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Abstract. This study presents modelling work of extreme discharge response to rainfall inputs interpolated by geostatistical 10 

approaches. Multivariate geostatistics are used by incorporating elevation as external data to improve the rainfall prediction. 

Thirty year daily rainfall in the Ourthe and Ambleve nested catchments, located in the Ardennes hilly landscape in the Walloon 

region, Belgium are interpolated and then used as inputs for a distributed physically-based hydrological model (EPIC-GRID). 

The effect of different raingage densities and particularly the effect of the raingage positions for very sparse raingage data used 

for rainfall interpolation, on extreme flow is analysed. We propose an index that can illustrate the quality of the raingage 15 

distribution with respect to the calculation of extreme discharge. In high elevation sub-catchment, we found that the 

multivariate geostatistics can significantly improve the rainfall prediction to produce very good simulated peak discharge. In 

the low elevation sub-catchment and the low raingage density, our results indicated that the Universal Kriging (UNK) is not 

appropriate. The IDW, Ordinary Kriging (ORK) and Ordinary Cokriging (OCK) methods provide generally good performance. 

The Thiessen polygon (THI) and Kriging with External Drift (KED) provide good performance for the whole catchment but 20 

less good for sub-catchments. The position of the raingages is the key factor for rainfall interpolation, particularly in the data-

scarce region. UNK and KED methods are the most sensitive. 

1 Introduction 

Peak discharge at a particular return period is usually required for design of water-related structures and water resource 

management. This is usually called “design discharge” which is commonly computed using long historical measured data at 25 

the outlet of a catchment (Rao and Hamed, 2000). However, most catchments of the world, especially in developping countries 

are un-gauged or poorly gauged. This can be difficult to get the correct estimate of design discharge. As a result, transportation 

systems and other essential elements of our hydrologic infrastructure may continue to be unreasonably vulnerable to flooding, 

loss of life and damage of property. 
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One way to determine the design discharge is to use a hydrological model to simulate discharge using rainfall which is a basic 

input among other inputs like Digital Elevation Model (DEM), land use, crop growth, agricultural practices, soil, and other 

climate parameters. Due to the great variability of rainfall in space and time, it is best to record it continuously by raingages 

or weather stations. Moreover, the rainfall input as other climatic parameters should be prepared by a preliminary spatial 

interpolation to get the spatial rainfall, prior to modeling. Different interpolation methods of rainfall can potentially lead to 5 

differences in the simulated peak discharge. The number and position of raingages used for rainfall interpolation can also affect 

the simulation results. Especially for very sparse raingage data, the discharge modelled using these raingages can lead to great 

risk of water-related projects. However, there is no definite rule as to how many rain gauges are needed for a  fully ungauged 

basin (Chen et al., 2008). 

A number of investigations use a range of techniques for spatial interpolation of rainfall. The spatial interpolation methods 10 

vary in their assumptions, deterministic or geostatistical characteristics, and local or global perspective (Moral, 2010). 

Deterministic methods such as Inverse Distance Weighting (IDW) have been practised in many studies (Dirks et al., 1998; 

Lloyd, 2005). Although IDW is an objectively simple technique which offers adaptable weights for rational local 

interpolations, the selection of the weighting function is subjective and no measure of error is provided (Webster and Oliver, 

2007). In principle, IDW can not clearly give a description of climatic condition while elevation extrapolation is considered 15 

necessary (Tobin et al., 2011). Consequently, the advanced application and development of multivariate geostatistics like 

Kriging with External Drift (KED) or Ordinary Cokriging (OCK) using several co-variables were recommended in the 

literature (Goovaerts, 2000; Lloyd, 2005). The geostatistical approaches remain frequently recognized to have certain 

advantage above the deterministic procedures (Goovaerts, 2000). An important gain of kriging is unbiased predictions with 

minimum variance and the spatial correlation between the data observed at diverse weather stations or raingages (Moral, 2010). 20 

As well as providing the prediction error, another advantage of geostatistics over deterministic approaches is the possibility of 

adding secondary or auxiliary data to the main data. As existing devices such satellites, radar, microwave links, etc., are 

available for certain industrialized countries, the data from those devices can be used to recover rainfall prediction (Haberlandt, 

2007; Schuurmans et al., 2007; Velasco-Forero et al., 2009; Verworn and Haberlandt, 2011; Schiemann et al., 2011). Satellite 

data (TRMM) was used as co-variable for rainfall interpolation in India (Wagner et al., 2012). In the countries where the 25 

modern instruments are not accessible, altitude, particularly extracted from a digital elevation model (DEM), is an widely 

available data which can be used to integrate into multivariate geostatistics of precipitation (Goovaerts, 2000; Lloyd, 2005). 

However, some studies still indicate that deterministic approaches accomplished better results and the outcomes depended on 

the raingage density (Dirks et al., 1998). 

Rainfall network design have been proposed in serveral studies (Ridolfi et al., 2011; Yeh et al., 2011; Cheng et al., 2012; Chen 30 

et al., 2008). A method composed of kriging and entropy is found to have certain limitations even it can be successfully applied 

to redesign a rainfall network of the catchment of the Shimen reservoir in Taiwan (Yeh et al., 2011; Chen et al., 2008). Ridolfi 

et al. (2011) present an evaluation of the rainfall network of the metropolitan area of Rome using entropy and define an 

empirical method to assess the maximum non-redundant information. Cheng et al. (2012) show that at least seven raingages 

Nat. Hazards Earth Syst. Sci. Discuss., doi:10.5194/nhess-2016-16, 2016
Manuscript under review for journal Nat. Hazards Earth Syst. Sci.
Published: 16 February 2016
c© Author(s) 2016. CC-BY 3.0 License.



3 

 

produce areal rainfall accurately over a 2,726 km² catchment in Taiwan. However, these methods are validated for areal rainfall 

or rainfall volume estimation. Our study focuses on the peak discharge simuated by a fully distributed hydrological model, 

based on long series of rainfall. 

