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Abstract 14 
Wind erosion susceptibility of the Hungarian soils was mapped on national level integrating three pillars of the 15 

complex phenomenon of deflation. Results of wind tunnel experiments on erodibility of various and 16 

representative soil samples were used for the parametrization of countrywide map of soil texture compiled for 17 

the upper 5 centimeter layer of soil, which resulted in a map representing threshold wind velocity exceedance. 18 

Average wind velocity was spatially estimated with 0.5’ resolution using the MISH method elaborated for the 19 

spatial interpolation of surface meteorological elements. The ratio of threshold wind velocity exceedance was 20 

determined based on values predicted by the soil texture map at the grid locations. Ratio values were further 21 

interpolated to a finer 1 ha resolution using sand and silt content of the uppermost (0-5 cm) soil as spatial co-22 

variables. Land cover was also taken into account excluding areas which are not relevant from the aspect of 23 

wind erosion (forests, water bodies, settlements etc.) to spatially assess the risk of wind erosion. According to 24 

the resulted map of wind erosion susceptibility, about 10% of the total area of Hungary can be identified as 25 

susceptible for wind erosion. The map gives more detailed insight into the spatial distribution of wind-affected 26 

areas in Hungary as opposed to former works. 27 

 28 

 29 

 30 

Introduction 31 

Wind erosion represents a serious problem worldwide: according to a report by the United Nations Environment 32 

Programme in 1991, the phenomenon of wind erosion is responsible for more than 46% of the total degradation 33 

of arid areas (Zheng, 2009). According to Lal (1994), the total agricultural area affected by wind erosion adds 34 

up to about 550 million hectares worldwide. Oldeman et al (1991) estimated the total European agricultural 35 

areas eroded by wind at 42 million hectares. In Europe, wind erosion affects mainly the semi-arid areas (López 36 

et al., 1998; Gomes et al., 2003) but the temperate climate areas of the northern European countries are also 37 

endangered (Eppink & Spaan, 1989; Goossens, 2001; Bärring et al., 2003). In agricultural lands, wind erosion 38 

manifests mainly in the removal and transport of the finest and biologically most active part of the soil, which 39 

is richest in organic matter and nutrients (Funk & Reuter, 2006). A substantial consequence is the decline in the 40 

productivity of endangered areas. Furthermore, the transport of nutrients and pre-sowing herbicides by wind 41 

erosion can also be considered as a serious environmental problem (Funk et al., 2004).  42 

Wind erosion is usually a natural, geological process which forms many eolian landforms (Lancaster 1995), but 43 

nowadays it is accelerated by anthropogenic effects (overgrazing, mismanagement of agricultural lands, 44 

intensive crop cultivation etc.) Researches carried out in the 90’s in Europe (Welsons: Gomes et al. 2003; 45 

Wheels: Böhner et al. 2003; Warren, 2003), revealed that wind erosion causes more serious problems, than it 46 

had been supposed earlier. Very recently Borelli et al. (2014a,b) provided spatial assessment of land and soil 47 

susceptibility for wind erosion at a European scale. 48 

Vegetation cover plays an important role preventing wind erosion (Armbrust and Bilbro 1997). The presence of 49 

the vegetation on the surface increases the turbulence close to the ground and therefore decreases wind velocity 50 

(Shao, 2008). If non-erodible plants cover the soil surface, soil erosion is reduced by 98% (Fryear et al. 2000). 51 

The vegetation can also increase the soil moisture content through shading effect. Bare soil and arable lands are 52 

the most seriously affected by wind erosion. Because vegetation cover alters in space and time, it is more 53 

straightforward to characterize an area only with the potential exposure, which can be characterized by 54 

susceptibility to wind erosion. 55 

In Hungary wind erosion causes serious problems in agricultural production as well as in soil and environmental 56 

quality. According to the “Map of potential wind erosion of Hungary” by Lóki (2012), 26.5 % of Hungary is 57 

affected strongly or moderately by wind erosion, where the critical threshold velocity of erosive winds is lower 58 

than 8.5 m/s. However, this map is based only on a simplified soil texture classification and critical threshold 59 

velocity, whereas other factors (wind velocity, land use) were not taken into account. Thus, this map does not 60 

