal cycle in the mean precipitation, the wet-day mean precipita-
tion, the wet-day frequency, as well as the wet and dry spell lengths. The most pronounced seasonal variations
tends to be associated with the wet-day mean rather than the mean precipitation or the wet-day frequency.

Figure SM4. An example of projected annual wet-day mean precipitation µ for the three different emission
scenarios RCP 4.5 (grey), RCP2.6 (green) and RCP8.5 (red), expressed as the relative change to the 2010
values (see Table 1).

Figure SM5. The statistics of the R2 from the regression between the seasonal cycle in the the local wetday
mean µ and the regionally averaged saturation vapour pressure es, estimated from the temperature over the
seasonal cycles of the surface temperature over the North Atlantic domain (100W-30E/0N-40N; Figure SM3).
There is a portion of stations with very lowR2 scores, but most stations suggest an explained variance exceeding
60%.

Figure SM6. A comparison between the longterm linear trends estimated from the observed annual mean µ
and µ̂ values estimated with Equation 1 (see main manuscript) using the saturation water vapor es calculated
from the NCEP temperature over the North Atlantic domain (100W-30E/0N-40N; Figure SM2). The scatter in
the observed trends is greater than in the predicted ones, which is consistent with the wet-day mean also being
affected by factors other than es.

Figure SM7. Map of the historical trends in the wet-day mean µ in the period 1961–2014. The trend is generally
increasing, but there are a few stations showing a decrease. These outliers are probably spurious, as they do not
match the bulk of the data.

Figure SM8. Trend estimates of the wet-day frequency fw for the 1032 locations for the period 1961–2014
suggests values scattered around zero. The cluster of trend values around zero is consistent with the annual
wet-day frequency being stationary, but there are regions with significant trends (Figure SM9).

Figure SM9. Map of the historical trends in the wet-day frequency fw for the period 1961–2014. There has
been a general increase in the number of wet-days in southern Scandinavia but otherwise no coherent pattern.

Figure SM10. Scatter plot showing the correlation between the climatological mean daily maximum tempera-
ture (converted to saturation vapour pressure) and the wet-day mean µ. The size of the symbols is proportional
to the number of rainy days. Insert map shows locations of stations used to compare the climatological mean
wet-day mean against the mean surface temperature. The colours of symbols in the scatter plot match those in
the map. The data included CLARIS data set from South America, a subset of the ECA&D in Europe used in
the COST-VALUE experiment 1, and a subset of station data from GDCN as in Smith et al. (2015) but selecting
the stations with the longest records. The selection of location was also limited to sites where both temperature
and precipitation had been recorded.

Figure SM11. Comparison between the regression coefficients estimated for each location based on the sea-
sonal cycles in µ and es (blue) and based on the regression analysis of the mean climatology of µ and es at
various stations in Europe, South America and North America as in Figure SM10 (grey). Error bars represent
two standard errors. The size of the symbols is proportional to the R2 statistics from the regression analysis
between the two mean seasonal cycles. The comparison between the results from the two types of analyses
suggests a consistency within the margin of error for the locations where the mean seasonal cycle in µ matched
that of the regionally averaged es in the predictor domain (Figure SM2).
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Abstract. This supporting material provides additional c1analyses that addresses some of the as- c1 analysis

sumptions made in the main paper. It also explains the strategy that we chose and to emphasise this

has been structured as questions and answers. The analysis presented here was carried out with the

open source R-package ’esd’ (Benestad et al., 2015). An R-markdown script with the step-by-step

code of the analysis is available from figshare.com for the sake of traceability and replicability (DOI:5

10.6084/m9.figshare.4476419)

1 Is the wet-day frequency stationary?

In this paper, we estimate future return-values of precipitation based on temperature projections, but

neglect to evaluate changes in the wet-day frequency (fw) and simply assume it to be stationary.

How does this assumption hold up? Has the wet-day frequency varied significantly in the past and10

do we expect large changes in the future? To answer these questions we have studied the seasonal

cycle and past trends of the wet-day frequency.

Changes in the wet-day frequency affect the probability for heavy precipitation amounts in the

future according to Pr(X > x) = fw e−x/µ, and hence influencec2 future return-values according c2 s

to x1yr = µ ln(365.25× fw). This goes for both long-term changes (trends) as well as interannual15

to decadal variations. Historical precipitation observations can be used to estimate the interannual

variability of fw and its effect on x1yr, but short records mean that the sample size is limited and

may preclude a complete account of the effect of decadal changes.