Indeed, the validations of rainfall interpolation methods are frequently accomplished using cross validation approaches through 

evaluation of some rainfall statistics such Root Mean Square Error (RMSE). However rainfall statistics from raingage cross 5 

validation alone can not be compared on a like-for-like basis: a better test of a rainfall interpolator for hydrological modelling 

is to use their rainfall estimates as model input and to assess the modelled flows against observations (Cole and Moore, 2008). 

Therefore, a distributed hydrological model (SIMGRO) has been used to investigate the effect of spatial variability of daily 

rainfall on soil moisture, groundwater level and discharge (Schuurmans and Bierkens, 2007). Ruelland et al. (2008) examined 

the sensitivity of a lumped and semi-distributed hydrological model (Hydrostrahler) to several interpolation methods of rainfall 10 

such as Thiessen polygon, inverse distance weighting, thin smooth plate splines and Ordinary Kriging (ORK). Most recently, 

the semi-distributed hydrological model SWAT was used to compare its performance under standard precipitation input 

(Thiessen polygon) and modified areal precipitation input obtained through spatial interpolation Inverse Distance and 

Elevation Weighting (IDEW) method (Masih et al., 2011), and regression-based interpolation (Wagner et al., 2012). Tobin et 

al. (2011) present comparative study on the IDW, ORK and KED. Then they focused on the hourly precipitation fields in 15 

complex Alpine terrain. Incorporation of KED precipitation input into a hydrological model (GSM-SOCONT) is found to 

provide vastly improved outputs with respect to measured discharge volumes and flood peaks for some flood events. However, 

the long term modeling could be a reliable validation of such method. Particularly, it should be required to draw special 

attention on the estimation of discharge extreme modelled using interpolated rainfall as input. 

The investigation in the present paper prolongs the work described in Ly et al. (2011). In the current paper, the objective is to 20 

model extreme discharge response to the geostatistical interpolation methods of daily rainfall, using the physically-based model 

EPIC-GRID. The geostatistical algorithms are developped to compute daily gridded rainfall of 30 years (1976-2005). The 

multivariate geostatistics are also used by incorporating elevation to recover the rainfall estimate. These geostatistical 

approaches are compared to inverse distance weighting and Thiessen polygon methods which are often the default methods 

implemented in various hydrological models. Furthermore, this work aims at investigating the impact of different raingage 25 

densities and positions used for interpolation, on the peak flow. This provides insight in terms of the capability and limitation 

of the geostatistical methods. In perticular, we try to address the question: what is the best raingage position for rainfall inputs 

for the extreme discharge modelling at the catchment scale in case of very sparse raingage data. 

2 Material and Methods 

This section briefly presents the study area and main data used in this paper. The very brief description of the EPIC-GRID 30 

model is then provided. The preparation of rainfall scenarios is presented, followed by the brief description of the method for 

the analysis of discharge extremes. Interested readers should refer to Ly et al. (2011) for a detailed presentation of different 

Nat. Hazards Earth Syst. Sci. Discuss., doi:10.5194/nhess-2016-16, 2016
Manuscript under review for journal Nat. Hazards Earth Syst. Sci.
Published: 16 February 2016
c© Author(s) 2016. CC-BY 3.0 License.



4 

 

kriging algorithms. A detailed presentation of geostatistical theories can be found in Cressie (1991); Chilès and Delfiner 

(1999); Goovaerts (1997); Webster and Oliver (2007). 

2.1. Study area and dataset 

This research is carried out in the Ourthe and Ambleve catchments situated in the Ardennes hilly landscape in the Walloon 

region, the south-eastern part of Belgium (Figure 1A). The total area is 2908 km², lies between 67 and 693 m in elevation 5 

(Figure 1B). The Ourthe River, a 271 km long, is a right tributary to the Meuse River. The Ourthe River is formed at the 

confluence of the Western Ourthe and the Eastern Ourthe, west of Houffalize. The source of the Western Ourthe is near 

Libramont-Chevigny and the one of the Eastern Ourthe is near Gouvy, both in the Luxembourg province, close to the border 

with the Great-Duchy of Luxembourg. After the confluence, the Ourthe flows roughly in north-west direction, joining the 

Meuse River at Liege. The Ambleve River has its source at Honsfeld in the Bullange commune, at an elevation about 600 m, 10 

flowing into the Ourthe River near Comblain-au-Pont after a 101 km course (Figure 1B). The Ourthe flows over the banks in 

winter (CRO., 2005). Depending on the amounts and the localization of the precipitation, numerous settlements along the 

valley are excessively vulnerable to more or less large-scale flooding and damage of propterty (CRO., 2005). 

The observed discharge at all gauging stations in these catchments (Figure 1B) are given free of charge by Walloon Public 

Service of Hydrological Studies (SETHY, Belgium). For each gauging station, we delineated all sub-catchments boundaries 15 

using DEM provided by ERRUISSOL project. Their characteristics are presented in Table 1. The whole catchment at Sauheid 

gauging station has a mean altitude of 394 m, ranging from 67 m to 693 m. The Ourthe sub-catchment at Tabreux station 

located lower part of the area, which is assumed as low elevation catchment. The Ambleve sub-catchment located at upper 

part of the area, which is assumed as high elevation catchment. The Ourthe catchment at Hotton station located at the upstream 

part of the area, which is assumed as high elevation catchment. 20 

2.2. Hydrological model EPIC-GRID and validation criteria 

EPIC-GRID model is extended from the original EPIC model (Williams et al., 1984) to the catchment scale and regional scale. 

This model is a physically-based, fully distributed, hydrological model that works on a daily time step (Figure 2). EPIC-GRID 

was applied to measure the effect of management on water, soil, crop growth, erosion, pesticide and nutrient fluxes in the root 

zone and the vadose zone at regional scale (Sohier et al., 2009; Sohier and Degre, 2010; Sohier, 2011). The model is able to 25 

continuously simulate the dissolved and particulate elements in large complex catchments with varying weather, soils and 

management conditions over long time periods. EPIC-GRID can simulate different catchment size by discretising the area into 

regular-squared grids. The grid size is selected according to diverse criteria such as the data availabilities and the size of 

simulation area that determine calculation time. Therefore, as regards to the application of the model to Walloon region 

(Belgium), the grid size retained is 1 km². Each grid is subdivided into hydrological response units (HRUs), taking into account 30 

land use, slope, soil and meteorological data. EPIC-GRID linked up to Geographic Information System (GIS) can integrate 

various spatial environmental data, including soil, land cover, climate and topographical features. In each HRU, the simulations 
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are carried on at a daily time step from 1961 to 2005. In this work, the results are taken into account from 1976 to 2005. 