provide a full picture of the hazard as it was pointed out by Mezősi et al. (2015).  Mezősi et al. (2015) integrated 61 

climate, vegetation and soil erodibility factors with fuzzy logic to create wind erosion map of Hungary based on 62 

soil texture, climatological and land use data and verified their results by field investigation. The spatial 63 

resolution of the databases, they used for representing wind erosion factors, was significantly lower than the 64 
inputs of the present approach. Their verification included three test sites and did not contain comprehensive 65 
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wind erodibility measurements. They took into consideration wind velocity above 9 m/s to represent erosive 66 

wind, however this value differs in the case of different soils.  67 

Degradation of land caused by wind erosion strongly depends on the texture of topsoil, therefore mapping of 68 

deflation requires the knowledge of soil texture of the uppermost soil layer in proper spatial detail (Borrelli et 69 

al. 2014a, Mezősi et al. 2015). Soil texture can be assigned the most accurately by determining particle size 70 

distribution (PSD). According to their size, different particles can be categorized as clay, silt, or sand. The size 71 

intervals are defined by national or international textural classification systems. Soil textural classes are defined 72 

by the numerical proportion (weight percentage) of the sand, silt, and clay separates in the fine-earth fraction (≤ 73 

2 mm). The division is used to be depicted on a triangle diagram, the so-called ‘texture triangle’. If the percentage 74 

for any two of the soil separates are known, the correct textural class is determined; simultaneously, the sum of 75 

the three percentages must total 100 percent. The most commonly used (also in wind erosion models) among 76 

the different classification systems is defined by the United States Department of Agriculture (USDA). 77 

The framework of Digital Soil Mapping (DSM; McBratney et al. 2003) involves spatial inference of soil 78 

information collected at sampled points based on ancillary environmental variables related to soil forming 79 

processes. There are various methods that can be used for establishing quantitative relationships between soil 80 

properties and the environment. The recent developments of DSM have significantly extended the potential to 81 

predict the spatial distribution of soil properties and related environmental elements more accurately (Lagacherie 82 

et al. 2007, Hartemink et al. 2008). The set of the applied DSM techniques has been gradually broadened 83 

incorporating and eventually integrating geostatistical, data mining and GIS tools (Minasny et al. 2012). 84 

Furthermore the available auxiliary environmental information have been persistently widened. Unique digital 85 

soil (related) map products can be compiled that were never mapped before, even nationally with relatively high 86 

spatial resolution, taking also into consideration accuracy and reliability (Pásztor et al. 2015). 87 

Our aim was to provide a nationwide, spatially detailed assessment of the susceptibility of the land of Hungary 88 

to wind erosion integrating actual and representative wind tunnel measurements, the latest products provided by 89 

both digital soil mapping and digital climate characteristic mapping, furthermore the most recent land cover map 90 

provided by remote sensing. 91 

 92 

Material and methods 93 

Study site 94 
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 95 
Figure 1. Hungary’s general geographical conditions  96 

 97 

In Hungary, large areas are covered by sandy and silty soils, which are mainly affected by wind erosion. More 98 

than 60% of the relatively flat area is under agriculture cultivation which enlarges the exposure to wind erosion 99 

causing serious soil degradation. The mean annual precipitation varies between 500 and 700 mm; the average 100 

temperature is 10–11 ºC (1961–1990) (Péczely, 1998). The countrywide yearly average wind speed is 2–4 m/s. 101 

The monthly average wind velocity increases continuously in the first months of the year, and the highest 102 

monthly average wind velocity can be experienced in March and April (when the agricultural fields are bare). 103 

The average wind velocity reaches its maximum in April and number of days on which the maximum wind 104 

speed is over 10 m/s is also the highest in this month. The average wind velocity is 3.0–3.2 m/s in the months, 105 

which are the most vulnerable to wind erosion (March-April). The main wind direction of winds above 5 m/s is 106 

North-Western (on the Transdanubian region) or North-Eastern (on the Great Hungarian Plain). The regional 107 

distribution of wind velocity is very variable in Hungary: The strongest winds blow in the Transdanubian region. 108 

