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ABSTRACT 9 

Forecasting a catastrophic collapse is a key element in landslide risk reduction, but also a very 10 

difficult task, owing to the scientific difficulties in predicting a complex natural event and also to 11 

the severe social repercussions caused by a false or a missed alarm. A prediction is always 12 

affected by a certain error, however when this error can imply evacuations or other severe 13 

consequences a high reliability in the forecast is, at least, desirable. 14 

In order to increase the confidence of predictions, a new methodology is here presented here. 15 

Differently from traditional approaches, it iteratively applies several forecasting methods based 16 

on displacement data and, also thanks to an innovative data representation, gives a valuation 17 

about the reliability of of how the the prediction is reliable. This approach has been employed to 18 

back-analyse 15 landslide collapses. By introducing a predictability index, this study also 19 

contributes to the understanding of how geology and other factors influence the possibility to 20 

forecast a slope failure. The results showed how kinematics, and all the factors influencing it 21 

such as geomechanics, rainfall and other external agents, is the key featureare the key when 22 

concerning landslide predictability. 23 

Keywords: landslides; forecasting; geomechanics; early warning; time of failure; slope failure 24 

 25 

INTRODUCTION 26 

Natural disaster forecasting for early warning purposes is a field of study that drew the media 27 

attention after events such as the 26
th

 December 2004 tsunami of Sumatra. Predicting landslides, 28 

with respect to other natural hazards, is a complex task due to the influence of many factors like 29 

geomechanical properties, rainfall, ground saturation, topography, earthquakes and many others. 30 

So far, few empirical landslide forecasting methods exist (Azimi et al., 1988; Fukuzono, 1985a; 31 

Mufundirwa et al., 2010; Saito, 1969; Voight et al., 1988) and none furnishes a reliability degree 32 

about the prediction, making them unsuitable for decision making. In particular, when 33 

mentioning geomechanics, the reference is we particularly refer to the study of the behaviour of a 34 

landslide concerning its deformation with relation to the applied stress, with special particular 35 

reference to its post-rupture conditions. 36 

In our the present paper research we present an approach to perform probabilistic forecasting of 37 

landslides collapse is presented. This has been achieved by reiterating several predictions using 38 

more forecasting methods at the same time on multiple time series. This approach may have 39 

important applications to civil protection purposes as it provides the decision makers with a level 40 

of confidence about the prediction. Furthermore, this study, performed on 15 different case 41 

studies, shows how the possibility or not to forecast the time of collapse of a landslide is affected 42 

by geomechanical or geomorphological features as much as by circumstantial conditions. 43 

The inverse velocity forecasting method 44 

Forecasting activity can be considered the fulcrum of early warning systems (Intrieri et al., 45 

2013), i.e. cost-effective tools for mitigating risks by moving the elements at risk away. For 46 

many natural phenomena forecasting is common practice (for example for hurricanes; 47 

Willoughby et al., 2007), while for others is, at present, impossible (earthquakes; Jordan et al., 48 

2011). Landslides lie in between. Their prediction can be performed through rainfall thresholds 49 

(Baum and Godt, 2010), but a more reliable approach should make use of direct measures of 50 

potential instability, such as displacements (Lacasse and Nadim, 2010; Blikra, 2008). A first 51 

issue is that only a small percentage of landslides in the world is appropriately monitored, that 52 

often monitoring is carried out for short periods not encompassing the final pre-failure stages, or 53 

may have been carried out with a too low temporal frequency that does not permit to follow the 54 
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displacement trend. This also causes an insufficient knowledge of the geomechanical processes 55 

leading to failure (here meant as the collapse following a sudden acceleration, either a first 56 

movement or a reactivation), which is another responsible for our deficiencies in predicting 57 

landslides. 58 

In spite of this, few empirical methods for predicting the time of failure based on movement 59 

monitoring data have been developed (Azimi et al., 1988; Fukuzono, 1985a; Mufundirwa et al., 60 

2010; Saito, 1969) and further investigated on a physical basis (Voight et al., 1988). They are all 61 

based on the hypothesis that if a landslide follows a peculiar time-dependant geomechanical 62 

behaviour (called creep; Dusseault and Fordham, 1994), it will display a hyperbolic acceleration 63 

of displacements before failure; by extrapolating this trend from a displacement time series 64 

through empirical arguments, it is possible to obtain the predicted time of failure. However such 65 

methods do not always produce good results. In fact, other than the limitation of working only 66 

with creep behaviours, sometimes the tertiary creep can evolve such rapidly that a sufficient lead 67 

time for evacuation is simply not possible (IEEIRP, 2015). In other cases natural or instrumental 68 

noise can hamper the predictions and require further data treatmentpost-processing to allow for 69 

effective warnings (more details on the types and effects of noise can be found in Carlà et al., 70 

2016). Other authors also contributed to methodologies to exploit such and optimize the classic 71 

forecasting methods (Crosta and Agliardi, 2003; Dick et al., 2015; Manconi and Giordan, 2015). 72 

One of the most famous methods is Fukuzono’s (1985a), which derives from Saito’s (1969), 73 

from here on simply called F and S method, respectively. It requires that during the acceleration 74 

typical of the final stage of the creep (tertiary creep), the inverse of displacement velocity (v
-1

) 75 

decreases with time. The collapse is forecasted to occur when the extrapolated line reaches the 76 

abscissa axis (corresponding to a theoretical infinite velocity). Such line may either be convex, 77 

straight or concave (Fukuzono, 1985a). When it is straight this phenomenon is sometimes 78 

referred to as Saito effect (Petley et al., 2008). 79 

The possibility to find landslides showing the Saito effect has been related to the mechanical 80 

properties of the sliding mass. However there is no general consensus on this issue. 81 

According to some authors (Petley, 2004; Petley et al., 2002), in order to display the Saito effect, 82 

landslides need to display a brittle behaviour (which indicates a drop from peak strength to 83 

residual strength value, deformation which is concentrated along a well defined shear surface, 84 

sudden movements and catastrophic failure, usually associated with crack formation in strong 85 

rocks); furthermore only brittle, intact rocks evolve in catastrophic landslides and therefore can 86 

be predicted; for others (Rose and Hungr, 2007), on the opposite, landslides displaying the Saito 87 

effect must have ductile failures in order to be forecasted (i.e. slower, indefinite deformation 88 

along a shear zone and under a constant stress, typical of sliding on pre-existing surfaces of soft 89 

rocks), as brittleness is characterized by sudden, impossible to anticipate, ruptures. 90 

