© Author(s) 2016. CC-BY 3.0 License.

1 The catastrophic landfill flowslide at Hongao dumpsite on December 20, 2015 in Shenzhen, China

- 2 Qiang Xu¹, Dalei Peng¹, Weile Li¹, Xiujun Dong¹, Wei Hu¹, Minggao Tang¹, Fangzhou Liu^{2*}
- 3 ¹State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, Chengdu University of
- 4 Technology, Chengdu 610059, China
- 5 ²School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, GA, USA

6 Abstract A catastrophic flowslide occurred at Hongao dumpsite at approximately 11:40 AM on Dec 20,

7 2015, in Guangming New District of Shenzhen, China. The flowslide damaged 33 buildings and caused

8 total death toll of 69 and 8 missing, with the absence of extreme weather condition and seismic activity.

9 The slope failure was analyzed on the basis of multi-temporal remote sensing images, site investigation, *in*-

situ tests, laboratory experiment, and numerical analysis. The preliminary results showed that the volume of the flowslide deposit was 2.32×10^6 m³ and the volume of dumpsite filling was 6.27×10^6 m³ at the time

of the event, which is three times larger than the maximum design capacity. The flowslide had the

13 characteristics of high travel speed and long run-out distance, of which the displaced material was primarily

14 silty soil from nearby construction sites with high moisture content. The primary causes of the failure were

15 concluded as follow: (1) The dumpsite stagnated groundwater flow in the study area, which resulted in the

saturation of the waste filling and high pore water pressure due to the underlying impermeable granite

17 stratum; (2) The accumulation rate and total volume of the waste filling was in exceedance of the design 18 capacity. The slope failure may be ascribed to excess pore water pressure as liguefaction were observed at

- 18 capacity. The slope failure may be ascribed to excess pore water pressure as liquefaction were observed at 19 many locations and it is postulated that such phenomena was related to the surcharge loads imposed by the
- 20 unregulated disposal activities.

21 Keywords Flowslide, Landslide, Municipal Solid Waste (MSW), Dumpsite, Quarry, Landfill

22 1 Introduction

Owing to the rapid population growth and industrialization, increase in the accumulation rate of municipal solid waste (MSW) poses challenges in MSW management and urban planning (Huang and Cheng 2016). Landfilling is the most common method of MSW disposal management (Brunner and Fellner 2007; Huang and Cheng 2016). Transformation of an abandoned quarry to a MSW dumpsite is a general approach as it conserves resources by reclaiming the quarry space and provides MSW storage solution (Zou 2016). The landfill slope stability is critical in MSW management, and therefore, the selection and design of landfills require engineering assessment on slope stability and environment impact (Zou 2016).

30 The porosity and moisture content of MSW is typically high in unregulated landfills due to inadequate 31 drainage system. Therefore, the residual soils in MSW may exhibit fluid flow behave, i.e. flow slide, with 32 extremely high mobility in the event of a slope failure (Dai et al 2016; Huang and Cheng 2016). Study on 33 the landfill slope failure in MSW dumpsite can be found in previous literatures, of which 6 reported cases 34 between 1993 and 2005 resulted in around 500 deaths and significant properties loss (Mitchell et al 1990; 35 Kjeldsen and Fischer 1995; Kocasoy and Curi 1995; Eid et al 2000; Blight and Fourie 2005; Merry et al 36 2005; Yılmaz and Atmaca 2006; Blight 2008). The deadliest event in history killed 278 people in Manila, 37 Philippines in 2000, and the second deadliest event buried 71 houses and killed 143 people on Feb 21, 2005 38 at Leuwigajah dumpsite near Bandung, Indonesia, (Lavigne et al 2014).

39 Shear strength of MSW is a function of various parameters, such as waste type and composition, disposal 40 rate, moisture contents, overburden pressure, and compaction (Eid et al 2000; Huvaj-Sarihan and Stark 41 2008). The movement of waste avalanches are complex and still poorly known (Lavigne et al 2014) due to 42 the lack of field monitoring data. The existing studies have focused on empirical methods (e.g. Blight and 43 Fourie 2005; Srour 2011), laboratory experiment, and numerical analysis. An approach was presented to 44 estimate the maximum flow velocity of MSW slope failure based on energy balance (Blight and Fourie 45 2005). The empirical-statistical method still has widespread use in practical applications, but the accuracy 46 is often model dependent (Dai et al 2016; Huang and Cheng 2016). The mixture of peat, kaolinite, and 47 quartz sand were used in laboratory tests to simulate MSW landslide, of which the results shown that, with

© Author(s) 2016. CC-BY 3.0 License.

