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Abstract. Rainfall is one of the most important factors controlling landslide deformation and failure. State-of-art 

rainfall data collection is a common practice in modern landslide research world-wide. Nevertheless, in spite of the 

availability of high-accuracy rainfall data, it is not a trivial process to diligently incorporate rainfall data in 10 

predicting landslide stability due to large quantity, tremendous variety, and wealth multiplicity of rainfall data. Up to 

date, most of the pre-process procedure of rainfall data only use mean value, maxima and minima to characterize the 

rainfall feature. This practice significantly overlooks many important and intrinsic features contained in the rainfall 

data. In this paper, we employ cluster analysis (CA)-based feature analysis to rainfall data for rainfall feature 

extraction. This method effectively extracts the most significant features of a rainfall sequence and greatly reduced 15 

rainfall data quantities. Meanwhile it also improves rainfall data availability.  

For showing the efficiency of using the CA characterized rainfall data input, we present three schemes to input 

rainfall data in back propagation (BP) neural network to forecast landslide displacement. These three schemes are: 

the original daily rainfall, monthly rainfall, and CA extracted rainfall features. Based on the examination of the root 

mean square error (RMSE) of the landslide displacement prediction, it is clear that using the CA extracted rainfall 20 

features input significantly improve the ability of accurate landslide prediction.  

1 Introduction 

Landslides are one of the major geological hazards cause major life loss and socio-economic disruption each year 

world-widely. An early warning system for potential landslide in steep mountainous area with landslide-prone 

segments is an effective approach to avoid property damage and casualties. To make the early warning systems 25 

function effectively and reliably, information on the behaviour of the landslide, including the sliding mechanics, the 

potential triggering mechanism, and the critical precursors of slope stability for issuing emergency warnings are the 

major parameters to be sought. The most critical parameters for early warning output are creep velocity, 

displacement magnitude, and instability prediction (Sassa et al. 2009). 

Rainfall is not only a crucial index of landslide analysis but also a significant factor in triggering landslides. At 30 

present time, rainfall data collected is very accurate and we can perform statistical analysis based on daily or even 

real-time data. However, considering that rainfall data becomes more accurate and thus data volume becomes 
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bigger, it is difficult to directly use them in landslide analysis. In previous research work, Cepe da et al. (2010) 

applied rainfall data to estimation of landslides probability in spatial prediction. Rossi et al. (2012) discussed the 

rainfall threshold of regional landslide in spatial prediction. Melillo et al. (2014) proposed an algorithm calculating 35 

rainfall threshold for different landslides. Many people have also studied triggering mechanism between rainfall and 

landslide, (e.g., Lee et al. 2014; Li and He 2012). These researches are aimed at the rainfall in a particular landslide, 

and the relationship between rainfall threshold triggered by landslide and the probability of landslide, or rainfall 

probability in regional landslide and the probability of landslide, with no processing of data. With the recognition of 

the importance of rainfall data growing, attaching greater significance to the information contained in data, some 40 

scholars have begun to study the rainfall data itself. Saito et al. (2010) divided rainfall of landslide in shallow 

condition into two types: short-cycle, high-intensity (SH) and long-time, low-intensity (LL), putting forward the fact 

that different types influenced landslide differently. These studies have shown the fact that rainfall data is worthy of 

digging deeply information they contain to disclose the effects of different rainfall types on landslides. 

More innovative data-processing and information fusion methods such as Feature Analysis, Feature Extraction 45 

etc., have emerged and been applied in the processing of landslide monitoring data in recent years. These new 

approaches can be classified into two categories. The first one is to use the feature extraction of radar detection data 

to forecast and analyse landslide. For example, Wang et al. (2010) applied airborne-radar data to topographic 

patterns extraction, and predictions about geological disasters such as landslides. The other category is to acquire 

relevant information and deformation of landslide through feature extraction of remote sensing images of landslide. 50 

For example, Kurtz et al. (2014) acquired the boundary and configuration about landslide through the feature 

extraction of very high resolution images. Through studies like this, we can draw a conclusion that the feature 

extraction methods of landslide are mainly concentrated on the processing of radar data and remote sensing data. 

Very few studies involved analysis of rainfall data in monitoring landslide.  