The number of windy days (when the wind velocity is above 10 m/s) are about 122, and the number of stormy 109 

days (when the wind velocity is above 15 m/s) is about 32 days (MET 2016). 110 

 111 
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 112 
Figure 2. The spatial distribution of sampling points used in the present study: soil sample locations used in wind tunnel 113 

measurements (a); SIMS location used in the compilation of soil fractions and texture maps (b); meteorological stations used in 114 
long-term wind speed calculations (c); and Hungary’s general land cover conditions (d) 115 

 116 

Wind tunnel measurement data 117 

The upper 0-20 cm, ploughed layer was sampled at 215 sites collected from different parts of Hungary (Fig. 2a). 118 

Soil texture was the primary selection criterion for the assignment of sampling locations. Another important 119 

aspect was that each type should be represented by multiple samples; therefore, possible differences between 120 

samples belonging to the same texture class became comparable. 121 

Wind tunnel measurements were carried out to determine the erodibility of Hungarian soils with different soil 122 

textures. The amount of the transported material by wind was calculated from the weight difference between the 123 

samples before and after the experiment. Weight loss was normalized to an erosion modulus (ton hectare-1min-124 
1) to quantify the wind erosion transport rate. Erosion modulus for velocity was calculated by dividing average 125 

accumulative soil loss by duration. The applied wind velocity was 16 m/s (which is the maximum wind velocity 126 

available in wind tunnel) According to the measured data we created three erodibility categories on the basis of 127 

the amount of transported material in an empirical way: 128 

 strongly erodible: 3200 -1500 gram/5 minutes (64 ton hectare-1min- 1); 129 

 moderately erodible: 1000-1500 gram/5 minutes (30 ton hectare-1min- 1); 130 

 slightly erodible: 0-1000 gram/5 minutes (20 ton hectare-1 min- 1). 131 
 132 

Threshold wind velocity data were evaluated according to the texture classification of the samples (Table 1), 133 

whose result was applied in the parametrization of the countrywide soil texture map compiled for the uppermost 134 

(0-5 cm) soil layer. 135 
 136 
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Table 1. Aggregated threshold wind velocity values by texture classes 137 
 138 

Texture Threshold wind velocity empirical erodibility classification 

loam 9,7 m/s moderately erodible 

silt loam 10,0 m/s moderately erodible 

clay loam 11,0 m/s slightly erodible 

silty clay loam 10,2 m/s slightly erodible 

silty clay 11,5 m/s slightly erodible 

clay 12,0 m/s slightly erodible 

sandy clay loam 9,8 m/s moderately erodible 

sandy loam 8,7 m/s strongly erodible 

loamy sand 7,3 m/s strongly erodible 

sand 6,5 m/s strongly erodible 

sandy clay 10,0 m/s moderately erodible 

silt 10,5 m/s slightly erodible 

organic material n.a. non-erodible 

water n.a. non-erodible 

bedrock n.a. non-erodible 

sealed soil n.a. non-erodible 

 139 

 140 

Spatial soil data 141 

Hungarian Soil Information and Monitoring System (SIMS, 1995) contains relevant particle size distribution 142 

data on more than 1,200 locations (Fig. 2b). SIMS particle size distribution data were converted into clay, silt 143 

and sand particle-size fractions according to the USDA size-groups of mineral particles (USDA 1987; Table 2.; 144 

Fig. 3). In SIMS the soil layer related data refer to different depth intervals. For standardization we transformed 145 

the soil texture fraction values of each soil profile into standard depth intervals (0-5 cm, 5-15 cm, 15-30 cm, 30-146 

60 cm, 60-100 cm, 100-200 cm; defined by GlobalSoilMap - ARROUAYS 2014) by equal-area spline 147 

interpolation (Bishop et al. 1999; Malone et al. 2009). For the present purpose the deduced values for the topsoil 148 

layer (0-5 cm) were used in the subsequent mapping process. 149 

 150 
Table 2. 151 

SIMS particle size (mm) Particle-size fraction 

< 0,002 CLAY 

0,002-0,005 

SILT 
0,005-0,01 

0,01-0,02 

0,02-0,05 

0,05-0,2 
SAND 

0,2-2 

 152 

Spatial inference of particle size data was carried out by regression kriging (RK; Hengl et al 2004, 2007), a 153 

spatial prediction technique, which uses environmental correlation and geostatistical interpolation as 154 

complementary spatial inference methods. It combines the regression of the dependent variable on auxiliary 155 

variables with kriging of the regression residuals. RK involves spatially exhaustive, auxiliary information in the 156 

mapping process. In the present mapping we used the following environmental covariates. 157 