- 48 increased moisture content of the MSW, the mobility increases while the maximum and final flow depth
- 49 decrease (Dai et al 2016). Numerical simulation has been widely used in the landfill slope stability analysis
- 50 (Chang 2002; Chang 2005; Chugh et al 2007; Chen and Yuan 2009; Huang et al 2013; Huang and Cheng
- 51 2016). The Smoothed Particle Hydrodynamics (SPH) method was used for run-out distance analysis of two
- 52 typical landfill flow slides occurred in Sarajevo and Bandung (Huang and Cheng 2016).
- 53 A MSW slope failure occurred at Hongao dumpsite, Guangming New District of Shenzhen, China at 11:40
- 54 AM on Dec 20, 2015, which destroyed 33 buildings and accommodations in the adjacent industrial park,
- 55 and resulted in death of 69 with 8 missing as of Jan 12, 2016. No extreme weather conditions or seismic
- 56 activity were reported at the time of the event. This article aims at investigating the characteristics and
- 57 causes of the flowslide. Field investigation, in-situ test, UAV stereo-measurements, and remote sensing
- 58 image interpretation were applied to recover material properties and landform characteristics of the study
- 59 area. Laboratory experiment and numerical analysis were performed to improve understanding on the 60 failure process.
- 61 2 Data and Methodology

62 2.1 Satellite Images, Topographic Map, and Aerial Photo

63 A series of high resolution satellite images was identified on Google Earth between Nov 2002 and Feb 64 2016. A Pleiades remote sensing image of the study area obtained on Dec 18, 2015 (2 days before the event) 65 was used to facilitate the analysis (Fig. 1a). Topography map of the pre-disposal site was provided by the 66 local government, and the drawing was submitted by a third-party consulting firm in Dec 2013. According 67 to the project report, the designed waste filling storage of was 2×10^6 m³ with 10 slope benches at a ratio of 1:2.5. Aerial photos with resolution of 5 cm were collected by an Unmanned Aerial Vehicle (UAV) 3 days 68 69 after the flowslide (Fig. 1b). The Digital Orthoimage Map (DOM) and Digital Surface Model (DSM) were 70 reconstructed from the aerial photos, and a topographic map for the post-sliding dumpsite was generated 71 from the DSM at the scale of 1:1000. As shown in the Pleiades image taken (Fig. 1a), a structured terrain 72 for vehicles was excavated for around the pre-sliding dumpsite consisting of 8 benches and 3 platforms. 73 The topographic map for the pre-sliding dumpsite was derived by overlaying the image of the original, pre-74 sliding, and post-sliding slopes, which provided estimation on the volume and depth of the pre-/post-sliding 75 landfill.

76 2.2 Field Investigation and in-situ Tests

77 The first field investigation was conducted on Dec 23, 2015 and second investigation was deployed between 78 Jan 21 and Jan 25, 2016. Field investigations assessed the topographical, geological, and groundwater 79 conditions. The density, moisture content, and permeability of the displaced material of the flowside was 80 measured from in-situ tests. The material properties were used in the subsequent laboratory experiment and 81 numerical analysis.

82 **2.3 Laboratory Tests**

83 Undisturbed and disturbed soil samples were obtained for laboratory tests, including weathered silty soil 84 and waste filling from the dumpsite. Grain size analysis was conducted by using the wet sieve method with 85 sieve sizes of 20, 10, 5, 2.0, 1, 0.5, 0.25, 0.10, 0.075, 0.025, 0.01, 0.005, 0.002, and 0.001 mm. The 86 maximum dry density and optimum moisture content of the displaced material were determined from the 87 standard laboratory compaction test. The shear strength parameters of the displaced material (c, Φ) were 88 obtained by triaxial compression test.

89 2.4 Numerical Analysis

- 90 In order to analyze the stability of the dumpsite, input parameters for the material properties and model
- 91 geometry were same as the corresponding values measured on site or in the laboratory. Factor of Safety
- 92 (FOS) of the slope was calculated by using SLOPE/W software with Morgenstern Prince Limit Equilibrium
- 93 Analysis method.

94

95 Fig. 1 Images for the Pre- and Post-sliding dumpsite. The boundary of the flowslide is indicated by the red 96 line. a Pleiades satellite image (Dec 18, 2015); b Aerial photo (Dec 23, 2015).

97 **3** Geological and Climatic Setting

98 The dumpsite is located at 23 km away from Shenzhen and 5 km away from the Guangming New District 99 (E113°56'5", N22°42'44") as shown in Fig. 2. The dumpsite was surrounded by three ridges with a free face 100 excavated with a mild slope gradient. The bedrock of the dumpsite is mainly Cretaceous granite rock (Fig. 101 3a, 3b, 3c, and 3d). The landfill consisted of construction waste with silty soil, clay, rock, and gravel (Fig. 102 3e and 3f).

