

1 Analysis of how dry-hot wind hazard has changed for winter

2 wheat in the Huang-huai-hai plain

- 3 Benlin Shi^a, Xinyu Zhu^{a*}, Hongzhong Li^a, Yunchuan Hu^a, Yi Zhang^b
- 4 ^a Shangqiu Normal University, Shangqiu 476000, Henan, China;
- 5 ^b Shangqiu Weather Bureau, Shangqiu 476000, Henan, China
- 6 *Corresponding author: Xinyu Zhu
- 7 Tel: +86 370 2592902; Email: <u>tia20021201@163.com</u>
- 8 Address: College of Environment and Planning, Shangqiu Normal University, NO.298, Wenhua Road,
- 9 Shangqiu, 476000, Henan, China

10 Abstract: Climate change is exerting significant impacts on global agricultural production. Climatic 11 variations adversely affect crop production and, thus tend to impose a key constraint of agricultural 12 production, primarily on how to continuously enhance the winter wheat yields worldwide. The high uncertainties in predicting the effects of climate change on wheat production are most likely due to 13 rare understanding on the responses of wheat production to extreme climatic factors, e.g. high 14 15 temperatures, low humidity as well as high wind speed. Dry-hot wind hazard represents one of the 16 main natural disasters for Chinese winter wheat production, especially for the Huang-huai-hai plain. 17 However, high uncertainties of the effects of dry-hot wind hazard on winter wheat production still 18 exist, mainly due to the gaps of long-term observations. Therefore, we selected Shangqiu as the case 19 study area to determine the occurrence regularity of dry-hot wind hazard on winter wheat production 20 in Huang-huai-hai plain. We analyzed regional meteorological data with daily resolution in the later 21 growth stage of winter wheat during the period of 1963 to 2012. In accordance with the 22 meteorological industry standards of "Disaster Grade of Dry-hot Wind for Wheat" by the China

23	Meteorological Administration, we synthesized analyzed the distribution of annual average days of
24	dry-hot wind in winter wheat growing seasons and the associated responses to the climate change.
25	Hence the relationships between dry-hot wind times and winter wheat yields were also discussed. The
26	results showed that the annual average days of light and severe dry-hot wind exhibited tended to
27	decline in the recent 50 years. Great inter-annual variations of light and severe dry-hot wind were
28	observed. The significant inter-annual variations were related with the corresponding meteorological
29	conditions of temperature, moisture and wind speed. The most serious damages of light and severe
30	dry-hot wind both occurred in 1960s while the damages appeared less in the 1980s and the last decade,
31	which could be also explained by the corresponding temperature, moisture and wind speed conditions.
32	From 1963 to 2012, a climatic mutation point of daily maximum temperature was found near 1972,
33	but insignificantly (p >0.05). The wind speed at 2:00 pm and the relative humidity at 2:00 pm were
34	closely related to the hazard conspicuously. A climatic mutation point of the wind speed at 2:00 pm
35	was found near 1984, and climatic mutation of the relative humidity at 2:00 pm was found near 1981
36	(p <0.05). Daily maximum temperature, wind speed at 2:00 pm and the relative humidity at 2:00 pm
37	played a major role in decreasing trend of dry-hot wind disaster, and the significantly decreased of
38	wind speed at 2:00 pm constituted a main factor in Shangqiu. Dry-hot wind hazard is very sensitive to
39	climate change. Yields of winter wheat were negatively correlated with annual average days of
40	dry-hot wind in Shangqiu (p <0.05). In actual practices, great concerns should be paid on the defense
41	of dry-hot wind for winter wheat production. Thus the most effective practices have to be taken for
42	enhancing the resistance of winter wheat to dry-hot wind hazard through improving filed
43	microclimate condition.

44 Keywords: climate change; Shangqiu; winter wheat; grain filling stage; dry-hot wind

45 **1. Introduction**

46	Climate change has led to the frequent occurrence of extreme weather. It was noted in the 4th and 5th
47	evaluation report of the Intergovernmental Panel on Climate Change (IPCC) that global warming has
48	exerted widespread effects on agricultural ecosystems, brought increasing uncertainties to agricultural
49	production, led to more frequent regional occurrences of meteorologically caused agricultural
50	disasters, and altered the planting patterns of crops (Qin, 2009; Lobell et al., 2012; Ge et al., 2012;
51	IPCC, 2007; 2013). As one of the major meteorological disasters disrupting winter wheat growth and
52	yield, dry-hot wind frequently occurs during wheat's flowering and grouting stages, giving rise to a
53	10%-20% yield loss of winter wheat in the years when its disastrous effects are severe (Liu et al.,
54	2012).