According to previous research work, rainfall data plays a very crucial role in landslide deformation and failures, 55 

especially in the cases of rainfall-landslide type. Utilizing some methods processing data, such as quantitative and 

extreme methods, are not capable to dig out the important information contained in data. Although recently scholars 

have started to categorize data and conduct information mining for rainfall data, there is a lack of substantial 

researches in this direction. In this paper, we performed feature extraction method to the rainfall data which is 

categorized as clustering analysis. With this approach the computation stress is greatly reduced; meanwhile, critical 60 

information can be extracted from the data. Finally, this approach is applied and validated to a data set acquired at a 

cleavage-parallel landslide in the Three-Gorges Reservoir area. 

The rest of this paper is organized as follows. First, the feature analysis of rainfall data, the relationship between 

rainfall and evaporation capacity, as well as their influences on rainfall and landslides are discussed. Characteristic 

indices of rainfall, such as rainfall quantity, duration, and the number of raining days in a given period of time will 65 

be introduced. The explanations of how to use clustering analysis to categorize rainfall data, including selection of 

feature and weight analysis of data are followed. Then, the basic of Clustering Analysis is briefly introduced. 

Finally, application of feature analysis and feature extraction of rainfall data fora bedding landslide monitoring in 

The Three-Gorges area between July 2003 and December 2008 is presented as a case study. Land slide displacement 
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prediction using BP neural network for the rainfall input in the form of raw data, monthly rainfall, and feature 70 

extracted rainfall are compared. The final results demonstrated that the one using featured rainfall has the best 

forecasting with root mean square error (RMSE). 

2. Methodology 

For the cleavage-parallel landslide, rainfall is a very important factor. In the existing studies, simple numerical 

methods, such as the cumulative rainfall method (Bi et al. 2004), the average annual rainfall method (Liao et al. 75 

2011), or the 1-day, 3-day, or 7-day maximum rainfall method (Huang 2011) were used to extract rainfall features. 

These works overlooked some of the important information contained in the rainfall data. It is usually admitted that 

continuous and heavy rainfalls are necessary conditions in triggering landslides in qualitative analysis; however, 

intermittent rainfall or sporadic rainfall can also have certain non-negligible influence on the stability of landslide. 

There are other factors in rainfall affecting landslides, including evaporation, volume, number of times, and 80 

duration. These factors are discussed below in details. 

2.1 The relationship between rainfall and evaporation 

In the studies of rainfall effect on landslides, evaporation is a factor that cannot be simply ignored. The monthly 

average of evaporations is highly variable, and the changes can be very dramatic. For example, in the Three-Gorges 

Reservoir area, the evaporation is only about 1 mm/d in winter and spring, but may reach 7 mm/d in a hot summer 85 

day. When the evaporation is high and the rainfall is low, rainfall has very little effects on landslide. Usually we 

would deem rainfall volume less than evaporation invalid in this study. In other words, we cannot talk about rainfall 

alone without taking into the count of the evaporation.  

In this study, we will calculate the average daily evaporation in every month. If the daily rainfall is greater than 

the average daily evaporation in the month, we would consider it is valid rainfall data. If the daily rainfall is less 90 

than or equal to the average daily evaporation, we would consider it is invalid rainfall data and the actual rainfall 

data for that day will be deemed zero. 

2.2 Statistics of rainfall by times 

Up to date, most studies carry out statistics analysis of rainfall based on precipitation per month or per day, or select 

extreme values in a month or in a few days for landslide analysis. Such statistics do not consider different rainfall 95 

types, and it is hard to show the features of rainfalls. In our study, we calculate the number of raining days. When 

the rainfall volume is less than or equal to the evaporation, we set effective rainfall to zero. According to the 

situation of rainfall and slope, we set a threshold N (with N=1, 2, 3). If there was no rainfall in the following N days 

after the first rainfall occurs, we count it as one time rainfall. We use clustering analysis to categorize all the data 

after counting the rainfall times. By doing so, we are able to extract the features of each type, and conduct analysis 100 

in a more accurate way. 

Nat. Hazards Earth Syst. Sci. Discuss., doi:10.5194/nhess-2015-320, 2016
Manuscript under review for journal Nat. Hazards Earth Syst. Sci.
Published: 19 January 2016
c© Author(s) 2016. CC-BY 3.0 License.



