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Abstract. Rainfall is one of the most important factors controlling landslide deformation and failures. State-of-art 9 

rainfall data collection is a common practice in modern landslide research worldwide. Nevertheless, in spite of the 10 

availability of high-accuracy rainfall data, it is not a trivial process to diligently incorporate rainfall data in predicting 11 

landslide stability due to large quantity, tremendous variety, and wealth multiplicity of rainfall data. Up to date, most 12 

of the pre-process procedure of rainfall data only use mean value, maxima and minima to characterize the rainfall 13 

feature. This practice significantly overlooks many important and intrinsic features contained in the rainfall data. In 14 

this paper, a feature extraction method using a cluster analysis (CA) is employed for the analysis of rainfall data. With 15 

this approach we effectively revealed the most significant features contained in a rainfall sequence and greatly reduced 16 

the burden for processing large amount of rainfall data. Meanwhile, it greatly improves the spectrum of usefulness of 17 

rainfall data. 18 

For showing the efficiency of using the CA characterized rainfall data input, we present three schemes to input 19 

rainfall data in back propagation (BP) neural network to forecast landslide displacement. These three schemes are: the 20 

original daily rainfall, monthly rainfall, and CA extracted rainfall features. Based on the examination of the root mean 21 

square error (RMSE) of the landslide displacement prediction, it is clear that using the CA extracted rainfall features 22 

input significantly improve the ability of accurate landslide prediction.  23 

1 Introduction 24 

Landslides are one of the major geological hazards causing major life loss and socio-economic disruption each year 25 

world-widely. An early warning system for potential landslides in steep mountainous area with landslide-prone 26 

segments is an effective approach to avoid property damage and casualties. To make the early warning system 27 

functions effectively and reliably, information about the behaviour of the landslides, including the sliding mechanics, 28 

the potential triggering mechanism and the critical precursors of slope stability for issuing emergency warnings, is the 29 

major parameter to be sought. The most critical parameters for early warning output are creep velocity, displacement 30 

and instability prediction (Sassa et al. 2009). 31 

Rainfall is not only a crucial index of landslide analysis but also a significant factor in triggering landslides. At 32 

present, rainfall data collected are very accurate and we can perform statistical analysis based on daily or even real-33 
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time data. However, considering that rainfall data becomes more accurate and thus data volume becomes larger, it is 34 

difficult to use them directly in landslide analysis. In previous research work, Cepeda et al. (2010) applied rainfall 35 

data to estimation of landslides probability in spatial prediction. Rossi et al. (2012) discussed the rainfall threshold of 36 

regional landslide in spatial prediction. Melillo et al. (2015) proposed an algorithm calculating rainfall threshold for 37 

different landslides. Many people have also studied triggering mechanism between rainfall and landslide, (e.g., Lee et 38 

al. 2016; Li and He 2012). These researches are aimed at the rainfall in a particular landslide, and the relationship 39 

between rainfall threshold and the probability of landslide, or rainfall probability in regional landslides and the 40 

probability of landslide, with no processing of data. With the recognition of the importance of rainfall data growing, 41 

attaching greater significance to the information contained in data, some scholars have begun to study the rainfall data 42 

itself. Saito et al. (2010) divided rainfall of landslide in shallow condition into two types: short-cycle, high-intensity 43 

(SH) and long-time, low-intensity (LL), putting forward the fact that different rainfall types influence landslides 44 

differently. These studies have shown that rainfall data is worthy of digging deeply the information they contain to 45 

disclose the effects of different rainfall types on landslides. 46 

More innovative data-processing and information fusion methods such as Feature Analysis, Feature Extraction etc., 47 

have emerged and been applied in the processing of landslide monitoring data in recent years. These new approaches 48 

can be classified into two categories. The first one is to use the feature extraction of radar detection data to analyze 49 

and forecast landslide. For example, Wang et al. (2010) applied airborne-radar data to topographic patterns extraction, 50 

and predictions about geological disasters such as landslides. The other category is to acquire relevant information 51 

and deformation of landslide through feature extraction of remote sensing images of landslide (Lee et al., 2001; 52 