In recent years, some papers were published in the worldwide authoritative journal Nature, analyzed 55 56 the effects of climatic changes and meteorological disasters on wheat, reporting that climatic warming 57 and extreme drought resulted in early maturation, yield loss, and decline in dry matter accumulation 58 of wheat (Lobell et al., 2012; Pongratz et al., 2012;Basso et al., 2014; Asseng et al., 2015). These 59 papers indicate that the effects of climatic changes on food crops have become an important subject of 60 global research. Since the foundation of the new China, Chinese agriculturalists and meteorologists 61 have acquired fruitful achievements in dry-hot wind research (Chen et al., 2001; Liu et al., 2008; 62 Wang et al., 2010; Liu et al., 2012; Zhao et al., 2012). Relevant research indicates that global warming 63 and precipitation reduction have gradually intensified the disastrous effects of dry-hot wind, with the 64 frequency of the regional occurrence of these effects having gradually increased (Liu et al., 2012). Chen et al. (2001) found that while the occurrence of dry-hot wind in wheat production gradually 65 66 decreased from the 1960s to the 1990s, the occurrence of dry-hot wind has increased in recent decades.

67	This increase has brought about severe harms during the grouting stage of winter wheat (Zhao et al.,
68	2012). Liu et al. (2008) reported that within the backdrop of global warming and global drought, the
69	occurrence of winter wheat dry-hot wind in Gansu province has gradually intensified in frequency.
70	This increased frequency has caused relatively large damages to winter wheat, and it also indicates
71	that the occurrence of dry-hot wind is sensitive to global climatic changes. Wang et al. (2010)
72	conducted research on the forecast and prediction of dry-hot wind disasters. Some scholars
73	implemented comprehensive research on the occurrence intensity of two kinds of dry-hot wind: light
74	and heavy dry-hot winds. These scholars established indexes for evaluating occurrences and
75	constructed models for the evaluation of loss in disasters according to the extent of disasters afflicting
76	winter wheat (Piao et al., 2010; Pan et al., 2011; Wu et al., 2012; Lobell et al., 2011). Therefore, under
77	the auspices of climatic changes, scholars have carried out numerous research studies on such aspects
78	as the rules of disaster occurrence in agricultural ecosystems and adaptations to climatic changes.
79	However, due to the characteristics of the regional occurrence of agricultural meteorological disasters,
80	the same disaster may vary between different regions. In recent years, the frequency of occurrence of
81	meteorological disasters has intensified with the rapid development of China's agricultural ecosystems.
82	Winter wheat production in the typical agricultural areas of Huang-huai-hai region will experience
83	severe challenges because existing research knowledge does not capture the situation of climatic
84	changes in different regions. Therefore, regional implementation of research on the rules governing
85	meteorological disasters occurring amongst the backdrop of climatic changes is helpful for the safe
86	production of winter wheat in the research areas. This research also provides a theoretical basis for the
87	prevention and alleviation of agricultural meteorological disasters.

88 As a main economic area in the Central-plains Economic Zone, Henan province has an important

- 89 strategic position and is an important base for the production of China's vital agricultural crops.
- 90 Located in the typical agricultural area of the Huang-huai-hai plain, the city of Shangqiu represents a
- 91 strategically pivotal city in the Central-plains Economic Zone. Due to its unique geographical position,
- 92 Shangqiu is a major region for agricultural development in Henan province and represents an
- 93 important base for the production of marketable grain and subsidiary agricultural products in China.
- 94 In Shangqiu, winter wheat experiences damages caused by cold and frost, as well as destruction
- 95 caused by drought and dry-hot wind throughout the growth period of wheat. Among these destructive
- 96 forces, dry-hot wind represents one of the major agricultural calamities that bring about severe
- 97 damages to winter wheat during its late growth period. The analysis in this paper uses the
- 98 daily-recorded meteorological data from 1963 to 2012 in combination with the index system of winter
- 99 dry-hot wind to quantitatively analyze the features, effects, and changing trends of dry-hot wind on
- 100 winter wheat production in Shangqiu within the past 5 decades. In the face of climatic changes, this
- 101 study provides a policy-making basis for safe production of agricultural products, damage avoidance,
- 102 and disaster prevention and alleviation.

