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ABSTRACT 9 
Forecasting a catastrophic collapse is a key element in landslide risk reduction, but also a very 10 

difficult task, owing to the scientific difficulties in predicting a complex natural event and also to 11 

the severe social repercussions caused by a false or a missed alarm. A prediction is always 12 

affected by a certain error, however when this error can imply evacuations or other severe 13 

consequences a high reliability in the forecast is, at least, desirable. 14 

In order to increase the confidence of predictions, a new methodology is here presented. 15 

Differently from traditional approaches, it iteratively applies several forecasting methods based 16 

on displacement data and, also thanks to an innovative data representation, gives a valuation of 17 

how the prediction is reliable. This approach has been employed to back-analyse 15 landslide 18 

collapses. By introducing a predictability index, this study also contributes to the understanding 19 

of how geology and other factors influence the possibility to forecast a slope failure. The results 20 

showed how kinematics, and all the factors influencing it such as geomechanics, rainfall and 21 

other external agents, is the key feature when concerning landslide predictability. 22 

Keywords: landslides; forecasting; geomechanics; early warning; time of failure; slope failure 23 

 24 

INTRODUCTION 25 
Natural disaster forecasting for early warning purposes is a field of study that drew the media 26 

attention after events such as the 26
th

 December 2004 tsunami of Sumatra. Predicting landslides, 27 

with respect to other natural hazards, is a complex task due to the influence of many factors like 28 

geomechanical properties, rainfall, ground saturation, topography, earthquakes and many others. 29 

So far, few empirical landslide forecasting methods exist (Azimi et al., 1988; Fukuzono, 1985a; 30 

Mufundirwa et al., 2010; Saito, 1969; Voight et al., 1988) and none furnishes a reliability degree 31 

about the prediction, making them unsuitable for decision making. In particular when mentioning 32 

geomechanics we particularly refer to the study of the behaviour of a landslide concerning its 33 

deformation with relation to the applied stress, with particular reference to its post-rupture 34 

conditions. 35 

In our research we present an approach to perform probabilistic forecasting of landslides 36 

collapse. This has been achieved by reiterating several predictions using more forecasting 37 

methods at the same time on multiple time series. This approach may have important 38 

applications to civil protection purposes as it provides the decision makers with a level of 39 

confidence about the prediction. Furthermore, this study, performed on 15 different case studies, 40 

shows how the possibility or not to forecast the time of collapse of a landslide is affected by 41 

geomechanical or geomorphological features as much as by circumstantial conditions. 42 

The inverse velocity forecasting method 43 
Forecasting activity can be considered the fulcrum of early warning systems (Intrieri et al., 44 

2013), i.e. cost-effective tools for mitigating risks by moving the elements at risk away. For 45 

many natural phenomena forecasting is common practice (for example for hurricanes; 46 

Willoughby et al., 2007), while for others is, at present, impossible (earthquakes; Jordan et al., 47 

2011). Landslides lie in between. Their prediction can be performed through rainfall thresholds 48 

(Baum and Godt, 2010), but a more reliable approach should make use of direct measures of 49 

potential instability, such as displacements (Lacasse and Nadim, 2010; Blikra, 2008). A first 50 

issue is that only a small percentage of landslides in the world is appropriately monitored, that 51 

often monitoring is carried out for short periods not encompassing the final pre-failure stages, or 52 

may have been carried out with a too low temporal frequency that does not permit to follow the 53 
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displacement trend. This also causes an insufficient knowledge of the geomechanical processes 54 

leading to failure, which is another responsible for our deficiencies in predicting landslides. 55 

In spite of this, few empirical methods for predicting the time of failure based on movement 56 

monitoring data have been developed (Azimi et al., 1988; Fukuzono, 1985a; Mufundirwa et al., 57 

2010; Saito, 1969) and further investigated on a physical basis (Voight et al., 1988). They are all 58 

based on the hypothesis that if a landslide follows a peculiar time-dependant geomechanical 59 

behaviour (called creep; Dusseault and Fordham, 1994), it will display a hyperbolic acceleration 60 

of displacements before failure; by extrapolating this trend from a displacement time series 61 

through empirical arguments, it is possible to obtain the predicted time of failure. However such 62 

methods do not always produce good results. In fact, other than the limitation of working only 63 

with creep behaviours, sometimes the tertiary creep can evolve such rapidly that a sufficient lead 64 

time is simply not possible (IEEIRP, 2015). In other cases natural or instrumental noise can 65 

hamper the predictions and require further data treatment to allow for effective warnings (Carlà 66 

et al., 2016). Other authors also contributed to methodologies to exploit such methods (Crosta 67 

and Agliardi, 2003; Dick et al., 2015; Manconi and Giordan, 2015). 68 

One of the most famous methods is Fukuzono’s (1985a), which derives from Saito’s (1969), 69 

from here on simply called F and S method, respectively. It requires that during the acceleration 70 

typical of the final stage of the creep (tertiary creep), the inverse of displacement velocity (v
-1