Marcelino et al., 2009). Through studies like this, we can draw a conclusion that the feature extraction methods of 53 

landslide are mainly concentrated on the processing of radar data and remote sensing data. Very few studies involved 54 

analysis of rainfall data in monitoring landslide.  55 

According to previous studies (Finlay et al., 1997; Hu et al., 2011; Gariano et al, 2015), rainfall data plays a very 56 

crucial role in landslide deformation and failures, especially in the cases of rainfall-landslide type. Utilizing some 57 

methods processing data, such as quantitative and extreme methods, are not capable to dig out the important 58 

information contained in data. Although recently scholars have started to categorize data and conduct information 59 

mining for rainfall data, there is a lack of substantial researches in this direction. In this paper, we performed a feature 60 

extraction method to the rainfall data which is categorized as clustering analysis. With this approach the computation 61 

stress is greatly reduced; in the meanwhile, critical information can be extracted from the data. Finally, this approach 62 

is applied and validated to a data set acquired at a cleavage-parallel landslide in the Three Gorges Reservoir area. 63 

The rest of this paper is organized as follows. First, the feature analysis of rainfall data, the relationship between 64 

rainfall and evaporation capacity, as well as their influences on rainfall and landslides are discussed. Characteristic 65 

indices of rainfall, such as rainfall quantity, duration, and the number of raining days in a given period of time will be 66 

introduced. The explanations of how to use clustering analysis to categorize rainfall data, including selection of feature 67 

and weight analysis of data are followed. Then, the basis of Clustering Analysis is briefly introduced. Finally, 68 

application of feature analysis and feature extraction of rainfall data for a bedding landslide monitoring in The Three 69 

Gorges area between June 2003 and December 2008 is presented as a case study. Landslide displacement prediction 70 
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using back propagation (BP) neural network with the rainfall input in the form of raw data, monthly rainfall, and 71 

feature extracted rainfall are compared. The final results demonstrated that the one using featured rainfall has the best 72 

forecasting with root mean square error (RMSE). 73 

2. Methodology 74 

For the cleavage-parallel landslides, i.e., the landslides whose formation cleavage plane and therefore the slip surface 75 

is parallel to topographic slope, rainfall is a very important factor controlling the onset of slipping. In the existing 76 

studies, simple numerical methods, such as using the cumulative rainfall (P (mm)) (Bi et al. 2004), the average monthly 77 

rainfall (MMP (mm), the average annual rainfall (MAP (mm)) (Liao et al. 2011), or the 1-day, 3-day, or 7-day 78 

maximum rainfall method (Huang 2011) were proposed for extracting rainfall features. These works overlooked some 79 

of the important information contained in the rainfall data. It is usually admitted that continuous and heavy rainfalls 80 

are necessary conditions in triggering landslides in qualitative analysis; however, intermittent rainfall or sporadic 81 

rainfall can also generate certain non-negligible influence on the stability of landslides. There are other factors in 82 

rainfall affecting landslides, including evaporation, volume, number of times and duration. These factors are discussed 83 

below in details. 84 

2.1 The relationship between rainfall and evaporation 85 

In the studies of rainfall effect on landslides, evaporation is a factor that cannot be simply ignored. The monthly 86 

average of evaporation is highly variable, and the changes can be very dramatic. For example, in the Three Gorges 87 

Reservoir area, the evaporation is only about 1 mmd-1 in winter and spring, but may reach 7 mmd-1 in hot summer 88 

days. When the evaporation is high while the rainfall is low, rainfall has very little effect on landslides (Wu, 2014). 89 

Usually we would deem rainfall volume less than evaporation invalid in this study. In other words, we cannot talk 90 

about rainfall alone without taking evaporation into account.  91 

In this study, we will calculate the average daily evaporation in every month. If the daily rainfall is greater than the 92 

average daily evaporation in the month, we would consider it valid. Or the actual rainfall data for that day will be 93 

deemed zero. Nevertheless, we would like to point out that the daily evaporation value is calculated by simple division 94 

of the monthly value with the number of days in that month. This is the most practical way we can do, due to the lack 95 

of more detailed supplementary meteorological observations in this area.  96 

2.2 Statistics of rainfall by times 97 

Up to date, most studies carry out statistical analysis of rainfall based on precipitation per month or per day, or select 98 

extreme values in a month or in a few days for landslide analysis (Bui et al, 2012; Du et al., 2013). For example, 99 

Crozier and Eyles (1980) used daily rainfall and established thresholds to compare terrain sensitivity and to assess the 100 

occurrence probability of landslide. Using daily rainfall data from Kuala Kenderong and Kg. Jeli along the Gerik-Jeli 101 

