
We are especially grateful for the detailed and informative comments. We think that the quality and readability

of the manuscript have been improved once again. Hereby we would like to thank the editor and the referees for

their effort, time and thoughts.

We re-structured and partly re-wrote the introduction. From the referees’ points we had the impression that the

motivation to apply GAMs for such a data set has to be more sound and direct to reach the target readers.

Response to Editor

P1 L21: What other covariates except for altitude may be important? May they be introduced in the

model?

Basically everything could be added as a covariate. With respect to climate assessments properties derived from

topography and land use attributes are most meaningful. We added some more examples at this point in the

introduction. We also tried several different covariates derived from topography. However they did not improve

the model. We now mention this in the results section.

P2 L8ff: Maybe you should not explicitly refer to ALDIS here since the data is only described later in

the paper.

Agree.

P2 L30: What parameters of a distribution can be specifically modeled?

Basically all parameters of a distribution can be described by additive models. Often these parameters are

associated with the scale and the shape of a distribution.

P3 L1ff: The first paragraph in this section might be better inserted into the introduction.

Agree.

P3 L21: What is the original resolution of the DEM data? How was it acquired?

Added the original resolution. The data are provided by the federal state of Carinthia. The link to the web page

is included in the reference list.

Figure 1: Please show the position of Carinthia in a location map. The map has no scale (as the other

maps).

The axes are labeled now. If you prefer I can also add a location map.

Figure 4, 5: Please denote parts as A, B, C and refer in text and caption accordingly.

Thank you. We changed that.
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Response to Referee #1

I have read the revised paper and find that the paper is somewhat improved, but I still have some issues

with the methodology and results. 1. The analysis of the lightning data using the GAM is simply a

fancy way of smoothing the data spatially and temporally. Such smoothing functions (whether splines

or interpolations) are available in most software packages (Matlab, IDL, R, Python, etc.) and hence

this is not a new development of the authors. And I still wonder why the authors think their GAM is

better than simply smoothing the raw data.

Thank you for insisting that the advantages of using GAMS instead of averaging per grid cell have not become

clear enough yet since the clarity would probably be also found to be insufficient by many readers!

We have completely rewritten the introductory section and also changed several parts of the paper including the

conclusion to both motivate and show the advantages of generalized additive models (GAMs). Since lightning

is a rare event with 0.5–4 flashes per year and square kilometer (Schulz et al., 2005) in the eastern Alps and

available time series are short (on the order of 10 years), the sample size is too small to compute a climatology on

such fine scales as km−2d−1 by simply averaging the number of flashes in each grid cell. To be able to estimate

climatologies on such fine scales, information from the whole data set has to be used instead, which general

additive models allow to do. Lightning e.g., might depend on altitude so that combining the information from all

cells at a particular altitude band will increase the sample size and thus lead to a more robust estimate. GAMs also

permit to introduce expert knowledge to refine the climatology, e.g., altitude, aspect of the slope, geographical

location, soil moisture. Importantly, GAMS allow to also test which of the proposed effects is significant and thus

an actual effect. An even further advantage is the ability to obtain not only expected values (means) but also the

full probability distribution, which is highly skewed in the case of lightning. We derived the relative frequencies

for the sample locations for a single day and present these as additional application.

I agree that the observed data is noisy, but maybe for a reason. Maybe the noisy topography in the

region results in peaks of lightning above mountain peaks, less in valleys, and when the model smooths

the data these maxima disappear. Smoother data is not always better or closer to reality. Maybe the

noisier real data is better for determining risks.

The difference between lightning near peaks and over valleys that you mention becomes obvious using GAMs

while it is obscured by a the grid-cell-averaging method as can be seen by comparing Figs. 6 and 3.

2. The authors use 3 parameters only to describe the lightning climatologies (altitude, day of year,

and longitude/latitude). However, in reality there may be many other parameters that determine the

lightning distribution. For example, vegetation cover, slope of topography, soil moisture, etc. Hence,

the model can only be as good as the input parameters.

Yes, that is one advantage of GAMs. Indeed we tried some other covariates (input parameters), e.g., surface

roughness, aspect and slope of topography. However, they did not come with an effect. We now mention this

in the result section. However, if there would a covariate which would have an effect and could be written as a

function of long/lat, its effect would implicitly included in the spatial effect. Adding this covariate would then
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lead to a smoother spatial effect. This property of the GAM is already explained in the text (results section,

occurrence model).

At the bottom of P5, the authors state that the model is generated with 5 years of data, and then tested

against the 6th year of data. However, I do not see these comparisons. Where is the predicted distri-

bution for year XXXX next to the observed (smoothed) distribution for year XXXX. Such comparisons

are necessary to show that the three parameters used are sufficient for building the climatology.

Cross-validation is a standard method for testing a statistical model on independent data. The basic idea of the

cross-validation is to train the model on 5 years of data and validate the model on the remaining year. The

validation is expressed in a score, i.e., the log-likelihood. This procedure is repeated 6 times in such way that

every year serves as validation period once. In the end the 6 scores are summed up to express the out-of-sample

performance of the model. The cross-validation is applied in order to determine the best values for the smoothing

parameters λj . Thus the visual comparison between the model trained on 5 years and the observations of the 6th

year is not subject of the cross-validation, instead quantitative methods have been applied.

Minor comments:

P1 line 12: Simply smooting the observed data would also produce a climatology that varies smoothly

over space and time. This is not unique to your method.

Right. However, GAMs provide a statistical model which can be analyzed quantify and GAMs can be easily

extended with other covariates. We added that the climatology resulting from our GAM varies also smoothly over

the altitude. For instance, it is not clear to me how to filter the altitude effect with simply smoothing.

P2 line 21-23: Why is using the raw data a problem for quantitative assessments? The same method

can be followed to assess the risk using the raw data, however noisy is may be. You can use simple

spline or interpolation to smooth the observed data and get similar results.

The raw data are too numerous for any kind of quantitative assessment, but one has to apply some kind of

descriptive statistical analysis to it in order to receive the information sought after. Within our GAM we are using

splines. We think that it is a very good tool to learn from the data, e.g., we did not only see a smooth pattern

in space and time, but a also receive a quantification of the altitude effect. Potentially other covariates could be

employed. Moreover, the selection of the complexity of the model by cross-validation is an objective way. We left

this part of the text the way it was, but tried to motivate the usage of GAMs a bit more in the two consecutive

paragraphs and added a paragraph in the section 4.3 Applications.

P3 line 19: Why was only Carinthia used in this study, and not the whole of Austria. I guess the data

is available, so why not use it?

Carinthia is the area with the strongest lightning activity within Austria. Thus most interesting to investigate.

Preprocessing the data to the km−2d−1 scale leads to roughly 7 million data points. Fitting a model on my local

machine takes less than 10 min. In order to provide confidence interval we run the bootstrapping (resampling the

data and fitting the model 1000 times) parallel on the HPC infrastructure LEO of the University of Innsbruck.

Therefore the study is overall computationally demanding. We think the study in the present way highlights all
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important aspects and potential of the method. Taking the computational effort and estimating a climatology for

the whole of Austria at the same resolution will not add too much value.

P3 line 29: Is this the number of flashes over the 4 month period? Please clarify.

Yes. We repeated that the data is from observations during summer (May to August) of 6 years.

P6 line 11: Fig.4 is still not clear regarding the y-axis units. Are these the weighting functions? Are

they dimensionless? What is the physical meaning of 0.5? What is the physical meaning of a negative

value? Please explain. If it is not clear for me, I guess others will have difficulty as well.

Thank you for pointing out that this might be unclear. We added a paragraph in the results section to illustrate

the interpretation of the effects.

P6 line 22: We don’t need the model (or the data) to tell us that lightning is mainly in the summer in

Austria. I think this is well known.

