

1 The role of EMODnet Chemistry in the European challenge for 2 Good Environmental Status

3 4 Matteo Vinci¹, Alessandra Giorgetti¹, Marina Lipizer¹

5 6 ¹ OGS (Istituto Nazionale di Oceanografia e di Geofisica Sperimentale) Borgo Grotta Gigante 42/C - 34010 - Sgonico
(TS) - Italy

7 8 *Correspondence to: Matteo Vinci mvinci@inogs.it, Alessandra Giorgetti agiorgetti@inogs.it, Marina Lipizer
mlipizer@inogs.it*

9 **Abstract:** the European Union set the ambitious objective to reach within 2020 the goal of Good Environmental Status.
10 The Marine Strategy Framework Directive (2008) represents the legislative framework that drives Member States
11 efforts to reach it. The Integrated Maritime Policy supported the need to provide a European knowledge base able to
12 drive sustainable development by launching in 2009 a new European Marine Observation and Data Network
13 (EMODnet). Through a stepwise approach, EMODnet Chemistry aims to provide high quality marine environmental
14 data and related products at the scale of regions and sub-regions defined by the Marine Strategy Framework Directive.
15 The Chemistry Lot takes advantage and further develops the SeaDataNet pan-European infrastructure and the
16 distributed approach, linking together a network of more than 100 National Oceanographic Data Centres providing data
17 from more than 500 data originators. The close interaction with EEA, RSCs, ICES and EMODnet-MSFD coordination
18 group allows to assess the most proper set of information necessary for the MSFD process. EMODnet Chemistry
19 provides aggregated and validated regional data collections for nutrients, dissolved gasses, chlorophyll and
20 contaminants, properly visualised with OGC WMS and WPS viewing services. Concentration maps with 10-year
21 moving window from 1960 to 2014, by season and for selected vertical layers are computed and made available.
22

23
24 **Keywords.** Marine chemistry; Europe; Marine Strategy Framework Directive; Good Environmental Status;
25 Eutrophication; Contaminants;

26 1. Introduction

27 The European Union has set the ambitious objective to reach within 2020 the goal of Good Environmental Status for
28 our oceans and seas. The challenge consists in facing the environmental degradation caused by years of unsustainable
29 and inefficient growth model.

30 The Marine Strategy Framework Directive (MSFD, European Commission 2008) adopted in 2008, with its eleven
31 descriptors and related indicators, represents the legislative framework and the backbone of this work. This process is at
32 the moment in the half way between the adoption (2008) and its deadline (2020). The main features of this strategy are:
33 the ecosystem approach (to provide an integrated evaluation of the activities affecting our seas) and the common efforts
34 required by the Member States for the cooperation between neighbouring countries.

35 Initial efforts have already been undertaken by Member States that in 2012 provided their initial assessments. More has
36 to be done on the cooperation side and especially on the integration between Member States (MS) and Regional Sea
37 Conventions (RSC).

38 The report from the Commission on the first phase of implementation of MSFD indicates a high level of heterogeneity
39 among MS reports and in several cases poor data availability and accessibility (Dupont et al., 2014; Palialexis et al.,
40 2014). The consequence of this result is a situation where the evaluation at higher level (Regional and EU) is difficult to