Eventually, the outputs of a grid cell are a weighted sum of results of the HRUs, considering their percentage of surface in the 

grid as weighting factor. The flows can then be aggregated on the basis of each reporting unit or they can be used as a raster 

file into a GIS. 

The EPIC-GRID model has been validated for all catchments of the Walloon region (Sohier et al., 2009; Sohier and Degre, 5 

2010). For full details on the description, modification and validation of the EPIC-GRID model, we refer to Sohier (2011). 

In this study, the validation of the EPIC-GRID model is assessed by two quantitative indexes Nash-Sutcliffe efficiency (NSE) 

and per cent bias (PBIAS). NSE is a normalized statistic that determines the relative magnitude of the residual variance 

compared to the measured data variance. NSE indicates how well the plot of observed versus simulated data fits the 1:1 line 

(Moriasi et al., 2007). NSE is calculated as followed (Moriasi et al., 2007): 10 
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where Qobsi is the ith observed discharge, Qsimi is the ith simulated discharge, Qmean is the mean of observed discharge, and 

n is the total number of observations. 

Major disadvantage of NSE is that, even if a model systematically over- or underestimates observations (OBS) all the time, 

the NSE still provides good values close to 1.0 (Moriasi et al., 2007). As a result, PBIAS can overcome this drawback. PBIAS 15 

measures the average tendency of the simulated discharge to be larger or smaller than the observed discharge. The optimal 

value of PBIAS is 0.0, with low-magnitude values indicating accurate model simulation. Positive values indicate model 

underestimation bias, and negative values indicate model overestimation bias (Moriasi et al., 2007). PBIAS is computed as 

followed: 
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where PBIAS is the deviation of data being evaluated, expressed as a percentage. The simple average of residues can give the 

same indication as for over- or under-estimate of the simulated flows, which is directly interpretable. However, the PBIAS is 

recommended by Moriasi et al. (2007) as it is commonly used to evaluate the model simulation (Fernandez et al., 2005; Gupta 

et al., 1999; Singh et al., 2005). PBIAS can quantify water balance errors, its use can easily be extended to load errors and it 

has the ability to clearly indicate poor model performance. 25 
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Through the guideline established and recommended by Moriasi et al. (2007), the model result is very good if 0.75 < NSE ≤ 

1.00 and PBIAS < ± 10 %, good if 0.65 < NSE ≤ 0.75 and ± 10 % ≤ PBIAS < ± 15 %, satisfactory if 0.50 < NSE ≤ 0.65 and 

± 15 % ≤ PBIAS < ± 25 % and unsatisfactory if NSE ≤ 0.50 and PBIAS ≥ ± 25 %. 

2.3. Daily rainfall scenarios for the EPIC-GRID model 

In this study, we use the daily rainfall, from 1976 to 2005, of the Royal Meteorological Institute of Belgium from 70 raingages 5 

located in and surrounding the catchment area. These data need to be interpolated in order to cover the whole study area. In 

this work, 70 meteorological stations are spread inside and surrounding the catchments. Each one provides rain data. Some 

main stations provide temperature, wind data and solar radiation. The default interpolation method in EPIC-GRID model is 

the Thiessen polygon method. Each elementary grid of the catchment belongs to only one polygon of Thiessen related to each 

type of station.  10 

Daily rainfalls from 1976 to 2005 are interpolated by the alternative methods. We use geostatistical algorithms: ordinary 

kriging (ORK), universal kriging (UNK), kriging with an external drift (KED) and ordinary cokriging (OCK) to prepare daily 

rainfall as input for EPIC-GRID hydrological model. We perform also the interpolation by a deterministic method: inverse 

distance weighting (IDW) that is generally used in various hydrological models. These algorithms are developed using Fortran 

90 to produce the daily rainfall of each grid in the catchment area from 1976 to 2005. Thus, each grid contains daily rainfall 15 

series of a virtual raingage. For geostatistical methods, seven variogram models (logarithmic, power, exponential, Gaussian, 

rational quadratic, spherical and penta-spherical) are fitted to daily sample semi-variogram on a daily basis. These seven 

variogram models are also adopted to avoid negative interpolated rainfall. The elevations are incorporated into multivariate 

geostatistics (KED and OCK). We refer to Ly et al. (2011) for a detailed presentation of different algorithms used in this paper. 

The particular attention in this paper is dedicated to very sparse raingage data cases. We therefore use various selections of 70, 20 

8 and 4 raingages to interpolate rainfall for model input. For the four-raingages scenarios, we selected randomly five types of 

raingage position: 4a, 4b, 4c, 4d and 4e positions that are shown in Figure 3. We had totally 42 rainfall scenarios (6 interpolation 

methods and 7 different densities and positions of raingages) to model the 30-years stream flow for all outlets. 

2.4. Analyse of extreme discharge 

This study deals with the comparison between the discharges related to various return period fitted using the observations at 25 

different outlets and peak discharge modelled using rainfall interpolated by different methods. The problem lies on the selection 

of a distribution function that is best fitted for defining the behaviour of extreme discharge event. The method of the annual 

maximum series is used (Rao and Hamed, 2000). The first step of the process is to classify annual peak discharge from 1976 

to 2005. Only one event per year was taken and served as sample distributions to estimate extreme discharge at the outlets of 

each sub-catchment. However, the outliers in the data sample can cause difficulties when fitting the theoretical distribution 30 

functions to the annual maxima (Rao and Hamed, 2000). The outliers may be due to errors in the data collection, or recording, 

or due to natural causes (Rao and Hamed, 2000). Low and high outliers are both possible and have different effects on the 
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analysis. The Grubbs and Beck (1972) test (G-B) was established to detect outliers. Then, the outliers are removed before the 

analyses. The test procedure can be found in Rao and Hamed (2000). 

