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Abstract. Coastal regions become unprecedentedly vulnerable to coastal hazards that are associated with sea level rise. The 

purpose of this paper is therefore to simulate prospective urban exposure to changing sea levels. This article first applied the 

cellular automaton-based SLEUTH model (Project Gigalopolis, 2016) to calibrate historical urban dynamics in Bay County, 10 

Florida (US)–a region that is greatly threatened by rising sea levels. This paper estimated five urban-growth parameters by 

multiple-calibration procedures that used different Monte Carlo iterations to account for modelling uncertainties. It then 

employed the calibrated model to predict three scenarios of urban growth up to 2080–historical trend, urban sprawl, and 

compact development. We also assessed land-use impacts of four policies: no regulations; flood mitigation plans based on the 

whole study region and on those areas that are prone to experience growth; and the protection of conservational lands. This 15 

study lastly overlaid projected urban areas in 2030 and 2080 with 500-year flooding maps that were developed under zero, 

0.2-m, and 0.9-m sea level rise. The calibration results that a substantial amount of built-up regions extend from established 

coastal settlements. The predictions suggest that total flooded area of new urbanised regions in 2080 would be more than 25 

times that under the flood mitigation policy, if the urbanisation progresses with few policy interventions. The joint model 

generates new knowledge in the domain between land use modelling and sea level rise. It contributes to coastal spatial planning 20 

by helping develop hazard mitigation schemes and can be employed in other international communities that face combined 

pressure of urban growth and climate change.   

1 Introduction 

Coastal areas are the most intensively exploited places where urban expansion largely alters natural landscape. As land-sea 

interfaces, however, these regions are featured by various conflicts between anthropogenic pressures and natural sustainability. 25 

Moreover, such conflicts have become exacerbated in recent years. While coastal zones increasingly attract population and 

investments, their communities are more aware of the intensified frequency of natural incidents and possible associations with 

climate change. It is evident that climate change partly contribute to intensified hurricanes and floods (Hsu, 2014), rising sea 

level (IPCC, 2013), and other coastal hazards. Moreover, Sea Level Rise (SLR) may worsen coastal flooding, land 

submergence, and saltwater intrusion (Nicholls and Cazenave, 2010). According to the fifth report published by the 30 
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Intergovernmental Panel on Climate Change (IPCC) in 2013, approximate 70% coastlines will experience rising sea levels by 

2100. Nonetheless, developers, business owners, and other stakeholders will still continue to compete for limited coastal 

resources, and the competition has been even more intense. Developers expedite new real estate projects; local governments 

offer appealing incentives to attract new infrastructure investments; and companies extensively extract oil and natural gas in 

offshore regions (Felsenstein and Lichter, 2014). Since coastal zones are both battlegrounds of conflicting interests and 5 

vulnerable low-lying places, coordinating land uses, hazard mitigation, and different interests has become everlastingly 

important. Such coordination, therefore, calls for effective tools to inform coastal management plans. Moreover, spatial 

planning plays a pivotal role in these schemes, which can be guided by Land Use/Land Cover Changes (LULCC).  

Various techniques can help detect LULCC patterns. The class of Cellular-Automaton (CA) models receive wide attention 

around the world due to their simplicity and effectiveness in capturing complex urban dynamics (Akın et al., 2014). The 10 

operationalization of CA in modelling urban phenomena was first introduced by Clarke et al. (1997) who designed the 

prototype of SLEUTH–a CA-based urban simulation program. In their model, each cell had a state which updated at 

consecutive time points according to predefined transitional rules. These rules integrated the current condition of a cell, its 

neighbours, and environmental constraints. Numerous software packages have developed since the introduction of CA. Santé 

et al. (2010) evaluated thirty-three CA models and concluded that the SLEUTH gained more popularity than the other 15 

alternatives. The SLEUTH has been adopted by urban researchers all over the world since 2000 (Project Gigalopolis, 2016). 

Its popularity is partly due to free availability, user-friendliness, well-developed manuals, and a support forum. An elegant 

feature of the SLUETH is the application of excluded layers. These layers denote different scenarios in a calibration procedure 

so as to exemplify how policies influence the expansion of built-up regions (Akın et al., 2014). Recently, SLEUTH was 

improved by the incorporation of external information in excluded layers. Rienow and Goetzke (2015) used the support vector 20 

machine to enhance SLEUTH’s predictive power by developing probability-based excluded layers. Likewise, Sakieh et al. 

(2015) applied a multi-criterion evaluation method to generate suitability-based policy layers.  

Scenario-based SLEUTH and other CA models can also forecast future land use, based on historical urban expansion 

information. By applying a constrained CA model, Hansen (2010) simulated future land conditions under different emission 

scenarios developed by the IPCC (2013). The author concluded that significant areas in Aalborg would be increasingly exposed 25 

to future flooding hazards. Hansen (2010) further suggested that more aggressive strategies, such as population relocation and 

managed retreat, may be evaluated in future simulations. Similarly, Sekovski et al. (2015) assessed the impacts of coastal 

flooding upon urban growth using SLEUTH. Inouye et al. (2015) applied a comparative approach to validate the importance 

of zoning in land use simulations. By applying a CA package (Dynamic EGO), they stated that the developments in ecological-

economic zones heightened the vulnerability to land sliding, SLR, and other coastal hazards. Their results greatly benefit the 30 

formulation of relocation, planned retreat, and other adaptation strategies. More specifically, researchers also highlighted the 

importance of zoning in SLEUTH applications. Akin et al. (2014) used future zoning maps as excluded layers and evaluated 

the accuracy of hindcasting-based calibration. Onsted and Chowdhury (2014) employed a historical zoning map in their 

SLEUTH model and suggested that land use planning strongly influenced urban growth in Florida.  
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While the majority of SLEUTH applications focused on different urban forms (e.g., urban sprawl), their exposure to 

flooding received less attention. To the best of our knowledge, only two studies (Garcia and Loáiciga, 2014; Sekovski et al., 

2015) attempted to couple land use predictions with marine flooding maps using SLEUTH. The combination of SLEUTH 

simulations and flooding hazard maps, however, should be prioritised to enhance spatial management (Onsted and Chowdhury, 

2014). Therefore, this study aims to evaluate the extent to which SLR-induced flooding will threaten different urban growth 5 

patterns using SLEUTH urban growth model. Specifically, two research questions of this study are:  

1. How does different urban growth patterns affect coastal vulnerability to SLR-induced flooding?  

2. Will zoning and flood mitigation plans help steer prospective developments away from low-lying regions?  

This paper is organised as follows. Section 2 describes our study area and why this region was selected as a case study. 