This complex subject is made even more difficult due to the influence of external factors 91 

(rainfall, earthquakes, excavations), structural constraints (joints, faults, contacts with different 92 

lithologies) and sometimes unknown elements within the mass (the conditions of the shear 93 

surface, the history of the landslide, the presence of rock bridges). Therefore it is often hard to 94 

establish the mechanical behaviour and even more to find an exact correlation between the 95 

mechanical behaviour of a landslide and the possibility to predict its failure.  96 

The concept of predictability 97 

Before assessing the influence of geomechanics on the predictability of a landslide it is first 98 

necessary to address the concept of predictability. 99 
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In literature (Azimi et al., 1988; Hutchinson, 2001; Mufundirwa et al., 2010; Rose and Hungr, 100 

2007) there are papers that deal with “predictions” made in retrospect, that is thorough post-101 

event analyses showing the signs of a critical pre-collapse acceleration; however whether such 102 

signs would have been unambiguous or would have granted a sufficient lead time is often 103 

neglected. 104 

On the other hand in our this research we consider an operational definition of predictability is 105 

considered (integrating the one of early warning system; UNISDR, 2009) as the feature 106 

possessed by a landslide which allows one to forecast its collapse with reasonable confidence 107 

and sufficiently in advance, permitting the dispatch of meaningful warning information to enable 108 

individuals, communities and organizations threatened by the hazard to prepare and to act 109 

appropriately and in sufficient time to reduce the possibility of harm or loss. Therefore, 110 

displaying the Saito effect is not the only prerequisite for an operational prediction, there is also 111 

the need for repeated time of failure forecasts fluctuating around a constant time value placed not 112 

too close in the future. This has been achieved through the reiterative approach and the graphical 113 

representation described in the following paragraph. Finally a semi-quantitative parameter called 114 

Prediction Index is defined in order to address the success of the predictions. 115 

METHODS 116 

The usual way to apply landslide forecasting methods based on displacements, is to obtain a 117 

single predicted time of failure (tf) and to update such prediction as soon as new data are 118 

gathered (Rose and Hungr, 2007). This is a deterministic approach, since the real time of failure 119 

(Tf) is predicted through a single inference. At mostEven if sometimes more predictions can 120 

beare made in the futuretogether with new data, but usually only one (the most recent) is used. 121 

On the other hand, in order to account for the uncertainty of the methods and complexity of the 122 

phenomena, predictions should have a certain confidence. Confidence may be quantitatively 123 

assessed by using the standard deviation of the forecasts tf  as a proxy. In fact the standard 124 

deviation furnishes the dispersion (i.e. the precision) of the predictions, which may be used to 125 

calculate a time window within which the collapse is more likely to occur. Therefore the lower 126 

the standard deviation of a set of forecasts, the higher would be their reliability and the 127 

confidence(for example given by the standard deviation of tf). This is especially important for 128 

operative early warning systems. We achieved tThis probabilistic approach is achieved by 129 

reiterating the equations from Saito (1969), Fukuzono (1985a) and Mufundirwa et al. (2010) (the 130 

latter method will be called M method from here on) for finding tf, using continuously new data 131 

and enabling the calculation of the standard deviation. 132 

The predictions are plotted versus the time when they have been made (time of prediction, tp). 133 

We call these diagrams prediction plots (Figure 1). A prediction is considered reliable when the 134 

inferences oscillate around the same tf. Figure 1 also shows that since reliable predictions usually 135 

display an oscillatory trend, the most updated one is not necessarily the most accurate, contrarily 136 

to what is usually believed (Rose and Hungr, 2007) in fact, the length of the dataset is more 137 

important, from which Tf can be estimated through simple statistical analyses (like mean and 138 

standard deviation). 139 

Since in some cases a single forecasting method can fail to give satisfactory results, in order to 140 

improve even more the confidence in the predictions, a multi-model approach is adopted together 141 

with the probabilistic approach. In fact, according to the Diversity Prediction Theorem (Page, 142 

2007; Hong and Page, 2008), diversity in predictive models reduces collective error. The highest 143 

confidence, of course, is reached when all the employed method independently converge towards 144 

the same result.  145 
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On the other hand, confidence it may also be considered as a qualitative increase in the 146 

awareness of the decision makers that can estimate the time of failure of a landslide by 147 

evaluating a large set of different predictions and their dispersions. 148 

 For this research we confronted the results from S and F methods have been confronted and 149 

from the method by Mufundirwa et al. (2010). The equations used for the iteration are obtained 150 

from the respective authors and are: 151 

, (1) 152 

for S method, where t1, t2, t3 are times taken so that the displacement occurred between t1 and t2 153 

is the same as between t2 and t3. 154 

, (2) 155 

for F method, where v1 and v2 are the velocities at arbitrary times t1 and t2. 156 

, (3) 157 

for M method, where D is the displacement and tr is the angular coefficient of the line 158 

represented in a  space having B as the intercept. For the purposes of this paper tr 159 

expressed in all these equations is equivalent to tf. 160 

 161 
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 162 
Figure 1. This graph represents probabilistic predictions performed with 3 different forecasting 163 

methods (Fukuzono, 1985a; Mufundirwa et al., 2010; Saito, 1969) applied to the MB34-35’ 164 

displacement time series of Mount Beni landslide (Gigli et al., 2011). The horizontal dashed line 165 

indicates the observed time of failure (Tf) and the grey diagonal line the equality between tf and 166 

tp. Therefore the vertical distance between a point and the dashed line indicates the prediction 167 

error. The vertical distance between the diagonal line and a prediction above it is the life 168 

expectancy of the landslide at the time of prediction. In this case the predictions obtained through 169 