The annual maxima are ordered and plotted using Cunnane plotting position (Chow et al., 1988). Plotting position refers to the 

probability value assigned to each piece of data to be plotted. Numerous methods have been proposed for the determination of 

the plotting positions, most of which are empirical. If n is the total number of values to be plotted and m is the rank of a value 5 

in a list ordered by descending magnitude, the exceedance probability of the mth largest value, xm, is for large n, can be 

generally represented by: 

  
b21n

bm
xXP m




           (3) 

And the return period:  
 mxXP

1
T


          (4) 

where b is a parameter: b = 0.5 for Hazen’s formula, b = 0.3 for Chegodayev’s, b = 0 for Weibull’s, b = 3/8 for Bloom’s, b = 10 

1/3 for Tukey’s, and b = 0.44 for Gringorten’s (Chow et al., 1988). The Weibull plotting formula is biased and plots the largest 

values of a sample at too small a return period (Cunnane, 1978). The research on the plotting positions has had long history 

and the work is still continuing (Rao and Hamed, 2000). In the HYFRAN© package, the default value of b is 0.4 corresponds 

to the Cunnane plotting position which is chosen for the analysis in this study. 

Once the data series are identified and ranked, and the plotting positions calculated, a graph of magnitude (x) vs. probability 15 

[(P(X>x), P(X<x), or T)] can be plotted to graphically fit a distribution. For example, if there are 30 years of observations as 

in this study, thus n = 30. The data are ranked from the largest (m = 1), to the smallest (m = n = 30). For the largest value (m 

= 1), the exceedance probability of the largest value P(X<x) = (1 - 0.4) / (30 + 1 - 0.8) = 0.02 and T = 1/0.02 = 50 years. 

Different theoretical distribution functions are fitted to this annual maximum series. A distribution function represents the 

probability of occurrence of a random variable. By fitting a distribution to a set of data, a great deal of the probabilistic 20 

information in the sample can be compactly summarized in the function and its associated parameters. The most known 

theoretical distribution functions used in this study are Gumbel, Gamma, Inverse Gamma, Weibull, Exponential, Generalised 

Pareto, Normal, Lognormal, Pearson type III, Log- Pearson type III and GEV. Fitting distributions can be accomplished by 

the method of moments or the method of maximum likelihood. The method of maximum likelihood is the most theoretically 

correct method of fitting probability distributions to data in the sense that it produces the most efficient parameters estimates, 25 

those which estimate the population parameters with the least average error (Chow et al., 1988). Therefore, the maximum 

likelihood method is selected to fit the different theoretical distribution functions to the annual maximum series. The analyses 

were conducted using HYFRAN© package that proposes the preliminary classic statistical tests to verify the hypothesis of 

independence (Wald-Wofowitz), stationarity (Kendall) and homogeneity (Wilcoxon) of the sample. The HYFRAN© allows 

classifying the theoretical distribution functions tested on a posteriori probability basis which takes into account the statistical 30 

quality of the fitting as well as the principle of parsimony, privileging the 2 parameters theoretical distribution functions. The 
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best adjustments correspond to the higher values of a posteriori probability. Additional information was also given: the lowest 

values of Bayesian information criterion (BIC) and Akaike information Criterion (AIC). The five best-classified functions are 

retained and the hypothesis test (Chi-Squared) is applied in order to check the adequacy of these functions to the sample of 

observed values. The choice of the best function is made in a visual way by analysis of the graph representing five best 

classified fitting (Dautrebande et al., 2006). The examination of the graph involves of selecting the distribution function that 5 

characterizes the most reliable with the data series. The selected distribution should be fitted well at higher return period. The 

1- or 2-parameter distribution is always desired except the adjustment quality of a distribution of 3 parameters is sharply 

superior to that of the distributions of 2 parameters. 

3. Results and Discussion 

At the main outlets, the analyses of extreme discharge is carried out for annual maximum series of observed discharges and 10 

simulated discharges modelled using EPIC-GRID model with different rainfall scenarios interpolated using different raingage 

densities and positions. 

3.1. Validation of the EPIC-GRID model 

As the objective of this paper is to model the extreme discharge response to the geostatistical interpolation methods of daily 

rainfall, we show only the result of the model validation as shown in Table 2. Further discussion is another subject which will 15 

be reported elsewhere. 

3.2. Impact of interpolation methods on extreme discharge 

In general for the case of using all available raingages, IDW is not always the best method to capture rainfall in order to 

simulate good peak discharge. The methods that take into account elevation as external data and co-variables like KED and 

OCK respectively, can improve the rainfall to produce very good simulated peak discharge at high elevation sub-catchment 20 

(Figure 4). Nonetheless, all scenarios are in good agreement as they produce simulated peak discharge and distribution 

functions that are in the area of 95%-confidence interval of observed distribution 

In Figure 4, four graphs show the extreme peak discharge of the observed data and the different simulated scenarios as a 

function of their return periods for four outlets in the Ourthe and Ambleve catchments. The discharges at 100 year return period 

observed at each gauging station and simulated by different interpolated rainfall using 70 raingages are shown in Table 3. The 25 

peak discharges and their distributions of all scenarios are generally overestimated for lower return periods. At higher return 

periods, for the whole catchment at Sauheid outlet, the peak discharge modelled using ORK rainfall scenario follows very 

closely the distribution function of observed data. The OCK scenario is slightly overestimated. The distribution functions of 

other four scenarios are superposed each other and stay lower than the distribution function of observed discharge. Always at 

the higher return periods, for the low sub-catchment at Tabreux outlet, the simulated peak discharges are lower than observed 30 
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peak discharge and its distribution function. However, the distribution of simulated peak discharge using OCK is closest to 

observed distribution while the one of THI is the lowest and far from observed distribution function.  

For the smaller and highest elevation sub-catchment at Martinrive outlet, the peak discharge simulated using KED and OCK 

follow the observed peak discharge very closely. The THI scenario has slightly higher peak discharge and its distribution 

function. The UNK and ORK scenarios have quite the same peak discharge and distributions that are lower than observation. 5 

The IDW scenario stays lowest and far from observation. At small and high sub-catchment at Hotton outlet (lower than 

Martinrive), all simulated peak discharge and their distributions are lower than observed peak discharge and its distribution. 