Following this, section 3 illustrates an overall framework, describes data inputs, and outlines major steps for the calibration 10 

and prediction of urban growth in the study area as well as the development of SLR-induced flooding maps. In section 4 we 

present the calibration coefficients and discuss forecasting outcomes that were overlaid with flooding maps. Finally, section 5 

offers a brief conclusion and provides the outlook for future research.  

2 Study area  

2.1 Background 15 

This work selected Bay County in Northwest Florida (US) as a primary case study region. Bay County and its adjacent areas 

(Washington and Walton Counties) were used to prove our hypotheses based on two considerations: high exposure to coastal 

 

Figure 1. The study area.  
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hazards and SLR that are experienced in the majority of worldwide coastal zones; and data availability for modelling. Bay 

County has a long shoreline along the Gulf Coast (Figure 1). It is representative in the context of climate change, since it faces 

unprecedented and accelerated threats from storm surges, hurricanes, and projected sea level variations. Similar exposure has 

been demonstrated in the European coastline (Vousdoukas et al., 2016), West U.S. Coast (Ludy and Kondolf, 2012), South 

Vietnam (Apel et al., 2016), and many other coastal megacities around the world.  5 

Specifically, Bay County's exposure to marine disasters is pronounced. This coastal county has been hit by seventeen 

hurricanes since 1877 (Hurricanecity, 2015). Among these incidences, Hurricane Eloise in 1975 led to enormous damages in 

structures, seawalls, and patios–equivalent up to $23.1 million (Shows, 1978). Moreover, land development patterns render 

this region extremely susceptible to hurricanes and SLR. A considerable amount of structures encroached upon seafront areas 

in Panama City due to the absence of land use regulations in the past (Bay County Online, 2016). Primary industrial sectors in 10 

Bay Country, as in other coastal communities, are largely susceptible to coastal hazards as well. Bay County relies on tourism 

related industries which are deemed vulnerable to rising sea levels (Ebert et al., 2016). Bay County has 10,222 firms, of which 

approximate 90% are small businesses. Unfortunately, small companies have insufficient resources to cope with storm surge, 

flooding, and other environmental disasters (Runyan, 2006; Song et al., 2016).   

The second rationale for choosing Bay Country is the data availability for modelling. This work used an integrative 15 

framework, requiring high-quality data sets regarding land cover and hydrological factors. Land use data can be obtained from 

different sources. However, generating SLR-induced flooding maps requires sufficient observations at local and global levels, 

hurricane records, and many other marine and meteorological variables–these are available for the study area. Based on these 

considerations, we chose Bay County to explore the research questions.  

2.2 Urban change and zoning 20 

Figure 2 displays that urban extent expanded primarily in the southern part of Bay County and largely conformed to historical 

trends. A multitude of residential developments occur in Panama City and shoreline regions. Additionally, many areas in the 

north are zoned for residential uses. This information suggests that local governments and planning agencies have taken 

measures to encourage spatially diverse developments. There exists, however, an apparent discrepancy between zoning and 

urban growth: a substantial amount of urban areas have appeared in Fountain and Youngstown. Nonetheless, the zoning 25 

unclearly reflects this pattern, and only some areas are designated for the residential land use in the two towns. This 

inconsistency implies that planners need a comprehensive understanding of past land use changes to better design zoning 

schemes.  
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3 Methodological approach  

Figure 3 displays the overall research framework. Specifically, the technical roadmap was organized into four phases: 1) 

data collection and pre-processing, 2) the calibration in the SLEUTH environment, 3) the simulations of urban growth up to 

2080 under the combined scenarios of different urban-growth patterns and various excluded layers, and 4) the comparison of 5 

future urban areas and 500-year flooding maps that were induced by SLR. The framework has two major tasks: the SLEUTH 

urban growth model and SLR-induced flooding maps, as will be discussed in the following sections.  

3.1 Rationale for model selection 

We applied SLEUTH as a general modelling architecture based on the following reasons. First, CA models are 

advantageous over other counterparts due to their spatial explicitness, flexible transitional rules, compatibility with large data 10 

sets (Wagner, 1997), and easy integration with ArcGIS® (Santé et al., 2010). Second, SLEUTH only relies on five inputs: 

urban, transportation, slope, hillshade, and exclusion. Third, SLEUTH employs excluded layers where a cell value of zero 

represents an attracting point for development, and 100 or higher reflects that urbanization is strictly prohibited. Such a 

functionality makes SLEUTH an excellent platform for scenario-based studies (Leão et al., 2004). Finally, its calibration 

process applies a “brute force” approach and is scientifically sound for regional studies (Onsted and Clarke, 2011).  15 

 

 

Figure 2. Historical urban changes (left) and current land uses and zones (right) for the study area. 
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3.2 An introduction to SLEUTH 

3.2.1 Background 

SLEUTH is a packed C language-based source code that was developed by Dr Keith C. Clarke at the Department of Geography, 

University of California Santa Barbara. The source code is freely available through its official website called “Project 5 

Gigalopolis” (http://www.ncgia.ucsb.edu/projects/gig/index.html). SLEUTH has two modules: the Urban Growth Model and 

the Land Cover Deltatron Model. The Urban Growth Model mainly focuses on urban/non-urban dynamics and thus a primary 

focus of this work.  

3.2.2 SLEUTH workflow 

SLEUTH is a scale-independent CA model that updates the binary state of each cell per growth cycle. A growth cycle is one 10 

year and determined by four rules: spontaneous growth, new spreading centres, edge (organic) growth, road-influenced growth 

(Clarke et al., 1997). These transitional rules are controlled by one or more of the five parameters: dispersion, breed, spread, 

road gravity, and slope (Project Gigalopolis, 2016). Each parameter, with a value range of 1 to 100, is dimensionless and can 

be compared regarding their contributions to overall growth. Specifically, the dispersion factor determines the probability by 

 

Figure 3. Overall study framework. HUG is historical urban growth; USG is urban sprawl growth; CUG is compact 

development; and AMLEG denotes Areas More Likely Experience Growth.  
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which a cell will be randomly selected for urbanisation (Silva and Clarke, 2002). The breed factor determines the likelihood 

by which a new urban cluster will start its growth cycles (Berberoğlu et al., 2016). The spread factor controls how likely 

outward growth will develop near an existing settlement. The road gravity factor demonstrates the influence of road systems 

upon land use by attracting new developments that are within a certain distance of a road (Silva and Clarke, 2002). Finally, 

the slope factor calculates how likely a cell with a steeper slope will be urbanised (Rafiee et al., 2009). Table 1 summarises 5 

the relationships between transitional rules and five parameters.  