) 71 

decreases with time. The collapse is forecasted to occur when the extrapolated line reaches the 72 

abscissa axis (corresponding to a theoretical infinite velocity). Such line may either be convex, 73 

straight or concave (Fukuzono, 1985a). When it is straight this phenomenon is sometimes 74 

referred to as Saito effect (Petley et al., 2008). 75 

The possibility to find landslides showing the Saito effect has been related to the mechanical 76 

properties of the sliding mass. However there is no general consensus on this issue. 77 

According to some authors (Petley, 2004; Petley et al., 2002), in order to display the Saito effect, 78 

landslides need to display a brittle behaviour (which indicates a drop from peak strength to 79 

residual strength value, deformation which is concentrated along a well defined shear surface, 80 

sudden movements and catastrophic failure, usually associated with crack formation in strong 81 

rocks); furthermore only brittle, intact rocks evolve in catastrophic landslides and therefore can 82 

be predicted; for others (Rose and Hungr, 2007), on the opposite, landslides displaying the Saito 83 

effect must have ductile failures in order to be forecasted (i.e. slower, indefinite deformation 84 

along a shear zone and under a constant stress, typical of sliding on pre-existing surfaces of soft 85 

rocks), as brittleness is characterized by sudden, impossible to anticipate, ruptures. 86 

This complex subject is made even more difficult due to the influence of external factors 87 

(rainfall, earthquakes, excavations), structural constraints (joints, faults, contacts with different 88 

lithologies) and sometimes unknown elements within the mass (the conditions of the shear 89 

surface, the history of the landslide, the presence of rock bridges). Therefore it is often hard to 90 

establish the mechanical behaviour and even more to find an exact correlation between the 91 

mechanical behaviour of a landslide and the possibility to predict its failure.  92 

The concept of predictability 93 
Before assessing the influence of geomechanics on the predictability of a landslide it is first 94 

necessary to address the concept of predictability. 95 

In literature (Azimi et al., 1988; Hutchinson, 2001; Mufundirwa et al., 2010; Rose and Hungr, 96 

2007) there are papers that deal with “predictions” made in retrospect, that is thorough post-97 

event analyses showing the signs of a critical pre-collapse acceleration; however whether such 98 
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signs would have been unambiguous or would have granted a sufficient lead time is often 99 

neglected. 100 

On the other hand in our research we consider an operational definition of predictability 101 

(integrating the one of early warning system; UNISDR, 2009) as the feature possessed by a 102 

landslide which allows one to forecast its collapse with reasonable confidence and sufficiently in 103 

advance, permitting the dispatch of meaningful warning information to enable individuals, 104 

communities and organizations threatened by the hazard to prepare and to act appropriately and 105 

in sufficient time to reduce the possibility of harm or loss. Therefore, displaying the Saito effect 106 

is not the only prerequisite for an operational prediction, there is also the need for repeated time 107 

of failure forecasts fluctuating around a constant time value placed not too close in the future. 108 

This has been achieved through the reiterative approach and the graphical representation 109 

described in the following paragraph. 110 

METHODS 111 
The usual way to apply landslide forecasting methods based on displacements, is to obtain a 112 

single predicted time of failure (tf) and to update such prediction as soon as new data are 113 

gathered (Rose and Hungr, 2007). This is a deterministic approach, since the real time of failure 114 

(Tf) is predicted through a single inference. At most more predictions can be made in the future 115 

but usually only one (the most recent) is used. 116 

On the other hand, in order to account for the uncertainty of the methods and complexity of the 117 

phenomena, predictions should have a certain confidence (for example given by the standard 118 

deviation of tf). This is especially important for operative early warning systems. We achieved 119 

this probabilistic approach by reiterating the equations from Saito (1969), Fukuzono (1985a) and 120 