103 2. Materials and methods

104 2.1. Site description

Located at 32°00′ N-40°30′ N, 113°00′E-121°00′E, the Huang-huai-hai plain has an area of approximately 38.7 km². It contains the waters from the Huanghe (the Yellow River), the Huaihe, and the Haihe. The Huang-huai-hai plain represents an important base for agricultural production in China; the main crops in this plain are winter wheat, corn and cotton. This plain has a soil type of zonal brown or cinnamon, a generally warm temperate humid or semi humid climate, an annual temperature within 14-15°C, a precipitation of 500-1000 mm (with large variations annually), and an annual

- 111 temperature accumulation above 0°C of 4500-5500°C. Located in the eastern area of Henan province,
- 112 Shangqiu is a typical agricultural area in the Huang-huai-hai plain. Located between 114°49'
- 113 E-116°39′ E, 33°43′ N-34°52′ N, Shangqiu has a total area of 10704 km². The soil in the research area
- 114 is moist, and the climate is a typical warm and semi-humid continental monsoon climate with an
- 115 average annual temperature within 13.9°C-14.3°C, an average annual precipitation of 623 mm, an
- 116 average annual sunshine duration of 2204.4-2427.6 hours, and an average frost-free period of 207-214
- days. The test area is characterized by a warm and windy climate in the spring, warming andconcentrated rainfalls in the summer, cooling and long-term sunshine in the autumn, and cold,
- 119 low-snow conditions in the winter.

120 2.2 Methods and data Collection

In Shangqiu, winter wheat enters the flowering stage from late April to early May, while winter wheat in the western and northern areas of Henan province enters this stage about a week later than winter wheat in other areas (Cheng et al., 2011). In the majority of Henan province, winter wheat enters the grouting stage in the middle of May. Therefore, in this paper, daily meteorological data of every year was selected from late May to early June (from May 21 to June 5) The effects of dry-hot winds on winter wheat from the grouting stage to the maturation stage (the late growth stage) were systematically analyzed.

Daily meteorological data recorded from 1963 to 2012 at eight agricultural meteorological observatories in Shangqiu City, Minquan, and Suixian were selected, and 3 meteorological factors (daily maximum temperature, relative humidity at 2:00 pm, and wind speed at 2:00 pm) were adopted as the basis for analysis. Meanwhile, Mann-Kendall mutation tests were applied to the analysis of the timing rules of the meteorological factors of dry-hot wind disasters (Zhou et al., 2000; Wei, 2007).

- 133 Sample distribution of this method does not necessarily follow certain rules and is immune to the 134 perturbations from individual abnormal values in the sample. The mutation points were systematically 135 analyzed by the form and the directional trend of the cumulative departure curve to identify the 136 genuineness of these points. The mutation points were calculated by utilizing programs such as Origin 137 8.5, Mann-Kendall mutation tests, and Excel. The meteorological data were provided by the 138 meteorological bureau and agricultural bureau of Shangqiu City. All the data were acquired from 139 observations according to the requirements of the Agricultural Meteorological Observation Standard 140 issued by the China Meteorological Bureau, and the methods for observations remained uniform. 141 2.2 Selection of dry-hot wind indexes 142 In this paper, dry-hot winds featuring high temperatures and low humidity were mainly analyzed. 143 Such dry-hot winds are the main type of wind that brings about damages to winter wheat in Shangqiu 144 at the late growth period and generally occur at relatively high frequencies in middle and late May and 145 early June (Zhao et al., 2012). The concrete indexes for analysis are referred to in Disaster Grades of
- 146 Dry-hot Wind in Wheat (Huo et al., 2007) (Table 1).

Table 1. Disaster grades of dry-hot wind

	Light			Heavy	
daily maximum	relative humidity at	wind speed at 2:	daily maximum	relative humidity at	wind speed at 2:
temperature ($^{\circ}C$)	2:00 pm (%)	00 pm (m/s)	temperature (°C)	2:00 pm (%)	00 pm (m/s)
≥32	≤30	≥3	≥35	≤25	≥3

148 **3. Results and analysis**

149 3.1 Changes of the meteorological factors of dry-hot wind

150 The flowering and grouting stages of winter wheat from 1963 to 2012 in Shangqiu were quantitatively

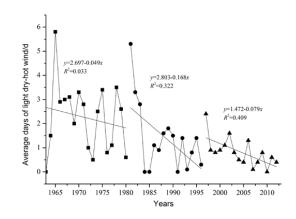
151 analyzed by applying the methods of Mann-Kendall mutation tests. Three meteorological factors were

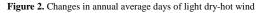
152 analyzed: daily maximum temperature, relative humidity at 2:00 pm, and wind speed at 2:00 pm at a