Right. This finding is not surprising. However, this finding is not the central statement of the manuscript, but

only mentioned in one sentence for the sake of completeness.

P6 line 28: If we already know all of this from previous studies, do we need another paper to make this

statement? It is difficult for me to figure out what is new in this analysis.

The previous study analyzed lightning detection data from a different period. We think it is important and

interesting to see whether the results match or not.

P9 line 21: The prediction tool will not fall below the climatology only if all relevant parameters are

included in your model. As mentioned above you only used 3 parameters. And we have not seen any

comparison between lightning predicted using your model for say, 2015, compared with the observed

climatology for 2015. Please present such a comparison, including the correlation coefficient between

the predicted and observed distributions.

We assume that something got misunderstood here and we try to clarify it. By prediction tool we did not mean

the model presented, but a potential extension. The presented model characterizes the lightning climatology. If

the climatology model,

g(θ) = β0 + f1(logalt) + f2(doy) + f3(lon, lat), (1)

is nested within a weather prediction model, e.g.,

g(θ) = β0 + f1(logalt) + f2(doy) + f3(lon, lat) + f4(cape), (2)

where cape could be the convective available potential energy taken from a numerical weather prediction system,

e.g., ECMWF HRES. In such a case the performance of the weather prediction model would not fall below the

performance of the climatology model by construction.
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Response to Referee #2

1 General Comments

After reading the revised manuscript, I got the impression that the authors generally implemented the

referee comments satisfactorily. However, some questions and suggestions for improvement still arose.

Motivated by your comment and also the other reviewer’s comments we have completely rewritten the introductory

section that motivates the need for a method that can harness the information in the complete data instead of

just taking the average locally in each grid cell. For such fine scales as km−2d−1, the sample size for estimating

a climatology by taking averages is to small given typical rates of a few flashes per km2 and year and typical

lightning data set lengths of about 10 years. Further advantages are the ability to include expert knowledge for the

refinement of the climatologies and the ability to test which parts of the expert knowledge contribute significantly

to improving the climatology. Parts of the paper including the conclusion have also been written in order to more

clearly show the advantages of using GAMs.

In the introduction the authors mention, that the main motivation to process raw data by a statistical

model is to improve the signal-to-noise ratio. Therefore, I would suggest to show two figures with

the spatial distribution of the coefficient of determination R2 for the probability and the intensity of

lightning. This may help to visualize the effect of the proposed smoothing and would show how much

variance of the observations could be explained by this statistical model.

A map would not be appropriate at his point, rather one can analyze these values for the whole model. In terms

of explained deviance the occurrence model and the intensity model reach 6.8% and 3.5%, respectively—in terms

of adjusted R2 4.3% and 0.8%. As we stated in the introduction the lightning data is very noise by nature. In

this light it was expected that the model explains only a small part of the variability. The clear benefit is that the

signals/effects for time, space and altitude are well separated form the noise.

2 Specific Comments

2.1 Generalized additive models

page 5, line 1: Is there a relationship between λ and the degree of freedom? If there is a relationship,

it would be helpful to mention it, because the selection of your λ has an impact on your d.o.f., which

is (as far as I understand) one of your models main benchmarks. In terms of d.o.f., it would also be

helpful to explain its values, i.e. d.o.f=0 is a linear fit, d.o.f=1 and d.o.f=2 are quadratic and cubic

polynomials . . .

Right. There is a relationship between λ and the d.o.f. However, this relationship can not be expressed by a

formula. The table in first rejoinder showed one example for this relationship, but we think that these numbers

would not add too much value to the paper as this is quite technical. However we added some more explanations

to the methods section.

As far as I know, degree of freedom often is defined as the number of independent scores that go into

the estimate minus the number of parameters, while you are defining the d.o.f. only as number of

parameters. Do I misunderstood sth.?
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Right. In a classical linear model—without penalization—the d.o.f. is equal to the number of coefficients to be

estimated. Or speaking technically: The trace of the hat matrix H is equal to its rank, where H is defined by

ŷ = Hy = X(X>X)−1X>y, (3)

with X, y and ŷ denoting the design matrix, the response vector and its estimates, respectively. Here the trace of

H is equal to the degrees of freedom of the linear model. With penalization the estimates are

ỹ = H̃y = X(X>X + S)−1X>y, (4)

where ỹ are the estimates of the penalized regression and S is the penalty matrix (cf. Eq. 3 in the manuscript).

Again the degrees of freedom is defined as the trace of the matrix H̃, though it is no longer equal to the number

of coefficients. We think that all this is far too technical for the paper. However, the interested reader is referred

to the textbook by Wood.

2.2 Verification

page 5, line 28: which parameters were estimated, β0, β1, . . . or λ or both? At this point I would like

to know, how do you estimate λ? Du you simultaneously estimate βj and λ during the training period

and try to find an optimum βj and λ that minimize your negative maximum likelihood for the validation

period? Or do you initially set λ to a certain value (e.g. 100000), then estimate βj during the training

period and calculate the log-likelihood within your validation period with the estimated βj and the

preset λ?

For a single λ a set of β0, β1, . . . can be estimated. However, as explain in the newly added paragraph in the

method section, the value of λ determines the smoothness of the associated effect. Cross-validation is applied to

select the value of λ.

2.3 Discussion

page 9, line 1-3: I got confused by the difference between cross-validation with day-wise blocks and

cross-validation without these day-wise blocks. Maybe it would be helpful, if you write that day-wise

means cross-validation at every grid point with 6 × 123 data points/days and without day-wise means

cross-validation with every grid point and every day (in this case 6x123x25 data points). You are

explaining this term already in the verification section, but for me it was difficult to transfer from

day-wise block bootstrapping to without day-wise cross-validation, since without day-wise could have

various meanings.

Thank you for pointing at the confusion. We extended the explanation at bit at this point in order to clarify this

issue.

page 9, line 3: Is there a reason for setting the maximum d.o.f. to 30?

The choice of the maximum is kind of arbitrary. However, it is important that one allows the effect to be

sufficiently flexible. For an annual cycle, like in this case, one would expect the d.o.f. to fall below 10. Thus one

could also set the maximum d.o.f. to 20, 40 or 100.
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Spatio-temporal modelling of lightning climatologies for complex
terrain
Thorsten Simon1,2, Nikolaus Umlauf2, Achim Zeileis2, Georg J. Mayr1, Wolfgang Schulz3, and
Gerhard Diendorfer3

1Institute of Atmospheric and Cryospheric Sciences, University of Innsbruck, Austria
2Department of Statistics, University of Innsbruck, Austria
3OVE-ALDIS, Vienna, Austria

Correspondence to: T. Simon (thorsten.simon@uibk.ac.at)

Abstract. This study develops methods for estimating lightning climatologies on the d−1km−2 scale for regions with complex

terrain and applies them to summertime observations (2010 – 2015) of the lightning location system ALDIS in the Austrian

state of Carinthia in the Eastern Alps.

Generalized additive models (GAMs) are used to model both the probability of occurrence and the intensity of lightning.

Additive effects are set up for altitude, day of the year (season) and geographical location (longitude/latitude). The performance5

of the models is verified by 6-fold cross-validation.

The altitude effect of the occurrence model suggests higher probabilities of lightning for locations on higher elevations. The

seasonal effect peaks in mid July. The spatial effect models several local features, but there is a pronounced minimum in the

Northwest and a clear maximum in the Eastern part of Carinthia. The estimated effects of the intensity model reveal similar

features, though they are not equal. Main difference is that the spatial effect varies more strongly than the analogous effect of10

the occurrence model.

A major asset of the introduced method is that the resulting climatological information vary smoothly over spaceand time

:
,
::::
time

:::
and

:::::::
altitude. Thus, the climatology is capable to serve as a useful tool in quantitative applications, i.e., risk assessment

and weather prediction.