Mufundirwa et al. (2010) (the latter method will be called M method from here on) for finding tf, 121 

using continuously new data and enabling the calculation of the standard deviation. 122 

The predictions are plotted versus the time when they have been made (time of prediction, tp). 123 

We call these diagrams prediction plots (Figure 1). A prediction is considered reliable when the 124 

inferences oscillate around the same tf. Figure 1 also shows that since reliable predictions usually 125 

display an oscillatory trend, the most updated one is not necessarily the most accurate, contrarily 126 

to what is usually believed (Rose and Hungr, 2007) in fact, the length of the dataset is more 127 

important, from which Tf can be estimated through simple statistical analyses (like mean and 128 

standard deviation). 129 

Since in some cases a single forecasting method can fail to give satisfactory results, in order to 130 

improve even more the confidence in the predictions, a multi-model approach is adopted together 131 

with the probabilistic approach. In fact, according to the Diversity Prediction Theorem (Page, 132 

2007; Hong and Page, 2008), diversity in predictive models reduces collective error. The highest 133 

confidence, of course, is reached when all the employed method independently converge towards 134 

the same result. For this research we confronted the results from S and F methods and from the 135 

method by Mufundirwa et al. (2010). The equations used for the iteration are obtained from the 136 

respective authors and are: 137 

, (1) 138 

for S method, where t1, t2, t3 are times taken so that the displacement occurred between t1 and t2 139 

is the same as between t2 and t3. 140 
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, (2) 141 

for F method, where v1 and v2 are the velocities at arbitrary times t1 and t2. 142 

, (3) 143 

for M method, where D is the displacement and tr is the angular coefficient of the line 144 

represented in a  space having B as the intercept. 145 

 146 

 147 
Figure 1. This graph represents probabilistic predictions performed with 3 different forecasting 148 

methods (Fukuzono, 1985a; Mufundirwa et al., 2010; Saito, 1969) applied to the MB34-35’ 149 

displacement time series of Mount Beni landslide (Gigli et al., 2011). The horizontal dashed line 150 

indicates the observed time of failure (Tf) and the grey diagonal line the equality between tf and 151 

tp. Therefore the vertical distance between a point and the dashed line indicates the prediction 152 

error. The vertical distance between the diagonal line and a prediction above it is the life 153 

expectancy of the landslide at the time of prediction. In this case the predictions obtained through 154 

S and F methods give a good estimation of Tf, while the one from Mufundirwa et al. (2010) 155 

consistently forecasts the collapse few days ahead. 156 

TIME OF FAILURE PREDICTION 157 
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In order to find a relation between the predictability of a failure and the geological features of the 158 

landslide, S, F and M methods have been applied to a number of different real case studies. Some 159 

geological features of interest relative to such cases are reported in TABLE 1, when they were 160 

known or applicable. Concerning brittleness, since it was rarely explicitly stated in the 161 

referenced articles, it was assessed based on information such as the type of material, the 162 

presence of a reactivated landslide, the weathering and the shape of the displacement time series. 163 

Since this lead to approximations, brittleness has been evaluated using broad and qualitative 164 

definitions. 165 

Since Tf must be known in order to assess the quality of predictions, all the case studies are from 166 

past landslides that have already failed. Therefore the respective time of failures are all a 167 

posteriori known. 168 

A few representative examples of prediction plots are showed in Figure 1 and Figure 2. Mount 169 

Beni landslide is a 500.000 m
3
 topple that evolved as a rockslide (Gigli et al., 2011). It developed 170 

on a slope object of quarrying activity. The predictions oscillate quite regularly around the 171 

observed time of failure (Tf, dashed line in Figure 2). It is this convergence that permits to 172 

correctly forecast the collapse a priori at least since late November, i.e. a month before the 173 

failure. The three methods are similar to the point that S and F previsions can be partially 174 

overlapped. M previsions overlap as well but only in the final part. The M method alone would 175 

not be sufficient for spreading a reliable alarm as the single forecasts do not converge but move 176 

forward to a different time of failure as the time passes by. 177 

Similar behaviours can be observed also for the cases of Figure 2 that display landslides with a 178 

different array of geological features (as seen in TABLE 1). The best results are obtained when 179 

the forecasts oscillate around Tf with sufficient time in advance (as for Vajont and, limited to F 180 

method, for Liberty Pit) or when they consistently give the similar tf (as for the artificial 181 

landslide E, where the terms “artificial landslide” indicate a landslide recreated in laboratory 182 

with an artificial slope). In other cases (Avran valley and, limited to S and M method, for Liberty 183 

Pit) the predictions are too scattered or simply never converge toward a single result, thus 184 

making it impossible to foresee a reliable time of failure. 185 

 186 

The results of the prediction plots can be roughly summarized reporting the mean and standard 187 

deviation of the forecasts for each method (Figure 3). 188 

TABLE 1. LANDSLIDE CASE HISTORIES 

Name Material Type Brittleness Volume 

(m3) 

Predisposing 

factor 

Trigger History Basal 

geometry 

Ref.