 

The main workflow of a SLEUTH application includes input compilations, a calibration process based on actual urban 

growth, and predictions. The Urban Growth Model requires at least four maps of different dates which show obvious urban 

changes. Two road networks of different periods and one percentage-slope map are additional date sets. An optional hillshade 10 

map is used to improve visualisation performance. The goal of the calibration is to select a combination of the parameters that 

best replicate historical urban changes. This process, however, is enormously time-consuming if modellers assess all 

combinations–up to 10 billion. Therefore, SLUETH applies a four-stage calibration process (coarse, fine, final, and derive) to 

reduce computational time. Finally, the predictions with 100 Monte Carlo (MC) runs are conducted using the best-fit 

parameters.  15 

3.3 Data description for the Urban Growth Model  

Table 2 displays detailed information regarding all data sets required by the Urban Growth Model. The land use data were 

obtained from the Florida Geographic Data Library (FGDL) and included five remotely sensed images in 1974, 1995, 2004, 

2007, and 2013. These data sets were categorised into nine level-one land cover classes, among which the built-up land was 

coded as one, according to the Florida land use, cover and forms classification system published by the Florida Department of 20 

Transportation (1999). Flooding hazard and zoning information were also collected to create excluded layers. Two Flood 

Insurance Rate Maps (FIRM), developed by the U.S. Federal Emergency Management Agency, were downloaded from the 

FGDL. Current zoning map and the comprehensive plan for the study area were obtained from the online GIS websites of Bay 

and Washington Counties. The zoning map specified the degree to which different land uses were allowed for urban 

developments. According to the Bay County Comprehensive Plan (2009 to 2020), the zoning regulations are shown as follows:   25 

-Developments were not allowed in the zone of conservation (for the preservation purpose), and impervious areas must be no 

more than 5%;  

-In the area of conservation (for the habitation purpose), impervious surface must be no more than 50%;  

Table 1. The relationships among a growth cycle, transitional steps, and controlling factors (Clarke et al., 1997).  
Growth cycle Transitional steps Controlling factors  Description  
1-1 Spontaneous growth Dispersion  Random urbanization of cells 
1-2 New spreading centers Breed  Outward growth of new settlements formed in 

the spontaneous growth stage 
1-3 Edge growth Spread and slope Outward growth of current settlements 
1-4 Road-influenced growth Road gravity, dispersion, breed, 

and slope 
Growth of new settlements within a distance of 
existing transportation networks  
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-In the zone of conservation (for the recreation purpose), impervious coverage must be no more than 10%; and  

-In the zones of agriculture (for the timberland purpose) and agriculture, impervious areas must be no more than 10% and 25% 

respectively.  

3.4 Urban Growth Model 

3.4.1 Land use/cover related layers  5 

All input data were processed in ArcGIS® 10.3. Five land use maps in the vector format were converted into raster files using 

the nearest neighbourhood method. Figure 4 shows urban changes in Bay County from 1974 to 2013. Only two most recent 

road-network maps were used due to data limitations. Because local roads may have a very limited influence upon urban 

growth, only main arteries were extracted from original line files according to the MAF/TIGER Feature Class Code. These 

polylines were then converted into raster files using the nearest neighbour resampling method. The slope and hillshade maps, 10 

collected from the National Elevation Dataset, were finally generated using the spatial analyst tool.   

3.4.2 The creation of E1 excluded layer  

An excluded layer reflects the urbanisation probabilities of cells. Its cell values range from 0 (unaffected) to 100 (entirely 

excluded) (Akın et al., 2014). Onsted and Clarke (2012) recommended that the calibration and prediction stages utilise different 

excluded layers. The excluded layer for the calibration is suggested to be at minimal restrictions to obtain more precise results 15 

of urban growth, according to Akin et al. (2014). Hence, this layer (E0) only covers water bodies where urban developments 

are unrealistic (Figure 4). For the prediction phase, however, three layers were applied to represent flood mitigation based the 

whole region (E1), conservational/agricultural land protection (E2), and flood mitigation based on the Areas More Likely to 

Experience Growth (AMLEG) (E3).  

The E1 attempted to assess how likely urban growth appeared in the Special Flood Hazard Area (SFHA) which may be 20 

inundated by 100-year floods. Landowners must purchase mandatory flood insurance in these areas. Increasing construction 

Table 2. The sources and descriptions of data sets used for the Urban Growth Model.  
Data type  Year Spatial resolution Description and source 
Urban extent  1974 Vector files  Land use/cover maps from Florida Geographic Data Library 

1995 
2004 
2007 
2013 

Transportation network  2007 Vector files  TIGER/Line® Shapefiles and TIGER/Line® Files 
2013 

Slope  -  30 * 30 m 
 

Converted from National Elevation Datasets of Geospatial 
Data Gateway from U.S. Natural Resources Conservation 
Service  

Hillshade   -  

Exclusion  1996  Vector files  Flood Insurance Rate Maps from Florida Geographic Data 
Library 2015  

2016 Vector files  Land uses and zones from Bay County GIS online 
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costs in high-risk regions may partly inhibit vulnerable urban growth. Therefore, the E1 could represent a scenario which 

prohibits land developments in floodplains.  

  

 

Figure 4. Land use-related layers, transportation networks, topographic maps, and the historical excluded layer (E0) for 

model calibration. For the excluded layer, the higher value represents higher resistance to urban growth. The values 

range from 0 to 100.  



10 
 

Weights in the E1 layer were determined according to the approach which Onsted et al. (2014) used to reduce the errors 

of randomly assigned values. To avoid arbitrarily assigning values to excluded layers, the authors elegantly used historical 

zoning maps to calculate the weights. Their method bases on annual growth rates whereby new urban developments appear in 

different zones. This method has a great potential to become a general rule in future SLEUTH applications. However, it 

assumes the annual rate remains unchanged over time. Therefore, concerns may arise if a study area experiences non-linear 5 

growing rates over a period, which should be addressed in future studies.   

To retrieve past growth information, we selected the1996 FIRM as a reference layer and calculated the area of SFHA and 

non-SFHA zones as well as the amount of new urban areas from 1995 to 2013 in these zones respectively.  

Next, the annual rate of urban growth in each zone was determined by Eq. (1):  

(1/ )1 ((1 ( )) )Tn
n

n

G
g

Z
                                                                                                                                                           (1)                    10 

where nG  is the total actual urban growth in zone n  (1 is the SFHA and 2 is the non-SFHA zone) from 1995 to 2013,  

           nZ  is total area of zone n  according to the 1996 FIRM, and  

           T  is the number of years, i.e., 18.  