Key words: lightning location data, generalized additive model, hurdle model, zero-truncated possion
::::
zero

:::::::::
truncated15

::::::
Poisson

:
distribution

1 Introduction

Severe weather, associated with thunderstorms and lightning, causes fatalities, injuries and financial losses (Curran et al.,

2000). Thus, the private and the insurance sector have a strong interest in reliable climatologies for such events, i.e., for risk

assessment or as a benchmark forecast of a warning system. For these quantitative purposes, it is crucial to separate signal and20

noise. Especially when the target variable, i. e. , lightning, on the one hand varies strongly in space and time and on the other

hand might be explained by other covariates, i. e., altitude. This holds in particular for regions with complex terrain. To this

end it is desirable to identify smooth and potentially nonlinear functional dependencies

1



::::::::
Lightning

::
is

:
a
:::::::::

transient,
::::::::::
high-current

::::::::
(typically

::::
tens

:::
of

:::::::::::
kiloamperes)

::::::
electric

:::::::::
discharge

::
in

:::
the

:::
air

::::
with

::
a

::::::
typical

:::::
length

:::
of

:::::::::
kilometers.

:::
The

::::::::
lightning

::::::::
discharge

::
in

::
its

:::::::
entirety

::
is

::::::
usually

::::::
termed

:
a
::::::::
lightning

::::
flash

:
or

::::
just

:
a
::::
flash

:
.
::::
Each

::::
flash

::::::::
typically

:::::::
contains

::::::
several

::::::
strokes

:::::
which

:::
are

:::
the

:::::
basic

:::::::
elements

::
of

::
a
:::::::
lightning

:::::::::
discharge

::::::::::::
(Rakov, 2016).

:::::::::
Lightning

:::::
flashes

:::
are

::::
rare

::::::
events.

:::::::
Around

:::::
0.5–4

:::::::::
km−2yr−1

:::::
occur

::
in

:::
the

:::::::
Austrian

:::::
Alps

:::::::::::::::::
(Schulz et al., 2005).

::::::::
Lightning

:::::::
location

::::
data

:::::::::::::
homogeneously

:::::::::::::
detected—with

:::
the

::::
same

:::::::
network

::::
and

:::::::
selection

::::::::::::::::::
algorithm—typically

:::::
cover

::
on

:::
the

:::::
order

::
of

:::
10

:::::
years.

::::::::::::
Consequently

:::
not

::::::
enough

::::
data

:::
are

::::::::
available5

::
to

:::::::
compute

:
a
::::::::
spatially

:::::::
resolved

::::::::::
climatology

::
on

:::
the

::::::
km−2

::::
scale

:::
by

::::::
simply

:::::
taking

:::
the

:::::
mean

::
of

:::::
each

:::::::::
cell—even

:::
less

::
so

::
if
::
a

::::
finer

:::::::
temporal

:::::::::
resolution

::::
then

::::
yr−1

::
is
:::::::
desired,

::::::
which

:
is
:::
the

::::
case

:::
for

:::::::
lighting

::::::::
following

::
a
:::::::::
prominent

:::::
annual

::::::
cycle.

::::
Thus

:::::
there

::
is

:::
the

::::
need

::
to

:::::::
develop

:::::::
methods

:::
to

:::::::
robustly

:::::::
estimate

::::::::
lightning

::::::::::::
climatologies

::
by

:::::::::
exploiting

::::::::::
information

:::::::::
contained

:::
not

::::
only

::
in
:::::

each

::::::
analysis

::::
cell

:::
and

::::::
maybe

:::
its

::::::::::
neighboring

::::
cells

:::
but

::
in

:::
the

::::::::
complete

::::
data

:::
set.

:::::::::
Lightning

:::::
might,

::::
e.g.,

::::::
depend

:::
on

:::
the

:::::::
altitude

::
of

:::
the

:::
grid

::::
cells

:::
so

:::
that

::::::::::
combining

:::
the

::::::::::
information

::::
from

:::
all

::::
cells

::
at

:
a
:::::::::
particular

::::::
altitude

:::::
band

::::::::
increases

:::
the

::::::
sample

:::
size

::::
and

:::::
leads

::
to10

:
a
:::::
more

:::::
robust

::::::::
estimate.

:::::
Other

:::::::
common

::::::
effects

::::
that

:::::
might

::
be

::::::::
exploited

:::
are

:::::::::::
geographical

::::::::
location,

:::
day

::
of

:::
the

:::::
year,

::::
time

::
of

::::
day,

::::
slope

::::::::::
orientation,

:::::::
distance

::::
from

:::
the

::::::
nearest

::::::::
mountain

::::::
ridge, . . .

:::
One

:::::::::
possibility

:::
of

:::::::::
harnessing

:::
the

::::::::
complete

::::
data

:::
set

::
to

:::::::
produce

::
a
::::::::
lightning

::::::::::
climatology

::
in

::::
such

::
a
:::::::
manner

:::
are

::::::::::
generalized

::::::
additive

:::::::
models

:::::::::::::::::::::::::::::::::::::::::::::
(GAMs, see, Hastie and Tibshirani, 1990; Wood, 2006).

:::::
They

:::
can

:::::::
include

:::::
these

:::::::
common

::::::
effects

:::
as

:::::::
additive

:::::
terms.

::::
Each

:::
of

::::
these

:::::
term

:::::
might

::
be

::
of

::::::::
arbitrary

:::::::::
complexity

::::
and

::::::::
represent

:::
the

:::::::::
potentially

::::::::
nonlinear

::::::::::
relationship between light-15

ning and variables associated with space and time. This study aims at testing how generalized additive models can be applied

in order to smooth lightning climatologies over complex terrain.

The main motivation to process the raw data by a statistical model is to improve the signal-to-noise ratio. This is in particular

true when processing short datasets. The raw lightning data are noisy due to the high variability of processes generating

lightning. This is not only true for lightning, but also for other atmospheric variables
::
the

::::::::
covariate.

:::
An

:::::::::
additional

:::::::::
advantage

::
of20

:::::
GAMs

::
is
:::
the

::::::
ability

:::
for

::::::::
inference.

::
It

:::
can

:::
be

:::::
tested

:::::::
whether

::::
each

::
of

:::
the

:::::::
included

::::::
effects

::
is

:::::::
actually

::
an

:::::::::
effect—or

:::
not

:::::::::
significant

:::
and

::::
thus

:::
not

::::::::
exploiting

::::::::
common

::::::::::
information

::
in

:::
the

:::::
whole

::::
data

:::
set.

::::::
GAMs

:::::
allow

:::
the

:::::::
inclusion

:::
of

:::::
expert

:::::::::
knowledge

:::::::
through

:::
the

:::::
choice

::
of

:::
the

:::::::::
covariates.

::::::
GAMs

::::
have

::::
been

::::
used

::
to

:::::::
compile

:::::::::::
climatologies

::
of

::::::::
extremes

:::::::::::::::::::::::::::::::::::::::::::::::::
(Chavez-Demoulin and Davison, 2005; Yang et al., 2016) and

:::
full

::::::::::
precipitation

:::::::::::
distributions

::::::::::::::::::::::::::::::::
(Rust et al., 2013; Stauffer et al., 2016).

::
A

::::::
further

::::::
benefit

::
of

::::::
GAMs

::
is
::::
that

::
all

:::
the

::::::::::
parameters

::
of

:
a
::::::::::
distribution, e.g.precipitation, wind speed and direction. The GAM applied in our study filters effects/signals associated with25

altitude, dayof the year and space and separates these from the noise
:
,
::::
scale

::::
and

::::::
shape,

:::
can

::
be

::::::::
modeled

:::
not

::::
only

:::
the

::::::::
expected

::::
value

::::::::::::::::::
(Stauffer et al., 2016).