¹⁴⁷

153	height of 10 m. The threshold line was set as: $Y=\pm 1.96$ (at the level of $p=0.05$); results are listed in Fig.
154	2. It shown that the fluctuations in the curve depicting the ordinal and inverse sequence statistics of
155	these 3 factors were relatively large, indicating relatively significant rates of annual changes (Figure
156	2). The ordinal sequence statistics of daily maximum temperature and wind speed at 2:00 pm were
157	essentially below 0, showing that within the recent 5 decades, daily maximum temperature and wind
158	speed at 2:00 pm exhibited a significant declining trend. The ordinal sequence statistics of relative
159	humidity at 2:00 pm were mostly above 0 and exhibited an increasing trend in fluctuations, indicating
160	that within the recent 5 decades, relative humidity at 2:00 pm exhibited a significant increasing trend.
161	In this research, by analyzing ordinal sequence curves (UF curves) and inverse sequence curves (UB
162	curves), in combination with cumulative departure curves, the genuine mutation points of every factor
163	were analyzed and evaluated. It shown that the intersection point of the ordinal and inverse sequence
164	curves of the maximum temperature appear in 1972, after which the UF curve does not exceed the
165	critical value line (Figure 1a). From 1972 to 1982, the cumulative departure curve (Figure 1b)
166	corresponding to the ordinal and inverse sequence curves of the maximum temperature exhibit first an
167	increasing trend and then a decreasing trend. Therefore, around 1972, a mutation gradually increased
168	in appearance in the maximum temperature at the late growth stage of winter wheat. However, this
169	observation does not reach a level of significance (p >0.05). Sequence curves of relative humidity at
170	2:00 pm intersect in the years 1968, 1981, and 1984, and the major parts of the UF and UB do not
171	exceed the critical value line (Figure 1c). The minimum value of relative humidity at 2:00 pm occurs
172	on the cumulative departure curve in 1981 (Figure 1d). After 1981, this value exhibits an increasing
173	trend. Therefore, around 1981, a significant (p <0.05) mutation gradually increases in appearance in
174	the value of relative humidity at 2:00 pm. No intersection point appears in the ordinal and inverse

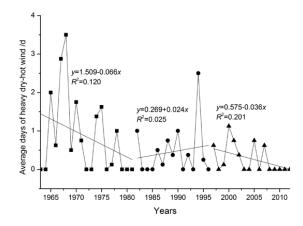
- 175 sequence curves (UF and UB curves) of wind speed at 2:00 pm, and both curves exceed the critical
- 176 value line (Figure 1e). Therefore, the mutation tests failed. However, the wind speed at 2:00 pm
- 177 reaches its peak value in 1984 (Figure 1f) and then exhibits a trend of gradual decline. Therefore,
- 178 around 1984, a significant (p<0.05) mutation of gradual decline appears in the value of wind speed at
- 179 2:00 pm.




186 **3.2 Days of dry-hot wind occurrence**

187 3.2.1 Light dry-hot wind

188 From 1963 to 2012, the average number of days of the occurrence of high-temperature and low 189 humidity light dry-hot wind in winter wheat exhibited a general trend of fluctuating decline (Figure 2). 190 The average number of days for light dry-hot wind occurrence fluctuated within 0-5.9 days, with an 191 average value of 1.5 days, a variation coefficient (CV) of 83.3%, and a standard error of 1.3 days. 192 Over the past 50 years, relatively severe occurrences of light dry-hot wind appeared in 1965 and 1981, and relatively less severe occurrences of light dry-hot wind appeared in 1993, 1996, 2007 and 2012. 193 194 No occurrence of light dry-hot wind appeared in 1963, 1984, 1985, 1991 and 2010, and the maximum 195 number of days for light dry-hot wind occurrence appeared in 1965, totaling 5.8 days. From the fitted 196 equations, it can be concluded that from 1963 to 1980, the number of days for light dry-hot wind 197 occurrence basically stabilized at a certain level. From 1981 to 1996, the number of days of light 198 dry-hot wind decreased rapidly, while from 1997 to 2012, the number of days decreased more slowly. 199 This decrease was correlated to the comprehensive effects of temperature, water, and wind speed after 200 the growth period of winter wheat.


201 202

- 203 By analyzing the characteristics of the annual changes of light dry-hot wind, it can be observed that in
- the 1960s, Shangqiu witnessed the severest occurrence of light dry-hot wind, with a total of 2.6 days.
- 205 This occurrence was followed by occurrences of light dry-hot wind in the 1970s, 1980s and 1990s,
- with the number of days reaching 2.1 days, 1.7 days, and 0.9 days, respectively. The past 10 years
- 207 have experienced the lightest damages caused by light dry-hot wind, with the number of days totaling
- 208 0.8 days.
- 209 3.2.2 Heavy dry-hot wind
- 210 From 1963 to 2012, the average number of days of the occurrence of heavy dry-hot wind in winter 211 wheat exhibited a general trend of fluctuating decline (Figure 3), with the average number of days 212 amounting to 0.5 days. Through calculation, it can be concluded that the variation coefficient (CV) 213 amounted to 98.9% with a standard error of 0.8 days. Over the past 50 years, relatively severe 214 occurrences of heavy dry-hot wind appeared in 1967, 1968, and 1994, peaking in 1968 at 3.5 days. 215 Relatively less severe occurrences of heavy dry-hot wind appeared in 1977, 1987, and 1999. From the 216 fitted equations, it can be concluded that from 1963 to 1981 and from 1997 to 2012, heavy dry-hot 217 wind occurrence decreased slowly, while from 1982 to 1996, occurrences increased slowly.