But KED and OCK still provide closest simulated peak discharge and distribution and the IDW scenario is still lowest and far 

from observation. 

3.3. Impact of raingage densities on extreme discharge 10 

All scenarios still are in good agreement as their simulated peak discharge and distribution functions are in the area of 95%-

confidence interval of observed distribution. The differences in simulated peak discharges when using 8 raingages are not 

clearly distinguished from the differences when using all available raingages. The discharges at 100 year return period observed 

at each gauging station and simulated by different interpolated rainfall using 8 raingages are shown in Table 4. At low return 

periods, the simulation is still higher than observation for both peak discharges and fitted distribution functions (Figure 5). 15 

However, the interpolation method ranking is changed at higher return periods. The UNK scenario has lowest peak simulated 

discharge and its distribution than observation’s one while other scenarios follow closely the observation’s distribution for the 

whole catchment at Sauheid outlet. Always at high return period for smaller sub-catchment at low elevation part (Tabreux 

outlet), three methods (THI, KED and UNK) have low peak discharge and distribution functions while IDW, ORK and OCK 

follows very closely the observation’s distribution. Also for smaller sub-catchment but at very high elevation part (Martinrive 20 

outlet), the differences in simulated peak discharges and distributions appear clearly large (Figure 5). The IDW and ORK 

follow very closely the observed peak discharge and distribution function. The UNK and OCK have slightly higher and lower 

respectively than observed distribution. The THI and KED have very low simulated peak discharge and distribution functions. 

For the smallest sub-catchment but relatively lower elevation part (Hotton outlet), the OCK has the simulated peak discharge 

and distribution closest to the observed one. The UNK has the lowest simulated peak discharge and distribution. Other fours 25 

methods have simulated peak discharge and distribution slightly lower than observed one. 

For this raingage density case, the IDW, ORK and OCK follow generally closely the observations. The THI and KED have 

the observed peak discharge and distribution very close to the observed one for the whole catchment but they are not very 

appropriate for sub-catchments.  

3.4. Impact of raingage positions on extreme discharge 30 

For very scarce raingage cases, the raingage position is the main issue defining the rainfall prediction and hence the simulated 

peak flows at the outlets in the catchment area. In the present paper, five cases of using four raingages are degenerated for 
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interpolation rainfall as input for hydrological modelling. In spite of the same number of raingage, the modelling results are 

considerably dissimilar. 

The first position of 4 raingages, the 4a raingages are located around the catchments as shown in Figure 3. In Figure 6, four 

graphs display the extreme peak discharge and distribution functions of the observed data and the different scenarios according 

to their return periods for four outlets in the catchment area. The discharges at 100 year return period observed at each gauging 5 

station and simulated by different interpolated rainfall using 4a raingages are shown in Table 5. For all outlets, the simulated 

peak discharge and distribution functions are always overestimated for low return periods. For the whole catchment, the model 

using rainfall scenarios from this raingage position case has comparable simulated peak discharge and distributions at higher 

return period, compared to the higher raingage density cases. Nevertheless, the differences in simulated peak discharge and 

distributions at higher return period look obviously large for the sub-catchments. The rainfall scenarios of all methods provide 10 

overestimated peak discharges for the low sub-catchments (Figure 6).  

The UNK and KED have the simulated peak discharge and distribution functions very far from the observed ones and quite 

outside the 95% confidence interval of the observed distribution function. In contrast for the high sub-catchment, the 

differences in simulated peak discharge and distributions are relatively large. This can also be explained by the distance 

between the raingage polygon and the sub-catchment positions. The difference in extreme discharge becomes larger when the 15 

distance increases (Figure 6). 

It is also remarkable that OCK and UNK produce the simulated peak discharge and the distribution functions very close to the 

observed ones (Figure 6). The KED still has the simulated peak discharge and the distribution function far from the observed 

distribution function. 

Other raingage positions have also been implemented for the same number of raingage to determine which raingage position 20 

can improve the spatial rainfall input for modelling of extreme discharges. The 4b raingages are located as shown in Figure 3. 

Three raingages are outside the catchment area and mostly at downstream part of the Ourthe and one raingage is at the source 

of the eastern Ourthe. The discharges at 100 year return period observed at each gauging station and simulated by different 

interpolated rainfall using 4b raingages are shown in Table 6. In this case, the difference in peak discharges simulated using 

rainfalls of the different interpolation methods is relatively large (Figure 7). The ORK has the simulated peak discharge and 25 

distribution closely to the observed ones for low sub-catchment (Tabreux outlet). But it provides worsen simulated peak 

discharge and distribution functions for smaller and higher sub-catchments, especially in the highest sub-catchment, the 

simulated peak discharge and distribution is outside the area of 95% confidence interval of the observed distribution. It is 

remarkable that the KED distribution follow quite well the observed one for higher sub-catchments. Other interpolation 

methods have somewhat their distributions inside the 95% confidence interval of the observed distribution. It is also shown 30 

that the difference in extreme discharge generated by different rainfall becomes larger according to the increased distance 

between the centroid of the raingage polygon and the catchments (Figure 7). 
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It seems that the simulated peak discharge by UNK is discontinuous for the Tabreux outlet but it is not. This is due to the fact 

that peak discharge simulated by UNK is strangely high for several years and cause large difference with the previous data of 

the sorted years. This is really the disadvantage of the UNK in the interpolation process. 

The 4c raingages are located as shown in Figure 3. Two raingages are close to each other and located at the source of the 

western Ourthe. One raingage is at low elevation, near the Meuse River and outside the catchment. The last raingage is also 5 

outside the catchment and located at Ambleve catchment side. In this case, the differences in peak discharges simulated using 

rainfalls of the different interpolation methods are also large, especially for the sub-catchments. It is also shown that the 

difference varies according to distance between the centres of the raingage polygon and the catchments. The two methods 

UNK and KED have their distribution functions that tend to be outside the 95% confidence interval of the observed distribution 

(Figure 8). Other methods have their simulated distribution functions inside the 95% confidence interval of the observed 10 

distribution even if some simulated distribution functions do not follow the observed distribution very close for the highest 

sub-catchment. 