* 

Liberty Pit Weathered 

quartz 

monzonite 

Rockslide? Medium/high 6x106 N.D. Blasts, pore 

water 

pressure 

First time 

failure 

Planar? 1, 2 

Landslide 
in mine 

Consolidated 
alluvial 

sediments, 
weathered 

bedrock 

Deep-seated 
toppling in 

bedrock 

Medium 106 Blasts, pore 
water pressure 

N.D. First time 
failure? 

N.D. 1 

Betze-Post Weathered 
granodiorite 

Rockslide? Medium/high 2x106 N.D. Rainfall First time 
failure? 

Wedge 
intersections? 

1 

Vajont limestone and 
clay 

Rock slide High 2.7x108 N.D. Pore water 
pressure 

Reactivated Concave 1, 3 

Stromboli 
† 

Shoshonitic 
basalts 

Bulging (not 
a landslide) 

Medium/high N.D. N.D. Sill 
intrusion 

First time 
failure 

N.D. 4 
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Monte Beni Ophiolitic 

breccias 

Topple/rock 

slide 

High 5x105 Rainfall, 

structure, 
basal 

excavation 

N.D. First time 

failure 

Stepped 5 

Cerzeto Weathered 
metamorphic 

rocks on top, 

cataclastic 
zone and 

Pliocene clays 

Debris slide-
earth flow 

Medium/low 5x106 Tectonized 
area, 

permeability 

differences 

Prolonged 
rainfalls 

Reactivated
? 

Compound 
(steeper and 

irregular in the 

upper zone 
and gentler in 

the clays 

6 

Rock mass 
failure 

Japan 

Clayey 
limestone 

Rockslide? High (within 
limestone)? 

5x102 “Structural 
complexity” 

(?) 

Intense 
rainfall 

First time 
failure? 

Planar? 7 

Asamushi Liparitic tuff, 

jointed and 
weathered. 

Clay in the 

joints 

 Medium/low 105 N.D. N.D. N.D. Concave? 7, 8 

Avran 
valley 

Chalk Rockslide Medium/low 8x104 N.D. N.D. First time 
failure? 

Convex 9 

Giau Pass Morainic 
material 

Complex 
slide 

Medium/low 5x105 N.D. Pore water 
pressure 

Preexisting 
shear 

surface 

Composite 10, 
11 

Artificial 
landslide A 

Loam Earth slide Low N.D. N.D. Prolonged 
rainfall 

First time 
failure 

Planar 12 

Artificial 

landslide B 

Sand Earth slide Low N.D. N.D. Prolonged 

rainfall 

First time 

failure 

Planar 12 

Artificial 

landslide C 

Sand Earth slide Low N.D. N.D. Prolonged 

rainfall 

First time 

failure 

Convex 12 

Artificial 

landslide D 

Sand Earth slide Low N.D. N.D. Prolonged 

rainfall 

First time 

failure 

Planar 12 

   *The references used are numbered as follows: 1: Rose and Hungr, 2007; 2: Zavodni and Broadbent, 1980; 3: Semenza and Melidoro, 1992; 4: 
Casagli et al., 2009; 5: Gigli et al., 2011; 6: Iovine et al., 2006; 7: Mufundirwa et al., 2010; 8: Saito, 1969; 9: Azimi et al., 1988; 10: Petley et al., 

2002; 11: Angeli et al., 1989; 12: Fukuzono, 1985b. 

   † The case of Stromboli is not relative to a landslide, rather to a volcanic bulging preceding a vent opening that was forecasted in a similar 
fashion of a landslide and therefore here included. 