S and F methods give a good estimation of Tf, while the one from Mufundirwa et al. (2010) 170 

consistently forecasts the collapse few days ahead. 171 

The proposed procedure consists in iteratively calculating the time of failure tf by using the 172 

aforementioned methods and to repeat the calculation as soon as new monitoring data are 173 

available. All the forecasts are recorded together with the time when they are made, in order to 174 

create a time series of tf = f(t). This can be represented in a prediction plot having tf and t (the 175 

time when the prediction is made) as coordinates. Finally, from the distribution of the forecasts 176 

with time it is possible to assess the time of failure. 177 

 178 

TIME OF FAILURE PREDICTION 179 

In order to find a relation between the predictability of a failure and the geological features of the 180 

landslide, S, F and M methods have been applied to a number of different real case studies. Some 181 

geological features of interest relative to such cases are reported in TABLE 1, when they were 182 

known or applicable. Concerning brittleness, since it was rarely explicitly stated in the 183 

referenced articles, it was assessed based on information such as the type of material, the 184 

presence of a reactivated landslide, the weathering and the shape of the displacement time series. 185 
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Since this lead to approximations, brittleness has been evaluated using broad and qualitative 186 

definitions. 187 

Since Tf must be known in order to assess the quality of predictions, all the case studies are from 188 

past landslides that have already failed. Therefore the respective time of failures are all a 189 

posteriori known. 190 

A few representative examples of prediction plots are showed in Figure 1 and Figure 2. Mount 191 

Beni landslide is a 500.000 m
3
 topple that evolved as a rockslide (Gigli et al., 2011). It developed 192 

on a slope object of quarrying activity. The predictions oscillate quite regularly around the 193 

observed time of failure (Tf, dashed line in Figure 2). It is this convergence that permits to 194 

correctly forecast the collapse a priori at least since late November, i.e. a month before the 195 

failure, whereas a single forecast would not be able to give a confidence of the prediction. The 196 

three methods are similar to the point that S and F previsions can be partially overlapped. M 197 

previsions overlap as well but only in the final part. The M method alone would not be sufficient 198 

for spreading a reliable alarm as the single forecasts do not converge but move forward to a 199 

different time of failure as the time passes by. 200 

Similar behaviours can be observed also for the cases of Figure 2 that display landslides with a 201 

different array of geological features (as seen in TABLE 1). The best results are obtained when 202 

the forecasts oscillate around Tf with sufficient time in advance (as for Vajont and, limited to F 203 

method, for Liberty Pit) or when they consistently give the similar tf (as for the artificial 204 

landslide E, where the terms “artificial landslide” indicate a landslide recreated in laboratory 205 

with an artificial slope). In other cases (Avran valley and, limited to S and M method, for Liberty 206 

Pit) the predictions are too scattered or simply never converge toward a single result, thus 207 

making it impossible to foresee a reliable time of failure. 208 

Notably, considering for example only the results of the S method in the case of the Avran valley 209 

landslide, since the end of September the forecasts are constantly furnishing a time of failure 210 

preceding the actual Tf. Although this may be considered a case of safe predictions (that is an 211 

error not producing a false positive and therefore not dangerous for the elements at risk), this 212 

also means that, at every forecast that is made, tf is postponed. Given a series of ever increasing 213 

values of tf, it is impossible to assess which of them  (if any) can be assumed as a good estimate 214 

of the actual time of failure. However, since the time series of predictions is long enough, past 215 

forecasts (before early September) furnish values of tf that, if considered together with the late 216 

ones, centre the value of Tf. Therefore it is clear how a prediction plot may allow decision 217 

makers to make more aware evaluations of the time of collapse of a landslide. 218 

 219 

The results of the prediction plots can be roughly summarized reporting the mean and standard 220 

deviation of the forecasts for each method (Figure 3). 221 

TABLE 1. LANDSLIDE CASE HISTORIES 

Name Material Type Brittleness Volume 

(m3) 

Predisposing 

factor 

Trigger History Basal 

geometry 

Ref.

* 

Liberty Pit Weathered 

quartz 

monzonite 

Rockslide? Medium/high 6x106 N.D. Blasts, pore 

water 

pressure 

First time 

failure 

Planar? 1, 2 

Landslide 

in mine 

Consolidated 

alluvial 

sediments, 
weathered 

bedrock 

Deep-seated 

toppling in 

bedrock 

Medium 106 Blasts, pore 

water pressure 

N.D. First time 

failure? 

N.D. 1 

Betze-Post Weathered 
granodiorite 

Rockslide? Medium/high 2x106 N.D. Rainfall First time 
failure? 

Wedge 
intersections? 

1 
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Vajont limestone and 

clay 

Rock slide High 2.7x108 N.D. Pore water 

pressure 

Reactivated Concave 1, 3 

Stromboli 
† 

Shoshonitic 
basalts 

Bulging (not 
a landslide) 

Medium/high N.D. N.D. Sill 
intrusion 

First time 
failure 

N.D. 4 

Monte Beni Ophiolitic 
breccias 

Topple/rock 
slide 

High 5x105 Rainfall, 
structure, 

basal 

excavation 

N.D. First time 
failure 

Stepped 5 

Cerzeto Weathered 

metamorphic 

rocks on top, 
cataclastic 

zone and 

Pliocene clays 

Debris slide-

earth flow 

Medium/low 5x106 Tectonized 

area, 

permeability 
differences 

Prolonged 

rainfalls 

Reactivated

? 

Compound 

(steeper and 

irregular in the 
upper zone 

and gentler in 

the clays 

6 

Rock mass 

failure 

Japan 

Clayey 

limestone 

Rockslide? High (within 

limestone)? 

5x102 “Structural 

complexity” 

(?) 

Intense 

rainfall 

First time 

failure? 

Planar? 7 

Asamushi Liparitic tuff, 

jointed and 
weathered. 

Clay in the 

joints 

 Medium/low 105 N.D. N.D. N.D. Concave? 7, 8 

Avran 

valley 

Chalk Rockslide Medium/low 8x104 N.D. N.D. First time 

failure? 