4 

 

2.3 The features of the rainfall data: rainfall volume, rainfall duration and rainfall time 

We need take the effects of different rainfall types on the landslides into account when we determine the factors in 

categorization. Saito et al. (2010) considered the amount of rainfall and rainfall time for the purpose of 

categorization. In a qualitative analysis, these two factors are usually considered. Based on previous statistics, we 105 

emphasize on rainfall duration which can distinguish continuous rainfall from intermittent rainfall. These two 

different types of rainfall could have different effects on landslide analysis. In this study, we categorize rainfall 

based on these factors: rainfall volume, rainfall duration and rainfall time. 

Rainfall volume is an important index in categorization. In this research, we select the average daily rainfall 

volume, which is the rainfall volume divided by the number of days the particular rainfall lasts. Based on our 110 

comparative study, the average daily rainfall volume represents the rainfall intensity better and thus differentiates 

the strong rainfall from continuous rainfall with less ambiguity. The second index we have chosen is rainfall lasting 

days. It is an important index as it represents both the rainfall volume and the rainfall duration. The third index is the 

proportion of the raining days in the total number of rain days, which is a crucial index to distinguish continuous 

rainfall from intermittent rainfall. In addition, since we use millimetre as the measurement unit, the range of rainfall 115 

volume data will be (0, 80), the scope of raining days being (0, 6) and (raining time, duration) we need to scale the 

data to warrant that they are on the same quantitative level, through multiplication by particular coefficients. This 

will make sure high cohesion and low coupling among the data after categorization. After categorization, we select 

each kind of rainfall as a particular feature and extract the data, using the BP neural network to demonstrate the 

effectiveness of feature extraction. 120 

Based on the feature analysis, we will need to categorize rainfall data. This paper adopts the clustering analysis 

method. We use the K-means algorithm to categorize rainfall data and we follow the rule of cluster analysis: high 

cohesion and low coupling in the analysis process. We try to ensure maximum similarity in same types and 

maximum dissimilarity in different types after categorization. We need to place those important features in 

prominent positions in selections of parameters and weight, in order to distinguish different types of rainfall data. 125 

First, a brief summary of the K-means clustering algorithm is presented below. 

2.4 Clustering Analysis using the K-means clustering algorithm 

Currently, K-means algorithm is the most widely used clustering algorithm. The basic idea of this algorithm is to use 

iteration to search K clusters and we can obtain minimum overall error using the mean of a set of K clusters to 

represent the corresponding samples. The algorithm is simple and fast to converge. The process follows the order 130 

using k-means algorithm. Firstly, we should select k objects as the initial centroid of k class. Then we categorize 

them according to the distance between the centroid and other objects. The centroid is then adjusted accordingly if 

there are new objects participating in the process. The process is repeated until the squared error converges. 

J = ∑ ∑ ‖𝑥𝑖
(𝑗)

− 𝑐𝑗‖
2

𝑛
𝑖=1

𝑘
𝑗=1          (1) 

Where J is the squared error of all objects, 𝑥𝑖 represent the data points, c𝑗 represents the centroid the j-th cluster. 135 
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The biggest drawback of K-means algorithm is that the choice of initial point greatly affects the final results. 

Different choice of initial points will directly affect the accuracy of categorization. In selecting the initial points, we 

need to follow the principle of the largest dissimilarity, which means the less similar the initial centroid are, the 

more accurate the subsequent division will be. Also the appropriate approach to choose initial points can accelerate 

the convergence speed of the algorithm. We will design the selection plan in this paper, selecting k initial points in 140 

order to make quadratic sum of distance of k initial points the largest. 

𝐿 = ∑ ∑ (𝑥𝑖 − 𝑥𝑗)2𝑘
𝑗=1

𝑘
𝑖=1          (2) 

We will select k nodes as the initial points in order to make L the largest in all selections. 

3 Application to the Baishuihe Landslide field data in the Three-Gorges Reservoir  

3.1 Geological background and data collection 145 

The Baishuihe Landslide is located in the south bank of the Yangtze River, 56 km away from the Three-Gorges 

Dam (Fig. 1). The landslide is located in the relatively wide open area of Yangtze River valley. It is a single, north-

facing, inclined cleavage-parallel slope. It is shaped like stairs to the Yangtze River. The rear edge (crown) is about 

410 meters high from the front edge (toe). The toe is at the 140-m water level of the Yangtze River. Both the left and 

right flank sides are surrounded by a bedrock ridge and the dip angle is about 30 degrees. It is about 600-m long in 150 

sliding direction and 700-m wide laterally. The average depth of the landslide is about 30 meters, and the total 

volume is about 12.6 million cubic meters. 