103 The study area belongs to the zone of subtropical monsoon climate with an average temperature of 22° and 104 an average annual precipitation of 1500 mm concentrating between April and September (greater than 85 % 105 of the annual precipitation) (Zhang et al 2006). Based on the precipitation records from the nearby Tangjia 106 Rainfall Station between Jan 1, 2013 and Dec 20, 2015 (Fig. 5), the accumulated precipitation in the study 107 area was nearly 3240 mm, and field evidence suggested that the drainage facilities of the dumpsite were 108 abandoned (Fig. 6b and 6c), which permits the ingress of rainwater in the quarry pit (Fig. 7c). The catchment 109 area of the study area was 4.7×10^5 m², which was 2.95 times greater than the area of the dumpsite $(1.6 \times 10^5$ 110 m^2) as shown in Fig. 6a. Drainage system was implemented in the study area, where the surface run-off was 111 designed to be collected by the drainage pipes installed at a higher elevation than the dumpsite and divert 112 into the peripheral drainage channel. However, the drainage system failed to operate due to the absence of 113 maintenance, and led to the concentration of surface run-off and groundwater into the dumpsite. Field test 114 estimated that the permeability of the waste filling was 5.26×10^{-6} cm/s. Low permeability resulted in high 115 moisture content and excess pore water pressure in the dumpsite. The groundwater in the study area were 116 mainly bedrock fissure water and Quaternary pore water (Fig. 7).

117

Fig. 2 Location of the study area and overview of the post-sliding dumpsite (Google Earth image taken onFeb 2016).

120

Fig. 3 Photos of the rock and soil specimen collected from the displaced material. **a** Exposed granite rock near the scarp of the landslide; **b** Close view of the granite rocks; **c** Drilling core samples; **d** Close view of

the granite rock sample; **e** Displaced material in the zone of depletion; **f** Soils in the flowslide source area.

128

Fig. 6 a An overview of the catchment area (Google Earth image); b The surrounding peripheral drainage
 channel of the dumpsite was abandoned; c Damaged drainage pipes were not repaired and failed to divert

131 surface run-off into the peripheral drainage channel. Surface run-off concentrated in the waste filling.

132

Fig. 7 a Groundwater overflow in the rock fissures near the flowslide crown; b Water accumulation in the
flowslide crown; c Surface run-off near the flowslide source area during rainfall event; d Eroded channel
in dry condition; e Water accumulation in the source area; f Surface run-off and infiltration contributed to
groundwater seepage.

137 4 Multi-Temporal Remote Sensing Images

138 The development and changes of the dumpsite is presented by multi-temporal remote sensing images taken 139 between 2002 and 2016 (Fig. 8). It is postulated that the quarry was active between 2002 and 2008. However, 140 formation of ponds of various sizes at different spatial and temporal locations in the quarry indicated low permeability and lack of drainage network (Fig. 8b, 8c, and 8d). The quarry was abandoned in or before 141 142 2008 as shown in Fig. 8c (obtained on 2/20/2008) with a small amount of waste filling in the quarry pit. A 143 large-scale pond was formed due to groundwater and rainfall accumulation (Fig. 8d). The depth of the pit 144 was over 100 m before the disposal activities. A service road was excavated between two rock hills exiting 145 the quarry and formed a small-scale gully cross the pit longitudinally (Fig. 8a, 8b, 8c, and 8d). Additionally, 146 a small-scale platform (abandoned office area of the quarry) was excavated at the immediate downstream 147 of quarry exit. The gully was covered during construction of a multi-bench retaining slope between the rock 148 hills as waste disposal continued throughout the process (Fig. 8e). Disposal activity was started around 149 2014 (Fig. 8e and 8f), and the accumulation rate of the waste filling was considerably fast (Zou 2016).

© Author(s) 2016. CC-BY 3.0 License.

- 150 An unpaved road was excavated on the east of the quarry connecting the crest and toe of the hillslope as
- 151 shown in Fig. 8e. A large number of trucks can be seen transporting waste filling to the dumpsite. A large 152 amount of construction waste was dumped in the pit and four slope benches were built at the exit of the pit
- 153 (Fig. 8e). The volume of the waste increased significantly with the first and second benches completed in
- 154
- late 2014, and the third to fifth benches were still under construction until Jan 2015 (Fig. 8f).

156 Fig. 8 Multi-temporal remote sensing images of the study area. a 08/31/2002; b 02/20/2008; c 08/30/2010; 157 d 11/25/2013; e 11/17/2014; f 01/23/2015; g 04/14/2015; h Pleiades (12/18/2015); f Aerial (12/23/2015). 158 Image a to g were obtained from Google Earth. A service road was excavated at the exit of the quarry with 159 a width of nearly 70 m (see image **a**, **b**, **c**, and **d**).