Convex 9 

Giau Pass Morainic 

material 

Complex 

slide 

Medium/low 5x105 N.D. Pore water 

pressure 

Preexisting 

shear 

surface 

Composite 10, 

11 

Artificial 

landslide A 

Loam Earth slide Low N.D. N.D. Prolonged 

rainfall 

First time 

failure 

Planar 12 

Artificial 

landslide B 

Sand Earth slide Low N.D. N.D. Prolonged 

rainfall 

First time 

failure 

Planar 12 

Artificial 
landslide C 

Sand Earth slide Low N.D. N.D. Prolonged 
rainfall 

First time 
failure 

Convex 12 

Artificial 

landslide D 

Sand Earth slide Low N.D. N.D. Prolonged 

rainfall 

First time 

failure 

Planar 12 

   *The references used are numbered as follows: 1: Rose and Hungr, 2007; 2: Zavodni and Broadbent, 1980; 3: Semenza and Melidoro, 1992; 4: 
Casagli et al., 2009; 5: Gigli et al., 2011; 6: Iovine et al., 2006; 7: Mufundirwa et al., 2010; 8: Saito, 1969; 9: Azimi et al., 1988; 10: Petley et al., 

2002; 11: Angeli et al., 1989; 12: Fukuzono, 1985b. 
   † The case of Stromboli is not relative to a landslide, rather to a volcanic bulging preceding a vent opening that was forecasted in a similar 

fashion of a landslide and therefore here included. 
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 224 
Figure 2. These graphs show how iterating forecasts performed through multiple forecasting 225 

methods increases the confidence when estimating the actual time of failurePrediction plots of 226 

four different case studies. The dashed line indicates (Tf, dashed line). The crosses represent 227 

forecasts performed with S method, the triangles with F method and the diamonds with M 228 

method. Note that F forecasts for Avran valley landslide include other less accurate values not 229 

showed in the graph as they are out of scale. 230 

 231 
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 232 

 233 
Figure 3. This graph represents for each method the differential between the mean of the 234 

forecasts ( ) and the actual time of failure (Tf). Negative values are safe predictions as anticipate 235 
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the time of failure. The dashed line represents exact predictions (Tf -  = 0). The standard 236 

deviations of the forecasts are represented as error bars. For Betze-Post and Mount Beni 237 

landslides, time series from different measuring points are reported. The rock mass failure, 238 

Asamushi landslide and the artificial landslides are not shown as were monitored in a different 239 

time scale (hours or minutes). 240 

 241 

PREDICTABILITY INDEX 242 

In order to evaluate the performance of S, F and M methods and to relate it to the characteristics 243 

of the reported examples, an arbitrary scoring system has been implemented and attributed to 244 

each prediction plot (considering that every time series has a prediction plot for each forecasting 245 

method and that for some case studies more than one time series was available). This permits to 246 

quantify the predictability of a collapse based on the prediction plot. A score from 1 to 5 has 247 

been assigned according to the following criteria: 248 

 1 point: the prediction plot never converges on a single tf (typically tf increases at every 249 

new datum available). 250 

 2 points: the predictions vary considerably at every new iteration. An average time of 251 

failure ( ) can be extracted but with high uncertainty. 252 

 3 points: the predictions oscillate around Tf, although with a certain variance. 253 

 4 points: the predictions have a low variance although  is slightly different than Tf. 254 

Note that when the variance was low,  and Tf never differed greatly. 255 

 5 points: the prediction plot is clearly centred on Tf therefore the reliability of  is high. 256 

By summing the scores obtained from S, F and M prediction for each time series, what we call 257 

the Predictability Index (PI) is obtained (TABLE 2). Since PI is a means to evaluate the overall 258 

quality of a set of predictions (it requires to observe the time series of tf and confront it with Tf, it 259 

is the predictability index) and also to compare the performance of different forecasting methods 260 

with different case studies, naturally it can only be estimated after the collapse. 261 

By using 3 forecasting methods, PI ranges from 3 (impossible to predict the time of failure) to 15 262 

(the time of failure can be predicted in advance and with a high reliability). Though a certain 263 

degree of subjectivity is unavoidable when assigning the scores, what matters here is the relative 264 

difference of PI between the case studies. In such a way it is possible to understand in which 265 

conditions a landslide is more or less predictable. 266 

TABLE 2. PREDICTABILITY INDEX 

Name S F M PI Inverse velocity trend Notes 

Liberty Pit 1 5 1 7 Asymptotic (linear at the 

end) 

Open pit mine, structural control of 2 intersecting 

faults 

Landslide in mine 5 5 5 15 Linear Open pit mine 

Betze-Post 1 3 3 1 7 Linear Open pit mine 

Betze-Post 2 4 5 4 13 Linear Open pit mine 

Betze-Post 3 5 4 1 10 Linear Open pit mine 

Vajont benchmark 63 5 5 5 15 Linear Air pressure and cementation caused catastrophic 

collapse 

Stromboli 1 2 2 5 Asymptotic Volcanic context 

Mount Beni 12-9 4 5 1 10 Concave Back fracture 

Mount Beni a'b' 1 3 1 5 Linear Short time series 
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Mount Beni 15-13 5 3 1 9 Linear Internal fracture 

Mount Beni 34-35' 5 3 1 9 Linear Lateral fracture, short time series 

Mount Beni 45-47 2 3 1 6 Linear Back fracture, short time series 

Mount Beni 3-2 5 2 1 8 Concave Back fracture 

Mount Beni 4'-6 1 4 1 6 Linear Back fracture, short time series 

Mount Beni 24-23 4 2 1 7 Linear lateral fracture 

Mount Beni 49-24 5 1 1 7 Linear Lateral fracture, short time series 

Mount Beni 35'-36 2 5 1 8 Linear Lateral fracture, short time series 

Mount Beni 33-35' 3 3 1 7 Linear Lateral fracture, short time series 

Mount Beni 36-37 4 3 1 8 Linear Lateral fracture 

Mount Beni 19-16 2 2 1 5 Linear Lateral fracture 

Mount Beni 19-17 1 2 1 4 Linear Lateral fracture, short time series 

Mount Beni 33-34 4 2 1 7 Linear Internal fracture 

Mount Beni 43-44 3 2 1 6 Asymptotic (constant 

velocity at the end) 

Internal fracture, short time series 

Mount Beni 40-41 3 2 1 6 Asymptotic (constant 

velocity at the end) 

Internal fracture, short time series 

Mount Beni 40-42 3 3 1 7 Linear Internal fracture, short time series 

Mount Beni 45-46 3 2 2 7 Linear Back fracture, short time series 

Mount Beni 1-2 4 2 1 7 Linear Back fracture 

Cerzeto 5 5 1 11 Linear N.A. 