The wet-day frequency responds weakly to the seasonally varying conditions (Figure SM3; grey

curve), which suggests that it is not c3too sensitive to systematic changes in the state of the local en- c3 as20

vironment. We can also make use of some information from past trends in the wet-day frequency, as
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climate change is already happening (Figures SM8 and SM9). Historical data suggest different ten-

dencies in different regions (Figure SM9), and previous analysis indicates that the wet-day frequency

is strongly influenced by the circulation patterns (Benestad and Mezghani, 2015). The analysis of

historical precipitation records over the period 1961-2014 show little trend in fw when taking the25

mean over all locations (Figure SM8), and the only clear spatial pattern is an increase c4over south- c4 of

ern Norway (Figure SM9). This should be compared to the wet-day mean precipitation µ which

for most of the sites increased during the same period, typically c5by the order of 0.1 mm/day per c5 Text added.

decade (Figures SM6 and SM7).

2 Does variation in the wet-day mean precipitation really correspond to changing probabili-30
ties?

The probability framework adopted here can be formulated as Pr(X < x|µ), meaning that it is con-

ditional on the sample mean of µ and that the distribution is exponential. Previous studies have

found that the wet-day daily precipitation is approximately exponentially distributed (Benestad and

Mezghani, 2015; Benestad et al., 2012b; Benestad, 2007; Benestad et al., 2012a), albeit with a sys-35

tematic bias connected to the location. The assumption can be assessed by comparing the actual

percentiles with quantiles estimated for different samples with different annual mean µ using the

formula for exponentially distributed data:

qp =−ln(1− p)µ. (SM1)

The exponential distribution implies a similar proportional change for all percentiles, which is40

roughly consistent c1with a near-constant ratio of increase in daily precipitation percentiles above the c1 Text added.

90th percentage (Pall et al., 2007). The two quantities should be similar (as Figure SM1 indicates)

and the data scattered along the diagonal in a scatter plot, indicating that a high percentile associated

with a low wet-day mean µ is consistent with a more moderate percentile for a sample with a higher

wet-day mean value.45

3 Why use the 100◦W − 30◦E/0◦N − 40◦N region of the North Atlantic as predictor?

The choice of predictor region (Figure SM2) in this study was motivated by the idea that the North

Atlantic ocean is an important moisture source for precipitation over Europe and prevailing winds

suggest that the moisture is transported from the west. Also, the sea surface temperature is highest at

low latitudes, which suggest c2the highest evaporation closer to the equator. The analysis presented c2 Text added.50

here suggests a good match between the seasonal variations of the temperature averaged over this

region and the local wet-day mean (see Figure 1 of the main manuscript). The predictor was defined

as the area mean saturation vapour pressure and the domain was set after some trials for a few

stations, but this crude trial did not involve any systematic study nor any type of fitting/tuning.
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4 Why use the saturation vapour pressure as predictor and not the temperature?55

It is often wise to make use of terms with similar physical dimensions when calibrating statistical

models (Benestad et al., 2008). The saturation vapour pressure is proportional to c1the vapour density c1 its

(ideal gas law: es = ρRsT ), and the total mass is the product between volume and density. The

saturation vapour pressure is expected to be more linearly related to the wet-day mean c2precipita- c2 Text added.

tion than temperature because their physical dimensions both involve a measure of the water mass. If60

temperature was used, on the other hand, then the relationship would be expected to be nonlinear due

to the Clausius-Clapeyron equation (es = 10(11.40−2353/T ) where T is the temperature in Kelvin).

How representative is the exponential distribution for the probabilities associated with heavy

precipitation? The exponential distribution is a simple form for the gamma distribution and has

only one parameter µ determining its shape as opposed two (location and scale) which gives more65

freedom in the data-fit. None of these, however, are normally used for the estimation of return-

periods and general extreme value (GEV) or generalized Pareto distributions usually used to fit the

upper tail of the distribution for stationary data where the shape of the PDF does not change. In

the non-stationary case, the small sample represented by the upper tail may not provide the best

information in terms of the calibration of a changing PDF over time. Since the area under the curve70

is always unity (probabilities always add up to one), the upper tail is constrained by the rest of the

PDF. An approximate way to tackle the changes is therefore to make use of the bulk of the PDF

(Benestad and Mezghani, 2015).

5 Why use the seasonal cycle for model calibration?

Precipitation is generated by different atmospheric processes and depends on many factors. Hence75

the signal-to-noise ratio is often low for traditional model calibration based on chronological match-

ing between the amount and some large scale variable such as regional temperature.