:

::
In

:::
this

:::::
study

::::::
GAMs

:::
are

::::::
applied

:::
to

:::::::
estimate

:
a
::::::::::
climatology

:::
of

:::
the

:::::::::
probability

::
of

::::::::
lightning

:::
and

::
a
::::::::::
climatology

::
of

:::
the

::::::::
expected

:::::::
numbers

::
of

::::::
flashes

:::::
with

:
a
::::::

spatial
:::::::::

resolution
:::
of

:
1
:::::
km2

:::
and

::
a
::::::::
temporal

:::::::::
resolution

::
of

::
1
::::
day.

:::::
They

:::::
serve

::::
also

::
as

:::::::
proxies

:::
for

:::::::::::
climatologies

::
of

:::
the

:::::::::
occurrence

::
of

::::::::::::
thunderstorms

:::::::::::::::::::::::::::::::::::::::::::::::::::::
(e.g., Gladich et al., 2011; Poelman, 2014; Mona et al., 2016) and

:::::::::::
thunderstorm30

:::::::
intensity,

:::::::::::
respectively.

:::
The

::::::::::::
climatologies

:::
will

:::
be

::::::::
compiled

::
for

::
a
:::::
region

::
in
:::
the

:::::::::::
southeastern

::::
Alps.

A study investigating ALDIS
:::::::
lightning

:
data for the period 1992 to 2001 (Schulz et al., 2005) found that flash densities over

the complex topography of Austria vary between 0.5 and 4 flashes km−2yr−1 depending on the terrain. Data from the same

lightning location system (LLS) was also analyzed to obtain thunderstorm tracks (Bertram and Mayr, 2004). The key finding

is that thunderstorms are often initialized at mountains of moderate altitude and propagate towards flat areas afterwards.35
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Other studies focus on lightning detected in the vicinity of the Alps: A 6-year analysis of lightning detection data over

Germany reveals highest activity in the northern foothills of the Alps and during the summer months, where the number of

thunderstorm days goes up to 7.5 yr−1 (Wapler, 2013). Lightning activity is also high along the southern rim of the Alps.

Feudale et al. (2013) found ground flash densities up to 11 flashes km−2yr−1 in northeast Italy, which is south of our region

of interest, Carinthia.5

These lightning climatologies provide averages of days with lightning activity and averages of counts of flashes, respectively,

on the scale km−2yr−1. Since lightning varies strongly in space and time and only short time series of the order of 10 years

are available, this procedure might yield spatial fields with strong fluctuations between neighboring cells (cf. Fig. 3). This issue

is not a big drawback when the purpose of the analysis is to get an overall qualitative picture of the lightning activity, but it can

become a problem in applications where a quantitative assessment is required, i.e., risk assessment or when the climatology10

has to serve as a benchmark weather forecast. A method is therefore needed to obtain climatologies smoothed in space and

time.

In this study generalized additive models (GAMs, see, Hastie and Tibshirani, 1990; Wood, 2006) are applied to estimate a

climatology of the probability of lightning, which could also be seen as a thunderstorm climatology with lightning as proxy

(e.g., Gladich et al., 2011; Poelman, 2014; Mona et al., 2016), and a climatology of the expected numbers of flashes which can15

be interpreted as the intensity of thunderstorms.

GAMs have been used to compile climatologies of extremes (Chavez-Demoulin and Davison, 2005; Yang et al., 2016) and

full precipitation distributions (Rust et al., 2013; Stauffer et al., 2016). An extension of GAMs is that not only expected values,

but also other parameters of a distribution can be modeled (Stauffer et al., 2016).

The manuscript is structured as follows: The lightning detection data, the region of interest, Carinthia, and the pre-processing20

of the data are described in Sect. 2. The methods to estimate the lightning climatologies from the data are based on generalized

additive models (Sect. 3). The nonlinear effects estimated for occurrence and intensity model and exemplary climatologies are

presented afterwards (Sect. 4). Some special aspects of interest for end-users are discussed in Sect. 5. The study is summarized

and concluded at the end of the manuscript (Sect. 6).

2 Data25

Lightning is defined as a transient, high-current (typically tens of kiloamperes) electric discharge in the air whose length is

measured in kilometers. The lightning discharge in its entirety is usually termed a lightning flash or just a flash. Each flash

typically contains several strokes which are the basic elements of a lightning discharge (Rakov, 2016).

In this study 6 years of data (2010 – 2015) from the ALDIS detection network (Schulz et al., 2005) are included. The data

within this period are processed in real-time by the same lightning location algorithm ensuring stationarity with respect to data30

processing. The summer months May to August are selected, as this is the dominant lightning season in the Eastern Alps. The

original ALDIS data contains single strokes and information which strokes belong to a flash. In order to analyze flashes, solely
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the very first stroke of a flash is taken into account. Both cloud-to-ground and intra-cloud lightning strikes are considered, as

both typically indicate thunderstorms which are of interest in this study.

ALDIS is part of the European cooperation for lightning detection (EUCLID) (Pohjola and Mäkelä, 2013; Schulz et al.,

2016), which bundles European efforts in lightning detection. Schulz et al. (2016) present an evaluation of the performance of

lightning detection in Europe and the Alps by comparison against direct tower observations with respect to detection efficiency,5

peak current estimation and location accurancy
:::::::
accuracy. The median location error was found to be in the order of 100 m.

Furthermore, they show that the flash detection efficiency is greater than 96% (100%) if one of the return strokes in a flash had

a peak current greater than 2kA (10kA). However, it is impossible to determine the detection efficiency of intra-cloud flashes

without a locally installed VHF network. Thus no attempt made in Schulz et al. (2016) to characterize the detection efficiency

of intra-cloud flashes.10

The region of interest is the state of Carinthia in the south of Austria at the border to Italy and Slovenia. Carinthia extends

180 km in west-east direction and 80 km in south-north direction. The elevation varies between 339m to 3798m above mean

sea level (a.m.s.l.). For invoking elevation as a covariate into the statistical model (Sect. 3) digital elevation model (DEM) data

(Kärnten, 2015),
::::::
which

:
is
:::
on

::::
hand

:::
on

:
a
:::::::::::
10m× 10m

:::::::::
resolution,

:
is averaged over 1 km× 1 km cells (Fig. 1), which leads to a

maximum elevation of 3419 m a.m.s.l. with respect to this resolution. As the distribution of the altitude is highly skewed, the15

logarithm of the altitude serves as covariate, which is distributed more uniformly in the range from 6 to 8.

The lightning data,
:::
for

::::
May

::
to

::::::
August

:::
of

::
the

::
6
:::::
years,

:
are transferred to the same 1 km×1 km raster by counting the flashes

within one spatial cell and per day. This procedure yields 9904 cells and 738 days for a total of n= 7309152 data points,

from which 157440 (2.15%) show lightning activity. The amount of cells in which a specific number of flashes was detected

decreases rapidly for increasing count numbers. The most extreme data point has 37 flashes per cell and day (Fig. 2). The mean20

number of detected flashes in the cells given lightning activity is 1.75.

Figure 3 shows an example for a climatology based on empirical estimates for July. Here the number of days with lightning

is divided by the total number of days for every single grid cell. While some patterns emerge, a large amount of noise is visibily

:::::
visibly

:
superimposed.

3 Methods25

This section introduces the statistical models for estimating the climatologies for lightning occurrence and lightning intensity.

The aim of the statistical model is to explain the response, i.e., the probability of occurrence or counts of flashes, by appropriate

spatio-temporal covariates, i.e., logarithm of the altitude (logalt), day of the year (doy) and geographical location (lon,lat).