The growth rates were used to generate the excluded value in the SFHA zone by Eq. (2):  

1

2

100(1 ( ))SFHA

g
E

g
                                                                                                                                                               (2)                    15 

where 1g  and 2g  denote the growth rates in the SFHA and non-SFHA zones respectively. Table 3 indicates that the 

growth rate in low-risk areas was approximately three times that in the SFHA zone, suggesting that mandatory flood insurance 

constrained urban expansion in flood-prone regions. Finally, the E1 layer was created based on the 2015 FIRM and represented 

a growth management that aims at mitigating flood risks (Figure 5).  

Table 3. The development of excluded values for the E1 scenario (based on the whole study area).  
Zones  New growth from 1995 to 2013 (hectares) Total area (hectares) Growth rate (‰) Excluded value 
Special Flood Hazard Area 665 92,054 0.4  68  

Non-SFHA  4,901 216,095 1.3  0  
Water bodies  - - - 100  

3.4.3 The creation of E2 excluded layer  20 

The 2020 Bay County Comprehensive Plan was published in 2009 and represented the most recent managed growth option 

for the study area. Hence, excluded values in the E2 layer were weighted according to this plan and modified based on the 

work of Akin et al. (2014). Specifically, a cell value of 100 was assigned to water bodies, 95 to the conservation/preservation 

zones, 50 to the conservation/recreation and agriculture/timberland areas, 25 to the other agricultural areas and 

conservation/habitation zones, and 0 to all other areas (Figure 6).  25 
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Figure 5. Special Flood Hazard Area in 2015 (left) and the E1 excluded layer (right) (based on the whole study area). For 

the excluded layer, higher value represents higher resistance to urban growth. The value ranges from 0 to 100.  

 

Figure 6. The E2 excluded layer (based on current zoning plans). For the excluded layer, higher value represents higher 

resistance to urban growth. The value ranges from 0 to 100. 
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3.4.4 The creation of E3 excluded layer  

Most SLEUTH modellers apply the above-mentioned methods to develop excluded layers. However, such approaches 

may be deficient since these treat the whole study area homogeneously. Realistically, urban growth involves heterogeneous 

changes across the study area. For instance, new residential developments largely extend from existing settlements that may 

only cover a small area within a city boundary. Thus, Onsted and Chowdhury (2014) developed a procedure that corrects the 5 

growth rates in the AMLEG. The authors concluded that the AMLEG technique produced more accurate results than the other 

methods: arbitrary guessing and the calculation based on the whole study area. Therefore, the AMLEG approach was applied 

based on the E1 scenario (flood mitigation). Specifically, SLEUTH was first run in a prediction mode with 100 MC times for 

the period of 1995 to 2013. All five growth coefficients were set as 100, and the cells with an urbanisation probability of 50% 

or more were considered in the AMELG (Figure 7). Second, excluded values in the E3 excluded layer were re-calculated using 10 

the equations (1) and (2), based on the AMLEG effects (Table 4). Finally, the E3 layer was created based on the 2015 FIRM 

(Figure 8).  

 

Table 4. The growth rates and excluded values for the E3 layer under the effects of AMLEG.  
Zones  New growth from 1995 to 2013 (hectares)  Total area (hectares) Growth rate (%) Excluded value 
AMLEG 140 513 - - 
SFHA  22 98 1.4 27 
Non-SFHA 118 415 1.8 0 

 

 

Figure 7. The areas more likely to experience growth (AMLEG) in the coastal region from 1995 to 2013. The 

cells with 50% or more urbanisation probability were considered as the AMELG  
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Figure 7 shows the coastal areas with high-urbanisation potentials. The rudimentary simulation of urban growth from 

1995 to 2013 justifies the heterogeneous evolution of urban landscape within the whole study region. The excluded value (27) 

(Table 4) of the SFHA zone is considerably less than that (68) in the E1 excluded layer (Table 3). Such a decrease was also 

discovered by Onsted and Chowdhury (2014). Also, this finding indicates that substantial urban growth occurs in flooding-

prone areas if we considered the AMLEG effects. This phenomenon is intuitively reasonable since existing coastal regions are 5 

both low-lying places and developmental attractors.  

 

All pre-processed raster files, including land use maps and four excluded layers, were eventually resampled at a spatial 

resolution of 30 m * 30 m, which is adequately high since the resolutions of most SLEUTH applications are in the range of 

10-100m (Akın et al., 2014). These raster data with 1972 rows * 2383 columns were then exported as grayscale GIF images 10 

and imported into the SLEUTH program.  

3.4.5 Model calibration 

As mentioned, urban-growth parameters were calibrated based on the “brute force” technique where analysts follow four 

calibration stages–coarse, fine, final, and derive. Increasingly higher image resolutions were typically used from the coarse to 

final calibrations for computational efficiency (Akın et al., 2014; Chakraborty et al., 2015; Rafiee et al., 2009). However, 15 

 

Figure 8. E3 excluded layer (based on the AMLEG technique). The excluded values range from 0 to 100. A higher 

value represents larger resistance to urban growth.  
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different resolutions may be problematic and lead to a biased estimation of growth patterns (Dietzel and Clarke, 2007). Thus, 

the consistent resolution of 30 * 30 m was employed during the entire calibration process. 

In each calibration phase, several MC iterations were simulated to account for the uncertainty associated with parameter 

estimations (Project Gigalopolis, 2016). A general strategy of identifying the “best-fit” parameters is to shrink the range of 

parameters during each phase. While increasing the number of MC iterations can slightly enhance accuracy, the rise in 5 

calculation time is extremely pronounced. To balance model fit and efficiency, SLEUTH developers and users experimented 

in different study areas and developed experiential numbers of MC runs during different steps: 4-5 (coarse); 7-8 (fine); 8-10 

(final); and 100 or greater (derive) (Project Gigalopolis, 2016). Hence, this work utilised 4, 7, 9, and 100 MC iterations for 

each of the four steps respectively. This set is consistent with Sekovski et al. (2015) who examined coastal vulnerability to 

flooding at a similar geographical scale.  10 

Four MC runs were conducted in the coarse calibration, and the widest range of the parameters, 0 to 100, were evaluated 

with an increment of 25 at a time. The goodness of fit in models was assessed by thirteen metrics, the majority of which were 

least-square regression scores between simulated urban components (e.g., increased urban pixels and clusters) and real 

counterparts. SLEUTH scholars, however, largely debated the selection of the optimal metric which could determine model 

performance. Most disputes centred on whether a combination of several indicators outperform a single metric. Dietzel and 15 

Clarke (2007) developed a composite metric, known as Optimal SLEUTH Metric (OSM). The OSM is the product of the 

compare, population, edges, clusters, slope, X-mean, and Y-mean metrics. The authors evaluated different combinations of 

the thirteen metrics and found that OSM contributes to more accurate and superior predictions than single-metric approaches. 