41 perform. This first phase of MSFD implementation has somehow brought Europe one step closer to the ecosystem
42 approach. Nevertheless the stakeholders should capitalize the lessons learned focusing on the highlighted gaps and the
43 too heterogeneous results should be the basis to develop a more homogeneous approach.
44 In view of the revision of the assessment in 2018, several efforts are required to overcome the shortcomings identified
45 in the first reporting phase. The actions should be focused on different aspects like revised criteria for GES,
46 methodological standards and standardised methods for monitoring, assessment and data availability, implementation of
47 integrated information systems at regional and EU level.
48
49 In the field of marine research, during the last decades several oceanographic data management initiatives faced the
50 challenge of data availability, interoperability and resilience at Pan-European level.
51 Interoperability is defined as “the ability of a system to work with or use the parts of another system”, while resilience
52 is defined as “the ability of a system to cope with change”. The translation of these principles in the oceanographic data
53 management consists in the development of a long life system able to easily interact with other systems.
54 Since 2007, the Directive establishing an Infrastructure for Spatial Information in the European Community (INSPIRE,
55 2007/2/EC) has been the driving principle to ensure that the European spatial data infrastructures are compatible and
56 usable in a transnational context. The Directive requires that common implementing rules are adopted for the
57 organisation, accessibility and sharing of spatial information with a focus to the implementation of interoperability of
58 spatial data sets and services. Marine data management communities, developed in the framework of initiatives such as
59 Medatlas (1994-2001) and SeaSearch (2002 - 2005) that converged later in the SeaDataNet (2006-2015) experience,
60 faced the challenge to provide access to the huge amount of already existing but fragmented and inaccessible data
61 collected by EU oceanographic institutes. This was done developing a system able to collect, standardise, quality
62 control and share the information, taking into proper account the data policies.
63 The simple but efficient idea was the active collection of the EU oceanographic data at national level carried out by a
64 network of National Oceanographic Data Centres (NODCs). The collection of those data was done in direct
65 communication with the data originators to ensure the best set of measured data and related metadata. Metadata, that are
66 all the information needed to describe exhaustively the data, are key elements to enable browsing and discovering the
67 data.
68 Between the data collection and sharing, the crucial steps to ensure interoperability and reliability consist in
69 standardization and quality control.
70 The standardization is done, following the interoperability principles provided by INSPIRE, at two main levels:
71 syntactic and semantic. The first is done providing common formats for the files providing metadata and data (XML
72 ISO, ascii). The second is done thanks to a set of common vocabularies that let to “use the same language” to describe
73 data and metadata over time, different projects and nationality.
74 The quality control procedures provide the necessary labelling to complete the harvested information with the
75 evaluation of their reliability.
76 Finally the registered users can access the needed information according to data access and usage policies defined in
77 agreement with the originators.
78 In order to extend this approach to different disciplines of the marine environment, at EU level, the Directorate-General
79 for Maritime Affairs and Fisheries (DG-MARE) launched since 2009 a set of thematic contracts to establish a European
80 Marine Observation and Data Network (EMODnet).The aim of the initiative was to improve the availability of high
81 quality marine environmental data at the scale of regions and sub-regions of the Marine Strategy Framework Directive,

82 to build a knowledge base that can assist in the implementation of marine policies and drive sustainable development.
83 The EMODnet Lots with their infrastructure could play a central role specifically for countries where the Regional Sea
84 Conventions are less mature to support the need of qualified and standard information at national, regional and bigger
85 scale.

86 **2. Background**

87 A pilot project was launched by DG-MARE in 2009 to create the components of the European Marine Observation and
88 Data Network (so called ur-EMODnet), as proposed in the EU Green Paper on Future Maritime Policy (European
89 Commission 2006), consisting in six thematic data portals managing data on bathymetry, marine geology, chemistry,
90 biology, seabed habitats and physical oceanography. Based on the successful experience of the SeaDataNet (SDN)
91 project (7th Framework Program), EMODnet Chemistry adopted its approach (Vinci et al., 2013). The principle was to
92 take advantage of its efficient and distributed infrastructure for the management of data deriving from in situ and remote
93 observation of seas and oceans. This infrastructure can be considered a European de-facto standard, as it already
94 involves around 100 institutes (nodes) from 35 countries and is adopted and continuously adapted according to specific
95 requirements for chemical data management.

96 SeaDataNet is actively involved in the development of standards that follow the INSPIRE implementing rules to ensure
97 interoperability such as:

- 98 • Common metadata standards based on the Extensible Mark-up Language (XML), based on ISO 19115/19139
99 schema;
- 100 • Standard data transport formats ODV ASCII, MEDATLAS and NetCDF (CF);
- 101 • Common quality control methods and quality flag scale;
- 102 • Common Vocabulary Web services, used to mark-up metadata and data, covering a broad spectrum of
103 disciplines and governed by an international board (SeaVox);
- 104 • SOAP Web services for various communication tasks;
- 105 • Open Geospatial Consortium (OGC) compliant services (Web Map Service, Web Feature Service, Web
106 Processing Services) for viewing services of data products.