218 219

Figure 3. Changes in annual average days of severe dry-hot wind

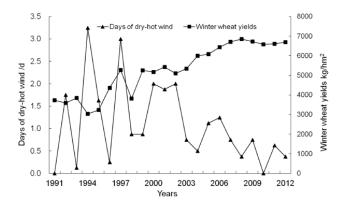
- By analyzing the annual changes of heavy dry-hot wind, it can be observed that in the 1960s,Shangqiu witnessed the severest occurrence of light dry-hot wind in the late growth period of winter
- 222 wheat with an average number of days of 1.4 days. This severity is followed by the occurrences of
- 223 heavy dry-hot wind in the 1970s, 1990s, and the past 10 years, with the annual number of days for
- 224 occurrence reaching 0.7 days, 0.5 days, and 0.4 days, respectively. In the 1990s, Shangqiu witnessed
- the smallest damages caused by heavy dry-hot wind occurrence, with the number of days totaling 0.3
- 226 days.

227 3.3. Effects of climatic changes on meteorological disasters caused by dry-hot wind

The correlations between the number of days of dry-hot wind occurrence and climatic factors are shown in Table 2. It indicated the number of days of dry-hot wind occurrence was highly correlated with 10 meteorological factors, with coefficients ranging from -0.639 to 0.753. Apart from the significance levels (p=0.05) of the correlation coefficients between the number of days and the average maximum temperature, between the number of days and the average precipitation, and between the number of days and the average evaporation, the correlation coefficients between the number of days of dry-hot wind occurrence and the remaining factors all indicated high levels of

235 significance (p<0.01).

-		Average	Average	Day number of	Day number of
	Average	maximum	minimum	maximum	maximum
	temperature	temperature	temperature	temperature≥30°C	temperature≥32°C
Correlation Coefficient	0.612	0.498	0.414	0.701	0.753
Sig.	0.01	0.01	0.04	0.01	0.01
	Day number of maximum temperature≥35℃	Average relative humidity	Average precipitation	Average evaporation	Average day number of precipitation
Correlation Coefficient	0.594	-0.604	-0.497	0.408	-0.639
Sig.	0.01	0.01	0.03	0.05	0.01



- 237 The occurrence of dry-hot wind disasters exhibits the sensitive response to global climatic changes.
- 238 With the influences of climatic warming causing decreased relative humidity, reduced number of days
- 239 of precipitation, decreased precipitation amount, increased average temperature, enhanced average
- 240 maximum and minimum temperatures, and gradually increasing average evaporation, dry-hot wind
- 241 disasters occur with relatively stronger intensities, higher frequencies, and more severe damages. On
- 242 the contrary, during the period of moderate and cooling weather, dry-hot wind disasters occur less
- 243 frequently with weak intensities.
- 244 3.4 Days of dry-hot wind occurrence and winter wheat yield

245 The correlation between winter wheat yield per unit area and the number of days of dry-hot wind 246 occurrences in the past 20 years (from 1991 to 2012) is shown in Figure 4. It shown that the number 247 of days of dry-hot wind occurrences exhibits a fluctuating trend of decline, whereas winter wheat 248 yield per unit area exhibits a trend of enhanced fluctuations, indicating that the greater the number of 249 days of dry-hot wind occurrences, the lower the winter wheat yield per unit area. Namely, these 250 variables were significantly negatively correlated (p<0.05). In Shangqiu, during the late growth period 251 of winter wheat, the trend of average maximum temperature change was different from that of average 252 temperature change, and no significant rise was observed (Figure 1b). This pattern of temperature 253 change was relatively beneficial for winter wheat at the grouting stage. Relative humidity at 2:00 pm 254 exhibits an increasing trend, albeit slowly. Wind speed exhibits a trend of decline (Figure 1d and 1f).