© Author(s) 2016. CC-BY 3.0 License.

160 The rapid accumulation and total volume of the waste filling in the dumpsite gained some concerns before 161 the flowslide. An environmental assessment provided by a third-party consulting firm warned the erosion 162 at the site and its influence on the slope stability in Jan 2015 (Zou 2016). The disposal activity was ceased 163 for a certain period as no trucks were seen in the daylight (Fig. 8f). The cease was verified by the interview 164 with the local inhabitants. The disposal activity was resumed in or before April 2015, and the fourth bench 165 was completed as shown in Fig. 8g. By comparing Fig. 8g and Fig. 8h, significant modifications on the 166 landform can be seen in the study area with major increase in volume of the waste filling as the height of 167 the landfill was close to the crest of the quarry pit. The waste filling was flattened and disposal activity was 168 intense as more than 20 trucks appeared in Fig. 8h. Seven additional benches were completed with surface 169 drainage channels installed on the hillslope, and the eighth bench was still under construction during the 170 flowslide. The thickness of the dumpsite was estimated as 90 m with total volume of 6.3×10^6 m³ (Fig. 9a)

171 by extracting the difference between the pre- and post-filling DEMs.

172

173 Fig. 9 a The thickness distribution of the dumpsite based on the pre-/post-disposal DEMs; b The elevation 174 variations of the dumpsite estimated between the pre-/post-sliding DEMs.

175 **5** Flowslide Characteristics

176 The flowslide area can be divided into the source area and flow-accumulation area as shown in Fig. 10. The 177 source area was the pit of the abandoned quarry pit. The mass slid in the direction of nearly 340° with the 178 maximum traveling distance of 1203 m. The maximum thickness of the remaining material in the source 179 area was 41.51 m with an average of 20.5 m (Fig.11 and Fig. 12). The maximum deposit thickness in the 180 flow-accumulation area was 18.2 m with an average of 8.21 m (Fig. 9b). The geometric characteristic of 181 the flowslide can be expressed in length (L), height (H), width (W), and area (S) (Scheidegger 1973; Legros 182 2002). The geometric parameters are indicated in the simplified flowslide geometry in Fig. 13 with values 183 listed in Table 1, Table 2 and Table 3.

184

185 Fig.10 The direction of flowslide and distribution of the displaced material. **a** Flowslide overlying the pre-

186 sliding industrial park showing the impact area and flow direction; **b** Aerial view of the flowslide.

Fig.12 The geological and topographical cross section (profile line 1-1')

189

191

192 Fig. 13 Simplified illustration of the flowslide geometry. L: run-out distance; H: elevation; W1: scarp width; 193 W₂: max width of the source area; W₃: frontal width of the source area; W₄: width of the shear crack; W₅: 194 max width of the flow-accumulation area; L_1 : horizontal length of the scarp; L_2 : horizontal length of the 195 mild slope; L₃: horizontal length of the steep slope; L₄: horizontal length of the flow-accumulation area; H₁: 196 height of the scarp; H₂: height of the mild slope; H₃: height of the steep slope; H₄: height of the flow-197 accumulation area; H_s : thickness of the toe of the flowslide; Φ_1 : extension angle; Φ_2 : slope gradient of the 198 scarp; Φ_3 : mild slope gradient; Φ_4 : slope gradient of the source area; Φ_5 : steep slope gradient; Φ_6 : slope 199 gradient of the flow-accumulation area; Φ_7 : slope gradient of the foundation area

200	Table 1 Geometric parameters of the flowslide (Length and Width)										
	Domomotor	L	Н	\mathbf{W}_1	\mathbf{W}_2	W ₃₋₁	W ₃₋₂	W4-	1 V	V ₄₋₂	W_5
	Parameter	(m)	(m)	(m)	(m)	(m)	(m)	(m)) (m)	(m)
	Value	1204.67	111.31	212.5	399.32	218.31	149.38	217.	71 64	4.63	592.25
201	Table 2 Geometric parameters of the flowslide (Angle)										
	Parameter	Φ_1	Φ_2	Φ_3	Φ_4	Φ_5	Φ_6	Φ_7	v		S
		(°)	(°)	(°)	(°)	(°)	(°)	(°)	ĸ		(m ²)
	Value	5.28	28.06	1.2	7.62	11.36	3.08	1.36	0.32	39	8619.6

202

Table 3 Geometric parameters of the flowslide (Area and Thickness)