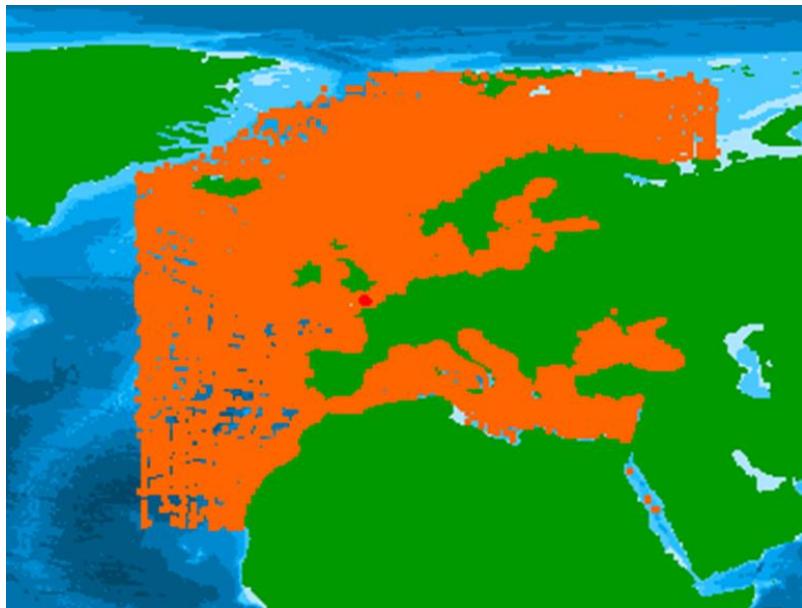
107
108 The partnership involved a subgroup of the SeaDataNet network of National Oceanographic Data Centres (NODCs)
109 with specific experience in data collection, in data analyses, validation and creation of products and in the technical
110 partners who further developed SDN infrastructure. The Chemistry Pilot project was focused on the collection and
111 management of data on some chemical parameters relevant for the MSDF (contaminants and fertilisers), in three
112 matrices (sediment, seawater and biota) and in three areas of interest: the North Sea, the Black Sea and some spots in
113 the Mediterranean Sea.

114 The comparison of the harvested data between sea basins highlighted a highly heterogeneous situation according to the
115 different parameters. Data distribution consisted, on one hand, in coastal time series stations monitored at regular
116 temporal scale, on the other, in data homogeneously distributed at basins level, but discontinuously in time. Furthermore,
117 high heterogeneity in data managed resulted in the different sampling and analytical protocols adopted, as well as in the
118 different target species. As a last step of the pilot project data visualizations were provided as interpolated maps when
119 data were homogeneously distributed in time and space and as time series plots to allow visualization of data with

120 fragmented spatial coverage. The viewing products were made available on the dedicated web portal in OGC compliant
121 format (WMS layers).
122

123 **3. EMODnet**

124 The positive outcomes from the pilot project confirmed the interest in the further development of a marine observation
125 infrastructure able to provide data and knowledge required to support the development of marine economy whilst
126 supporting environmental protection needs, as underlined in the Green Paper Marine Knowledge 2020 (European
127 Commission 2012). The new phase includes data collection for all European sea-basins: the Baltic Sea, the North-East
128 Atlantic Ocean, the Mediterranean Sea and the Black Sea and involves 46 partners, both from research institutes and
129 national monitoring agencies.


130
131
132 **Fig. 1: The EMODnet Chemistry partnership**

133
134 Data managed by EMODnet now include also silicates, chlorophyll, partial pressures of dissolved gases (oxygen and
135 carbon dioxide), plastics (polyethylene, polypropylene) and acidity (pH, pCO₂, Total Inorganic Carbon, alkalinity).
136 Data collection and product generation for all European basins is carried out by 5 Regional leaders, responsible for the
137 North Sea, the Baltic Sea, the Atlantic, the Mediterranean and the Black Sea.
138 In order to better tune EMODnet efforts for the requirements of the MSFD, several initiatives have been carried out to
139 strengthen the dialogue with the Regional Sea Conventions and the Marine Observation and Data Expert Group
140 (MODEG) and a MSFD – EMODnet coordination group involving Regional Sea conventions, Member States and
141 relevant stakeholders has been established jointly by DG Mare and DG Environment. Besides, regular meetings with
142 INSPIRE implementing groups are organized to discuss on the most feasible and useful products and services to
143 provide.