Since the response might nonlinearly depend on the covariates we choose generalized additive models (GAMs) as a statistical

framework, for which a brief introduction is presented in Sect. 3.1.30

It is assumed that the number of flashes detected within a cell and day are generated by a random process Y . Realizations of

the random process are denoted by yi ∈ {0,1,2, . . .}, where i= 1,2, . . . ,n indicates the observation. Two distinct models are

set up: first, a model for the probability of the occurrence of lightning Pr(Y > 0) within a cell and a day; second, a truncated
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count model to assess the expected number of flashes within a cell given lightning activity E[Y |Y > 0]. This procedure refers

to a hurdle model (Mullahy, 1986; Zeileis et al., 2008) which has the further benefit to be able to handle the large amount of

zero valued data points (97.85%, in our case). The occurrence model and the intensity model are specified in Sect. 3.2 and

Sect. 3.3, respectively.

In Sect. 3.4 a short overview over the applied verification techniques is given, i.e., cross-validation, scoring rules and boot-5

strapping.

3.1 Generalized additive model

The main motivation for using a GAM is the possibility to estimate (potentially) nonlinear relationships between the response

and the covariates. In the following, the basic concept of GAMs is introduced for an arbitrary parameter θ of some probability

density function d(·;θ) (PDF). A GAM aiming at modeling
::::::::
modelling

:
a spatio-temporal climatology over complex terrain10

would have the form,

g(θ) = β0 + f1(logalt)+ f2(doy)+ f3(lon,lat), (1)

where g(·) is a link function that maps the scale of the parameter θ to the real line. The right hand side is called the additive

predictor, where β0 is the intercept term and fj are unspecified (potentially) nonlinear smooth functions that are modeled using

regression splines (Wood, 2006; Fahrmeir et al., 2013). For each fj a design matrix Xj containing spline basis functions is15

constructed. Thus the GAM can be written as generalized linear model (GLM),

g(θ) = β0 +

3∑
j=1

Xjβj . (2)

The coefficients β = (β0,β
>
1 ,β

>
2 ,β

>
3 ) are estimated by maximizing the penalized log-likelihood,

l(β) =

n∑
i=1

log(d(yi;g
−1(β0 +

3∑
j=1

Xjβj)))−
1

2

3∑
j=1

λjβ
>
j Sjβj , (3)

where the first term on the right-hand side is the unpenalized log-likelihood. The second term is added to prevent overfitting20

by penalizing too abrupt jumps of the functional forms. λj are the smoothing parameters corresponding to the functions fj ,

respectively. For λj = 0 the log-likelihood is unpenalized with respect to fj . When λj →∞ the fitting procedure will select a

linear effect for fj . The selection of the smoothing parameters λj is performed by cross-validation (Sect. 3.4).

:::
The

:::::
value

::
of

::
λj::::::::::

determines
:::
the

::::::
degrees

::
of

:::::::
freedom

::
of

:::
the

:::::::::
associated

:::::
effect.

::::::
Lower

::::::
values

::
of

:::
λj , :::

e.g.,
:::::
small

:::::::::::
penalization,

::::
lead

::
to

::
an

:::::
effect

::::
with

::::
more

:::::::
degrees

::
of

:::::::
freedom,

::::::
which

:::::
might

::::::
explain

:::::
more

::::::
features

:::
but

::
is

::::
also

:::::
prone

::
to

:::::::::
overfitting.

::::
High

::::::
values

::
of

:::
λj ,25

:::
e.g.,

::::::
strong

:::::::::::
penalization,

:::::
result

::
in

::
an

:::::
effect

::::
with

:::::
fewer

:::::::
degrees

::
of

::::::::
freedom.

::::
Thus

:::::
fewer

:::::::
features

:::
can

:::
be

::::::::
explained.

::::
The

:::::::
balance

:::::::
between

::::
small

::::
and

:::::
strong

:::::::::::
penalization

:::
and

::::
thus

:::
the

::::::::::::
corresponding

::::::
degrees

::
of

::::::::
freedom

:
is
::::::
found

::
by

::::::::::
performing

:::::::::::::
cross-validation

:::::
(Sect.

::::
3.4).

Sj::
in

:::
Eq.

::
3 are prespecified penalty matrices, which depend on the choice of spline basis for the single terms. The reader is

referred to Wood (2006) for more details.30
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Estimation of a GAM for such a large dataset, i.e., 7309152 data points, is feasible, e.g., via function bam() (for big additive

models) implemented in the mgcv package (Wood et al., 2015; Wood, 2016) of the statistical software R (R Core Team, 2016).

3.2 Occurrence model

The first component models the probability of lightning Pr(Y > 0) = π to occur within a 1 km× 1 km cell and a day. The

Bernoulli distribution with the parameter π of the PDF,5

dBe(y;π) = πy(1−π)1−y, (4)

will be fitted. Since the data is binomial y ∈ {0,1} indicates no lightning and lightning within the cells, respectively. The model

for π takes the form of Eq. 1 with π replacing θ. The complementary log-log g(π) = log(− log(1−π)) is implemented as link

function.

3.3 Intensity model10

The second part is the truncated count component for the expected number of flashes given lightning activity. We will refer to

this component as the intensity model. It is assumed that the positive counts of flashes within a spatial cell and day follow a

zero truncated Poisson distribution with the PDF,

dZTP(y;µ) =
dPois(y,µ)

1− dPois(0,µ)
(5)

where y ∈ {1,2, . . .}, and dPois(·;µ) is the PDF of the Poisson distribution with expectation µ. The conditional expectation is15

E[Y |Y > 0] = µ/(1− e−µ). The GAM for this component has the form of Eq. 1 with µ replacing θ. The logarithm serves as

link function g(µ) = log(µ).

The family for modeling
::::::::
modelling

:
the zero truncated Poisson distribution ztpoisson() within a GLM or GAM frame-

work is implemented in the R-package countreg (Zeileis and Kleiber, 2016). For more information on and a formal definition

of hurdle models the reader is referred to Zeileis et al. (2008).20

3.4 Verification

In this section the verification procedures are briefly introduced, namely the cross-validation, the applied scores and the block-

bootstrapping.

In order to ensure the verification of the model along independent data, we applied a 6-fold cross-validation (Hastie et al.,

2009). 6 years of data are available. The parameters of the model are estimated based on 5 years of the data and validated on25

the remaining year. This is done 6 times with every single year serving as validation period once.

The log-likelihood is applied as scoring function, which is also called logarithmic score in the literature on proper scoring

rules (Gneiting and Raftery, 2007).
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To assess confidence intervals of the estimated parameters and effects, day-wise block-bootstrapping was performed. With

day-wise block-bootstrapping we mean the following: We resample the 738 dates of all available days with repetition and pick

all the data observed on these days spatially. This procedure is executed 1000 times in order to assess confidence intervals.

4 Results

This section presenting the results of the statistical models is structured as follows: first, the nonlinear effects of the occurrence5

model are described in Sect. 4.1; second, the effects of the intensity model are presented in Sect. 4.2. Finally, exemplary

applications illustrate in Sect. 4.3 how climatological information can be drawn from the models.

4.1 Occurrence model

The estimates of the effect of the occurrence model (Sect. 3.2) are depicted in Fig. 4. The values are on the scale of the

additive predictor, i.e. the right hand side of Eq. 1. The additive predictor, takes the value of the intercept term β0 if the sum10

of all other effects is equal to zero. Its estimate is β0 =−3.97 (−4.15, −3.80) on the complementary log-log scale, which is

1.87% (1.56%, 2.21%) in terms of probability of lightning. The numbers in parenthesis are
::::::::::
parentheses

:::
are

:::
the 95% confidence

intervals computed from 1000 day-wise block-bootstrapping estimates.

::::
How

:::
the

:::::
effects

::
in
::::
Fig.