Parameter	Area A	Area B
S (m ²)	11.35×10 ⁴	28.51×104
V (m ³)	2.32×10^{6}	2.34×10 ⁶
$T_{max}(m)$	41.51	18.82
Tave (m)	20.49	8.21

203 5.1 Source Area

The source area of the flowslide is the quarry pit with a length (L_{1+2+3}) of 540.30 m and a width (W_2) of 204 399.32 m. The area of the source area (S_A) is 11.35×10^4 m² and the height (H_{1+2+3}) was 68.5 m with an 205 206 apparent dip (Φ_4) of 7.62° (Fig. 14 and Table 1). The volume of the mobilized material in the source area 207 was 2.32×10^6 m³ and the remained volume was 3.95×10^6 m³. The maximum thickness of the source area 208 (T_{A-max}) was 41.5 m with an average thickness (T_{A-ave}) of $\frac{20.5}{4}$ m. The scarp located on the west of the main 209 scarp has steep slope gradient with mild gradient on the east. The height of the steep scarp ranged from 25 210 to 47 m, whereas the height of the mild scarp ranged from 10 to 20 m. The geological cross section (profile 211 line 2-2') of the source area is shown in Fig. 14. The maximum thickness of the source area was 40.65 m 212 with an average of 34.83 m. The overview of the source area is shown in Fig. 15, with details on the 213 remaining material presented in Fig. 16.

Fig.14 The geological cross section (profile line 2-2') of the source area.

With the ingress of rainwater and groundwater in the dumpsite, pore water pressure increases due to the low permeability of the underlying granite in the Cretaceous system. It is appeared that the lack of drainage

218 resulted in waste filling saturation in the lower portion of the dumpsite, which in turn formed the sliding 219 bed of the flowslide (Fig. 15 and Fig. 16).

- 220
- Fig.15 An overview of the source area (image taken at the flowslide crown facing north). A large opening (W₄₋₁) formed due to the failure of the retaining slope (the exit of the original quarry pit), which provided
- 223 passage for the flowslide and permitted rapid release of kinematic energy.

© Author(s) 2016. CC-BY 3.0 License.

- 224 A large amount of silty soil were observed in the source area (Fig. 16). It is postulated that the material on 225
- both sides of the source area were mobilized due to the debuttressing effect as the waste filling in the lower 226 portion of the dumpsite slid into the downstream industrial park, and in consequence, resulted in the collapse
- 227 of the dumpsite. Step-like steep scarp was formed on the west part of the main scarp area (Fig. 17c and
- 228 17d), with tensile cracks developed on the rear edge as well as both sides of the scarp.

229

- 230 Fig.16 An overview of the remaining material in the source area (image taken near the quarry pit exit facing 231 south). Several service vehicles parked in the rear edge of the dumpsite were dragged into the source area
- 232 as waste filling slide into the industrial park. Blocky rock fragments were found in the source area.

233

234 Fig.17 Characteristics of the remaining material in the source area. a Mild scarp on the east part of the main 235 scarp area; b Cracks were developed in the west boundary of the flowslide; c Step-like steep scarp on the

236 west part of the main scarp area; **d** An overview of the west part of the flowslide crown.

© Author(s) 2016. CC-BY 3.0 License.

237 The presence of the aforementioned rock hills formed unfavorable topography for retaining slope stability 238 by promoting a narrow gully for groundwater flow (Fig. 8c and Fig. 10b). As a result of the retaining slope 239 failure, a large opening was formed at the elevaton of 73.7 m between the front edge of the steep scarp and 240 the rear edge of the flow-accumulation area as shown in Fig. 11, Fig. 12, and Fig. 15. The displaced material was stratified in the middle part of the flow-accumulation area during the high speed sliding process. The 241 242 shape of the failed retaining slope was half-elliptic-like with a width $(W_{4,1})$ of 217.7 m and a height (H_b) of

243 27.5 m (Fig. 18 and Fig. 19).

244

245 Fig. 18 Geological cross section (profile line 3-3') of the failed retaining slope located at the original quarry 246 pit between the two rock hills,

247

248 Fig. 19 a An overview of the exit of the flowslide between the source and flow-accumulation area (Photo 249 courtesy of China News Agency); b The half-elliptic-like opening of the failed retaining slope; c East side 250of flow-accumulation area adjacent to the opening showing scratch caused by the flowslide; **d** Details on 251 the scratches.

© Author(s) 2016. CC-BY 3.0 License.