Recent studies have furthermore suggested OSM’s robustness (Jantz et al., 2010; Sakieh et al., 2015). Hence, it was applied in 

this work to narrow parameter ranges after each stage. Specifically, seven MC iterations with narrower parameter ranges were 20 

employed in the fine stage. Further refined ranges of the parameters with nine MC iterations were next tested during the final 

calibration. This whole process took around one-month process time and was conducted using the standard 3.0 SLEUTH model 

executed in the Cygwin UNIX Windows compiler. This three-stage process generated five candidate parameters; however, 

this set may be biased due to the self-modification nature of SLEUTH. Therefore, a deriving calibration with the candidate set 

was performed with 100 MC iterations.  25 

3.4.6 Model prediction 

Three approaches have been widely applied in the literature. The first is to adjust one or more of the five parameters (Leao et 

al., 2004; Rafiee et al., 2009). The second is to modify the growth-resistance levels in excluded layers (Jantz et al., 2010) or 

apply distinct excluded layers (Akın et al., 2014). The last one, less frequently used than the first two methods, is to alter self-

modification parameters which control overall growth rates (Yang and Lo, 2003). This research used a combination of the first 30 

two approaches, and the results were overlaid with SLR-induced flooding maps. The urban growth was predicted up to 2080, 

and the exposure to flooding under different growth patterns and policies were analysed in 2030 and 2080. 
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As in widespread use in similar studies, this work first simulated three growth patterns: Historical Growth (HUG), Urban 

Sprawl (USG), and Compact Development (CUG). The HUG assumed that prospective urban extent expanded at an existing 

growth rate, and five parameters remained unchanged over the forecasting period. The USG resulted in more scattered urban 

communities. In the model, the dispersion, breed, and road gravity factors controlled sprawling growth (Table 2), so increasing 

these parameters produced more dispersed developments. On the contrary, the CUG is characterised by the enlargement of 5 

current settlements. Compact development is apparent in Bay Country and many other populated coastal regions. In SLEUTH, 

compact development was positively associated with the spread parameter (Table 2). In addition, decreasing road gravity 

inhibited new growth along corridors and thus contributed to compact urban forms (Table 2).  

These growth patterns were next simulated under three policy scenarios: flood mitigation (E1, based on the whole region), 

conservational/agricultural land protection (E2), and modified flood mitigation (E3, based on the AMLEG). E1 restrained 10 

growth in low-lying areas and served as an adaptation strategy to SLR. Alternatively, E2 reflected how future city expansion 

may be impacted by zoning that represents a strong predictor of urban growth in Florida (Onsted and Chowdhury, 2014). E3 

is a modified scenario of the flood mitigation due to heterogeneous urban growth. Finally, these predictions were coupled with 

SLR-induced flooding.  

3.5 SLR-induced flooding maps  15 

The detailed methodology for generating SLR-induced flooding was developed by Hsu (2014). In his hurricane model, the 

effects of rise in sea level and sea surface temperature (SST) were considered in two stages. First, the increase in SST decreased 

central hurricane pressure over the sea surface (Knutson and Tuleya, 2004). Changed central pressure and other parameters 

were next used to calculate projected surge heights using the surge response function (SRF) developed by Irish et al. (2009). 

Based on this information, a hypothetical hurricane was projected to make landfall at a place where it caused the most damages 20 

to coastal areas and resulted in a 500-year flood. Second, the projected surge height was adjusted by local SLR (Udoh, 2012). 

Two extreme SLR scenarios were considered, as shown in Table 5. A1F1 corresponded to the highest level of global 

greenhouse gas emissions (IPCC, 2007). Next, different surge heights were calculated in numerous SRF stations which were 

defined along the coastline of Bay County. SRF zones associated with each station were delineated, and each zone had a height 

value. Finally, flooding areas were identified by comparing surge heights and local elevation data. All the required data sets 25 

regarding projected SLR and SST were collected from the fourth assessment report published by the IPCC (2007) (Table 5).  

 

 

  

Table 5. Sea-Surface Temperature (SST) changes and Sea Level Rise (SLR) in two future years in Panama City, FL.  
Climate scenario Rise in SST (  ) SLR (m) Data sources  
Present-day  0  0   
A1FI (high) in 2030   1.23  0.20  The SST and SLR estimates published by the IPCC.  
A1FI (high) in 2080  5.02  0.90  
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4 Results and discussions  

4.1 Model calibration 

The multi-stage calibration process generated the following parameters: 71 (dispersion), 92 (breed), 70 (spread), 3 (slope), and 

35 (road gravity). High values of the first three parameters suggest that the past several decades have witnessed apparent urban 

sprawl and growth surrounding established settlements. As indicated in Figure 2, the previous urbanisation primarily occurred 5 

in the vacant areas immediate to central Panama City and southwest shorelines. Such an outward expansion of cities is 

demonstrated by the breed parameter–the most influential factor affecting urban growth. Additionally, two newly urbanised 

clusters in the north have appeared and been expanding since 1995 (Figure 2). Such a spatial structure is largely captured by 

the dispersion and breed factors: their values are the second (71) and third (70) highest respectively. By contrast, the low value 

of the slope parameter is understandable since Bay Country has few mountainous areas, and therefore elevation is not a limiting 10 

factor. This finding suggests that the weight of elevation can be further reduced in plain regions, pointing out a direction for 

customising the data structure of SLEUTH. The road gravity’s coefficient is much lower than those of the dispersion, breed, 

and spread parameters, indicating a limited impact of road systems upon land use allocation. This effect is intuitively 

reasonable in that transportation networks in the study area have remained stable since the 1980s.   

4.2 Model prediction 15 

It is suggested that a sensitivity analysis should be conducted before predictions to identify the most significant parameter 

(Sekovski et al., 2015). This assessment was carried out by subsequently setting each parameter as 80 and keeping the others 

as the lowest value of one and running predictions up to 2030. The results indicate that the spread parameter has the greatest 

impact on future urban expansion, leading to a 13.99% increase in urban areas up to 2030. 

Different sets of parameters can characterise urban sprawl and compact development. Specifically, urban sprawl is referred 20 

to as scatteredly formed developments along major transportation networks. Conversely, compact developments are in 

proximity to existing urban areas. Therefore, this work applied the following criteria to develop two alternative scenarios of 

future urban growth–urban sprawl (USG) and compact development (CUG).  