255 256

Figure 4. The relationship between dry-hot wind days and yield of winter wheat

257 4. Discussion

258 In Shangqiu, the range and frequency of dry-hot wind occurrences during the growth period of winter 259 wheat generally exhibited a trend of gradual decrease, and the corresponding occurrence frequency of 260 the disasters counted by the sliding curves also showed a trend of gradual decline. In 1972, significant 261 (p<0.05) mutations gradually increase in appearance in the maximum daily temperature related to 262 dry-hot wind disasters. Around 1984, significant decreases appeared in wind speed at 2:00 pm, 263 whereas relative humidity at 2:00 pm increased markedly. Around 1981, the relative humidity value 264 experienced a conspicuous gradual increase. The magnitude for temperature increase in China 265 amounted to 0.22 °C/10 years, reaching 0.25 °C/10 years from 1963 to 2012 (Tan et al., 2009; Zhu et al., 266 2012a). The average temperature in Shangqiu increased commensurately (Shi et al., 2012). However, 267 the trend of maximum daily temperature change was different at different stages of the winter wheat 268 growth period (Tan et al., 2009; Xiong et al., 2010). In Shangqiu, at the late growth period of winter 269 wheat, the maximum daily temperature did not significantly increase with average temperature (Zhu 270 et al., 2012b), which was beneficial for winter wheat at the grouting stage. Under global climatic 271 changes, the decreased relative humidity of air is the main reason for drought (Jin et al., 2009). In this 272 research, from 1963 to 2012, the relative humidity at 2:00 pm increased slowly, which was relatively

294

273	in accordance with the research results of Zhao et al.(2012) and Cheng et al. (2011).
274	Over the past 50 years, the overall disasters of dry-hot wind in winter wheat exhibited a gradual
275	decreasing trend. Regional and periodic disasters of dry-hot wind still exist because of differences in
276	matching the meteorological factors of temperature, water, and wind speed in different regions and at
277	different times. Therefore, to minimize the harmful effects of dry-hot wind on winter wheat at the late
278	growth period during the process of agricultural production, emphasis should be placed on the
279	prevention of dry-hot wind disasters, and research concerning aspects other than climatic factors
280	should be intensified (Sridhar et al., 2006). In recent years, the existing indexes of dry-hot wind and
281	concomitant research results cannot meet the requirements of regional food production and the
282	prevention of agricultural meteorological disasters. Relatively huge differences exist in climatic
283	environments, soil, and crop types of different regions in China (Zhao et al., 2012). In addition, as
284	differences also exist in the mechanisms for the effects of dry-hot wind on different food crops, new
285	generations of experimental research concerning the indexes of dry-hot wind should be continuously
286	implemented. Meanwhile, under the auspices of global climatic changes, the harmful effects of
287	dry-hot wind disasters was correlated with the physiological structural features of agricultural crops,
288	developmental processes, and degrees of regional environmental effects. Therefore, the influences of
289	human activity, different policies on field management, and the resistances of winter wheat with
290	different qualities should also be taken into consideration (Jung et al., 2010;Zhu et al., 2012).
291	Dry-hot wind generally occurs at the late growth period of winter wheat and poses relatively severe
292	threats to winter wheat at the grouting stage (Chen et al., 2001; Zhao et al., 2012). When it occurs,
293	dry-hot wind exerts relatively huge effects on the yield, 1000-seed weight, and quality of winter wheat

(Benzian et al., 1986; Li et al., 2003). These impacts are in accordance with the results of research that

295 indicate that in Shangqiu, the average annual number of days of dry-hot wind occurrence was 296 significantly negatively correlated with winter wheat yield per unit area. However, numerous factors 297 influence the yield of winter wheat, including biological technologies, investment in agricultural 298 production (including agricultural chemicals and fertilizers), and other meteorological factors. In this 299 research, only the effects of dry-hot wind on winter wheat yield were analyzed. In the future, such 300 effects should be comprehensively analyzed in combination with other factors, including biological 301 gene technologies, crop cultivars, and crop diseases and pests. 302 5. Conclusions 303 The range and frequency of dry-hot wind exhibited tended to decline in the recent 50 years. The 304 significant inter-annual variations were related with the corresponding meteorological conditions of 305 temperature, moisture and wind speed. The most serious damages of light and severe dry-hot wind 306 both occurred in 1960s while the damages appeared less in the 1980s and the last decade, which could 307 be also explained by the corresponding temperature, moisture and wind speed conditions. The 308 comprehensive effects of daily maximum temperature, relative humidity at 2:00 pm, and wind speed 309 at 2:00 pm showed that in Shangqiu, disasters of dry-hot wind in winter wheat generally exhibited a 310 general trend of gradual decline, and a remarkably decreased wind speed played the main role in 311 mitigating the overall disasters of dry-hot wind. Annual average days of dry-hot wind had a great 312 influence on the yields of winter wheat in Shangqiu.