252 5.2 Flow-Accumulation Area

253 The fan-shaped flow-accumulation area mantled the retaining slope of the dumpsite and a large part of the 254 industrial park as shown in Fig. 20. The original slope gradient of the industrial park (Φ) was 1.36° along 255 the profile line 1^{-1} as shown in Fig. 14 and Table 1. The area immediately downstream of the landfill was relatively flat with no major construction except a pond (approx. 3600 m²) and a channel (width: 7 m and 256 257 length: 130 m). Most of the industrial structures were constructed on east, west, and north side of the pond 258 as shown in Fig. 10a, and therefore, created a ideal flow channel for the mass movement. The failure of the 259 rock retaining slope resulted in an opening for the waste fill flow and destoryed downstream bluildings (Fig. 260 20 and Fig. 21).

262 Fig. 20 The overview of the flow-accumulation area with elevations (Photo courtesy of China News Agency)

264 Fig. 21 Geological cross section (profile line 4-4') of the flow-accumulation area. The length (L4) was 664.4 265 m and the width (W_3) was 218.3 m with the width of the front edge (W_5) of 592.3 m. The area of the flow-266 accumulation area is 28.51×10^4 m² and the elevation difference (H₄) was 35.7 m with the apparent dip (Φ_6) of 3.08°. The average thickness in the flow-accumulation area was 8.21 m with the maximum thickness of 267 268 18.82 m (Fig. 14, Table 1, and Table 3).

269

270 Fig. 22 The damage of buildings in the industrial park (Photo courtesy of China News Agency).

271 **5.3 Flowslide Movement**

The source area of the flowslide was in the elevation of 142 m and the horizontal run-out distance (L) was approximately 1203 m, with the elevation difference (H) of 111 m. The sliding velocity can be estimated on the basis of the landslide geometrical characteristics. The velocity of the high-speed landslide can be estimated using the following expression (Scheidegger 1973):

$$\mathbf{v} = \sqrt{2g \times (\mathbf{H} - f \times \mathbf{L})} \tag{1}$$

276 Where v is the sliding velocity (m/s), g is the gravitational acceleration (m/s²), H and L is the elevation 277 difference and horizontal distance (m) between the crown and toe of the flowslide, respectively, and f is the 278 equivalent friction coefficient referred as the ratio between the height and run-out distance of the flowslide 279 (f = H/L). The equivalent friction coefficient of the dumpsite flowslide is 0.092. The relations of the run-280 out distance, elevation difference, and equivalent friction coefficient can be defined in light of the flowslide 281 geometry (Fig. 13). The sliding velocity was calculated and presented in Fig. 23.

283 Fig. 23 The relationship between sliding velocity along profile line 1-1' and pre-/post-sliding landform.

© Author(s) 2016. CC-BY 3.0 License.

284 Based on the calcuated sliding velocity profile, two sharp increases in the velocity can be seen, including 285 the movement of the waste filling near the steep scarp and the acceleration of the flowslide exiting the pit. 286The sliding velocity of the mass accelerated to 15.17 m/s as waste filling reached the bottom of the steep 287 scarp. The velocity displaced material gradually decreased to approximately 13 m/s before accelerate to the 288 maximum velocity of 25.15 m/s as it reached to the opening of the dumspite. The second sharp acceleration 289 was followed by ripid dissipation of kneimatic energy and reduction on the velocity as it reached the flow-290 accumulation area (elev. 50 m). It was estimated that the sliding velocity was reduced to 15.68 m/s when it 291 made contact with downstream buildings, and then ceased moving due to the obstruction of structures. The 292 geometry and velocity exhibited the characteritics of high-speed long run-out flowslide.

293 **6** Laboratory Experiment

294 Based on *in-situ* tests for waste filling density and moisture content as well as the laboratory compaction 295 test, it was found that the dry density varies from 1.25 to 1.48 g/cm³ and void ratio ranged between 0.83 296 and 1.31. Standard compaction test results suggested that the optimal water content of the waste filling was 297 15.31% with the highest dry density of 1.79 g/cm3. The surface of the waste filling was in loose state with 298 degree of compaction of the dumpsite ranged from 69.83% to 82.68%. Undrained shear test estimated that 299 c and Φ of the waste filling is 4.7 kPa and 31.9°, respectively (Fig. 24), which is considerably higher than

301 302

Fig. 24 Shear strength of the waste filling specimen obtained by undrained shear test.

303 7 Numerical Analysis

304 The numerical analysis aims at inverse analyzing the friction angle of the waste filling under the occurrence 305 of the flowslide. Dumpsite slope FoS was estimated by using SLOPE/W software with Morgenstern Prince Limit Equilibrium Analysis method. Since # is postulated that the sliding mass in the lower portion of the 306 dumpsite was saturated prior to the flowslide, a hypothetic sliding surface and the groundwater level were 307 308 added into the model. The FoS was determined with an iterative approching by changing the postion of the 309 sliding surface until failure of the dumpsite (Fig. 25 and Fig. 26). The physical parameters for the model 310 were determined by the laboratory experiments and inversion analysis (Table 4).