::
4

:::
can

::
be

:::::::::
interpreted

::
to

::::::
obtain

:::
the

:::::::::
probability

::
of

::::::::
lightning

::
at

:
a
::::::::
particular

:::::::
location

:::
and

::::
day

:
is
::::::
shown

:::
for

::
the

:::::::
location

::
E

::::::::::
(Rosennock

::
in

::::
Fig.

::
1)

:::
and

::::
July

:::
20.

:::
The

:::::::
location

::
is

::
at

::
an

:::::::
altitude

::
of

::::::
2440m

::::::
(Table

::
1),

:::
for

:::::
which

:::
the

:::::::
altitude

:::::
effect15

:
is
:::::::
roughly

::::
0.34

::::
(Fig.

::::
4a).

::::
The

::::::::::
contribution

::
of

:::
the

:::::::
seasonal

:::::
effect

::::
(Fig.

::::
4b)

::
for

::::
July

:::
20

::
is

:::::
about

::::
0.64.

::::
The

:::::
spatial

:::::
effect

:::::
(Fig.

:::
4c)

:::
has

:
a
:::::
value

::
of

:::::
−0.03

::
at

:::
this

:::::::::::
geographical

:::::::
location

:::::::::
(13.71◦ E,

:::::::::
46.88◦ N).

::::::
Adding

:::::
these

:::::
values

::
to

:::
the

::::::::
intercept

::::::::::
β0 =−3.97 :::::

yields

::::::
−3.02,

:::::
which

::
is

::
on

:::
the

:::::
scale

::
of

:::
the

:::::::
additive

::::::::
predictor.

::
It

:::::
needs

::
to

::
be

:::::::::
transferred

::::
with

:::
the

::::::
inverse

:::
of

:::
the

::::::::::::
complementary

:::::::
log-log

:::::::
function

::
to

:::::
obtain

:::
the

:::::
value

::
in

:::::::::
probability

::::::
space,

:::::
which

::
is

::::::
4.76%.

:

The second term f1(logalt) of the additive predictor models the effect of the logarithm of the altitude. f1(logalt) varies20

from roughly −0.2 for low altitudes to values greater than 0.5 for altitudes above 2800 m (Fig. 4, top-left
:
a). This function

takes 7.9 degrees of freedom. Its shape is close to exponential, which suggests that a linear term for the altitude would
:::::
might

be sufficient. For altitudes above 2000m, however, the nonlinear term leads to larger values than a linear term β1alt would do.

The temporal or seasonal effect f2(doy), i.e., the dependence of the target on the day of the year (doy), shows a steep

increase during May, reaches its maximum in mid July and decreases slowly during August (Fig. 4, top-right
:
b). This result25

indicates that the main lightning season in Carinthia lasts from mid June until end of August. The estimated degrees of freedom

are 2.5, which leads to the simple shape of the seasonal effect with one clear maximum.

The spatial effect f3(lon,lat), which explains the spatial variations of the linear predictor that cannot be explained by

the altitude term f1(logalt), requires 138 degrees of freedom. (Fig. 4, bottom
:
c). Most prominent features are the minimum

near the northwest and the maximum in the mid to eastern part of Carinthia. In the northwest the highest mountains, the High30

Tauern, of Carinthia are located. The minimum with values less than −0.3 on the complementary log-log scale suggests that

lightning activity is less pronounced in this region. This finding is in line with former analyses of the lightning activity in
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Austria (Troger, 1998; Schulz et al., 2005), which stated that the main alpine crest is an area with a minimum in flash density.

The maximum zone with values exceeding 0.3 in the mid to eastern part of Carinthia covers the so-called Gurktal Alps. In

comparison with the High Tauern, the Gurktal Alps have a lower average elevation and the mountains are not as steep. Such

maxima at moderate or low altitude are mostly modeled by the spatial effect, not by the altitude effect.

As the altitude is a function of longitude and latitude, one could ask whether it would be sufficient take only a spatial effect5

into account that implicitly contains the altitude and skip the explicit altitude effect. In general the presented method would

be capable to model the influence of the altitude within the spatial effect implicitly. However, the shape of the altitude in the

region of interest is very complex. Thus, a spatial effect with a large degree of freedom would be required in order to account

for the complex altitude shape. As we know the shape of the altitude we can pass it to the GAM as an isolated effect. The

altitude effect contains only information associated with the altitude while the remaining effects are captured by the spatial10

term.

:::
The

:::::::::
introduced

::::::
model

:::
(Eq.

:::
1)

:::::
could

:::
also

:::
be

:::::::
extended

:::
by

:::::::::
potentially

::::::::
nonlinear

::::::::
functions

::
of

::::
other

:::::::::
covariates

::::::::::
meaningful

::
for

::
a

:::::::::::
climatological

::::::::::
assessment,

::::
e.g.,

:::::::
surface

:::::::::
roughness,

:::::
slope

:::
and

::::::
aspect

::
of

::::::::::
topography.

::::::::
However

::
in

:::
the

::::::
present

::::
case

::::::
adding

:::::
these

::::::::
covariates

::::
was

:::
not

::::::::
improving

:::
the

::::::
model.

:

4.2 Intensity model15

The nonlinear effects of the intensity model (Sect. 3.3) are depicted in Fig. 5. The estimate of the intercept term takes the value

β0 =−0.01 (−0.19, 0.14) which leads to a expected number of flashes given lightning activity of 1.57 (1.47, 1.68) when the

sum of all other effects is equal to zero.

The altitude effect f1(logalt) (Fig. 5, top-left
:
a), with 5.4 degrees of freedom, reveals a similar functional form as the

altitude effect of the occurrence model (Fig. 4, top-left
:
a). However, it has a flatter shape for the terrain between 600m–1200m20

and a steeper increase for high altitudes above 2000m a.m.s.l..

The seasonal effect f2(doy) is −0.5 in early May, reaches a maximum of 0.3 in early July and decreases to values around

−0.3 until the end of August (Fig. 5, top-right
:
b). Thus the amplitude of this effect is not as strong as the seasonal effect of the

occurrence model (Fig. 4, top-right
:
b) and the location of the maximum is earlier. It has 2.1 degrees of freedom.

The spatial effect f3(lon,lat) varies strongly and requires 166 degrees of freedom which is more than the corresponding25

effect of the occurrence model. However, there are some features common for both effects. For instance, the prominent max-

imum visible in Fig. 5(bottom)
:
c in the Gurktal Alps appears also in the spatial effect of the count model (Fig. 4, bottom

:
c).

Common is also the strong minimum in the western part of the domain. The most pronounced new feature is the strong local

maximum with values exceeding 0.9 in the south of Carinthia. A 165 m radio tower is installed on the peak of the Dobratsch

mountain (location C in Fig. 1), which triggers lightning strokes under suitable conditions, i.e., occurrence of a thunderstorm.30

Other maxima of this effect could also be attributed to sites of radio towers, which suggests that the number of flashes is more

sensitive to local constructions than the probability of lightning.
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4.3 Applications

In order to illustrate how climatological information can be drawn from the GAMs, two different kinds of applications are

presented. First, maps show spatial climatologies (Fig. 6 and Fig. 7). Here, the occurrence model and/or the intensity model

are evaluated for one specific day. Second, the seasonal climatology for selected 1 km×1 km grid cells are discussed (Fig. 8).

Here, the models are evaluated with respect to the geographical location of the point of interest and its altitude.5

The spatial distribution of climatological probabilities of lightning to occur in a cell for July 20 (close to the seasonal peak)

varies from 1.8% to 6.5% (Fig. 6). In the western part of the domain, local valleys and mountain ridges become visible through

the altitude effect (Fig. 4, top-left
:
a). However, the highest probabilities do not occur over the highest terrain in the northwest,

where the spatial effect counteracts the altitude effect leading to moderate probabilities around 2% to 3%. The spatial effect

(Fig. 4, bottom
:
c) is responsible for the maximum over the moderate altitude region of the Gurktal Alps. Such a map can also10

serve as thunderstorm climatology when lightning is taken as a proxy for thunderstorms.