Rock mass failure Japan 2 2 1 5 Convex Open pit mine, very small landslide 

Asamushi 5 3 1 9 Linear N.A. 

Avran valley 5 1 2 1 4 Concave N.A. 

Avran valley 6 1 1 1 3 Asymptotic N.A. 

Avran valley 7 1 2 1 4 Concave N.A. 

Giau Pass 3 3 1 7 Asymptotic /concave N.A. 

Artificial landslide A 5 5 5 15 Convex 40° artificial slope 

Artificial landslide B 2 2 3 7 Concave 40° artificial slope 

Artificial landslide C 1 2 3 6 Linear (slightly convex) 40° artificial slope 

Artificial landslide D 5 5 5 15 Linear 30° artificial slope 

 267 

DISCUSSION 268 
TABLE 2 shows how the most predictable events (PI > 8) can display very different features and 269 

are quite irrespective of the shape of the inverse velocity plot, the volume, the brittleness of the 270 

material, the history of the landslide and so on (see also TABLE 1). 271 

A comparison between Figure 3 and TABLE 2 illustrates how the mean and standard deviation 272 

of the forecasts alone are not enough to represent the quality of predictions and, consequently, 273 

the predictability of a landslide. In fact the importance of a single forecast strongly depends on 274 

the time when it is made; for example, given the same set of forecasts (tf,i), a higher PI is 275 

obtained if the first predictions done are the farthest from Tf while the final ones tend to converge 276 

to it; in this way the prediction plot assumes an oscillatory shape (as for S and F forecasts in 277 

Figure 1). Conversely, if the same forecasts are made with a different order so that they get 278 

closer and closer to Tf as time passes by (that is |tf,i – Tf|< | tf,i-1 – Tf|), then there is no tf,i 279 

prevailing on the others and it is not possible to define a more probable time of collapse (as for 280 
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M forecasts in Figure 1). However the average and standard deviation of tf are the same for both 281 

cases and this explains why these two statistics alone are not as informative as a prediction plot. 282 

From TABLE 2 it is also possible to assess which method gives the best results. The sum of the 283 

scores for S, F and M is 119, 115 and 63 respectively. Overall S and F perform similarly, but for 284 

a specific case study their effectiveness can be very different, therefore their result are 285 

independent and not redundant; there is no indisputable clue suggesting when F method is more 286 

performing than S and vice versa; nonetheless it appears that S is negatively influenced when the 287 

displacement curve is not regularly accelerating (Liberty Pit, Stromboli), whereas for F a few 288 

aligned points in the final tract in the inverse velocity plot are sufficient for predicting the failure; 289 

however F forecasts are more disturbed when displacement data are noisy, since they use their 290 

derivative (velocity) as input. Eventually M forecasts generally perform more poorly and rarely 291 

(i.e. artificial landslides B and C) surpass those obtained from S and F methods. 292 

Interestingly, different displacement time series belonging to the same landslide can display 293 

different behaviours. This is a strong evidence that, even though the geological features do 294 

influence the predictability of a landslide, assuming that they keep the same for the whole 295 

landslide, other factors must determine the quality of the predictions. The last column of TABLE 296 

2 shows for each time series what such factors could be, such as lithology (the asymptotic trends 297 

of the cases of Avran valley and Giau Pass can be explained as consequences of a lowly brittle 298 

material according to Petley’s experiments; Petley, 2004), external forces (excavation in open pit 299 

mines, volcanic activity, rainfall), local effects (structural constraints, displacement measured 300 

relative to internal or lateral fractures not representing the general instability of the landslide), 301 

quality of data (length of the time series, frequency of the observations, level of noise, 302 

representativeness of the monitored point) etc. 303 

All these case histories show that the main responsible for the predictability of a landslide, and 304 

secondary also for the presence or not of the “Saito effect”, is in a way or another connected to 305 

geology. However this relation is not simple nor direct but not simply and directly. Instead both 306 

the predictability and the “Saito effect” depend on the kinematics of the landslide, since only a 307 

landslide accelerating with a certain trend can be forecasted using S, F and M methods. 308 

Naturally, the kinematicswhich in turn depends on the geological conditions. In the complex 309 

relation between geology and kinematics the aforementioned factors may intervene. Although 310 

their interaction may not be known, its effect on displacement data can be easily measured. As a 311 

result it has been found thatand asymptotic trends in the inverse velocity plot have been 312 

encountered also for first failure ruptures (as found in some time series of Mount Beni landslide), 313 

contrarily to what is described by Petley (2004). This can be explained as an effect of those 314 

interactions which may alter in an unknown way the normal relation between geology and 315 

kinematics, thus making focusing on kinematics as the key more reliable than relying on geology 316 

alone. 317 

In other words, eIn fact, even though geomechanics is unquestionably a key factor, a complete 318 

geomechanical characterization is often difficult to accomplish, it is sometimes difficult to have a 319 

deep knowledge of the geomechanical features of a landslide, especially in the field and in 320 

emergency situations, although some safe assumptions can always been done by observation and 321 

a broad knowledge of the area. Hints of a particular geomechanical behaviour What it may be 322 

known about them is in part thanks to what isare often derived from displacement data. Like in a 323 

black box model, even if the real properties of a phenomenon are not known, we can draw 324 

conclusions may be drawn from the output of those properties (i.e. the kinematics). In this case, 325 

importance has been done to kinematics because what is generally measured by monitoring are 326 
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displacement data. Furthermore, and because many other unknown factors (rainfall, ground 327 

saturation, earthquakes, anthropic disturbance etc.) are included in the black box model together 328 

with the geomechanics; this makes it virtually impossible to know in advance what may be the 329 

degree of influence of geomechanics alone with respect to other factors, thus leading to focusing 330 

on kinematics instead. Moreover, even though geomechanics is a key element in determining 331 

landslide predictability (for example because it is responsible for the creep behaviour), we the 332 

results of the present study showed that landslide prediction can be carried out with a variety of 333 

different geomechanical settings, as can also be observed by comparing TABLE 1 (which 334 

furnishes evaluations concerning the geomechanical properties of the case studies) with TABLE 335 

2 (which states whether a collapse was predictable or not). 336 

Finally, tThe prediction plots clearly show that, contrarily to what is generally believed (Rose 337 

and Hungr, 2007), the last forecasts are not necessarily the most accurate and that past ones 338 