For monitoring the deformation of this landslide seven GPS monitoring benchmarks were built along three 

longitudinal profiles in the Yangtze River in June 2003 (the solid red squares with labels initiated by ZG). Later on 

in June 2005 four more GPS monitoring benchmarks have been added to the right part of the slide. There is a GPS 155 

reference point on each side of the flanks in the rock ridge. In order to better represent the landslide sliding 

incidence and verify our processing method of rainfall data, we select the displacement data of landslide monitoring 

point ZG93 as the experimental object for training and prediction of the neural network algorithm. 

3.2 Feature analysis of rainfall data 

We use the daily rainfall data from July 2003 to December 2008 (Fig. 2) in Zigui County, Hubei Province, China to 160 

conduct the analysis to seek the effects of rainfalls to landslide displacement of the Baishuihe Landslide.  

As can be seen from Fig. 2, rainfall in this region mainly concentrates in the summer months from April to 

September, and the heaviest rainfalls happen in July. During this period of 5 years and 7 months, the highest daily 

rainfall volume is 81.8 mm, occurred in June 2006; while the longest continuous rainfall occurred in July 2008, 

lasted for more than 11 days.  165 

Han et al. (2012) discussed the evaporation of Zigui area from 2001 to 2010. The average annual evaporation in 

Zigui County in the last decade is 937.0 mm, and the total evaporation between May and September is 668.5 mm, 

the monthly maximum is 187.8 mm, occurred in July. From October to next year’s April, the total evaporation is 

only 269.1 mm. We take 4 mm/d as the daily average of evaporation for May, June, August, September, 6.26 mm/d 
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 170 

Fig. 1. The location of the Baishuihe Landslide (the west most red open square) in the Three-Gorges Reservoir 

area (a); The locations of the GPS benchmarks (the red and magenta solid squares) for displacement monitoring in 

the Baishuihe Landslide (b); and the vertical geological cross-section of the Baishuihe Landslide along Profile I (c) 

 

for July, and 1.28 mm/d for October to April. By taking evaporation into account, when processing the rainfall data, 175 

if the daily average of evaporation is greater than the rainfall volume of a particular day, we consider the rainfall 

volume of that day to be zero. In other words, if rainfall volume is less than evaporation, it is deemed invalid 

rainfall. Only when the rainfall volume is higher than daily evaporation, the actual rainfall volume is used for data 

processing. 

In this analysis, we set interval threshold of rainfall N equals to 2; that is to say, if there is no effective rainfall for 180 
2 days, we consider the rainfall ends. If there is only one day without rainfall since the first raining day, we consider 

the rainfall is not over yet. The rain is over until there is no effective rainfall for 2 days. Based on this premise, the 
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Fig. 2. Annual rainfall data in terms of daily and cumulative precipitations for the period of January 2003 to 

December 2008 185 

 

total number of rainfalls is 211 from July 2003 to December 2008, most of which is single rain-day, accounting for 

112 events. More-than-one-day rainfalls account for 99 events. 

3.3 Feature extraction of Rainfall data and Categorization results 

After we sample the rainfall data based on the total number of rainfall events, we calculate average daily rainfall 190 

indices each rainfall event. To ensure the data of these three indices be on the same order of magnitude, the three 

features extracted are individually multiplied by a coefficient. The first index is the average daily rainfall volume r 

defined as: 

r =
𝑅

𝑑
𝑝1           (3) 

Where R is the total volume of a rainfall event, d is the number of raining days in this rainfall event, 𝑝1 is a 195 

coefficient equals to 0.1. The measuring unit is millimeter.  

The second index is the number of days of rainfall d. In our sample, its range is 1-6. So we will use the original 

data without scaling. 