:
A
::::::::::
comparison

::
of
:::

the
:::::::
Figures

:
6
::::

and
:
3
:::::::::
illustrates

::::
some

:::
of

:::
the

::::::
benefits

:::
of

::::
using

::::::
GAMs

:::::::
instead

::
of

:::::
taking

::::::::
averages

::
in

::::
each

::::
grid

:::
cell

:::
for

:::::::::
computing

:::::::
expected

::::::
values

::
of

::::::::
lightning

::::::::::
occurrence.

:::::::::
Harnessing

:::
the

::::::::::
information

:::::
from

:::
the

::::::::
complete

::::
data

::
set

:::::::
instead

::
of

::::
using

::::
only

::::::::::
information

:::::::::
contained

::
in

::::
each

::::
grid

:::
cell

:::::::
removes

:::
the

:::::
noise

:::
and

::::::
makes

:::
the

::::::
overall

::::::
pattern

::::::
visible,

::::
e.g.,

:::
the

:::::::::
difference

:::::::
between

:::::::
lightning

::::
over

::::::
valleys

::::
and

::::::
ridges.15

For the same day, July 20, the expected number of flashes is depicted in Fig. 7. This is the product of probabilities of lightning

π from the occurrence model and the expected number of flashes given lightning activity, which is derived from the intensity

model. Values are ranging from 0.028 to 0.166. The lowest values can be found in the northwestern part of Carinthia where the

spatial effects of both models reveal a minimum. Next to the maximum in the Gurktal Alps, where also maxima in the spatial

effects of both models can be found, a second peak appears at the Dobratsch mountain (location C in Fig. 1) which is due to20

the local maximum in the spatial effect of the intensity model (Fig. 5, bottom
:
c).

Next to the spatial information one can extract seasonal climatologies for different locations (Fig. 8). These are computed

exemplary for five sites (Table 1). The left panel of Fig. 8a
:
shows the climatologies of lightning probability. Differences between

the annual cycles of the probabilities are due to the altitude effect and the spatial effect of the occurrence model (Fig. 4). The

highest probabilities between 4% and 5% are modeled in July for location B (dashed line), which is located at the southwestern25

border of Carinthia in vicinity of a local maximum of the spatial effect (Fig. 4, bottom
:
c). This climatology exhibits a strong

seasonality, as probabilities fall below the 1% level. Though located at a similar altitude, the climatology of location A (solid

line) reveals maximum values less than 2%. This difference is due to the spatial effect, which exhibits a clear minimum in

northwestern Carinthia. The climatology of location D (dashed dotted line) in the lower plains in the eastern part of Carinthia

show moderate chance of lightning with values around 3% during the peak of the season.30

The climatologies of the expected number of flashes are depicted in the right panel of Fig. 8
:
b. The order of location has

changed. In particular the highest number of flashed are expected for location C which is the Dobratsch mountain. This is

caused by the strong local maximum in the spatial effect of the intensity model (Fig. 5, bottom
:
c). The legend shows expected
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number of flashes accumulated over the lightning season, which leads to values between 2.1 for location A and 7.6 for location

C. These values are in good agreement with the analysis by Schulz et al. (2005, Fig 5. therein).

::::::
Finally,

::
it

:
is
::::
also

:::::::
possible

::
to

:::::
derive

::::::
relative

::::::::::
frequencies

::
of

:::
the

::::::
number

:::
of

:::::
flashes

::
of
::
a
::::::
specific

:::::::
location

:::
and

::::
day

::
of

:::
the

:::
year

:::::
from

::
the

::::::
GAM.

::::
The

::::::
relative

::::::::::
frequencies

::::
have

::::
been

::::::
derived

:::
for

:::
the

:
5
::::::
sample

::::::::
locations

::::::
(Table

::
2).

::::
The

:::
first

:::::::
column

::
of

:::
the

::::
table

::::
with

:::
the

::::::::::
probabilities

:::
for

::
no

::::::
flashes

::
to
:::::
occur

::::::::
contains

::::
only

::::::::::
information

::::
from

:::
the

:::::::::
occurrence

::::::
model

:::
(cf.

::::
Fig.

:::
8a).

::::
All

::::
other

:::::::::::
probabilities5

::
for

::::
one

::
or

:::::
more

::::::
flashes

:::
are

::::::
derived

:::::
from

::::
both

:::
the

:::::::::
occurrence

::::
and

:::
the

:::::::
intensity

::::::
model.

::::
The

::::::::
influence

::
of

:::
the

:::::::
intensity

::::::
model

::
is

::::::::
especially

::::::::
dominant

::
in

:::
the

:::::::
relative

:::::::::
frequencies

:::
for

:::::::
location

:::
C,

:::::
where

:::
the

:::::::::
probability

:::
of

::::::
having

:
4
::
or

:::::
more

::::::
flashes

::
on

::::
July

:::
20

::
is

::::::
1.54%.

5 Discussion

This section addresses two points helpful for end-users. The first one is on how to choose the cross-validation score in order to10

avoid overfitting of the seasonal effect (speaking technically the selection of its smoothing parameter λ). The second point is a

discussion on how the introduced model (Eq. 1) can be extended towards a weather prediction tool, i.e., for warning purposes.

For illustration of the first point a subset of the large dataset is selected. We pick all data points in a 5× 5 neighborhood

around the location E. Thus, only 6 years×123 days×25 cells= 18450 data points remain. The probability of lightning π

is the target variable. Furthermore, altitude and spatial effects are omitted for simplicity for such a small region (cf. the smooth15

spatial effect of the occurrence model in Fig. 4, bottom
:
c). Thus the GAM has the form,

g(π) = β0 + f(doy). (6)

The model is fitted twice: first, with the selection of the smoothing parameter λ by six-fold cross-validation where the obser-

vations made on a single day are kept together in a block,
::::
e.g.,

:::
the

:::::::::::::
cross-validation

:::::
splits

:::
the

:::::::::::::::::::::::::::
6 years× 123 days= 738 days

:::
into

:::
six

::::
parts; second, λ is determined by six-fold cross-validation without the day-wise blocks,

::::
e.g.,

:::
the

:::::::::::::
cross-validation

:::::
splits20

::
the

::::::::::::::::
18450 data points

:::::::::
randomly

:::
into

:::
six

::::
parts. In both cases the maximal number of degrees of freedom is set to 30.

Fig. 9 shows the estimates of the two models. The estimate resulting from the cross-validation with day-wise blocks is much

smoother (1.9 degrees of freedom) than the estimate resulting from the cross-validation without daily blocks (29.9 degrees of

freedom). Thus the latter estimate takes roughly the maximal degree of freedom and is obviously overfitted.

The reason for the distinct estimates lies in the dependence structure of the data. For one cell the probability to detect25

lightning on one day given lightning was detected on the previous day is 6.7%. Spatial dependence is much stronger. Provided

that lightning occurs in one cell, the probability of lightning to occur in the adjacent cell is 41%. This strong spatial dependence

comes with a physical meaning. First, the preconditions for thunderstorms and lightning to take place vary much stronger

from day-to-day than in the course of a single day. Second, thunderstorm systems, i.e., multi-cell thunderstorms or super-cell

thunderstorms, cover a large area or even travel over a larger area (Markowski and Richardson, 2011).30

For this reason we recommend to explore the dependence structure of the data first and to define the cross-validation score

according to this dependence structure.
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Finally, we discuss how the introduced model (Eq. 1) can be extended in order to serve as a weather prediction tool. It is

possible to add further predictors from a numerical weather prediction system to the right hand side of Eq. 1. In the case of

lightning and thunderstorms suitable predictors could be convective inhibition energy (CIN), convective available potential

energy (CAPE), vertical shear of horizontal winds or large scale circulation patterns (e.g., Bertram and Mayr, 2004; Chaudhuri

and Middey, 2012). Within the GAM framework nonlinear effects and interactions of these predictors can be modeled. Another5

major benefit of this procedure is that the climatology is nested within the additive predictor. Thus the performance of the

prediction tool would be at least on the quality level of the climatology, but would not fall below.