 189 

 190 
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 191 
Figure 2. These graphs show how iterating forecasts performed through multiple forecasting 192 

methods increases the confidence when estimating the actual time of failure (Tf, dashed line). 193 

The crosses represent forecasts performed with S method, the triangles with F method and the 194 

diamonds with M method. Note that F forecasts for Avran valley landslide include other less 195 

accurate values not showed in the graph as they are out of scale. 196 

 197 



 

9 

 

 198 
Figure 3. This graph represents for each method the differential between the mean of the 199 

forecasts ( ) and the actual time of failure (Tf). Negative values are safe predictions as anticipate 200 

the time of failure. The dashed line represents exact predictions (Tf -  = 0). The standard 201 

deviations of the forecasts are represented as error bars. For Betze-Post and Mount Beni 202 

landslides, time series from different measuring points are reported. The rock mass failure, 203 

Asamushi landslide and the artificial landslides are not shown as were monitored in a different 204 

time scale (hours or minutes). 205 

 206 

PREDICTABILITY INDEX 207 
In order to evaluate the performance of S, F and M methods and to relate it to the characteristics 208 

of the reported examples, an arbitrary scoring system has been implemented and attributed to 209 

each prediction plot (considering that every time series has a prediction plot for each forecasting 210 

method and that for some case studies more than one time series was available). This permits to 211 

quantify the predictability of a collapse based on the prediction plot. A score from 1 to 5 has 212 

been assigned according to the following criteria: 213 

 1 point: the prediction plot never converges on a single tf (typically tf increases at every 214 

new datum available). 215 

 2 points: the predictions vary considerably at every new iteration. An average time of 216 

failure ( ) can be extracted but with high uncertainty. 217 

 3 points: the predictions oscillate around Tf, although with a certain variance. 218 

 4 points: the predictions have a low variance although  is slightly different than Tf. Note 219 

that when the variance was low,  and Tf never differed greatly. 220 
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 5 points: the prediction plot is clearly centred on Tf therefore the reliability of  is high. 221 

By summing the scores obtained from S, F and M prediction for each time series, what we call 222 

the Predictability Index (PI) is obtained (TABLE 2). Since PI is a means to evaluate the overall 223 

quality of a set of predictions (it requires to observe the time series of tf and confront it with Tf, it 224 

is the predictability index) and also to compare the performance of different forecasting methods 225 

with different case studies, naturally it can only be estimated after the collapse. 226 

By using 3 forecasting methods, PI ranges from 3 (impossible to predict the time of failure) to 15 227 

(the time of failure can be predicted in advance and with a high reliability). Though a certain 228 

degree of subjectivity is unavoidable when assigning the scores, what matters here is the relative 229 

difference of PI between the case studies. In such a way it is possible to understand in which 230 

conditions a landslide is more or less predictable. 231 

TABLE 2. PREDICTABILITY INDEX 

Name S F M PI Inverse velocity trend Notes 

Liberty Pit 1 5 1 7 Asymptotic (linear at the 

end) 

Open pit mine, structural control of 2 intersecting 

faults 

Landslide in mine 5 5 5 15 Linear Open pit mine 

Betze-Post 1 3 3 1 7 Linear Open pit mine 

Betze-Post 2 4 5 4 13 Linear Open pit mine 

Betze-Post 3 5 4 1 10 Linear Open pit mine 

Vajont benchmark 63 5 5 5 15 Linear Air pressure and cementation caused catastrophic 

collapse 

Stromboli 1 2 2 5 Asymptotic Volcanic context 

Mount Beni 12-9 4 5 1 10 Concave Back fracture 

Mount Beni a'b' 1 3 1 5 Linear Short time series 

Mount Beni 15-13 5 3 1 9 Linear Internal fracture 

Mount Beni 34-35' 5 3 1 9 Linear Lateral fracture, short time series 

Mount Beni 45-47 2 3 1 6 Linear Back fracture, short time series 

Mount Beni 3-2 5 2 1 8 Concave Back fracture 

Mount Beni 4'-6 1 4 1 6 Linear Back fracture, short time series 

Mount Beni 24-23 4 2 1 7 Linear lateral fracture 

Mount Beni 49-24 5 1 1 7 Linear Lateral fracture, short time series 

Mount Beni 35'-36 2 5 1 8 Linear Lateral fracture, short time series 

Mount Beni 33-35' 3 3 1 7 Linear Lateral fracture, short time series 

Mount Beni 36-37 4 3 1 8 Linear Lateral fracture 

Mount Beni 19-16 2 2 1 5 Linear Lateral fracture 

Mount Beni 19-17 1 2 1 4 Linear Lateral fracture, short time series 

Mount Beni 33-34 4 2 1 7 Linear Internal fracture 

Mount Beni 43-44 3 2 1 6 Asymptotic (constant 

velocity at the end) 