144 4. Data collection and Access

145 Data harvesting is a fundamental activity of EMODnet and it is carried out by the network of NODCs that supervise the
146 national availability of research and environmental monitoring data, provided respectively by research institutes and
147 environmental agencies. NODCs maintain regular contact with data originators collecting and enriching data with the
148 best set of relevant metadata to ensure the reliability of the information. NODCs are also responsible for the first quality
149 control of data, flagged with quality information.

150
151
152

Fig. 2: Spatial distribution of nutrient data in the European waters.

153

154
155
156

Fig. 3: Temporal distribution of nutrient data, spanning from 1900 to 2016 (counting 90 profiles in the current year; updates May 2016).

157
158
159

With the following most common parameters (number of stations):

Parameter	n.
Phosphate concentration parameters in the water column	305896
Nitrate concentration parameters in the water column	262378
Silicate concentration parameters in the water column	245755
Dissolved oxygen parameters in the water column	198357
Ammonium and ammonia concentration parameters in water bodies	188666
Nitrite concentration parameters in the water column	181642
Salinity of the water column	151969
Chlorophyll pigment concentrations in water bodies	145374

160
161
162
163
164

Table 1: most common parameters

With the following data policy distribution:

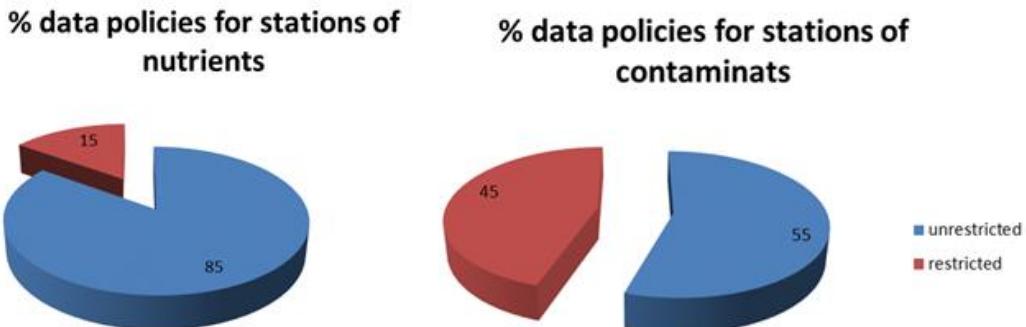


Fig. 4: Data policy for nutrients and contaminant data

165
166

167

168 Data access is regulated by a data policy which aims to establish a balance between the right of the originator to get
169 proper acknowledgment for data acquisition, and the need for open access through free and unrestricted exchange of
170 data, meta-data and data products. For EMODnet Chemistry, the data policy shows a different distribution in the data
171 policy from nutrients to contaminants (Fig. 4).