6 Conclusions

This study presented how generalized linear models (GAMs) (e.g., Hastie and Tibshirani, 1990; Wood, 2006) provide a useful

tool for building a lightning climatology or a climatology for the occurrence of thunderstorms. The main concept is to decom-10

pose the signal into different effects: an altitude effect, a seasonal effect and a spatial effect. The most beneficial aspect of this

method is that smooth estimates for these effects are obtained , which
::
on

::::
such

:
a
::::
fine

::::::
spatial

:::
and

::::::::
temporal

::::
scale

::
as

::
1
::::
km2

::::
and

:
1
::::
day.

::::
This makes the resulting climatology a valuable tool for quantitative purposes, e.g., risk assessment or benchmarking in

weather prediction.
::
In

:::::
order

::
to

::::::
provide

:::::::
smooth

::::::
effects

:::
the

:::::::
method

::::::::
harnesses

::::::::::
information

::::
from

:::
the

::::::::
complete

::::
data

:::
set

:::
not

::::
just

::::::::
separately

::
in

::::
each

::::
cell

::
as

::::::
would

::
be

:::
the

::::
case

:::
by

::::::
simply

::::::::
averaging

:::
the

:::::
data.

::::
Even

:::::
more

::::::
effects

::::
than

:::::::::::
demonstrated

::
in

::::
this

:::::
paper15

:::
can

::
be

::::::::
included,

::::
e.g.,

:::::
slope

::::
and

:::::
aspect

::
of

::::::::::
topography

::
or

::::::::::
parameters

:::::::::
associated

::::
with

::::
land

:::
use.

::::
The

::::::
choice

::
of

::::::::
common

::::::
effects

:::::
allows

::
to
:::::::

include
::::::
expert

:::::::::
knowledge.

:::::::::::
Additionally

::::
and

::::::::::
importantly,

::::::::
applying

::::::
GAMs

:::
will

::::
also

:::::
show

::::::
which

::
of

:::::
these

::::::::
proposed

:::::
effects

::
is

:::::::::
significant.

:

Moreover, a
:
A
:
hurdle approach was employed which is also capable to

::
to

:::::::
compute

::
a
::::::::::
climatology

::
of

:::
the

:::::::
intensity

::
of

::::::::
lightning

::
in

::::
order

::
to

::::::::
properly handle the large amount of zeros in the data. Thus two aspects of lightning are captured by the models: the20

probability of lightning to occur and the number of flashes detected within a grid cell. The effects of the two models are similar

though not equal. In particular the spatial effect of the intensity model varies more strongly than the corresponding effect of

the occurrence model. For instance, local intensity maxima are triggered in vicinity of radio towers.

In sum, the occurrence model and the count model took roughly 150 and 180 degrees of freedom, respectively. This is a

relatively small number compared to the degrees of freedom required by other methods. Counting and averaging flashes with25

respect to a resolution of km−2yr−1 would lead to 9904 degrees of freedom in the introduced case without capturing the

seasonal cycle. Thus the GAM approach leads to a smooth, nonlinear and sparse quantification of the climatologies.
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Figure 1. Altitude of Carinthia (m a.m.s.l.) averaged over 1 km× 1 km cells. Attributes of sample locations are listed in Table 1.
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Figure 2. Daily frequency of 1 km×1 km grid cells with counts of flashes (excluding zeros). The right panel
:::
(b) shows a zoom into the tail

of the distribution. The percentage of boxes with no flashes detected is 97.85%.
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Figure 3. Empirical climatological probability of lightning for a day in July in Carinthia on the 1 km×1 km scale
:::::::
computed

::::
from

:::::::
counting

::
the

::::
days

::::
with

:::::::
lightning

:::
over

::
all

::::
July

::::
days

:
in
:::
the

:::
six

:::
year

:::::
period

:::
and

:::::::
dividing

::
by

:::
the

::::::
number

:
of
:::

all
:::
July

::::
days.
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Figure 4. The effects of the occurrence model on the scale of the additive predictor. Top-Left:
::
a: The altitude (logalt) effect. Ticks on the

x-axis are set in 100 m intervals. The gray lines show 1000 estimates from day-wise block-bootstrapping. The solid red line is the median of

the 1000 estimates, the dashed red lines are the 95% confidence intervals. Top-Right:
::
b: The seasonal (doy) effect. Bottom:

:
c: The spatial

(lon,lat) effect. The plot shows the median of 1000 estimates from day-wise block-bootstrapping. The difference between two contour

lines is 0.1. Dashed contour lines indicate negative values.

id name lon (◦ E) lat (◦ N) alt (m a.m.s.l.)

A Heiligenblut 12.84 47.04 1315

B Nassfeld 13.28 46.56 1525

C Dobratsch 13.67 46.60 2166

D Klagenfurt 14.31 46.62 447

E Rosennock 13.71 46.88 2440
Table 1. Coordinates of the sample locations in Figure 1.
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Figure 5. The effects of the intensity model on the scale of the additive predictor. Labeling is analog to Fig. 4. Top-Left:
:
a: The altitude

(logalt) effect. Top-Right:
::
b: The seasonal (doy) effect. Bottom:

:
c: The spatial (lon,lat) effect.
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Figure 6. Climatological probability
:::::::
(expected

:::::
values)

:
of lightning for July 20 in Carinthia on the 1 km× 1 km scale

::
for

::::
July

::
20

::::::::
computed

:::
with

:
a
:::::::::
generalized

::::::
additive

:::::
model

::::::
(GAM).
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Climatological
:
number of flashes for July 20

:::::::
(expected
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values) in Carinthia on the 1 km× 1 km scale

.
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for

:::
July
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20.
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Figure 8. Seasonal climatologies for sample locations, which are highlighted in Figure 1. Left:
::
a: Occurrence model. Right:

:
b: Expected

number of flashes. The legend shows expected number of flashes accumulated over the lightning season.
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Figure 9. Local fits for the location E. Circles show empirical estimates. For comparison the estimate of the full occurrence model is added

(dashed line). Left:
::
a: Solid line is the GAM evaluated by cross-validation with day-wise blocks. Right:

:
b: Solid line is the GAM evaluated

by cross-validation without day-wise blocks.
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:
0

:
1
: :

2
: :

3
: ::

>4

:
A
: ::::

98.16
: :::

1.12
: :::

0.52
: :::

0.16
: :::

0.04
:

:
B
: ::::

95.37
: :::

1.74
: :::

1.49
: :::

0.86
: :::

0.54
:

:
C
: ::::

95.54
: :::

0.76
: :::

1.10
: :::

1.06
: :::

1.54
:

:
D
: ::::

96.94
: :::

1.81
: :::

0.88
: :::

0.28
: :::

0.09
:

:
E
: ::::

95.24
: :::

2.24
: :::

1.52
: :::

0.69
: :::

0.31
:

Table 2.
::::::
Relative

::::::::
frequencies

::::
(%)

::
of

::::::
number

::
of

:::::
flashes

::::::::
(columns)

:::
for

:::
July

:::
20

::
of

::
the

::::::
sample

:::::::
locations

:::::
(rows)

::
in
::::::
Figure

:
1
::::::
derived

::::
from

:::
the

::::::::
occurrence

:::
and

:::::::
intensity

:::::
GAM.
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