Internal fracture, short time series 

Mount Beni 40-41 3 2 1 6 Asymptotic (constant 

velocity at the end) 

Internal fracture, short time series 

Mount Beni 40-42 3 3 1 7 Linear Internal fracture, short time series 

Mount Beni 45-46 3 2 2 7 Linear Back fracture, short time series 

Mount Beni 1-2 4 2 1 7 Linear Back fracture 

Cerzeto 5 5 1 11 Linear N.A. 
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Rock mass failure Japan 2 2 1 5 Convex Open pit mine, very small landslide 

Asamushi 5 3 1 9 Linear N.A. 

Avran valley 5 1 2 1 4 Concave N.A. 

Avran valley 6 1 1 1 3 Asymptotic N.A. 

Avran valley 7 1 2 1 4 Concave N.A. 

Giau Pass 3 3 1 7 Asymptotic /concave N.A. 

Artificial landslide A 5 5 5 15 Convex 40° artificial slope 

Artificial landslide B 2 2 3 7 Concave 40° artificial slope 

Artificial landslide C 1 2 3 6 Linear (slightly convex) 40° artificial slope 

Artificial landslide D 5 5 5 15 Linear 30° artificial slope 

 232 

DISCUSSION 233 
TABLE 2 shows how the most predictable events (PI > 8) can display very different features and 234 

are quite irrespective of the shape of the inverse velocity plot, the volume, the brittleness of the 235 

material, the history of the landslide and so on (see also TABLE 1). 236 

A comparison between Figure 3 and TABLE 2 illustrates how the mean and standard deviation 237 

of the forecasts alone are not enough to represent the quality of predictions and, consequently, 238 

the predictability of a landslide. In fact the importance of a single forecast strongly depends on 239 

the time when it is made; for example, given the same set of forecasts (tf,i), a higher PI is 240 

obtained if the first predictions done are the farthest from Tf while the final ones tend to converge 241 

to it; in this way the prediction plot assumes an oscillatory shape (as for S and F forecasts in 242 

Figure 1). Conversely, if the same forecasts are made with a different order so that they get 243 

closer and closer to Tf as time passes by (that is |tf,i – Tf|< | tf,i-1 – Tf|), then there is no tf,i 244 

prevailing on the others and it is not possible to define a more probable time of collapse (as for 245 

M forecasts in Figure 1). However the average and standard deviation of tf are the same for both 246 

cases and this explains why these two statistics alone are not as informative as a prediction plot. 247 

From TABLE 2 it is also possible to assess which method gives the best results. The sum of the 248 

scores for S, F and M is 119, 115 and 63 respectively. Overall S and F perform similarly, but for 249 

a specific case study their effectiveness can be very different, therefore their result are 250 

independent and not redundant; there is no indisputable clue suggesting when F method is more 251 

performing than S and vice versa; nonetheless it appears that S is negatively influenced when the 252 

displacement curve is not regularly accelerating (Liberty Pit, Stromboli), whereas for F a few 253 

aligned points in the final tract in the inverse velocity plot are sufficient for predicting the failure; 254 

however F forecasts are more disturbed when displacement data are noisy, since they use their 255 

derivative (velocity) as input. Eventually M forecasts generally perform more poorly and rarely 256 

(i.e. artificial landslides B and C) surpass those obtained from S and F methods. 257 

Interestingly, different displacement time series belonging to the same landslide can display 258 

different behaviours. This is a strong evidence that, even though the geological features do 259 

influence the predictability of a landslide, assuming that they keep the same for the whole 260 

landslide, other factors must determine the quality of the predictions. The last column of TABLE 261 