Highway, Lateh et al. (2013) analysed the correlation of landslide events and rainfall precipitation. The rainfall 102 

induced landslides was investigated by applying the cumulative rainfall method which comprises the reconstruction 103 
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of absolute antecedent rainfall for 20 landslide events. However, such statistics did not consider the differences within 104 

rainfall types, and it is hard to show the features of rainfalls. In our study, we calculate the number of raining days. 105 

When the rainfall volume is less than or equal to the evaporation, we set effective rainfall to zero. Given the rainfall 106 

conditions, we set a threshold N (with N=1, 2, 3). If a rainfall ends with more than N non-rainy days followed, it can 107 

be considered one rainfall event. We use clustering algorithm to categorize all the data after counting the rainfall 108 

events. By doing so, we are able to extract the features of each type, and conduct analysis in a more accurate way. 109 

2.3 The features of the rainfall data: rainfall volume, rainfall duration and rainfall time 110 

The effects of different rainfall types of landslides need to be taken into consideration when determining factors in 111 

categorization. Saito et al. (1965) considered the amount of rainfall and rainfall time for the purpose of categorization. 112 

In a qualitative analysis, these two factors are usually considered. Based on previous statistics, we emphasize on 113 

rainfall duration which can distinguish continuous rainfall from intermittent rainfall. These two different types of 114 

rainfall could cause different effects on landslides. In this study, we categorize rainfall based on three factors: rainfall 115 

volume, rainfall duration and rainfall time. 116 

Rainfall volume is an important index in categorization. In this research, we select the average daily rainfall volume, 117 

which is the rainfall volume divided by the number of days the particular rainfall lasts. Based on our comparative 118 

study, the average daily rainfall volume represents the rainfall intensity better and thus differentiates the strong rainfall 119 

from continuous rainfall with less ambiguity. The second index we have chosen is rainfall lasting days. It is an 120 

important index as it represents both the rainfall volume and the rainfall duration. The third index is the proportion of 121 

the raining days in the total number of rain days, which is a crucial index to distinguish continuous rainfall from 122 

intermittent rainfall. In addition, since we use millimetre as the measurement unit, the range of rainfall volume data 123 

will be (0, 80), the scope of raining days being (0, 6) and (raining time, duration) we need to scale the data to warrant 124 

that they are on the same quantitative level, through multiplication by particular coefficients. Based on our numerical 125 

tests, the choice of the above values is capable to secure high cohesion and low coupling among the data after 126 

categorization. After categorization, we select each kind of rainfall as a particular feature and extract the data, using 127 

the BP neural network to demonstrate the effectiveness of feature extraction. 128 

Undoubtedly, similar rainfall events tend to generate similar effects on the stability of landslides, which is consistent 129 

with the basic connotation of cluster algorithm. Therefore, this paper employs a widely validated cluster algorithm, 130 

K-means, to categorize rainfall data with the purpose of digging out revealing the hidden information (Steinley, 2006). 131 

The K-means method is the most matured method in clustering analysis (Steinley, 2006; Hartigan and Wong, 2013). 132 

A brief introduction of the K-means clustering algorithm is presented below. 133 

2.4 Clustering Analysis using the K-means clustering algorithm 134 

Like other cluster algorithms, K-means also shares the basic idea that to search for K clusters through iteration which 135 

can minimize intra-class distance while maximize inter-class distance. Details of K-means procedure can be found in 136 

the flow chart shown in Fig. 1. As for the stopping criteria, it is usually set as that the center of each cluster does not 137 

move significantly after several iterations. The mathematical principle of K-means is expressed as Eq. (1). 138 
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In Eq. (1), the numerator corresponds to the overall intra-class distance, and the denominator is the overall inter-class 140 

distance. The purpose of K-means is to search for a set of centers c which minimize the cost function L. 141 

The algorithm is simple, fast to converge, as shown in the flow chart of Fig. 1 below. However, the selection of 142 

initial centers greatly affects the algorithm’s performance. The select strategy for initial centers not only has an impact 143 

on the accuracy of categorization, but also contributes significant to the converge rate. While selecting the initial 144 

centers, we need to follow the principle of the largest dissimilarity, i.e., the least similarity the initial centers should 145 

share. In this paper, a select strategy as Eq. (2) is chosen for determining the K initial centers. 146 
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In Eq. 2, D is the total distance (dissimilarity) the k data points share. The larger the D is, the higher probability that 148 

these k data points are in the different classes. 149 

 150 

 151 

Figure 1: The flow chart of the K-means algorithm. 152 
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3 Application to the Baishuihe Landslide field data in the Three Gorges Reservoir  153 