311

312 Fig. 25 Hypothetic sliding surface (green solid line) and groundwater level (blue dash line) in 2D numerical

313 model.

Waste Surface

_

317 The results of slope stability analysis is presented in Table 5. Based on the numerical analysis, it was found 318 possible for the development of a sliding surface above the bedrock in the lower portion of the waste filling. 319 It is evident that the permeability of the waste filling was considerably low, which may result in saturation 320 in the lower portion of the waste filling. As no clear drainage passage were found for the waste filling, the 321 displaced material may remain undarined during the flowslide so that the shear strength was significantly 322 reduced. The substaintial difference in the shear parameters obtained from laboratory test and numerical 323 analysis indicated that the conventional numerical analysis is not appropriate for analyzing the failure 324 mechanism of the flowslide. Additionally, the uncertainty of groundwater condition affects the analysis. T 11 C D 14 C 4 . . . 325

5

31

_

5

9.4

Table 5 Results of the numerical slope stability				
Parameters Unit Weight (kN/m ³)		c (kPa)	Ф (°)	FoS
Value	16.5	5	9.4	0.997

326 8 Discussion and Conclusion

The topography of the flowslide has the following features: (1) Suitable topography with a height of 124 m between the crown and toe of the flowslide which stored large potential energy needed for high speed and long run-out distance flowslide; (2) Low permeability of the waste filling in the dumpsite with impermeable bedrock resulted in groundwater stagnation. However, the failure of the retaining slope formed a narrow opening for the subsequent flowslide, with sudden release of high kinematic energy generating high sliding velocity and long travel distance.

333 Since the parameters obtained by the inversion analysis were largely different from the experimental results, 334 it is postulated that the deformation and failure of the landfill was ascribed to the excess pore water pressure 335 in the waste filling. The sharp increase of the pore water pressure causes significant destruction and results 336 in liquefaction. Localized liquefactions were found at several locations on the study area (Fig. 27). The 337 exact reason for the surge in the pore water pressure remains unclear at this point, however, it may involve: 338 (1) rapid surcharge loading in the dumpsite while pore water pressure cannot dissipate immediately; (2) the 339 waste filling was loosely packed with large pores in the microstructure, and the collapse of particle structure 340 lead to the shrinkage of pores, and in turn building excess pore water pressure.

341

342

Fig. 27 Evidence of liquefaction near the opening of the failed retaining slope.

The engineering background of the dumpsite prior to the event include mainly three phases, i.e. the mining process of the quarry, construction of the downstream industrial zone, and waste filling process. However, the previous engineering undertakes posed very limited influence on the stability of site, and based on the

field investigations, the volume of the waste filling was estimated as $\frac{6.27 \times 10^6}{\Lambda}$ m³, which was three times larger than the design capacity of the dumpsite.

348 The dumpsite flowslide is divided into the source area and flow-accumuation area. The volume of the source 349 area was 2.32×10^4 m³ with the max, and average thickness of 41.5 m and 20.5 m, respectively. The volume 350 of the fan-shaped flow-accumulating area was 2.34×10^6 m³ with the max. and average thickness of 18.8 m and 8.2 m, respectively. The volume expansion coefficient of flowslide was 1.007. The maximan sliding 351 352 velocity of the flowslide was 25.15 m/s at the opening of the dumpsit, and reduced to 15.68 m/s as it reached 353 the industrial park and ceased moving due to the obstruction of buildings. The flowslide is charcteristiced 354 by high speed and long run-out distance. The laboratory test and numerical model yielded largely different 355 results for the shear strength of the waste filling. Meanwhile, field investigation indicated liquidation at 356 several locations on the site. Unregularly disposal activites in addition to the ingress of rainwater and high 357 pore water pressure played important roles in deformation process of the dumpsite. Although the flowslide 358 destruction process was fast with excessive amount of waste filling accumulation, it is postulated that signs 359 of deformation may have already appeared in the study site but not discovered due to the absence of field 360 monitoring. Further analysis is undergoing at SKLGP to assess the causes involved for generating the 361 excess pore water pressure.

Acknowledgments The work is financially supported by the NSFC (Grant No. 41521002) and the National
 State Key 973 Project (Grant No. 2014CB744703) from the Ministry of Science and Technology of the
 People's Republic of China.

365 **Reference**

Blight G (2008) Slope failures in municipal solid waste dumps and landfills: a review. Waste Manag Res
 26:448–463. doi: 10.1177/0734242X07087975

waste. Geotech Geol Eng 23:219-248.