2 shows for each time series what such factors could be, such as lithology (the asymptotic trends 262 

of the cases of Avran valley and Giau Pass can be explained as consequences of a lowly brittle 263 

material according to Petley’s experiments; Petley, 2004), external forces (excavation in open pit 264 

mines, volcanic activity, rainfall), local effects (structural constraints, displacement measured 265 

relative to internal or lateral fractures not representing the general instability of the landslide), 266 
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quality of data (length of the time series, frequency of the observations, level of noise, 267 

representativeness of the monitored point) etc. 268 

All these case histories show that the main responsible for the predictability of a landslide, and 269 

secondary also for the presence or not of the “Saito effect”, is connected to geology but not 270 

simply and directly. Instead both depend on the kinematics of the landslide, which in turn 271 

depends on the geological conditions. In the complex relation between geology and kinematics 272 

the aforementioned factors may intervene and asymptotic trends in the inverse velocity plot have 273 

been encountered also for first failure ruptures (as found in some time series of Mount Beni 274 

landslide). 275 

In other words, even though geomechanics is unquestionably a key factor, it is sometimes 276 

difficult to have a deep knowledge of the geomechanical features of a landslide, especially in the 277 

field and in emergency situations, although some safe assumptions can always been done by 278 

observation and a broad knowledge of the area. What it may be known about them is in part 279 

thanks to what is derived from displacement data. Like in a black box model, even if the real 280 

properties of a phenomenon are not known, we can draw conclusions from the output of those 281 

properties (i.e. the kinematics). In this case, importance has been done to kinematics because 282 

what is generally measured by monitoring are displacement data and because many other 283 

unknown factors (rainfall, ground saturation, earthquakes, anthropic disturbance) are included in 284 

the black box together with the geomechanics; this makes it virtually impossible to know in 285 

advance what may be the degree of influence of geomechanics alone with respect to other 286 

factors, thus leading to focusing on kinematics instead. Moreover, even though geomechanics is 287 

a key element (for example because it is responsible for the creep behaviour), we showed that 288 

landslide prediction can be carried out with a variety of different geomechanical settings. 289 

Finally, the prediction plots clearly show that, contrarily to what is generally believed (Rose and 290 

Hungr, 2007), the last forecasts are not necessarily the most accurate and that past ones (starting 291 

from the initiation of the tertiary creep) are essential to estimate the correct time of failure. In 292 

fact older forecasts can be more accurate and in any case furnish precious information about the 293 

general reliability of the final prediction, as explained above. Therefore the present study 294 

highlights the importance of considering the whole set of predictions made with time. The 295 

integration of more forecasting methods further raises reliability of the predictions, which is of 296 

great importance for early warning systems, in particular when evacuations are envisaged. 297 

Limitations of the proposed approach are those related to the intrinsic limitations of the 298 

forecasting methods that have been integrated. In fact, since S, F and M methods are all based on 299 

the creep theory, the occurrence of a tertiary creep phase slow enough to allow to monitor and 300 

take action is necessary. Voight (1988) also assumes that there must be no external force acting 301 

on the landslide, but the examples shown in this paper demonstrate that this may not represent a 302 

limitation. 303 

Resuming, the proposed methodology can be summarized as in Figure 4. 304 



 

13 

 

 305 
Figure 4. Flow-chart that synthesises the proposed procedure.   306 

 307 

CONCLUSIONS 308 
In conclusion, the results of the study are the following: 309 

 Prediction plots are introduced as graphs showing the evolution of collapse forecasts with 310 

time. Such plots provide more information than simple average and standard deviation of 311 

the forecasts and improve the reliability of the final prediction. 312 

 A predictability index (PI) has been introduced as a scoring system based on the 313 

description of the prediction plot, in order to evaluate the quality of a set of predictions. 314 

 The predictability of a landslide depends firstly on its kinematics and then on what 315 

determines it (geology, external forces, local effects etc.). 316 

 Landslide collapses can be forecasted whether they are in highly or lowly brittle 317 

materials, in rock or in earth material, of different types, with different sliding surface 318 

geometries, volumes and triggers. 319 

 Contrarily to what is generally assumed (Voight, 1988; Rose and Hungr, 2007), 320 

landslides can be forecasted also with external forces acting. 321 

 The asymptotic behaviour of the inverse velocity curve does not imply that the landslide 322 

cannot be correctly forecasted, even though it can hinder the prediction. 323 

 The asymptotic behaviour may be induced by external factors, lithology and local effects, 324 

rather than only by crack propagation. In fact asymptotic trends have been found in first 325 

time failures and in both brittle and lowly brittle materials. The crack propagation 326 

explanation is not neglected, but it may not represent the general rule. 327 
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 Most recent displacement monitoring data increase the confidence when estimating the 328 

time of failure but do not necessary provide more accurate predictions than the older ones 329 

(provided that they start from after the initiation of the tertiary creep). 330 

 The developed approach integrates more forecasting methods to further improve the 331 

reliability of the prediction. 332 
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