Topography was taken into account based on the 25 m Digital Elevation Model (EU-DEM 2015) and its 158 

morphometric derivatives: Aspect, Channel Network Base Level, Diurnal Anisotropic Heating, Elevation, 159 

General Curvature, LS Factor, Mass Balance Index, Multiresolution Index of Ridge Top Flatness – MRRTF, 160 

Multiresolution Index of Valley Bottom Flatness – MRVBF, SAGA Wetness Index, Slope, Stream Power Index, 161 

Real Surface Area, Topographic Position Index, Topographic Wetness Index and Vertical Distance to Channel 162 
Network. The terrain features were calculated from the DEM within SAGA GIS (Bock et al. 2007). 163 
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Lithology was represented by the Geological Map of Hungary 1:100,000 (Gyalog & Síkhegyi 2005).  In order 164 

to simplify the huge amount of lithology and facies categories, they were correlated with the nomenclature of 165 

parent material defined in the FAO Guidelines for soil description (FAO 2006, Bakacsi et al. 2014). Some FAO 166 

categories were merged in order to increase the correlation with soil particle size distribution. 167 

Climate was represented by four relevant layers: average annual precipitation, average annual temperature, 168 

average annual evaporation and evapotranspiration. The spatial layers were compiled using the MISH method 169 

elaborated for the spatial interpolation of surface meteorological elements (Szentimrey & Bihari 2007) based on 170 

30 year observation of the Hungarian Meteorological Service with 0.5’ resolution. 171 

Physical soil property map contained by the Digital Kreybig Soil Information System (DKSIS, Pásztor et al. 172 

2012) provided further spatial ancillary information (Pásztor et al. 2016). The categories used in legacy maps 173 

are defined according to water retention capability, permeability and infiltration rate of soils and they are closely 174 

related to the texture classes, however, they cannot be considered identical. 175 

In order to harmonize the different spatial resolution of the predictor variables, we resampled them into a 176 

common 100 m grid system (by SAGA GIS - Bock et al. 2007), which also defines the spatial resolution of the 177 

result map. All of the auxiliary variables were normalized to a common, 0-255 scale. Category variables were 178 

taken apart into indicator variables according to their categories. Every single category has become a layer with 179 

a value of 255 while out-of-category areas were coded with 0. Principal component analysis (PCA) was 180 

performed on the continuous environmental auxiliary variables and the resulted principal components (PCs) 181 

were used in the further procedures. Since PCs are orthogonal and independent, they satisfy the requirements of 182 

Multiple Linear Regression Analysis (MLRA) and also decrease multicollinearity.  183 

 184 

 185 
Figure 3. The texture triangle with USDA classification and the distribution of SIMS points 186 

 187 
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Since clay, silt and sand contents are compositional variables (their sum must be 100%) instead of inferring the 188 

maps independently composite kriging was applied based on Additive Log-Ratio (alr) transformation (Aitchison 189 

1986, Lark & Bishop 2007, Ballabio et al. 2016) of the original three variables. The texture class map itself was 190 

compiled according to the USDA categories based on the proper pixel by pixel combination of the three particle 191 

size distribution maps. Certain areas (like organic or sealed soil, outcrops and water) cannot be featured by soil 192 

texture, so the map treats them independently without providing spatial prediction to them. The compiled map 193 

is displayed in Fig. 4. 194 

 195 

Figure 4. Hungary’s soil texture map of the uppermost layer (0-5 cm) according to the USDA categorization 196 

Wind speed data and its spatial inference 197 

Wind speed data were provided and processed by the Hungarian Meteorological Service. The aim was to 198 

determine how frequently wind speed exceeds a certain critical speed value in each grid point of a dense, 0.5´ 199 

spatial resolution grid. In order to ensure highest quality of background data several regards were taken into 200 

consideration. Before the ‘90s the Service operated manned synoptic stations that measured wind speed in a 201 

different manner than in recent years. At most stations wind speed was observed only in every 3 or 6 hours, and 202 

only a limited number of stations were equipped with anemographs. By the year 2000 almost all stations had 203 

received new, automatic instruments capable of continuous measurements, therefore the decision was to use 204 

hourly average wind speed data starting from 2000 through 2013. Selection criteria for stations were that the 205 

number of missing data should not exceed 10% (out of thirteen years’ 113,952 entry of hourly data) in the 206 

station’s dataset. Altogether 72 stations (Fig. 2d) met these requirements. 207 

The next step was to produce values on a dense grid covering the area of Hungary. This was carried out by 208 

applying the MISH (Meteorological Interpolation based on Surface Homogenized Data Basis, Szentimrey and 209 