313 Acknowledgements

The study was supported by the Natural Science Foundation of China (41140019; 41501263); Programs of Science and
Technology of Henan Province, NO. 132102310357 and NO. 142102310299. The authors wish to thank anonymous
reviewers for their useful comments and suggestions on the manuscript.

317 References

- 318 Asseng, S., Ewert, F., Martre, P., Rötter, R. P., Lobell, D.B., Cammarano, D., Kimball, A.A., Ottman, M.J., Wall, G.W.,
- 319 White, J.W., Reynolds, M., Alderman, P.D., Prasad, P.V.V., Aggarwal, P.K., Anothar, J., Basso, B., Biernath, C.,
- 320 Challinor, A.J., De Sanctis, G., Doltra, J., Fereres, E., Garcia-Vila, M., Gayler, S., Hoogenboom, G., Hunt, L.A.,
- 321 Izaurralde, R., Jabloun, M., Jones, C.D., Kersebaum, K.C., Koehler, A.K., Muller, C., Naresh, K.S., Nendel, C.,
- 322 O'Leary, G., Olesen, J.E., Palosuo, T., Priesack, E., Rezaei, E.E., Ruane, A.C., Semenov, M.A., Shcherbak, I.,
- 323 Stockle, C., Stratonovitch, P., Streck, T., Supit, I., Tao, F.L., Thorburn, P., Waha, K., Wang, E., Wallach, D., Wolf,
- 324 J., Zhao, Z.G., and Zhu, Y.: Rising temperatures reduce global wheat production. Nature Climate Change, 5,
- **325** 143-147, 2015.
- 326 Basso, B., and Ritchie, J. : Temperature and drought effects on maize yield. Nature Climate Change, 4, 233, 2014.
- 327 Benzian, B., Lane, P. W.: Protein concentration of grain in relation to some weather and soil factors during 17 years
- 328 of english winter-wheat experiments. J. Sci. Food Agr., 37, 435-444,1986.
- 329 Chen, H. L., Zou, C. H., Fu, X. J, and Guan, W.Y.: The EOF analysis on wheat dry-hot-wind in Henan province. J Nat.
- **330** Resour., 16,59-64,2001.
- 331 Cheng, L., Zhang, Z. H., Chang, J.: Analysis on the change of dry-hot wind hazard for winter wheat in last 47 years in
- Henan province. Chinese J. Agrometeorol., 32, 456-460, 2011.
- 333 Ge, Q. S., and Zheng, J. Y.: Progress on the study of the forcing and impacts of the warm periods in China during the
- 334 past 2000 years. Geogr. Res., 31, 769-769,2012.
- 335 Huo, Z. G., Jiang, Y., Li, S. K., and Bai, Q.F.: Disaster grade of dry-hot wind for wheat. Beijing: China Meteorological
- **336** Press, 1-3, 2007.
- 337 IPCC. Working Group I Contribution to the IPCC Fifth Assessment Report, Climate Change 2013: The Physical
- 338 Science Basis: Summary of for Policymakers [R/OL]. [2013-10-28].

339	Http://www.climatechange2013.org/images/uploads/WGIAR5-SPM_Approved27Sep2013.pdf
340	IPCC. Climate Change 2007: the Physical Science Basis, Summary for Policy Makers. Paris: IPCC WGI Fourth Report,
341	195-199,2007.
342	Jin, Y. H., Lian, S. H., Zhou, D. W., and Xu, J.B., Peng, C.: Study on change of relative humidity in semiarid region
343	under global climate change. J. Northeast Norm. U., 41, 134-138, 2009.
344	Jung, M., Reichstein, M., Ciais, P., Seneviratne, S.I., Sheffield, J., Goulden, M.L., Bonan, G., Cescatti, A., Chen, J.Q.,
345	Richard de Jeu, Dolman, A.J., Eugster, W., Gerten, D., Gianelle, D., Gobron, N., Heinke, J., Kimball, J., Law,
346	B.E., Montagnani, L., Mu, Q.Z., Mueller, B., Oleson, K., Papale, D., Richardson, A.D., Roupsard, O., Running, S.,
347	Tomelleri, E., Viovy, N., Weber, U., Williams, C., Wood, E., Zaehle S., and Zhang, K.: Recent decline in the
348	global land evapotranspiration trend due to limited moisture supply. Nature, 467, 951-954,2010.
349	Li, Y. G., Jiang, G. M., Yang, J. C.: Effects of temperature on carbon and nitrogen metabolism, yield and quality of
350	wheat. Chinese J. Plant Ecol., 27, 164-169, 2003.
351	Liu, D. X., Sun, L. D., Ning, H. F.: Characteristics of dry-hot wind in Gansu province and its response to climate
352	change. J. Glaciol. Geocryol., 30, 81-86, 2008.
353	Liu, L., Liu, J. D., Wu, D. R., and Xu, Y.L.: Temporal and spatial variation of dry-hot windy days in North China under
354	the condition of climatic change in the future. Sc.Tech. Rev., 30, 24-27,2012.
355	Lobell, D. B., Schlenker, W., and Roberts, J. C.: Climate trends and global crop production since 1980. Science, 333,
356	616-620, 2011.
357	Lobell, D. B., Sibley, A., and Ortiz-Monasterio, J. I.: Extreme heat effects on wheat senescence in India. Nature
358	Climate Change, 2, 186-189,2012.
359	Pan, G X., Gao, M., Hu, G.H., Wei, Q.P., Yang, X.G., Zhang, W.Z., Zhou, G.S., Zou, J.W.: Issues and challenges on
360	mitigation of climate change impacts on china's future agriculture. J. Agro-Environ. Sci., 30, 1707-1712,2011.