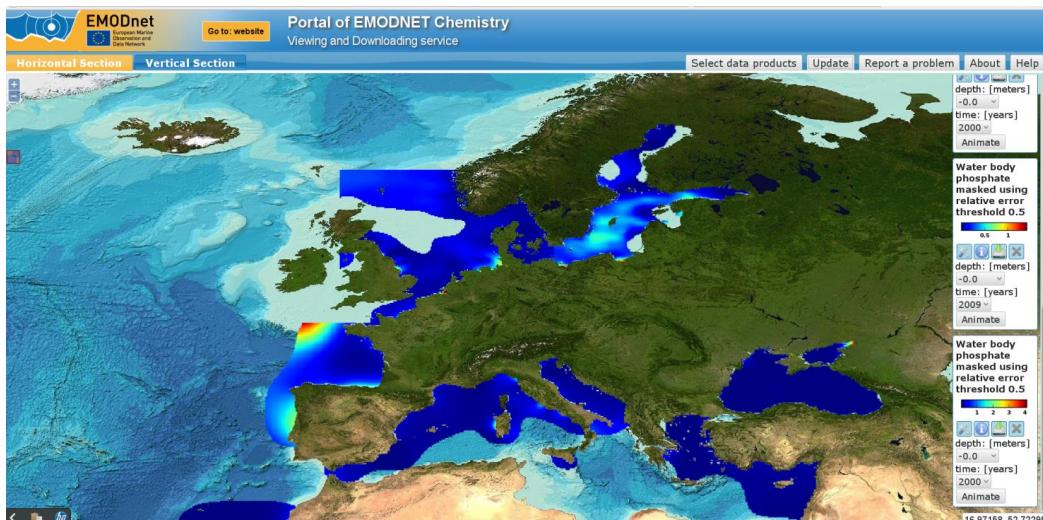
172

173 By maximizing the availability of data to a larger community, SeaDataNet promotes the use of these data, thereby
174 ensuring that their maximum value can be realized and thus contribute to increase knowledge of the marine
175 environment.

176 Unrestricted data are freely available for registered users while restricted ones need negotiation with data originators.
177 Data requests from registered users are handled by NODCs through a data policy management system agreed with the
178 data originator. This kind of filter on data access is an effective way to establish contacts and trust between data
179 originators and data management centres, ensuring correct acknowledgement, which ultimately encourages data
180 sharing.

181 **5. Data Quality**

182 The quality of the data is a key issue when merging heterogeneous data coming from different sources, periods and
183 geographic areas. Within EMODnet chemistry community, commonly agreed and standardized data quality control
184 (QC) protocols have been defined (Holdsworth, 2010) to guarantee consistency among comprehensive databases which
185 include data from different and/or unknown origin and covering long time periods. As a first step, the data are checked
186 and completed by collators with a standard set of metadata that provide the basic information necessary for their long
187 term use. Afterwards, data undergo a validation loop which consists in several validation steps. The first is done by data
188 collators, prior to the inclusion in the decentralized infrastructure and the second step, which consists in regional quality
189 control, is performed at regional scale on aggregated datasets. The first quality controls (QC) ensure that position and
190 time of data are realistic and compare measurements with broad ranges and specific regional ranges. Whenever
191 available, data are also compared with climatology. As a result of the first QC step, all data are archived with a quality
192 flag value that provides information about their reliability.


193 At this point, data aggregation and regional quality control are performed by regional leaders, following a common
194 protocol.

195 Data aggregation is done with the objective to unify the various analytic terms (P01 vocabulary) used by different data
196 originators to describe the same variables into a unique aggregated term with a unique measurement unit (P06
197 vocabulary).
198 The ODV software has a built-in aggregation procedure, making use of the P35 vocabulary applying also a number of
199 business rules like possible units conversions.
200 The main goal of this activity is to obtain a homogenized dataset (e.g. a unique dataset of phosphate concentration in the
201 water column starting from different datasets of phosphate concentration expressed with different units) that could be
202 used to generate homogeneous data products. The results of the regional quality control are sent to the data collators
203 (NODCs) to correct errors or anomalies in the original copy of the data available in the EMODnet infrastructure. This
204 feedback loop guarantees data quality upgrade.
205
206 To improve and homogenize the quality control procedures and standards adopted (at least at regional level), a quality
207 control survey has been carried out within EMODnet Chemistry community, in order to collect the best practices in data
208 validation and highlight gaps of the different institutes involved (Vinci et al., 2015).

209 **6. Data products**

210 In order to accomplish the Marine Strategy Framework Directive requirements, EMODnet Chemistry developed
211 products suitable to visualise the time evolution of a selected group of measurements and to calculate spatially
212 distributed data products specifically relevant for MSFD descriptor 5 (eutrophication), 8 (chemical pollution) and 9
213 (contaminants in seafood).