(starting from the initiation of the tertiary creep) are essential to estimate the correct time of 339 

failure. In fact older forecasts can be more accurate and in any case furnish precious information 340 

about the general reliability of the final prediction, as explained above. Therefore the present 341 

study highlights the importance of considering the whole set of predictions made with time. The 342 

integration of more forecasting methods further raises reliability of the predictions, which is of 343 

great importance for early warning systems, in particular when evacuations are envisaged. 344 

Limitations of the proposed approach are those related to the intrinsic limitations of the 345 

forecasting methods that have been integrated. In fact, since S, F and M methods are all based on 346 

the creep theory, the occurrence of a tertiary creep phase slow enough to allow to monitor and 347 

take action is necessary. Voight (1988) also assumes that there must be no external force acting 348 

on the landslide, but the examples shown in this paper demonstrate that this may not represent a 349 

limitation. 350 

Figure 3 shows that the mean of the predictions can be used as a proxy for the time of failure but, 351 

as stated above in this paragraph, it is also shown that the obtained accuracy may not be enough 352 

as the mean does not exploits all the information provided by a prediction plot. Other statistical 353 

indicators have been attempted but none of them appeared to better approximate the value of Tf, 354 

mainly due to the difficulty of accounting for the important time factor in the forecasts and also 355 

because not every prediction plot displays the characteristic oscillations. Therefore, the 356 

interpretation of the prediction plot (and in particular of the dispersion of the forecasts with time) 357 

represents the most valuable tool for decision makers, who,  in this way, can make aware 358 

judgements informed with a large set of quantitative and redundant data and therefore assessing 359 

the “weight” of a single prediction by comparing it with many others. 360 

Resuming, the proposed methodology can be summarized as in Figure 4. 361 
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 362 

 363 

Figure 4. Flow-chart that synthesises the proposed procedure.   364 
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 365 

CONCLUSIONS 366 

In conclusion, the main aspect of the proposed methodology concerns a way to produce and 367 

represent forecasting data. Then this methodology is used to assess the influence of different 368 

factors in the predictability of a landslide. tThe main results of the such study are the following: 369 

 Prediction plots are introduced as graphs showing the evolution of collapse forecasts with 370 

time. Such plots provide more information than simple average and standard deviation of 371 

the forecasts and improve the reliability of the final prediction. 372 

 A predictability index (PI) has been introduced as a scoring system based on the 373 

description of the prediction plot, in order to evaluate the quality of a set of predictions. 374 

 The predictability of a landslide depends firstly on its kinematics and then on what 375 

determines it (geology, external forces, local effects etc.). 376 

 Landslide collapses can be forecasted whether they are in highly or lowly brittle 377 

materials, in rock or in earth material, of different types, with different sliding surface 378 

geometries, volumes and triggers. 379 

 Contrarily to what is generally assumed (Voight, 1988; Rose and Hungr, 2007), 380 

landslides can be forecasted also with external forces acting. 381 

 The asymptotic behaviour of the inverse velocity curve does not imply that the landslide 382 

cannot be correctly forecasted, even though it can hinder the prediction. 383 

 The asymptotic behaviour may be induced by external factors, lithology and local effects, 384 

rather than only by crack propagation. In fact asymptotic trends have been found in first 385 

time failures and in both brittle and lowly brittle materials. The crack propagation 386 

explanation is not neglected, but it may not represent the general rule. 387 

 Most recent displacement monitoring data increase the confidence when estimating the 388 

time of failure but do not necessary provide more accurate predictions than the older ones 389 

(provided that they start from after the initiation of the tertiary creep). 390 

 The developed approach integrates more forecasting methods to further improve the 391 

reliability of the prediction. 392 
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accepted as is. 535 

accepted subject to technical corrections. 536 

accepted subject to minor revisions. 537 

reconsidered after major revisions: 538 

       I would like to review the revised paper. 539 

       I would NOT be willing to review the revised paper. 540 

rejected.  541 

 542 

Please note that this rating only refers to this version of the manuscript! 543 

 544 

Suggestions for revision or reasons for rejection (will be published if the paper is accepted for 545 

final publication) 546 

General comment:  547 

The paper fails to formally propose a methodology to increase the reliability of landslide 548 

forecasting based on displacement monitoring. The approach is presented at the end of the 549 

manuscript, as part of the discussion, and with no clear explanation of the sequence of analyses 550 

and criteria that should accompany a proposed methodology. Moreover, a probabilistic approach 551 

is mentioned, however there are no formal probabilistic techniques or reliability methods 552 

formulated that leads to quantified reliability. Plots of average times to failure and standard 553 

deviation does not fully address a probabilistic approach. 554 

The findings presented by the authors are important. The databases the authors present are very 555 

valuable. The analyses presented associated with their interpretation of the prediction tools and 556 

how to compare them are also valuable and worth publication. The analyses presented associated 557 

with the application of probabilistic techniques to landslide forecasting reliability, present the 558 

necessary data, however they are immature for publication and require further work. The writing 559 

style of some paragraphs, in particular the new additions, is not technical and sections of the 560 

manuscript are far from NHESS standards. 561 

 562 

Particular comments. Line numbers correspond to the file with the authors responses, which 563 

include the track changes to the original document submitted. 564 

 565 

Title - I suggest the title of the manuscript should not start with a preposition. 566 

The title has been changed accordingly. 567 

L54-59 This paragraph raises an issue. How is failure defined in the paper? Is it first movement? 568 

Rupture? I understand the authors refer to the onset of sudden acceleration and collapse, and this 569 

should be clearly stated. 570 

This has been now specified. 571 

L67-72 sufficient lead time for what? 572 

For evacuation. Now it has been specified. 573 

What is noise? These require clarification. Do you mean measurement fluctuations around a 574 

trend, with a natural origin or caused by monitoring instruments? 575 

This is already specified: “natural or instrumental noise” mean exactly “natural origin or 576 

caused by monitoring instruments”. Furthermore the citation at the end of the sentence is 577 

referred to a paper that deals in detail with these kinds of noise. This reference has now 578 

been evidenced. 579 

Data treatment means post-processing? 580 
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Yes, now it is specified. 581 