Other raingage positions have been conducted for the same number of raingage. The 4d raingages are located as shown in 

Figure 3. The raingages are only at the higher part of the catchment area. In this case, the differences in peak discharges 

modelled using rainfalls of the different interpolation methods become very large. The UNK and KED are significantly 15 

different from the other four methods. Their simulated peak discharges and distribution functions are outside the 95% 

confidence interval of the observed distribution (Figure 9). Exception for the highest sub-catchment, UNK distribution follows 

closely the observed distribution even if the distance between the centroids of the raingage polygon and the sub-catchment is 

farthest. This is because the raingage polygon still covers the big part of the sub-catchment. 

In overall for higher return periods, it is noticeable that four methods (THI, IDW, ORK and OCK) provide quite good model 20 

performance for this raingage case. The UNK and KED cannot provide good simulated peak discharge (Figure 9). This is 

probably because of the raingage coordinates of this configuration that are used as external drift in the UNK and KED. Using 

elevation alone as OCK can produce quite good simulated peak flow. 

The last case of very sparse raingages is used for interpolation of rainfall, the difference in simulated peak discharges also 

become larger. The 4e raingages are located only at low part of the whole catchment (Figure 3). This case provides very large 25 

difference in peak flow modelled using rainfall input from the interpolation methods (Figure 10). The KED distributions are 

all outside the 95% confidence interval of observed distributions. The UNK distributions are outside the 95% confidence 

interval of observed distributions for the whole catchment and the highest sub-catchment. At the low sub-catchment, the UNK 

distributions follow closely the observed distributions. This is also influenced by the distance between the centroids of the 

raingage polygon and the catchments. The centroid of low sub-catchment is near the centroid of the raingage polygon. 30 

The distributions of other four methods (THI, IDW, ORK and OCK) are inside the 95% confidence interval of observed 

distributions for the whole catchment and the two low sub-catchments. But all are outside the 95% confidence interval of 

observed distributions for the highest sub-catchment (Figure 10). 
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The five location cases of very scarce raingages investigated above expose the great discrepancy of the model’s performance, 

using different interpolated rainfall. To objectively define the reasons of the dissimilarities of the performance between 

raingage cases, the index is used to describe the shape of the four raingages used for rainfall interpolation. The index is usually 

used to characterise the shape of the catchment (Alcázar and Palau, 2010; Millares et al., 2009; Sougnez and Vanacker, 2011). 

This index is defined as the relation between the catchment perimeter and a circle perimeter having an area equivalent to that 5 

of a catchment. When the index tends to 1, the shape becomes closer to a circle of the same area. Here, the four raingages of 

the different positions are converted to polygon and then the indexes are calculated to characterise the polygon’s shape (Table 

7). 

In this study, it is noteworthy to notice that the position’s index is the main factor to define the model’s performance, simulated 

using different interpolated rainfall. Graphical examination essentially illustrates the benefits of IDW, ORK and OCK with 10 

respect to THI, UNK and KED (Figure 6, Figure 7, Figure 8, Figure 9 and Figure 10). The distributions of IDW, ORK and 

OCK stay closer to observed one while those of THI, UNK and KED worsen according to increased index of raingage position. 

Particularly, UNK and KED provide very large difference for the higher index. Therefore, UNK and KED are clearly sensitive 

to the index of raingage position. The best raingage position to interpolate rainfall by UNK and KED for model input is its 

polygon shape that is close to a circle having the same area. IDW, ORK and OCK are not always dependent to index of the 15 

raingage position. But for very high index, all methods provide worsen peak discharge and distribution functions for the highest 

sub-catchment. This is because of the far distance between the raingage and the catchment. This is a precaution for design of 

raingage position. The index of the raingage location should be kept closer to one. 

4. Conclusions 

From the result analysis of the EPIC-GRID model for the extreme discharge, it is found that IDW cannot well predict the 20 

rainfall to simulate good peak discharge when using all available raingages in the catchment area. The methods that take into 

account for elevation as external data and co-variables like KED and OCK respectively, can significantly recover the rainfall 

prediction to produce very good simulated peak discharge at high elevation sub-catchment. Nonetheless, all scenarios are in 

good agreement as they produce simulated peak discharge and distribution functions that are in the area of 95%-confidence 

interval of observed distribution. 25 

For the eight raingage cases, the UNK is not very appropriate for the low elevation sub-catchment but quite good for high 

elevation sub-catchment. The IDW, ORK and OCK provide generally good performance. The THI and KED have the observed 

peak discharge and distribution very closely to the observed one for the whole catchment but they are not very suitable for 

sub-catchments. However, all scenarios still are in good agreement as their simulated peak discharge and distribution functions 

are in the area of 95%-confidence interval of observed distribution. 30 

Relating to the raingage position when using very sparse raingage, it is important to notice that the index of raingage position 

and distance between raingages and catchment are the key factors to define the model’s performance, simulated using different 
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interpolated rainfall. IDW, ORK and OCK distribution functions stay closer to observed one for all raingage position tested. 

THI, UNK and KED get worse according to increased index. Especially, UNK and KED methods are the most sensitive. The 

good raingage position to be used to interpolate rainfall input for modelling design discharge using very sparse data is the 

position that their index is close to one. This means that the polygon defined by these raingages should be close to a circle. 