Bihari, 2004) method for gridding of hourly station data. It was developed at the Hungarian Meteorological 210 

Service specifically for the interpolation of meteorological data, and is based on the idea that the highest quality 211 
interpolation formula can be obtained when certain statistical parameters are known. These parameters are 212 
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derived by modelling, using long term homogenized data of neighboring stations. The MISHv1.03 software first 213 

carries out the modelling of statistical parameters, using additional variables such as topography, height of 214 

measurement, or roughness length. The interpolation itself is achieved in the second step, using an interpolation 215 

formula that depends on the output of the modelling system. Therefore the obtained value of a grid point is 216 

determined not only by the values of the actual time step, but the long term climatic data of the neighboring 217 

stations as well. 218 

Due to the immense computation demand of gridding, the MISH method limits the number of predictor series 219 

to 2,000, the length of series to 4,000 and the predictand locations to 10,000. The predictor series were the 72 220 

station series, but speaking of hourly data they had much more than 4,000 values each and the predictands of a 221 

0.5´grid were much more than the limit as well. The problem of the length of series was overcome by splitting 222 

the series to fragments: gridding of hourly data was done separately for each month; moreover each month’s 223 

data were split into three parts to fit the 4,000 limit of length. In order to meet the limit of predictand locations 224 

the grid had to be truncated. Considering that the spatial variance of wind speed is much less above flat terrain 225 

an iteration formula was developed to determine the best grid network that has at most 10,000 grid points, but 226 

is preferably denser around mountainous regions. The fragments were all gridded onto this somewhat irregular 227 

grid of 9,984 predictand points and then finally merged together into one file. The dense, 0.5´ resolution grid 228 

was then matched with the 9,984 predictand values in the manner of finding the closest predictand point to each 229 

point of the dense grid, thus values of each point were ultimately acquired. 230 

 231 

 232 

Figure 5. Threshold wind velocity values linked to the centers of the 0.5´ resolution grid based on the soil texture map 233 

 234 

Land cover 235 

CORINE Land Cover 1:50.000 (CLC50; Büttner et al. 2004) was used for representing the role of 236 
landuse/landcover in modelling the exposure of land to wind erosion. CLC50 is a national land cover database 237 
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elaborated on the basis of the CORINE nomenclature of the European Environment Agency (EEA) and adapted 238 

to fit the characteristics of Hungary. However, CLC 50 is not the most recent version of Corine databases, but 239 

its spatial resolution is significantly finer, being the smallest delineated unit is 4 hectare and 1 hectare in the 240 

case of water bodies. 241 

According to CLC50 about 56% of Hungary is under agricultural cultivation while about 44% of the country’s 242 

area is featured by land characteristics, which are more resistant to wind erosion. Since wind erosion does not 243 

typically occur in forests, urbanized areas and over water surface, consequently these areas were masked out. 244 

  245 

 246 

Results and discussion 247 

Critical wind speed exceedance map 248 

The outcome of wind speed exceedance calculations was the ratio of wind speed exceeding critical values on an 249 

hourly level during the observed 13 years in each point of the grid network (Fig. 5). According to the map, 250 

spatial variability is relatively high throughout the country. Values in general range from 0% to above 2.5% in 251 

relation to wind climatology, landscape, soil properties and land cover. 252 

Most of Hungary has values smaller than 0.5%; moreover, a significant portion of the country presents ratios 253 

that do not exceed 0.01%. These regions, in particular the western borderline, most of the North Hungarian 254 