The third index is the ratio of rainfall days over the continuous days T: 

T =
𝑑

𝐷
𝑝2           (4) 200 

Where d is the number of raining days, D is the total number of days during the particular rainfall event, and 𝑝2 is a 

scaling coefficient. According to our test, we can reach an optimal point of maximum cohesion and minimum 

coupling effect when 𝑝2 is set to be 11.  
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Fig. 3. The classified rainfall types based on cluster analysis: I: sporadic rainfall; II: long-duration rainfall; III: 205 

short-duration storms; and IV: long-duration intermittent rainfall 

 

Using the K-means clustering algorithm to calculate the parameters r, d and T for each of these 211 rainfall 

events, we can characterize the rainfall events into four clusters, as shown in Fig. 3 

To reduce the number of iterations and improve the clustering performance, four points are selected as the initial 210 

clustering centers based on the principle of maximum dissimilarity. These four initial points are C1=(0.13, 1, 11), 

C2=(0.52, 6, 11), C3=(7.51, 1, 11), C4=(2.45, 4, 7.33), respectively (see Fig. 3).  We represent these points in the 

form of (r, d, T). 

In the clustering process a new sample 𝑥𝑖  is added each time and use M = √∑ (𝑥𝑖𝑗 − 𝐶𝑖𝑗)3
𝑗=1  to calculate the 

distance between this point and the four cluster centers. Based on the minimum distance principle this new sample is 215 

assigned to the closest cluster. Add the samples sequentially to exhaust these 211 samples; and each of rainfall 

samples must belong to one of these four clusters. Next, update the clusters centers by the formula C𝑖 =
1

𝑛
∑ 𝑥𝑥∈𝐶𝑖

, 

calculate distance between each sample and the new cluster centers, and re-cluster it according to the distances. 
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Repeat this cluster center updating process until the clustering becomes stable. Finally, four cluster centers: (1.00, 

1.31, 11), (1.06, 3.42, 11), (4.23, 1.40, 11), and (1.69, 3.09, 7.99) are obtained. The above data are rounded to two 220 

decimals. There are 142 samples in the first cluster, 25 in the second cluster, 21 in the third cluster and 23 in the 

fourth cluster, as shown in Fig. 3. The first cluster (category) is characterized by low-rainfall, duration of 1-2 days, 

which are mainly the sporadic rainfalls (the red cluster in Fig. 3). The characteristics of the second type of rain are 

comparatively less volume, but with long duration and no interruption (the green cluster in Fig. 3). The third type of 

rainfall is characterized by short duration, usually 1-2 days, but the rainfall volume is very big (storms, the blue 225 

cluster in Fig. 3). Finally, the fourth type of rainfall is long duration with moderate rainfall volume and intermittent 

rainfall (the magenta cluster in Fig. 3).  

After categorization, rainfall volume is still the most important factor in causing the variations of displacement in 

the cleavage-parallel landslide. Therefore, we use rainfall volume as the feature for extraction, taking the total 

rainfall volume in the same category as the feature of that particular category. In displacement prediction as 230 

described later in this paper, we conduct statistics on the rainfall volume per month of each type of rainfalls. For 

example, in the period between August 16 and September 15, 2008, there were five events of effective rainfall. The 

five samples were measured using our (r, d, T) set at (0.98, 2, 11), (3.39, 2, 11), (3.68, 3, 11), (3.43, 1, 11) and (1.07, 

1, 11), respectively. Among this small sample set, there were 2 first-type rainfalls, 0 second-type rainfalls, 3 third-

type rainfalls, and 0 fourth-type rainfalls. The total rainfall volumes were 30.3, 0, 212.5, and 0 mm for each type of 235 

the rainfall respectively. Using feature extraction, the feature vector for rainfall in that month would be (30.3, 0, 

212.5, 0). 

3.4 Prediction of landslide displacement with BP neural network 

After the discussion of rainfall feature characterization and extraction with the clustering algorithm, we are ready to 

touch the major topic of the effect of rainfalls on landslide displacement. Using simple correlation just shown as Fig. 240 

4, one can find that the connection between rainfall and landslide displacement at the Baishuihe site is quite obvious. 

Nevertheless, more closed and quantitative examination is needed to enable us reach more definitive conclusion of 

this causality. 