1. The dispersion, breed, and road gravity’s coefficients were increased and decreased by 25 in USG and CUG 

respectively.  25 

2. The spread’s coefficient was risen and lowered by 10 in USG and CUG respectively. Since this parameter was much 

more influential in urban growth than the others, ten was selected as an adjusting value in two scenarios. 

3. As its impact was quite marginal, the slope parameter remained unchanged across all scenarios. Table 6 summarises 

different sets of parameters for three scenarios. 

 30 
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Table 6. Growth parameters for three scenarios. 
Scenarios Dispersion  Breed  Spread Slope Road gravity 
Historical growth (HUG)  71 92 70 3 35 
Urban sprawl (USG)  96 100 60 3 60 
Compact development (CUG)  46 67 80 3 10 

 

We applied different parameter combinations into the SLEUTH model and generated various maps which showed the 

probability of each cell being urbanised. These maps were then converted to urban/nonurban results by a cut-off probability 

value. Here, a justified approach to identify the reasonable cut-off value is to assess the histogram frequency of probabilities 

(Dezhkam et al., 2013; Rafiee et al., 2009; Wu et al., 2008). After evaluating the projected maps in 2080, we found that there 5 

was a steep increase of urbanised cells around the probability of 90%. The cut-off value of 85 was selected to determine 

whether a cell was converted into urban accordingly.  

 

 

Figure 9 summarises the growth statistics with different policies under three urban development scenarios. It show that, 10 

without land use regulations, city areas grow substantially under all scenarios (Figure 9 a). For instance, urban region expands 

up to 826 km2 in 2080 under the historical growth. Similar patterns can be seen in alternative growth scenarios as well, as 

shown in Figure 9 a. Under stricter land use restrictions, the simulations with the E1 excluded layer generate the smallest 

increase in urban extent from 2013 to 2080 (Figure 9 b). In addition, their growth curves that gradually level off from 2013 

indicate a steadily falling growth rate. Under compact growth, which shows the highest rise in urban areas among three 15 

 

Figure 9. The Simulations of urban changes to the year 2080 of three urban growth patterns under four excluded layers. 

a) E0: water bodies, b) E1: flood mitigation strategy (based on the whole region), c) E2: conservational/agricultural land 

protection, and d) E3: flood mitigation strategy (based on the AMLEG).  
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scenarios, the city region expands by 15% within seven decades (Figure 9 b). This is intuitively reasonable because the flooding 

map exerts a heavy constraint on undeveloped lands, and therefore new developments largely appear near existing cities and 

towns. Nonetheless, the predictions with the E3 excluded layer produce approximately the same amount of new growth as 

those with the E1 layer (Figure 9 d). Similarly, urban growth with the E2 layer (conservational/agricultural land protection) 

has a similar pattern as the simulations with no regulations. Figure 9 c shows that the growth rate in compact development 5 

reaches the peak (19%) at 2044 and then gradually levels off. However, land use zoning does have an impact on the amount 

of new urban areas. The simulated urban area in 2080 with the historical growth pattern is 709 km2 (Figure 9 c), only 85% of 

that under no restrictions (Figure 9 a). In sum, spreading development from existing coastal areas is the leading force behind 

land use changes. Second, the changes are also driven by the dispersion, breed, and road parameters but less associated with 

the slope factor.  10 

Figure 10 shows predicted urban growth up to 2080 under different excluded layers. These illustrations further depict 

urban expansion trends indicated by the growth curves in Figure 9. In other words, historical growth and urban sprawl share 

similar developmental patterns where the majority of projected urban cells appear under flexible land use regulations. 

Moreover, a considerable portion of urban expansion would fall into flooding zones if no land use policy is implemented.  

4.3 The exposure of urban growth to flooding risk 15 

Figure 11 shows 500-year flooding maps that would be exacerbated by SLR in 2030 and 2080. Large areas immediate to the 

West, North, and East Bays would be flooded, and the regions adjacent to the West and North Bays would be even more 

susceptible in 2080. As shown in Table 7, the total inundated area in 2080 would be more than ten times that in 2030. 

Additionally, the total amount of lands with a flooding depth over 3 m would rise considerably from 2030 to 2080.  

Future urban simulations were overlaid with flooding maps to show how different developmental patterns guided by 20 

distinct policies are vulnerable to SLR-induced flooding (Tables 8-9). The results unveil that, if urban growth progresses 

compactly, total inundated area in 2030 would be the largest among three growth scenarios (Table 8). For land use policies, 

urban growth under regulations leads to less flood-prone developments. By contrast, if no regulations are implemented, the 

total inundated area of projected urbanised cells in 2080 is 111.243 km2 on average, more than 25 times the area in the flood 

mitigation strategy based on the whole region (Table 9). Therefore, both growth patterns and land use policies have substantial 25 

impact on the susceptibility of coastal cities to flooding hazards.  

Figure 12 shows how three urban growth scenarios are exposed differentially to SLR-induced flooding at a larger 

geographical scale. It suggests that urban growth is extremely limited if we implement the excluded layer that represents the 

flood mitigation based on the whole region. Conversely, if water bodies are used as an excluded layer, urban areas expand 

considerably in coastlines and hinterlands. Noticeably, urban expansion with the E3 excluded layer also generates a vulnerable 30 

landscape to flooding. This phenomenon reflects heterogeneous developments over the study region. Coastal areas would 

probably continue to be urbanised even if they are threatened by flooding and storm surge. Such a pattern may be partly 
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because the high value of properties along shorelines diminishes SLR impacts. Protective structures and flood-insurance 

programs even attract new developments in flood-prone areas.  

 

 

Figure 10. The comparison of modelled urban extent in 2080 with different excluded layers. E0: water bodies, E1: flood 

mitigation (based on the whole region), E2: conservational/agricultural land protection, and E3: flood mitigation (based 

on the AMLEG).  
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Table 7. Flooded areas under 0.2-m and 0.9-m sea level rise scenarios. 
Flooding depth (m) Area (km2) 

0.2-m sea level rise (2030)  0.9-m sea level rise (2080) 
0 – 0.5 4.6  58.8  
0.5 – 1 4.3  52.5  
1 – 2 7.0  100.3  
2 – 3  7.0  77.7  
Greater than 3  8.2  176.1 
Total  31.1  465.4  

 

Table 8. The results of overlaying urban growth predictions with the 500-year flooding map in 2030.  
Excluded layers  Flooded areas  Urban growth scenarios 

HUG USG CUG 
E0: no regulations Total flooded area (m2) 59,112,900 57,466,800 59,185,800 

New urban areas that would be flooded 
(m2) 

7,254,000 5,607,900 7,326,900 

E1: flooding-risk mitigation (based on 
the whole region) 

Total flooded area (m2) 53,223,300 52,974,900 54,468,900 

New urban areas that would be flooded 
(m2) 

1,364,400 1,116,000 2,610,000 

E2: conservational/agricultural land 
protection 

Total flooded area (m2) 58,479,300 56,867,400 58,603,500 

New urban areas that would be flooded 
(m2) 

6,620,400 5,008,500 6,744,600 

E3: flooding-risk mitigation (based on 
the AMLEG) 

Total flooded area (m2) 57,974,400 56,486,700 58,048,200 

New urban areas that would be flooded 
(m2) 

6,115,500 4,627,800 6,189,300 

Note: HUG is historical urban growth; USG is urban sprawl growth; and CUG is compact development. 
 