One technique commonly used in physics and electronics for optimising the information from

systems and measurements with low signal-to-noise ratio involves cycles with well-established fre-

quencies (eg. FM in radio, phase-locking), and in meteorology/climatology seasonal variations is80

the most pronounced cycle. There has also been some analysis of tropical cyclone frequencies based

on the seasonal variations (Benestad, 2009), but there is an important caveat associated with such

studies: the seasonal variations in the local insolation may affect both the large scale conditions and

the local variable under investigation, and their correlation may reflect the common dependency on

this forcing rather than common link. Thus, the assumption that the seasonal cycle in the tempera-85

ture over the North Atlantic is linked with the seasonal precipitation statistics is the weakest point

of this study if one interprets the results as the most likely estimate of the wet-day mean precip-

itation. Nevertheless, from a physics perspective, it is expected that higher temperatures result in

higher evaporation and higher humidity, hence, an increased capacity for greater rainfall amounts.
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We use the link between the seasonal cycles of µ and es to estimate an upper limit of the effect of a90

change in temperature on the precipitation, rather than the most likely estimate of the wet-day mean

precipitation itself. Calculating a climatological seasonal cycle gives a larger sample size compared

to analyses applied on individual years, and gives a value that is based on a sample stretching over

longer time periods. Calibration on larger sample sizes stretching over longer time periods puts more

weight on slow processes with long time scales.95

The link between the seasonal cycles of local µ and the mean es over the predictor domain (Fig-

ure SM2) was first assessed by the R2 of the regression. Figure SM5 shows a histogram of the R2

scores, most of which have an explained variance of over 60%. The majority of the stations with poor

fits are found in the mountainous parts of western Norway and the Alps (the size of the markers in

Figure 3 of the main manuscript are proportional to R2), which indicates that the method proposed100

here does not work in regions with c1predominantly orographic precipitation. c1 Text added.

A second level of validation was to compare trends of historical observations of µ to predicted

trends of µ̂ (the seasonal cycle downscaling model applied to the annual mean es calculated from

NCEP reanalysis temperature data). Figure SM6 shows that there is a more pronounced scatter in

the observed trends than the predicted trends, which indicates that factors other than the sea surface105

temperature, that are not captured by the climatological downscaling model, also have influenced

the long-term changes.

The link between the wet-day mean precipitation and temperature is also assessed by extending

the analysis to the spatial as well as the temporal dimension. The fact that this relationship exists

in two different dimensions is a stronger indicator of a physical link than if it were to be limited to110

only one. Figure SM10 shows a scatter plot between es and µ calculated based on the local mean

daily maximum temperature and precipitation, respectively. The fitted line shows the regression be-

tween the local seasonal cycles of µ and the temperature for 1420 locations (CLARIS data) in South
c2America, Europe (stations selected for the COST-VALUE experiment 1), and the US (GDCN). c2 a

The analysis indicates that the wet-day mean (y-axis) increases by 0.4 mm/day per degree C (x-115

axis) increase of the local temperature if the elevation is accounted for. The coefficient of the spatial

regression is generally consistent with the coefficients from the regressions based on the seasonal cy-

cles, within the range of estimated error margins (Figure SM11). An exception was seen in stations

located in western Norway and south of the Alps, where the seasonal cycle regression also showed

a weak relationship between µ and es. It is not expected that the results should be identical, as the120

climatological temperature involves the mean of the local daily maximum temperature from the sta-

tions, whereas the seasonal temperatures were taken from a large region of the ocean and represented

daily mean temperature. Nevertheless, similar values for the regression coefficients between es and

µ supports the hypothesis that the precipitation amounts are linked to temperature in a way that gives

similar changes through the seasonal variations as in spatial variations.125

4



6 Is the model ensemble spread a good proxy for probabilities?

Model ensembles do not really provide estimates of probabilities because they cannot be considered

as a random sample of data and because they do not give a perfect reproduction of the observed

quantities. According to the IPCC “Ensemble members may not represent estimates of the climate

system behaviour (trajectory) entirely independent of one another. This is likely true of members that130

simply represent different versions of the same model or use the same initial conditions. But even

different models may share components and choices of parameterisations of processes and may

have been calibrated using the same data sets. There is currently no ‘best practice’ approach to the

characterization and combination of inter-dependent ensemble members, in fact there is no straight

forward or unique way to characterize model dependence” (Knutti et al., 2010). Nevertheless, the135

spread of downscaled annual mean temperature from ensemble experiments such as CMIP5 is often

comparable to the magnitude of the observed year-to-year temperature variations(Benestad et al.,