3.1 Geological background and data collection 154 

The Baishuihe Landslide is located in the south bank of the Yangtze River, 56 km away from the Three Gorges Dam 155 

(Fig. 2). The landslide is located in the relatively wide open area of Yangtze River valley. It is a single, north-facing, 156 

inclined cleavage-parallel slope on the Yangtze River terrace. The rear edge (crown) is about 410 m high from the 157 

front edge (toe). The toe is at the 140 m water level of the Yangtze River. Both the left and right flank sides are 158 

surrounded by a bedrock ridge and the dip angle is about 30 degrees. It is about 600 m long in sliding direction and 159 

700 m wide laterally. The average depth of the landslide is about 30 m, and the total volume is about 12.6 million 160 

cubic meters. 161 

 162 

Figure 2. (a) The location of the Baishuihe Landslide (the west most red open square) in the Three Gorges Reservoir 163 

area; (b) The locations of the GPS benchmarks (the red and magenta solid squares) for displacement monitoring in 164 

the Baishuihe Landslide; (c) The vertical geological cross-section of the Baishuihe Landslide along Profile I.  165 
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 166 

For monitoring the deformation of this landslide, seven GPS monitoring benchmarks were built along three 167 

longitudinal profiles in the Yangtze River in June 2003 (the solid red squares with labels initiated by ZG). Later on in 168 

June 2005 four more GPS monitoring benchmarks were added to the right part of the landslide. There is a GPS 169 

reference point on each side of the flanks in the rock ridge. In order to better represent the landslide sliding incidence 170 

and verify our processing method of rainfall data, we select the monitoring point ZG93 as the experimental object for 171 

training and prediction of the neural network algorithm. The selection of ZG93 is based on: 1) It is roughly located at 172 

the center of the Baishuihe Landslide so that it is the most unlikely point to be contaminated by false alarm or local 173 

signals generated by boundary effect in those monitoring points close to landslide flanks; 2) Observational facts, as 174 

shown as the red curve and triangles in Fig. 3 below, support our selection for the fact that it is sensitive enough to 175 

catch the subtle displacement in the early stage of the monitoring period (prior to the end of 2007) on one hand; and 176 

behaved as the average of all the point after rapid change occurred in May 2007 on the other hand. 177 

 178 

 179 

Figure 3: The cumulative displacement of monitoring points in the Baishuihe Landslide. 180 

3.2 Feature analysis of rainfall data 181 

We use the daily rainfall data from June 2003 to December 2008 (Fig. 4) in Zigui County, Hubei Province, China to 182 

conduct the analysis to seek the effects of rainfalls to landslide displacement of the Baishuihe Landslide.  183 

As can be seen from Fig. 4, rainfall in this region mainly concentrates in the summer months from April to 184 

September, and the heaviest rainfalls happen in July. During this period of 5 years and 7 months, the highest daily 185 

rainfall volume is 81.8 mm, occurred in June 2006; while the longest continuous rainfall occurred in July 2008, lasted 186 

for more than 11 days.  187 
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Han et al. (2012) discussed the evaporation of Zigui area from 2001 to 2010. The average annual evaporation in 188 

Zigui County in the last decade is 937.0 mm, and the total evaporation between May and September is 668.5 mm, the 189 

monthly maximum is 187.8 mm, occurred in July. From October to next year’s April, the total evaporation is only 190 

269.1 mm. We take 4.0 mmd-1 as the daily average of evaporation for May, June, August, September, 6.3 mmd-1 for 191 

July, and 1.3 mmd-1 for October to April. By taking evaporation into account, when processing the rainfall data, if the 192 

daily average of evaporation is greater than the rainfall volume of a particular day, we consider the rainfall volume of 193 

that day to be zero. In other words, if rainfall volume is less than evaporation, it is deemed invalid rainfall. Only when 194 

the rainfall volume is higher than daily evaporation, the actual rainfall volume is used for data processing. 195 