To verify the effectiveness of feature extraction after using cluster analysis, we utilize BP neural network to 

forecast displacement for the follow three treatments of the rainfall data: 1) direct use of original rainfall data; 2) 245 

monthly average rainfall; and 3) rainfall data processed through cluster analysis and feature extraction. We use the 

rainfall data of the current month and the last month, along with the displacement of last month as the input to 

predict the displacement in the current month with BP neural network. We use only one hidden layer. And the node 

number is 𝑛1 with: 𝑛1 = √𝑛 + 𝑚 + 𝑎; where n is the input layer node number, m is the output layer node number; 

and a is a constant, which is set to be 2 in this work. 250 
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Fig. 4. The monthly rainfall in Zigui County and displacement recorded by GPS survey mark ZG93 at the 

Baishuihe site for the period of July 2003 to June 2008 

 255 

First, we use rainfall data and displacement data between July 2003 and December 2005 to train the BP neural 

network. Then we use the trained neural network to predict displacement between January 2006 and December 

2008. In the prediction process, once the prediction of the displacement of each month is finished, we use the newly 

obtained data to train the neural network again, and use the newly trained network for prediction of the displacement 

of next month. The prediction results are shown as Figs. 5 and 6; and the network structure(show as [input node 260 

number, hidden node number, output node number]); the errors of training; operation times of training and 

prediction by BP neural network is shown in Table 1. 

 

Table 1:  The root mean square error of training of and prediction by BP neural network 

 
Networ

k structure 

RMSE of 

training 

Operation times of 

training 

RMSE of 

prediction 

Direct use of daily 

rainfall 
[61,9,1] 0.000455022 1.21*109 322.85 

Monthly average 

rainfall 
[3,4,1] 1.084612 2.33*107 407.68 

Rainfall w/ 

feature extraction 
[9,5,1] 0.002425925 1.40*108 261.93 

 265 
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Fig.5. Landslide displacement prediction based on the 3 methods for accounting for the rainfall input 

 

Fig.6. Comparison of the displacement prediction errors based on the 3 types of rainfall input 

 270 
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As can be seen from the figures and tables above, when using the original daily rainfall volume data, we have too 

much data for the neural network to process. The operation time of training is as high as 1.21×109. The neural 

network, unfortunately, has very limited capability to handle large volume of data. There are too many possible 

matching internal functions in the training stage. Therefore, we have the smallest mean squared error in the training 

stage but not the best prediction among the three methods. 275 

In the second approach, when we use monthly average rainfall volume to forecast displacement, the volume of 

data to be processed is greatly reduced; but it is at the sacrifice of great reduction in rainfall features. In both the 

training and prediction stage, the results are the worst among the three approaches. 

In the third method, when we use rainfall data after feature extraction we also have much less volume of data for 

the neural network to process, by comparison with using the first rainfall type; meanwhile, it is not at the sacrifice of 280 

great reduction in rainfall features when compared with the second approach. Although we have slightly higher 

mean squared error in the training stage, but the prediction results are the best among the three methods. 

4 Result Discussion 

We have used 2 years and 7 months data to train the BP neural network and made 3-year forecasting of the 

displacement of landslides (Figs. 5 and 6). The results showed some important features. First, by using the proposed 285 

feature extraction approach of the rainfall data the computational burden for forecasting was greatly reduced. 

Second, the comparison of the predicted and the observed displacement indicates that using the feature extraction 

approach has led less forecasting error than using other rainfall reduction methods (e.g., monthly or 60-day average). 

Moreover, one more interesting feature is noteworthy. From the prediction results (Fig. 5) we can see that the 

forecasting capability has no significant decay with the increase of time accumulation. The prediction of the 290 

displacement peak in the summer of 2008 is even more precise than the prediction of the peak in summer 2007. This 

fact may lead us to suspect that either there are other significant contributing factor(s) to the displacement peak in 

2007; or there are more characteristics in the rainfall in summer 2007 that has not been essentially characterized by 

the current approach. After all, we can confidently state that the feature extraction approach is an important 

improvement in rainfall-landslide characterization process. 295 

5 Conclusions 

In this paper, we first analysed the characteristics of rainfall data, extracted the rainfall volume, rainfall duration and 

rainfall time characteristics for each single rainfall event. The amount of rainfall data is greatly reduced and the 

characteristics of rainfall data are substantially extracted. As the second step, the feature information of rainfalls was 

used in landslide displacement prediction. After feature extraction in rainfall data, we used the extracted features for 300 

the characteristic analysis and prediction to the Baishuihe landslide. We selected the basic method of BP neural 

network and applied it to three types of rainfall data include the characteristic value, the daily rainfall and monthly 

rainfall as input and forecast landslide displacement individually and compared the errors and efficiency. We can 
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reach a conclusion of that using the feature extracted rainfall input is superior to the rainfall types of daily rainfall 

and monthly average rainfall in landslide displacement prediction. 305 
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