- 361 Piao, S. L., Ciais, P., Huang, Y., Shen, A.H., Peng, S.S., Li, J.S., Zhou, L.P., Liu, H.Y., Ma, Y.C., Ding, Y.H.,
- 362 Friedlingstein, P., Liu, C.Z., Tan, K., Yu, Y.Q., Zhang, T. Y., and Fang, J. Y.: The impacts of climate change on
- 363 water resources and agriculture in China. Nature, 467,43-51,2010.
- 364 Pongratz, J., Lobell, D. B., Cao, L. and Caldeira, K.: Crop yields in a geo-engineered climate. Nature Climate Change,
- 365 2,101-105,2012.
- 366 Qin, D. H.: Climate change: regional response and prevention and mitigation of disaster. Beijing: Science Press,
- **367** 17-19,2009.
- 368 Shi, B. L., Zhu, X. Y., Li, H. Z., and Zhang, Y.: Impacts of climate change on winter wheat yield in central plains of
- 369 China: case study of Shangqiu. Geogr. Res., 31, 14-22,2012.
- 370 Sridhar, V., Loope, D. B., Swinehart, J. B., Mason, J.A., Oglesby, R.J., and Rowe, C.M.: Large wind shift on the Great
- 371 Plains during the medieval warm period. Science, 313,345-347,2006.
- 372 Tan, F. Y., Wang, J. L., Song, Y. B., and Shen, S.H.: Analysis of changing characteristics of agricultural climate
- resources over last 45 years in north China plain. Chinese J. Agrometeorol., 30,19-24,2009.
- 374 Wang, Z. W., Miao, A. M., Li, Y. F., Chen, Y.B., Li, H.L., and Wang, S.F.: Prediction of wheat dry-hot wind in
- 375 Changzhi city. Chinese J. Agrometeorol., 31, 600-606,2010.
- 376 Wei, F. Y.: Modern climatic statistical diagnosis and forecasting technology (Second Edition). Beijing: China
- 377 Meteorological Press, 69-72,2007.
- 378 Wu, D. R., Liu, J. D., Liu, L., and Jiang, C.Y.: Regionalization study on dry-hot windy days in North China plain using
- 379 CAST model. Sci. Tec. Rev., 30, 19-23, 2012.
- 380 Xiong, W., Lin, E. D., Jiang, J. H., Li, Y., and Xu, Y.L.: An integrated analysis of impact factors in determining China's
- future grain production. Acta Geogr. Sinica, 65, 397-406,2010.
- 382 Zhao, J.F., Zhao, Y.X., Guo, J.P., and Fang, S.B.: Spatial-temporal changes of dry-hot wind for winter wheat in

383	Huanghuaihai plain during the past 50 years. Agr. Sci. China, 45, 2815-2825, 2012.
384	Zhou, C. H., Wan, Q., Huang, S. F., and Chen, D.Q.: A GIS-based approach to flood risk zonation. J. Geogr. Sc., 55,
385	15-23,2000.
386	Zhu, Q., Jiang, H., Peng, C. H., Liu, J.X., Fang, X.Q., Wei, X.H., Liu, S.R., and Zhou, G.M.: Effects of future climate
387	change, CO2 enrichment, and vegetation structure variation on hydrological processes in China. Gl. Planet.
388	Change, 80-81, 123-135, 2012a.
389	Zhu, X. Y., Liu, J., Shi, B. L., and Zhang, Y.: Variation of climate suitability of winter wheat in central plains under the
390	condition of climate warming. Geogr. Res., 31, 1479-1489, 2012b.