“exploit such methods” which methods? Data treatment? 582 

No, it refers to forecasting methods. Since this was not clear it has been specified. 583 

L121-127 This paper addresses the variability of predictions through the predictive models 584 

adopted but do not address a real “prediction rate”, or prediction-realization success. The method 585 

further assumes implicitly that fluctuations in the geomechanical behaviour of landslides can be 586 

captured by fluctuations in the predicted time of failure. These should be clearly stated at the 587 

start so the reader is aware of them. 588 

The prediction-realization success is quantified by the parameter PI. Now we have added a 589 

sentence in the introduction to make the reader aware of it since the beginning of the 590 

paper. We do not think that the fluctuations in the predictions reflect the fluctuations in the 591 

geomechanical behaviour. There may be a lot of reasons why predictions are not always 592 

accurate, and other factors than geomechanics can hamper this accuracy, as deeply 593 

commented on in the paper. 594 

L197-201 This figure shows the evolution of the predicted time of failure, however does not 595 

directly or clearly show how iterating forecasts increase confidence. This is explained in the text 596 

and should be removed from the caption of the figure. 597 

This part has been added to clarify our point. 598 

“Notably, if we consider, for example, only the results of the S method in the case of the 599 

Avran valley landslide, we see that since the end of September the forecasts are constantly 600 

furnishing a time of failure preceding the actual Tf. Although this may be considered a case 601 

of safe predictions (that is an error not producing a false positive and therefore not 602 

dangerous for the elements at risk), this also means that, at every forecast that is made, tf is 603 

postponed. Given a series of ever increasing values of tf, it is impossible to assess which of 604 

them  (if any) is closer to the actual time of failure. However, if the time series of 605 

predictions is long enough, past forecasts (before early September) furnish values of tf that, 606 

if averaged with the late ones, centre the value of Tf. Therefore it is clear how a prediction 607 

plot may allow decision makers to make more aware evaluations of the time of collapse of a 608 

landslide.” 609 

And this sentence has been modified as follows: 610 

“It is this convergence that permits to correctly forecast the collapse a priori at least since 611 

late November, i.e. a month before the failure, whereas a single forecast would not be able 612 

to give a confidence of the prediction.” 613 

Furthermore the caption has been modified as suggested. 614 

L281-294 This paragraph is unclear and our of place. Furthermore, the writing style is poor and 615 

far from NHESS standards. Authors are encouraged to read the manuscript and ensure a 616 

technical style of writing. 617 

This paragraph has been heavily rewritten to improve the style and meet NHESS 618 

standards: 619 

“In fact, even though geomechanics is unquestionably a key factor, a complete 620 

geomechanical characterization is often difficult to accomplish, especially in emergency 621 

situations. The clearer hints of a particular geomechanical behaviour are often derived 622 

from displacement data. Like in a black box model, even if the real properties of a 623 

phenomenon are not known, conclusions may be drawn from the output of those properties 624 

(i.e. the kinematics). In this case, importance has been done to kinematics because what is 625 

generally measured by monitoring are displacement data. Furthermore, many other 626 
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unknown factors (rainfall, ground saturation, earthquakes, anthropic disturbance etc.) are 627 

included in the black box model together with the geomechanics; this makes it virtually 628 

impossible to know in advance what may be the degree of influence of geomechanics alone 629 

with respect to other factors, thus leading to focusing on kinematics instead. Moreover, 630 

even though geomechanics is a key element in determining landslide predictability (for 631 

example because it is responsible for the creep behaviour), the results of the present study 632 

showed that landslide prediction can be carried out with a variety of different 633 

geomechanical settings.” 634 

The position  of this paragraph is due to a comment made by another reviewer in the 635 

previous revision step, where the reviewer asked to explain more in detail the concept 636 

explained above. 637 

L295-297 Contrary to the author’s statement, prediction plots are not clear in this matter. 638 

Supplementary plots or adequate highlights within the plot would be required for the authors to 639 

derive this statement and the readers to clearly observed the author’s observations. 640 

In fact this sentence is not referred to the prediction plots but to the comments made in the 641 

discussion session. They can be easily observed by comparing table 1 (which furnishes 642 

evaluations concerning the geomechanical properties of the case studies) with table 2 643 

(which states whether a collapse was predictable or not). This has been added to the text to 644 

make it easier to understand for the reader. 645 

L309 The proposed methodology is presented at the end of the manuscript and as part of the 646 

discussion, when it should have been introduced early on the manuscript and then proved to the 647 

reader. In this methodology, the steps of “Study the shape of the prediction plot” and “inference 648 

about the time of failure” have no substance. Although the authors do study the plots and infer 649 

times of failure during their discussions of the prediction methods and plots, there is no clear 650 

sequence of analyses and criteria that should accompany a proposed methodology. I argue that 651 

this manuscript, as it is written, does not formally proposes a methodology for predicting 652 

landslide time of failure. 653 

As it is now explained in the conclusions, the main aspect of our methodology concerns a 654 

way to produce and represent forecasting data. The reviewer here probably asks for a 655 

method to interpret such data and in particular to retrieve an estimate of Tf from the time 656 

series of tf. This is already furnished in the paper. We showed (figure 3) that the mean of 657 

the predictions can be a proxy for the time of failure. However we also have to note that 658 

this criterion does not employ all the information derived from a prediction plot and in fact 659 

it sometimes furnishes predictions that not accurate enough. Other indicators have been 660 

adopted (mode, average between maximum and minimum etc.) but unfortunately it 661 

appears that there is no quantitative or univocal method to calculate the a good estimate of 662 