Mountains (the subsequently mentioned geographical names are displayed in Fig. 1), Southern Transdanubia 255 

and several patches scattered across the Great Plain are characterized by wind speeds virtually never reaching 256 

critical values. Ratios up to 0.5% appear to be predominant in areas east of the Danube excluding two major 257 

territories: most of the plain between the Danube and Tisza rivers, and the Nyírség in Northern Great Plain, 258 

close to the north-eastern corner of the country. Wind speeds exceeding critical values are somewhat more 259 

prevalent in these regions, but ratios higher than 2% are still exceptionally rare. In the western half of Hungary, 260 

however, we can find more outstanding values. Around the Lake Balaton, especially in the Transdanubian 261 

Mountains values higher than 1% are relatively common, and several smaller areas present ratios higher than 262 

2.5%, indicating a significantly higher probability of critical wind stress. 263 
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  264 

Figure. 6. Ratio of hourly wind speed exceeding critical values (2000-2013) calculated for the 0.5´ resolution grid points 265 

 266 

Wind erosion susceptibility map 267 

The ratio of hourly wind speed exceeding critical value can already be considered as a proper indicator of wind 268 

erosion susceptibility. However basically, these values were inferred for the applied 0.5´ spatial resolution grid, 269 

which cannot be actually considered as a real map. To create a spatially exhaustive map, the calculated values 270 

were further interpolated using co-kriging to a 1 ha spatial resolution grid. Sand and silt content of the uppermost 271 

(0-5 cm) soil layer, formerly used for the compilation of the reference soil texture map, were used as appropriate 272 

numerical co-variables. The final map (Fig.7) was produced by masking out areas, which cannot be exposed to 273 

wind erosion due to their land use/land cover characteristic. 274 
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  275 

Fig 7 Wind erosion susceptibility map of the Hungarian soils 276 

 277 
According to the compiled maps roughly 10% of the country is affected by higher risk of wind erosion. This is 278 

the consequence mainly of the vegetation cover and only secondly the occurrence of erosive winds, that is wind 279 

with velocity exceeding the local critical threshold value. In the majority of the country the winds do not exceed 280 

the critical velocity during the year, so albeit the soil and landuse/landcover conditions would cause, wind 281 

erosion harm occur very rarely. It can be expected merely in the case of strong cold fronts. In generally arable 282 

lands situated on lowlands and covered by sandy soils are the most endangered by wind erosion, because they 283 

are featured by relatively small critical threshold velocity (6-7 m/s), consequently winds having even gentle 284 

energy are capable to transport the upper soil layer.  285 

The fine continuous scale of the wind erosion susceptibility map together with its high spatial resolution is not 286 

necessarily applicable for decision making in land management and spatial planning. Consequently, we created 287 

a simplified version of the map (Fig.8). We classified the ratio of hourly wind speed exceeding critical value 288 

into three categories based on statistical properties of its distribution, which was supplemented with a fourth 289 

category of non-erodible areas according to CLC50.  290 

According to the categorized map five distinct territories can be identified in the country with typically higher 291 

wind erosion risk:  292 

 293 

1. The Nyírség is an ancient alluvial fan, its area is about 5,100 km2 and consists of mainly sandy soils and 294 

its different variant. About one third part of the area are covered by forests (mainly the eolian forms), 295 

but there is difference in this regard in regional distribution, because territories covered by sandy loam, 296 

loam and silty loam are under agricultural cultivation and are more endangered by wind erosion.   297 
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 298 
 299 
Fig 8 Categorized wind erosion susceptibility map of the Hungarian soils. The five distinct areas with typically higher wind erosion 300 

risk are numbered: Nyírség (1), Duna-Tisza Interfluve (2), glacis in the foreground of the Transdanubian Mountains (3), Inner-301 
Somogy (4), Transdanubian loess region (5). 302 