© Author(s) 2016. CC-BY 3.0 License.

368

369

370

371	Waste Manag Res 25:234–240. doi: 10.1177/0734242X07078296
372	Chang M (2002) A 3D slope stability analysis method assuming parallel lines of intersection and differential
373	straining of block contacts. Can Geotech J 39:799–811. doi: 10.1139/t02-020
374	Chang M (2005) Three-dimensional stability analysis of the Kettleman Hills landfill slope failure based on
375	observed sliding-block mechanism. Comput Geotech 32:587–599.
376	Chen Z. Yuan J (2009) An Extended Environmental Multimedia Modeling System (EEMMS) for Landfill
377	Case Studies, Environ Forensics 10:336–346, doi: 10.1080/15275920903347396
378	Chugh AK, Stark TD, Delong K a (2007) Reanalysis of a municipal landfill slope failure near Cincinnati
379	Ohio USA Can Geotech L44:33–53 doi: 10.1139/t06-089
380	Dai Z Huang Y Jiang F Huang M (2016) Modeling the flow behavior of a simulated municipal solid
381	waste Bull Eng Geol Environ 75:275-291 doi: 10.1007/s10064-015-0735-8
382	Daouadii A Hicher P (2010) An enhanced constitutive model for crushable granular materials. Int I Numer
383	Anal Methods Geomech 34:555–580
384	Fid HT Stork TD Evens WD Sherry PE (2000) Municipal colid wasta slope failure I: Wasta and
385	Fundation soil proparties Locotab Coconvironmental Eng 126:207 407
286	Foundation son properties. J Georeen decenvironmental Eng $120.397-407$.
297	finding 1, Cheng II (2010) A simplified analytical model for fun-out prediction of flow sides in multicipal
200	sond waste faithing. Landsides (Publishet, 1-9, doi: 10.1007/s10540-010-0086-4
200	Huang T, Dai Z, Zhang W, Huang M (2013) SFR-based numerical simulations of flow sindes in multicipat
200	Solid waste landing. Waste Manag Kes 51.250–04. doi: 10.11///0/54242A124/0205
201	Huvaj-Saiman N, Stark TD (2008) Back-Anaryses of Landrin Stope Fandres. Out int Cont Case Hist
302	Violdson D. Fischer F. V. (1005) Landfill ass migration field investigations at Skallingstad landfill
392	Kjeldsell P, Fischer E V (1993) Lahdrin gas ningrauon - neid nivestigations at Skennigsted lahdrin,
204	Definitation Waste Manag Res 15.40/-464.
205	Kocasoy G, Curi K (1995) The Onitalitye-Hekinibaşi open dunip accident. waste Manag Kes 15.505–514.
206	Lavigne F, wassiner F, Goinez C, et al (2014) The 21 February 2003, catastrophic waste avalancie at
207	10 1186/0677 014 0010 5
308	10.1180/84007/-014-0010-5
300	Legios F (2002) The mobility of folg-fundul failures. Eng George of the July 10, 2000 Payotos londfill failure
400	I Deform Constr Easil 107
400	Mitchell IK Seed PR Seed HR (1000) Kettlemen Hills weste landfill slope feilure. I: Liner system
401	properties I Cootech Eng 116:647 668 doi: 10.1061/(ASCE)0722.0410(1000)116:4(647)
402	properties. 9 Concerning Internet Concerning and Internet Concerning mechanisms. Int I Numer
403	Anal Methods Geomech 35:586–601
405	Scheidenger AE (1973) On the prediction of the reach and velocity of catastrophic landslides. Rock Mech
406	Rock Eng 5:231–236 doi: 10.1007/BE01301796
400	Stour G (2011) Mine waste failure: an analysis of empirical and graphical runout prediction methods
408	University of British Columbia
400	Vilmara A Atmaca E (2006) Environmental geological assessment of a solid waste disposal site: a case
410	study in Siyas Turkey Environ Geol 50:677_689
410	The X Oi M Ma H (2006) Slope instability and its control in Shenzhen City. Chinese L Rock Mech Eng.
412	S2 (in Chinese)
412	7 Theor C. Dai E (2007) Study on failure mechanism of a fill slope in Shenzhen. Chinese I Geol Hazard
414	Control 18:3412–3421 (in Chinese)
415	Zou DH (2016) Exploring a Waste Dumn Site Failure-Possible Causes and Prevention Measures. Int L
416	Geohazards Environ 2:25–33
417	Sconduras Environ 2/20 - 59
11/	

Blight GE, Fourie AB (2005) Catastrophe revisited-disastrous flow failures of mine and municipal solid

Brunner PH, Fellner J (2007) Setting priorities for waste management strategies in developing countries.