2016), and the 95th percentile has been used as an approximate estimate of a one-in-twenty year

hot summer season (Benestad, 2011). For all intents and purposes, we have used the interval of the

ensembles (see, e.g., Figure SM4) as a measure of the variations of the climate system (Deser et al.,140

2012).
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Figure SM1. Test for assessing the consistency between the percentiles taken from observations and estimated
values using qp =− ln(1−p) µ where the values of qp are estimated using different values of p to compensate
for variations in annual mean µ. A critical threshold x can correspond to different percentiles according to
x= qp1 =− ln(1− p1) µ1 = qp2 =− ln(1− p2) µ2.
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Figure SM2. The mean air temperature at 2m of the NCEP reanalysis data set over the chosen predictor domain
100◦W -30◦E/0◦N -40◦N .
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Figure SM3

Figure SM3. A comparison between the seasonal cycle in the mean precipitation, the wet-day mean precipi-
tation, the wet-day frequency, as well as the wet and dry spell lengths for a single selected station. The most
pronounced seasonal variations tends to be associated with the wet-day mean rather than the mean precipitation
or the wet-day frequency.
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Figure SM4

Figure SM4. An example of projected annual wet-day mean precipitation µ for the three different emission
scenarios RCP 4.5 (grey), RCP2.6 (green) and RCP8.5 (red), expressed as the relative change in comparison to
the 2010 values (see Table 1).
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Figure SM5

Figure SM5. The statistics of the R2 from the regression between the seasonal cycles in the the local wet-
day mean µ and the regionally averaged saturation vapour pressure es, estimated from the temperature over
the seasonal cycles of the surface temperature over the North Atlantic domain (100◦W -30◦E/0◦N -40◦N ;
Figure SM2). There is a portion of stations with very low R2 scores, but most stations suggest an explained
variance exceeding 60%.
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Figure SM6

Figure SM6. A comparison between the long-term linear trends estimated from the observed annual mean µ
and µ̂ values estimated with Equation 1 (see main manuscript) using the saturation water vapor es calculated
from the NCEP temperature over the North Atlantic domain (100◦W -30◦E/0◦N -40◦N ; Figure SM2). The
scatter in the observed trends is greater than in the predicted ones, which is consistent with the wet-day mean
also being affected by factors other than es.
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Figure SM7. Map of the historical trends in the wet-day mean µ in the period 1961-2014. The trend is generally
increasing, but there are a few stations showing a decrease. These outliers are probably spurious, as they do not
match the bulk of the data.
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Figure SM8. Trend estimates of the wet-day frequency fw for the 1032 locations for the period 1961-2014
suggests values scattered around zero. The cluster of trend values around zero is consistent with the annual
wet-day frequency being stationary, but there are regions with significant trends (Figure SM9).
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Figure SM9. Map of the historical trends in the wet-day frequency fw for the period 1961-2014. There has
been a general increase in the number of wet-days in southern Scandinavia but otherwise no coherent pattern.
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Figure SM10

Figure SM10. Scatter plot showing the correlation between the climatological mean daily maximum tempera-
ture (converted to saturation vapour pressure) and the wet-day mean µ. The size of the symbols is proportional
to the number of rainy days. The inset shows locations of stations used to compare the climatological mean
wet-day mean against the mean surface temperature. The colours of symbols in the scatter plot match those in
the map. The data included CLARIS data set from South America, a subset of the ECA&D in Europe used in
the COST-VALUE experiment 1, and a subset of station data from GDCN as in Smith et al. (2015) but selecting
the stations with the longest records. The selection of location was also limited to sites where both temperature
and precipitation had been recorded. Only stations with more than 20000 valid data points were selected, and
only the 1945–2015 period was used.
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Figure SM11

Figure SM11. Comparison between the regression coefficients estimated for each location based on the sea-
sonal cycles in µ and es (blue) and based on the regression analysis of the mean climatology of µ and es at
various stations in Europe, South America and North America as in Figure SM10 (grey). Error bars represent
two standard errors. The size of the symbols is proportional to the R2 statistics from the regression analysis
between the two mean seasonal cycles. The comparison between the results from the two types of analyses
suggests a consistency within the margin of error for the locations where the mean seasonal cycle in µ matched
that of the regionally averaged es in the predictor domain (Figure SM2).
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