 303 
 304 

2. The Duna-Tisza Interfluve is about 10,000 km2 and also consists of sandy soils and its variant. A 305 

significant discrepancy to the Nyírség that this area is poorer in precipitation (500-550 mm) and there 306 

are drought periods in many years. As a consequence of its dryer climate, its forest cover is sparser than 307 

in Nyírség.  308 

3. The glacis in the foreground of the Transdanubian Mountains are affected by wind erosion because of 309 

mainly two reasons. In one hand they are covered by sandy soils, on the other hand the wind velocity is 310 

the highest in Hungary – because this region is exposed perpendicularly to the dominant winds blowing 311 

from northwest.       312 

4. The Inner-Somogy is about 3,000 km2. However, it has more precipitation, than Nyírség and Duna-Tisza 313 

Interfluve, according to the alluvial fan origin of the area, it is also covered by sandy soils, which make 314 

it more endangered by wind erosion.  315 

5. The Transdanubian loess region is also situated in the Transdanubian region and consists of loess. The 316 

productivity of the soils formed on them is outstanding, so the dominant landuse is arable lands. This 317 

territory is also exposed perpendicularly to the winds blowing from northwest, which together with the 318 

seasonally uncovered and extended agricultural areas make it more susceptible to wind erosion.  319 
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 320 

 321 

 322 

Conclusions 323 

Comparing our results to those of others (Boreli at all. 2014, Funk and Reuter, 2006) we can conclude that – 324 

however the methods applied by us was different - the regional distribution of areas featured by higher risk of 325 

wind erosion is in good agreement with our results. Table 4. compares the extent of wind-susceptible areas in 326 

Hungary according to our categorization with that of inferred by Borelli et al. (2014). In spite of the generic 327 

methodological differences the figures are quite similar. Stefanovits and Várallyay (1992) evaluated the extent 328 

of wind erosion based on the costs payed out by insurance companies for wind erosion harms and their results 329 

coincide very well with our findings. Mezősi et al. (2015), also got into similar results based on less detailed 330 

input data. The main pattern of former approaches is reflected with reliable accuracy, nevertheless the recent 331 

map can be considered as a specific zooming in into the spatial behavior of wind erosion due to the application 332 

of significantly more detailed input data. 333 

 334 
Table 4.  The extent of wind-susceptible areas in Hungary 335 

 336 

  
Spatial distribution based on 

wind tunnel measurements 

Spatial distribution based on 

Borelli's data 

Erodibility categories Area (km2) Percentage (%) Area (km2) Percentage (%) 

non-erodible 29052,0 31,2 41707,5 44,8 

slight erodibility 54436,0 58,5 46375,0 49,8 

moderate erodibility 5208,0 5,6 4384,6 4,7 

high erodibility 4333,0 4,7 562,9 0,6 

Total 93030,0 100,0 93030,0 100,0 

 337 

The applied climatic parameter, namely ratio of hourly wind speed exceeding critical values, proved to be a 338 

fairly well applicable indicator for the characterization and mapping of wind erosion risk. The comparison of 339 

this parameter with other ones, which are used for the description of wind features (number of stormy days, 340 

number of days with winds over a critical threshold etc.) could be a potential further step. Nevertheless we 341 

consider the present parameter fully informative, since it takes into consideration also the duration of the winds 342 

exceeding the critical threshold values. 343 

We would like to emphasize that the derived wind erosion map displays the current, actually static state. The 344 

wind erosion causing and affecting factors (like landcover/landuse, soil moisture content, management 345 

technology) vary both spatially and temporally. Beside soil moisture content, the applied management 346 

technology plays important role, since the structure of soils even with identical texture category may be 347 

differently damaged due to improper management techniques. Information on this factor could be collected by 348 

field observations and/or large scale mapping. But detailed and timely data are not currently available and even 349 

cannot be expected in the near future, which could be used for nationwide mapping. A suitable solution could 350 

be the proper implication of these factors into process models and scenario based runs of the developed models. 351 

We see some further possibilities for the improvement of the presented approach. It would be a major step 352 

forward to functionally relate the resistance of soils to wind erosion with their erodibility factor (EF), which can 353 

be calculated from basic soil properties (sand, silt, clay, organic matter and carbonate content) instead of leaning 354 

on texture classes. In this case critical threshold values could be estimated directly by EF and also indirectly by 355 

widely used soil data. Since nationwide soil property maps of these parameters have been very recently 356 

compiled, they could support a new approximation for mapping wind erosion susceptibility on national level. 357 

Eliminating the application of class averages the expected accuracy of both thematic and spatial prediction is 358 

suggested to be improved. 359 
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Nevertheless the complied map in its present form provides solid basis for the regional characterization of wind 360 

erosion risk, consequently for the planning of protection against it and finally for a rational distribution of 361 

subsidies supporting the protection. 362 

 363 
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