Moreover, the raingage should be close to the catchment 5 

The techniques and the analyses in this study are likely to be of particular interest to hydrologist, design engineer, decision 

makers and likewise to who are working in regions with very sparse raingage data for any water-related management. Future 

work should be directed to identifying the approaches most suitable in different circumstances. 
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Table 1. Characteristic of the sub-catchments and the availability and descriptive statistics of discharge data at the outlets 10 

Characteristic Sauheid Tabreux Martinrive Hotton 

River Ourthe Ourthe Ambleve Ourthe 

Area (km²) 2908 1614 1065 956 

Min. Z (m) 68 111 111 175 

Max. Z (m) 693 652 693 652 

Mean Z (m) 394 377 460 439 

Std. Z (m) 124 113 105 76 

Discharge data 

Period 1976-2005 1976-2005 1976-2005 1979-2005 

Highest (m³/s) 607 371 330 243 

Mean (m³/s) 45 23 19 16 

75% quartile (m³/s) 57 29 25 21 

Median (m³/s) 28 13 13 9 

25% quartile (m³/s) 13 6 6 4 

Std. (m³/s) 52 23 22 19 

Lowest (m³/s) 1.78 0.64 1.65 0.59 

Note: Z is elevation 
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Table 2. Statistical performances of EPIC-GRID hydrological model using different rainfall scenarios of different raingage densities 

and positions at outlets 

Criteri

a 

 Nash-Sutcliffe efficiency (NSE)  Percent bias (PBIAS) 

Cases  THI ID

W 

ORK UNK KED OCK  THI IDW ORK UNK KED OCK 

S
au

h
ei

d
 

70  0.79 0.79 0.79 0.79 0.78 0.78  -3.21 -3.24 -3.72 -4.88 -6.52 -4.31 
8  0.77 0.77 0.77 0.77 0.75 0.77  -2.52 -4.76 -4.25 -4.09 -9.59 -3.97 

4a  0.73 0.72 0.73 0.74 0.71 0.73  -13.56 -14.75 -13.90 -10.19 -17.35 -14.21 

4b  0.76 0.77 0.77 0.76 0.51 0.77  2.77 7.17 6.67 6.91 41.54 4.93 
4c  0.74 0.74 0.75 0.56 0.49 0.73  -10.15 -10.99 -5.89 -30.49 -35.05 -12.34 

4d  0.71 0.70 0.71 0.55 -0.37 0.70  -16.67 -17.43 -16.46 -32.93 -79.15 -17.89 

4e  0.76 0.76 0.77 0.40 0.08 0.77  6.30 -0.27 -0.13 -24.56 -43.41 0.09 

                

T
ab

re
u
x
 

70  0.80 0.80 0.79 0.80 0.79 0.79  -5.52 -6.53 -7.40 -7.98 -8.92 -8.62 
8  0.77 0.77 0.76 0.76 0.74 0.76  -6.95 -10.90 -11.55 -9.78 -16.76 -10.92 

4a  0.67 0.67 0.68 0.69 0.60 0.68  -21.22 -25.34 -23.83 -16.64 -29.89 -22.66 

4b  0.75 0.77 0.77 0.74 0.51 0.77  -6.86 -1.64 -2.76 -6.20 43.08 -5.11 

4c  0.71 0.69 0.73 0.52 0.42 0.68  -18.42 -23.78 -16.29 -39.34 -43.89 -24.38 

4d  0.66 0.65 0.65 0.45 -0.67 0.62  -26.17 -28.64 -27.71 -45.38 -95.58 -30.39 

4e  0.73 0.75 0.75 0.65 0.41 0.72  -18.23 -16.06 -14.95 13.01 46.89 -19.18 

M
ar

ti
n

ri
v
e 

               

70  0.80 0.81 0.80 0.80 0.79 0.80  0.64 2.64 1.79 -0.33 -2.87 1.48 

8  0.77 0.79 0.79 0.78 0.78 0.79  2.99 4.91 6.22 4.34 1.48 5.87 
4a  0.72 0.77 0.77 0.77 0.79 0.75  -6.65 -1.76 -1.22 -2.18 -0.17 -4.04 

4b  0.72 0.74 0.73 0.70 0.53 0.74  13.89 19.31 19.72 22.38 36.57 18.52 

4c  0.66 0.77 0.76 0.55 0.50 0.75  -2.92 4.15 7.30 -21.86 -27.69 2.38 
4d  0.75 0.77 0.77 0.75 0.53 0.76  2.49 2.38 3.50 -3.52 -26.32 3.97 

4e  0.56 0.71 0.72 -1.16 -4.87 0.70  35.67 19.22 18.52 -72.11 -155.90 22.78 

                

H
o

tt
o
n
 

70  0.81 0.81 0.81 0.81 0.81 0.80  2.33 1.35 -0.20 -0.49 -1.20 -3.67 

8  0.80 0.79 0.79 0.79 0.78 0.79  1.54 -2.26 -3.28 -1.52 -6.88 -3.45 

4a  0.65 0.70 0.70 0.71 0.66 0.70  -19.58 -17.89 -17.35 -14.42 -22.00 -16.89 

4b  0.72 0.76 0.76 0.70 0.60 0.75  -2.06 4.63 4.13 -6.32 29.73 1.04 

4c  0.68 0.71 0.74 0.44 0.27 0.69  -18.52 -18.50 -13.40 -43.29 -52.74 -20.64 

4d  0.74 0.74 0.74 0.72 0.60 0.73  -13.61 -15.43 -15.15 -17.07 -29.01 -15.96 
4e  0.70 0.75 0.76 0.67 0.50 0.70  -18.10 -12.89 -12.24 8.27 38.52 -18.74 

THI: Thiessen Polygon; IDW: Inverse Distance Weighting; ORK: Ordinary Kriging; UNK: Universal Kriging; 

KED: Kriging with External Drift; OCK: Ordinary Cokriging 

 

  

Nat. Hazards Earth Syst. Sci. Discuss., doi:10.5194/nhess-2016-16, 2016
Manuscript under review for journal Nat. Hazards Earth Syst. Sci.
Published: 16 February 2016
c© Author(s) 2016. CC-BY 3.0 License.