214
215 **Fig. 5: DIVA interpolated maps of phosphate in spring season calculated with a 10-year-moving window.**

216
217 Interpolated maps are now generated, mainly for nutrients, with 10 years moving window in order to find a balance
218 between the duration of the environmental evaluation cycle for Member States (to provide maps with a time frame near
219 to the 6 years process of the MS evaluation) and the number of years that guarantee a sufficient data coverage.

220 Guidelines for data products generation have been implemented to provide a set of common rules to obtain visualization
 221 products homogeneous for all European seas.
 222 Profiles and time series plots are automatically generated starting from the data available in the Regional buffers,
 223 produced thanks to a service bases on WPS OGC standard, and can be dynamically customized.
 224 There are ongoing efforts to develop a more efficient information management thanks to a system of data buffers hosted
 225 in a cloud system. Data are harvested and validated in buffers and are then used for product generation.
 226

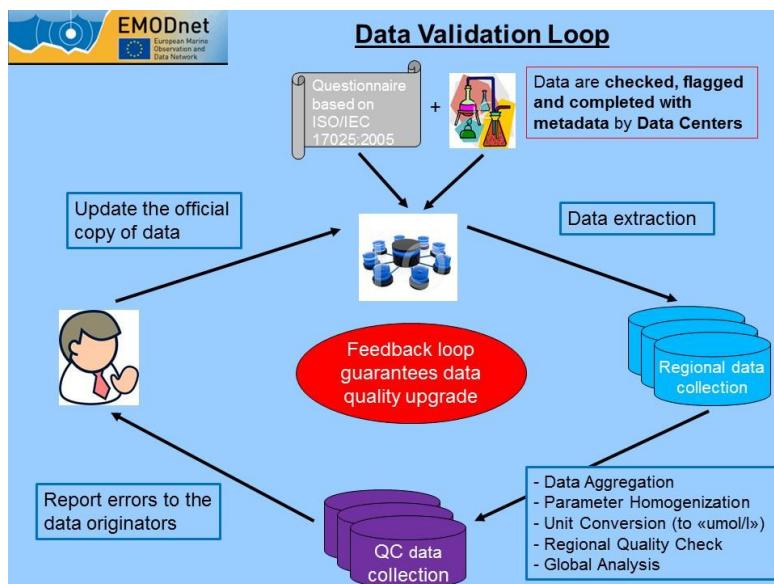


Fig. 6: Data validation loop

227
 228
 229

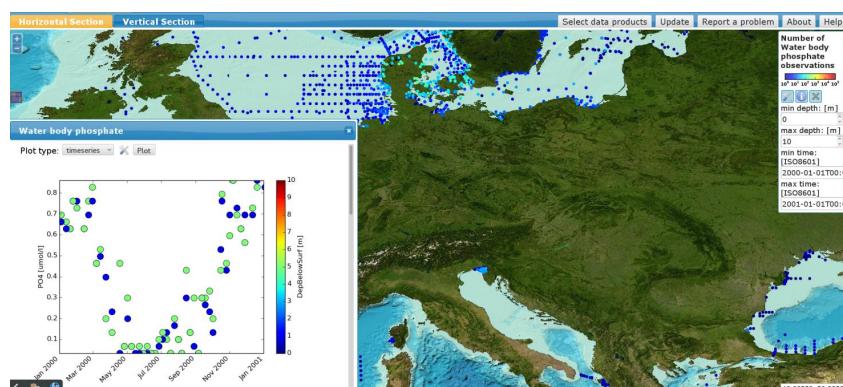


Fig. 7: Time Series dynamically plotted and visualized thanks to the OGC WPS services