 

 

Figure 11. 500-year flood-risk zones of 0.2-m sea level rise (SLR) (a) and 0.9-m SLR (b). 
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Table 9. The results of overlaying urban growth predictions with the 500-year flooding map in 2080.  
Excluded layers  Flooded areas  Urban growth scenarios 

HUG USG CUG 
E0: no regulations Total flooded area (m2) 200,035,800 185,077,800 199,561,500 

New urban areas that would be flooded 
(m2) 

116,387,100 101,429,100 115,912,800 

E1: flooding-risk mitigation (based 
on the whole region) 

Total flooded area (m2)  87,068,700 86,526,900 89,570,700 

New urban areas that would be flooded 
(m2) 

3,420,000 2,878,200 5,922,000 

E2: conservational/agricultural land 
protection 

Total flooded area (m2) 168,683,400 141,254,100 164,392,200 

New urban areas that would be flooded 
(m2) 

85,034,700 57,605,400 80,743,500 

E3: flooding-risk mitigation (based 
on the AMLEG) 

Total flooded area (m2) 181,416,600 155,827,800 179,401,500 

New urban areas that would be flooded 
(m2) 

97,767,900 72,179,100 95,752,800 

Note: HUG is historical urban growth; USG is urban sprawl growth; and CUG is compact development.  
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Figure 12. Flooded urban extent in 2080. E0: water bodies, E1: flood mitigation strategy (based on the whole region), E2: 

conservational/agricultural land protection, E3: flood mitigation strategy (based on the AMLEG), HSU: historical growth, 

USG: urban sprawl, and CUG: compact development 
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4.4 Discussion 

4.4.1 Modelling and uncertainties  

According to Box and Draper (1987), “Essentially, all models are wrong, but some are useful” (p. 424). Simulations are 

different levels of the approximations of real-world phenomena. This norm also applies to this work. The primary contribution 

of this paper is to seek methodological incorporation between urban growth models and SLR-induced flooding, although it 5 

attempts to tie land use predictions with coastal planning practice. However, this research suffers from a few limitations 

associated with the case study region, assumptions, and uncertainties.  

First, Bay County is a typical land-sea interface confronted with heightened pressure from SLR, and the results are 

analogous to those in other similar coastal zones. However, we inadequately evaluate the effect of elevation on urban exposure 

to flooding. Thus, our findings may have limited comparability with hilly areas.  10 

Second, the SLEUTH model in its current form excludes several critical variables contributing to urban dynamics. It may 

insufficiently capture various factors affecting urbanisation (Herold et al., 2003). The demand for urban growth comes from 

population and economic increase. The Bureau of Economic and Business Research at the University of Florida (2016) 

forecasts that the total population of Bay County will increase by almost 40% by 2030. Such a rise demands additional 

urbanisation capacities. Therefore, future applications should consider socioeconomic factors behind urbanisation. Population 15 

growth, however, is linked with migration, overall economic conditions, and other factors, which is complicated and hard to 

predict. Additionally, urbanisation in coastal regions is driven by economic activities, the majority of which are related to 

tourism and real estate. Nevertheless, barely do CA models integrate these factors.  

Third, this paper bases on couples of assumptions to forecast urban landscape evolution. It determines the excluded values 

of the E2 scenario according to future land use plans and suggestions from other studies (e.g., Akin et al., 2014). Although the 20 

lack of zoning information forced us to make this assumption, the predictions under the E2 may become problematic. Besides, 

the extrapolation of future urban growth beyond the calibration range can be questionable and generate uncertain results 

(Goldstein et al., 2004). Modellers ought to make a trade-off between land use predictions and the projections of climate 

change related hazards. Climate change is slow going, but urbanisation may be rapid in populated coastal regions. For instance, 

SLR may become significant only after an adequate period that probably exceeds that of historical urban data. Such coupled 25 

analyses should aim at identifying the general impacts of climate change on future urbanisation, rather than replicating the past 

urban patterns. The last assumption relates to adaptation strategies. SLEUTH fails to incorporate seawall, population 

relocation, and other adaptation strategies to SLR. This limitation can be seen in the given examples of future flooding risks 

(Figure 12). Many existing urban areas would fall into flooding polygons in 2030 and 2080. Essentially, the model assumes a 

“do-nothing” option regarding adaptation strategies; such a limitation is addressed in a following paper.  30 

Eventually, uncertainties come from two aspects. The “best-fit” parameters are non-deterministic and estimated by distinct 

numbers of MC iterations in different calibration stages. Thus, when comparing this work’s numerical results with those of 

similar research, readers should be aware of the stochastic nature of the model. Second, additional concerns arise when it 
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comes to SLR projections and their impacts on hurricanes. Researchers have not yet reached an agreement as to SLR estimates; 

sea level may increase more rapidly than people initially thought. Nicholls and Cazenave (2010) reviewed numerous sources 

and concluded that globally mean sea level would rise between 0.19 m and 1.7 m by 2100. Given these uncertainties, therefore, 

the simulation results should be interpreted with caution.  

4.4.2 Urban growth and coastal hazards  5 

The calibration results indicate that main driving force for the study area is spread, followed by dispersion and breed. Such 

findings are in line with similar coastal studies (Sakieh et al., 2015; Sekovski et al., 2015). In other words, urban growth is 

likely to take place around current settlements in a compact fashion. Existing settlements are featured by excellent accessibility 

to infrastructure, activity centres, and coastal amenities. Additionally, a multitude of new urban areas clusters around 

coastlines, which is evident either in the business-as-usual or urban sprawl scenarios. Increased human activities and the 10 

competition for limited resources, therefore, intensify environmental pressures at land-sea interfaces. Furthermore, the 

interface faces unprecedented threats from SLR and other intensified coastal hazards. SLEUTH could provide useful 

information about future urban growth and thus benefit coastal city managers and land use planners.  