18 

 

 

Table 3. Discharge at 100 year return period observed at each gauging station and simulated by different interpolated rainfall using 

70 raingages 

Method Discharge at 100 years return period (mm/day) 

Sauheid Tabreux Martinrive Hotton 

OBS 21.7 22.1 29.9 25.7 

THI 20.3 19.0 31.2 22.0 

IDW 20.0 19.7 24.8 21.8 

ORK 21.4 20.3 26.7 22.7 

UNK 20.1 19.6 26.5 22.1 

KED 20.3 19.9 29.9 23.2 

OCK 23.0 21.3 29.2 22.8 

OBS: Observation; THI: Thiessen Polygon; IDW: Inverse Distance Weighting; ORK: Ordinary Kriging; UNK: 

Universal Kriging;KED: Kriging with External Drift; OCK: Ordinary Cokriging 
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Table 4. Discharge at 100 year return period observed at each gauging station and simulated by different interpolated rainfall using 

8 raingages 

Method Discharge at 100 years return period (mm/day) 

Sauheid Tabreux Martinrive Hotton 

OBS 21.7 22.1 29.9 25.7 

THI 21.7 19.9 25.3 24.0 

IDW 22.2 21.8 30.0 24.3 

ORK 22.1 21.7 31.2 24.4 

UNK 19.1 19.4 32.0 22.3 

KED 21.0 19.9 26.5 23.7 

OCK 21.4 21.2 28.1 26.0 

OBS: Observation; THI: Thiessen Polygon; IDW: Inverse Distance Weighting; ORK: Ordinary Kriging; UNK: 

Universal Kriging;KED: Kriging with External Drift; OCK: Ordinary Cokriging 
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Table 5. Discharge at 100 year return period observed at each gauging station and simulated by different interpolated rainfall using 

4a raingages 

Method Discharge at 100 years return period (mm/day) 

Sauheid Tabreux Martinrive Hotton 

OBS 21.7 22.1 29.9 25.7 

THI 21.5 25.6 36.1 26.9 

IDW 21.4 25.1 26.2 31.3 

ORK 21.2 23.3 26.9 28.6 

UNK 21.5 26.9 28.8 30.4 

KED 22.9 28.3 25.8 32.2 

OCK 21.4 25.7 30.7 29.1 

OBS: Observation; THI: Thiessen Polygon; IDW: Inverse Distance Weighting; ORK: Ordinary Kriging; UNK: 

Universal Kriging;KED: Kriging with External Drift; OCK: Ordinary Cokriging 
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Table 6. Discharge at 100 year return period observed at each gauging station and simulated by different interpolated rainfall using 

4b raingages 

Method Discharge at 100 years return period (mm/day) 

Sauheid Tabreux Martinrive Hotton 

OBS 21.7 22.1 29.9 25.7 

THI 23.9 21.9 22.4 28.2 

IDW 20.3 19.2 25.2 23.1 

ORK 19.7 20.8 19.1 19.7 

UNK 24.1 23.7 28.7 32.1 

KED 24.0 21.0 27.1 26.5 

OCK 17.9 18.8 19.1 22.7 

OBS: Observation; THI: Thiessen Polygon; IDW: Inverse Distance Weighting; ORK: Ordinary Kriging; UNK: 

Universal Kriging;KED: Kriging with External Drift; OCK: Ordinary Cokriging 
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Table 7. Index for different raingage positions 

Raingage positions Polygon’s perimeter 

(km) 

Polygon’s area 

(km²) 

Index 

4a 196.06 1928.80 1.26 

4b 159.03 1096.79 1.35 

4c 204.71 1491.00 1.50 

4d 189.97 1249.39 1.52 

4e 172.60 910.59 1.61 

Index=0.28*Perimeter/(Area)^0.5 
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Figure 1. Location of catchment area (A), DEM, river network, sub-catchments and location of gauging stations (B), major soil map 

(C) and land use map (D) of the Ourthe and Ambleve catchments 
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Figure 2. Concept of EPIC-GRID modelling 

  

Nat. Hazards Earth Syst. Sci. Discuss., doi:10.5194/nhess-2016-16, 2016
Manuscript under review for journal Nat. Hazards Earth Syst. Sci.
Published: 16 February 2016
c© Author(s) 2016. CC-BY 3.0 License.



25 

 

 

Figure 3. Different degenerated densities and spatial locations of raingages used for rainfall interpolations 
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Figure 4. Plot of the distributions fitted to the observed annual maximum discharge (●) and the simulated annual maximum 

discharge (+) at the four outlets of the sub-catchments, modelled by EPIC-GRID using different interpolated rainfall with 70 

raingages 5 
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Figure 5. Plot of the distributions fitted to the observed annual maximum discharge (●) and the simulated annual maximum 

discharge (+) at the four outlets of the sub-catchments, modelled by EPIC-GRID using different interpolated rainfall with 8 

raingages 

  5 
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Figure 6. Plot of the distributions fitted to the observed annual maximum discharge (●) and the simulated annual maximum 

discharge (+) at the four outlets of the sub-catchments, modelled by EPIC-GRID using different interpolated rainfall with 4a 

raingages. Mean Z is mean elevation of the catchment, D is distance between the centroids of the raingage polygon and the 

catchments. 5 
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Figure 7. Plot of the distributions fitted to the observed annual maximum discharge (●) and the simulated annual maximum 

discharge (+) at the four outlets of the sub-catchments, modelled by EPIC-GRID using different interpolated rainfall with 4b 

raingages. Mean Z is mean elevation of the catchment, D is distance between the centroids of the raingage polygon and the 

catchments. 5 
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Figure 8. Plot of the distributions fitted to the observed annual maximum discharge (●) and the simulated annual maximum 

discharge (+) at the four outlets of the sub-catchments, modelled by EPIC-GRID using different interpolated rainfall with 4c 

raingages. Mean Z is mean elevation of the catchment, D is distance between the centroids of the raingage polygon and the 

catchments. 5 
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Figure 9. Plot of the distributions fitted to the observed annual maximum discharge (●) and the simulated annual maximum 

discharge (+) at the four outlets of the sub-catchments, modelled by EPIC-GRID using different interpolated rainfall with 4d 

raingages. Mean Z is mean elevation of the catchment, D is distance between the centroids of the raingage polygon and the 

catchments. 5 
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Figure 10. Plot of the distributions fitted to the observed annual maximum discharge (●) and the simulated annual maximum 

discharge (+) at the four outlets of the sub-catchments, modelled by EPIC-GRID using different interpolated rainfall with 4e 

raingages. Mean Z is mean elevation of the catchment, D is distance between the centroids of the raingage polygon and the 

catchments. 5 
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