230
 231
 232

233 7. **Conclusions and perspectives**

234 EMODnet is a long term marine data initiative developed through a stepwise approach aiming to ensure that European
235 marine data will become easily accessible, interoperable and free of restrictions on use. EMODnet Chemistry started in
236 2009 to fulfil EU Marine Strategy Framework Directive requirements for the assessment of eutrophication and
237 contaminants, following EU INSPIRE Directive rules.
238 With the start of EMODnet phase II, DG MARE and DG ENV started a coordination table to agree on a joint process
239 and to identify how EMODnet can best contribute in practical terms to the MSFD. EMODnet Chemistry implemented a
240 set of recommendations, in communication with regional sea conventions (RSC) contracting parties. The situation is not
241 homogeneous in EU sea basins. While much of the chemistry and contaminant data are well organized within OSPAR
242 Commission and Helsinki Convention (HELCOM), namely in the North and Baltic sea respectively, EMODnet
243 Chemistry has a more useful role in the Mediterranean where these outputs are less well organized. A Memorandum of
244 Understanding with the Commission on the Protection of the Black Sea against Pollution (Bucarest Convention) to
245 formalize the cooperation in terms of providing dedicated access to EMODnet Chemistry regional products for
246 supporting management of MSFD indicators as well as increasing participation in the Advisory Groups meetings is
247 under preparation. A similar step is under discussion with the Information and Communication Regional Activity
248 Center (INFO-RAC) through the United Nations Environmental Programme, Coordinating Unit for the Mediterranean
249 Action Plan for the Barcelona Convention (UNEP/MAP).
250 These on-going efforts show the importance of EMODnet Chemistry results and the extensions that might be planned in
251 view of the last EMODnet implementation phase aiming at a full resolution.
252 In the next years, EMODnet Chemistry could play an important role in the European environmental reporting landscape
253 with two main tasks. The first task consists in providing standardized and quality checked buffers of data for specific
254 Regions. The second task is to act as an umbrella providing standards, best practices and infrastructure to aggregate at
255 Regional level the single member states.
256
257

258 8. References

259
260 Dupont C., Belin A., Moreira G. and Vermonden B., Cochrane S., Wilson L., Emblow C., Kater B., Des Clercs S., Parr
261 W., Le Visage C., Green N., Cools J. and Thomsen F.: Article 12 Technical Assessment of the MSFD 2012 obligations
262 Mediterranean Sea. Contract No 070307/2012/634823/SER/D2 – Task F, 2014.
263
264 European Commission: Green Paper - Towards a future Maritime Policy for the Union: A European vision for the
265 oceans and seas, COM(2006) 275 final, Volume II - ANNEX, 49 pp, 2006.
266
267 European Commission,: Directive 2008/56/EC of the European Parliament and of the Council of 17 June 2008,
268 establishing a framework for community action in the field of marine environmental policy (Marine Strategy
269 Framework Directive), 2008.
270
271 European Commission: Green Paper – Marine Knowledge 2020 – from seabed mapping to ocean forecasting.
272 Luxembourg: Publications Office of the European Union — 23 pp., ISBN 978-92-79-25350-8, doi:10.2771/4154, 2012.
273
274 Holdsworth N.: EMODnet Chemistry QC and QA basic guidelines. pp. 11, doi: 10.6092/3cb41f4c-c401-45a7-ab32-
275 0abd373e03bb, 2010.
276
277 INSPIRE Directive 2007/2/EC of the European Parliament and of the Council of 14 March 2007 establishing an
278 Infrastructure for Spatial Information in the European Community (INSPIRE). Published in the official Journal on the
279 25th April, 2007.
280
281 Palialexis A., Tornero V., Barbone E., Gonzalez D., Hanke G., Cardoso A. C., Hoepffner N., Katsanevakis S., Somma
282 F., Zampoukas N.: In-Depth Assessment of the EU Member States' Submissions for the Marine Strategy Framework
283 Directive under articles 8, 9 and 10. Report EUR 26473 EN EU, JRC-IES, 149 pp. ,doi: 10.2788/64014, 2014.
284
285 Vinci M., Giorgetti A., Brosich A.: New EU efforts to assess the state of the marine environment: the EmoNet
286 Chemistry pilot project. Boll. Geof. Teor. Appl., Vol.54 Supp. (2013), IMDIS 2013 International Conference on Marine
287 Data and Information Systems, 23-25 September 2013, Lucca (Italy), Book of Abstracts, pp. 121-122, 2013.
288
289 Vinci M. et al.: EMODnet Chemistry 2 Quality Control inventory, doi: 10.6092/97a6685c-99f3-4986-8285-
290 f711e4101a99, 2015.
291
292
293