4.4.3 Policy implications 

Compact urban forms are advocated because of their environmental friendliness and benefits for energy conservation 15 

(Dezhkam et al., 2013; Mahiny and Gholamalifard, 2007). However, this might not be true in flat coastal areas from the 

perspective of hazard mitigation. As indicated in Tables 8 and 9, the compact growth scenario generates more extension of 

current flood-prone areas than the scenarios of historical growth and urban sprawl. For instance, if the flood mitigation policy 

is implemented, new built-up regions that would be flooded in 2030 under the compact growth pattern are over 2.5 km2, almost 

double the area under historical growth scenario. However, such conclusions are made only based on our case study area where 20 

slopes change insignificantly. Thus, the effects of compact urban forms on flooding exposure require further investigation in 

other coastal regions with different topographical features.   

Population and economic growth largely drive urban expansion. Nevertheless, policies behind such growth should also 

be investigated since these policies (e.g., land use plans and economic strategies) represent developmental blueprints. Thus, it 

is beneficial to reflect upon how policies contribute to distinct urban growth patterns: urban sprawl and compact growth. Urban 25 

sprawl is characterised by unplanned and scattered developments in suburban areas. Uncoordinated growth in the city edge 

has been suggested to relate to multidimensional factors regarding economic incentives, housing development plans, and 

transportation policies (De Vos and Witlox, 2013; Lopez and Hynes, 2003; Yue et al., 2016). Economic incentive packages 

launched by the central government have contributed to urban sprawl in the developing world. For instance, China took an 

economic reform in the 1970s by opening up land markets and commercialising housing units. This economic stimulus gave 30 

rise to many sprawling mega-cities such as Beijing, Shanghai, and Chengdu. In Europe and North America, though, 

microeconomic theories may majorly explain urban sprawl. For example, households begin to relocate to the suburbs when 
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the land prices in city centres become prohibitively high. Their relocation decisions are further strengthened by housing and 

land development policies. Developers promote low-density communities in the city periphery. Local governments help build 

large retail centres to accommodate the increased demands. Motorization policies and low fuel costs result in automobile-

oriented cities. Even public transit policies aggravate outward city growth by charging long-distance commuters less than the 

riders for short distances (De Vos and Witlox, 2013).  5 

As urban sprawl increasingly threatens public health, social equity, and the built environments, people start to develop 

different urban containment policies. There are primarily two forms of containment policies that were adopted in the US. The 

State law in Oregon and Washington requires that local land use plans should clearly define an urban growth boundary. In 

other states such as Florida and Maryland, governments develop urban service limits, public facilities ordinances, and other 

policies to promote compact urban forms (Aytur et al., 2008). However, the effects of urban containment policies have been 10 

hotly debated. For example, not all urban growth boundaries significantly affect housing markets and the rates of urbanisation 

(Dempsey and Plantinga, 2013). Thus, De Vos and Witlox (2013) suggest the integration of spatial planning policies, mobility 

policies, and road pricing. Spatial planning can strictly limit new developments outside urban areas. Transit-oriented 

development benefits nurturing high-density and mixed land-use neighbourhoods. Lastly, road pricing increases long-distance 

travel costs, thereby curtailing urban sprawl.  15 

The modelling approaches and results offered by this work could aid in the development of an integral land-use 

enforcement system. Building a comprehensive land use policy for the urban growth landscape is a recommended option in 

coastal communities, which is currently lacking in existing principal planning practices for future SLR in the US (Fu et al., 

2016). An integrative policy framework can coordinate the increased demand for urbanisation and the goal for hazard 

mitigation. In other words, planners ought to incorporate the zoning of existing coastal areas into the adaptation strategies to 20 

SLR and develop rural land use regulations that attract new development inland. While prohibiting developments within 

flooding zones partly constrains urban growth and may be unrealistic, only relying on zoning could lead to massive areas 

subject to flooding. A compromise of these two alternatives, accordingly, could be developed to both ensure adequate 

urbanisation and steer new developments away from low-lying areas. Finally, planners should also consider seawall, planned 

retreat, and other adaptation strategies as key components of the proposed framework to protect existing urban areas from 25 

being inundated. Furthermore, in the long term, policy makers should formulate adaptation plans that address other SLR 

aspects such as groundwater pollution and saltwater intrusion beneath protective structures.   

5 Conclusions 

Environmental and resource pressures are intensified given ongoing coastal urbanisation. Besides, the urbanisation process 

amplifies the exposure of coastal communities to flooding hazards. Unfortunately, we are uncertain about the degree to which 30 

SLR may contribute to the increased intensity of storminess. The possibility of more exacerbated consequences, however, 
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cannot be neglected from a precautionary perspective. Therefore, it is crucial to building an effective coastal management plan 

to balance land use, competing interests, and hazard mitigation.  

This work contributes to the literature by integrating urban growth dynamics, land use policies, and SLR-induced flooding. 

We successfully calibrated the SLEUTH model for Bay County, Florida (US), based on historical data from the year 1974 to 

2013. By applying the best-fit coefficients, we developed three urban growth scenarios and assessed the exposure of future 5 

urban extent to SLR-induced flooding under different land use policies. These scenarios reflected various growth strategies 

that are widely applied in urban planning. Our results indicate that the parameters associated with compact development largely 

drive urban growth in Bay County and similar coastal communities. The results show that substantial urban growth would be 

prone to coastal flooding if no land use policy is implemented.  

SLEUTH is particularly useful in modelling complex spatial dynamics. Moreover, the computational capacity of SLEUTH 10 

is greatly enhanced due to the rapid advancement of computer technologies. Being able to outputting GIF maps and statistics 

for each predictive year, SLEUTH can be easily linked with a raster-based GIS environment (Rafiee et al., 2009). Therefore, 

modellers can readily import the results of different scenarios into a GIS platform for presentation purposes. Such a coupled 

model serves as a decision support tool and helps land use planners, and hazard mitigation teams evaluate the outcomes of 

different policies. Additionally, the visualisation results can be used to raise general awareness about the vulnerability of 15 

coastal communities to SLR.  

Admittedly, models are just the simplifications of reality, and urban growth is an intricate process that involves population 

increase, economic activities, and many other factors. Since the level of SLR impact on flooding is quite unclear, and growth 

predictions could be probably biased, the model cannot generate exact results regarding urban growth and flooding extent. 

However, we believe that the “what-if” estimations are useful in helping decision makers understand how policies mould 20 

distinct developmental patterns. Therefore, probabilistic models and scenario-based planning should be advocated to evaluate 

planning alternatives and their consequences (Xiang and Clarke, 2003) as well as to offer reliable estimates of flooding 

damages.  
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