Tf, also because not every prediction plot displays the characteristic oscillations. Therefore 663 

we have found that the last part of the procedure must be left to expert judgement, as 664 

indicated in the figure 4 where we state “inference about the time of failure”. This expert 665 

judgement is however informed with quantitative and redundant data that are much more 666 

reliable than a single forecast, even if this single forecast might be completely derived from 667 

a quantitative computation. In fact Fukuzono users typically adopt a quantitative method 668 

to extrapolate a single time of failure forecast; however this does not improve the general 669 

accuracy of the prediction; instead it gives a false confidence in the user. Instead we give 670 

decision makers a tool to critically assess the “weight” of such forecast by comparing it 671 

with many others. Here stands the core of our methodology. Moreover this should not 672 
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divert the attention from the scope of our paper that is also to use this tool to assess the 673 

influence of different factors in the predictability of a landslide. 674 

Nevertheless we recognize that individuating a parameter or an equation that can 675 

synthesize the prediction plot in a single number would be an improvement to this 676 

methodology. In fact we are currently developing our research in this direction and we look 677 

forward into publishing our findings as soon as we achieve the result. 678 

We have explained all these concepts in the discussions as follows: 679 

“Figure 3 shows that the mean of the predictions can be used as a proxy for the time of 680 

failure but, as stated above in this paragraph, it is also shown that the obtained accuracy 681 

may not be enough as the mean does not exploits all the information provided by a 682 

prediction plot. Other statistical indicators have been attempted but none of them 683 

appeared to better approximate the value of Tf, mainly due to the difficulty of accounting 684 

for the important time factor in the forecasts and also because not every prediction plot 685 

displays the characteristic oscillations. Therefore, the interpretation of the prediction plot 686 

(and in particular of the dispersion of the forecasts with time) represents the most valuable 687 

tool for decision makers, who,  in this way, can make aware judgements informed with a 688 

large set of quantitative and redundant data and therefore assessing the “weight” of a 689 

single prediction by comparing it with many others.” 690 

As requested we anticipated the explanation of our procedure in the method paragraph, 691 

although figure 4 cannot be moved to an earlier paragraph since it refers to the concept of 692 

PI that is introduced only later in the text. 693 

L329-332 This can not be concluded from the data that is presented. You need an adequate 694 

presentation of the characteristics of some case studies and their displacement time series that 695 

support your conclusion. 696 

This conclusion is drawn from those landslides cited in Table 2 that displayed an 697 

asymptotic trend and also moderate values of PI. In particular Liberty Pit gives very good 698 

forecasts with F method (figure 2). This is why we conclude that even if the landslide 699 

displays an asymptotic trend it can still be forecasted.  700 

Some editorial comments: 701 

L15 should read “is presented here” 702 

L17 “about reliability of prediction” 703 

L22 “are the key” 704 

L23 remove the word “when” 705 

L34-37 needs revisiting. The use of the word “particular” is abused. 706 

L38 Should refer to the paper not to “our research”. Landslide instead of landslides 707 

L67 Creep behaviour not behaviours 708 

L119 grammar: “at most more” 709 

L274-280 This paragraph is unclear and requires re-writing. 710 

This paragraph has been heavily rewritten as follows. This new version also helps to 711 

explain issues raised in the previous review. 712 

“All these case histories show that the main responsible for the predictability of a landslide, 713 

and secondary also for the presence or not of the “Saito effect”, is in a way or another 714 

connected to geology. However this relation is not simple nor direct. Instead both the 715 

predictability and the “Saito effect” depend on the kinematics of the landslide, since only a 716 

landslide accelerating with a certain trend can be forecasted using S, F and M methods. 717 

Naturally, the kinematics in turn depend on the geological conditions. In the complex 718 
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relation between geology and kinematics the aforementioned factors may intervene. 719 

Although their interaction may not be known, its effect on displacement data can be easily 720 

measured. As a result it has been found that asymptotic trends in the inverse velocity plot 721 

have been encountered also for first failure ruptures (as found in some time series of 722 

Mount Beni landslide), contrarily to what is described by Petley (2004). This can be 723 

explained as an effect of those interactions which may alter in an unknown way the normal 724 

relation between geology and kinematics, thus making focusing on kinematics as the key 725 

more reliable than relying on geology alone.” 726 

All the editorial comments have been addressed. 727 
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1) Scientific Significance 738 

Does the manuscript represent a substantial contribution to the understanding of natural hazards 739 

and their consequences (new concepts, ideas, methods, or data)?  740 

Excellent Good Fair Poor 741 

2) Scientific Quality 742 

Are the scientific and/or technical approaches and the applied methods valid? Are the results 743 

discussed in an appropriate and balanced way (clarity of concepts and discussion, consideration 744 

of related work, including appropriate references)?  745 

Excellent Good Fair Poor 746 

3) Presentation Quality 747 

Are the scientific data, results and conclusions presented in a clear, concise, and well-structured 748 

way (number and quality of figures/tables, appropriate use of technical and English language, 749 

simplicity of the language)?  750 

Excellent Good Fair Poor 751 

 752 

For final publication, the manuscript should be 753 

accepted as is. 754 

accepted subject to technical corrections. 755 

accepted subject to minor revisions. 756 

reconsidered after major revisions: 757 

       I would like to review the revised paper. 758 

       I would NOT be willing to review the revised paper. 759 
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Suggestions for revision or reasons for rejection (will be published if the paper is accepted for 764 

final publication) 765 

Dear Editor, 766 

Please find here below my review of the paper nhess-2016-221 v2: 767 

Of reliable landslide forecasting and factors influencing predictability 768 

By  769 

Emanuele Intrieri, Giovanni Gigli 770 

 771 

The new version was greatly improved, the authors followed most the reviewers’ comments, and 772 

they clarified most of the unclear statements.  773 

The paper is nearly ready for publication, but in my opinion, one problem remains. The 774 

confidence is not well defined, if I understand well it is different of PI, and then the confidence 775 

can be used for the forecast. It is stated line 118: that “…confidence (for example given by the 776 

standard 118 deviation of tf).” This is not really discussed or introduced in the rest of the text 777 

except in conclusions and figures. This must be clarified for the final version. 778 

Thank you for raising the problem. This sentence has been added in the method section in 779 

order to explain it better: 780 

“Confidence may be quantitatively assessed by using the standard deviation of the 781 

forecasts as a proxy. In fact the standard deviation furnishes the dispersion (i.e. the 782 

precision) of the predictions, which may be used to calculate a time window within which 783 

the collapse is more likely to occur. Therefore the lower the standard deviation of a set of 784 

forecasts, the higher would be their reliability and the confidence. 785 

On the other hand, confidence it may also be considered as a qualitative increase in the 786 

awareness of the decision makers that can estimate the time of failure of a landslide by 787 

evaluating a large set of different predictions and their dispersions.” 788 

Last point is the problem of overlap of the graph and text in figure 3. This must be corrected. 789 

It has been corrected. 790 
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