In this analysis, we set interval threshold of rainfall N = 2; that is to say, if there is no effective rainfall for 2 days, 196 

we consider the rainfall ends. If there is only one day without rainfall since the first raining day, we consider the 197 

rainfall is not over yet. The rain is over until there is no effective rainfall for 2 days. Based on this premise, the total 198 

number of rainfalls is 211 from June 2003 to December 2008, most of which are single rain-day, accounting for 112 199 

events. More-than-one-day rainfalls account for 99 events. 200 

 201 

 202 

Figure 4. Annual rainfall data in terms of daily and cumulative precipitations for the period from June 2003 to 203 

December 2008. 204 

 205 

We have further analysed the rainfall data by getting the average monthly column chart as shown in Fig. 5 below, 206 

along with the Empirical Cumulative Distribution Function (ECDF) for the duration and cumulative rainfall as Fig. 6 207 

(a and b). The results confirmed that the duration is basically 1-2 days, and the rainfall amount is 2-15 mm for each 208 

rainfall event. 209 

 210 
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 211 

Figure 5. The average monthly rainfall column chart for the period of 2003-2008. 212 

 213 

   214 

Figure 6. The ECDF plots of the cumulative rainfall and the duration for rainfall events. 215 

 216 

Table 1. Cumulative Rainfall from 2003 to 2008. 217 

Year Cumulative Rainfall (mm) 

2003 646.30 

2004 909.22 

2005 890.50 

2006 943.20 

2007 1130.97 

2008 1172.80 

 218 
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3.3 Feature extraction of Rainfall data and Categorization results 219 

After we sample the rainfall data based on the total number of rainfall events, we now can characterize the average 220 

daily rainfall by using three indices for each rainfall event. These three indices are the average daily rainfall volume 221 

r, the number of days of rainfall d, and the ratio of rainfall days over the contiguous days T. To ensure the data of 222 

these three indices be on the same magnitude, the three features extracted will be multiplied separately by some 223 

coefficients p.  224 

The first index (the average daily rainfall volume r) is defined as: 225 

r =
𝑅

𝑑
𝑝1           (3) 226 

where R is the total volume of a rainfall event, d is the number of raining days in this rainfall event, 𝑝1 is a scaling 227 

coefficient close of 0.1. The measuring unit is millimeter.  228 

The second index (the number of days of rainfall d) has a range of 1-6 in our sample. The original data can be used 229 

without any scaling. 230 

The third index (the ratio of rainfall days over the continuous days T) can be defined as: 231 

T =
𝑑

𝐷
𝑝2           (4) 232 

where d is the number of raining days, D is the total number of days during the particular rainfall event, and 𝑝2 is 233 

another scaling coefficient. According to our test, we can reach an optimal point of maximum cohesion and minimum 234 

coupling effect by setting 𝑝2 = 11.  235 

 236 

Figure 7. The classified rainfall types based on cluster analysis: I: sporadic rainfall; II: long-duration rainfall; III: 237 

short-duration storms; and IV: long-duration intermittent rainfall. 238 
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 239 

Using the K-means clustering algorithm to calculate the parameters r, d and T for each of these 211 rainfall events, 240 

we can characterize the rainfall events into four clusters. 241 

To reduce the number of iterations and improve the clustering performance, four points are selected as the initial 242 

clustering centers based on Eq. (2). These four initial points are C1=(0.13, 1, 11), C2=(0.52, 6, 11), C3=(7.51, 1, 11), 243 

C4=(2.45, 4, 7.33), respectively (Fig. 7). We represent these points in the form of (r, d, T). 244 

In the clustering process a new sample 𝑥𝑖  is added each time and use M = √∑ (𝑥𝑖𝑗 − 𝐶𝑖𝑗)3
𝑗=1  to calculate the 245 

distance between this point and the four cluster centers. Based on the minimum distance principle, this new sample is 246 

assigned to the closest cluster. Add the samples sequentially to exhaust these 211 samples; and each of rainfall samples 247 

must belong to one of these four clusters. Next, update the cluster centers by the equation C𝑖 =
1

𝑛
∑ 𝑥𝑥∈𝐶𝑖

, calculate 248 

distance between each sample and the new cluster centers, and re-cluster it according to the distances. Repeat this 249 

process until the stopping criteria is met. Finally, four cluster centers: (1.00, 1.31, 11), (1.06, 3.42, 11), (4.23, 1.40, 250 

11), and (1.69, 3.09, 7.99) are obtained. The above data are rounded to two decimals. There are 142 samples in the 251 

first cluster, 25 in the second cluster, 21 in the third cluster and 23 in the fourth cluster, as shown in Fig. 7. The first 252 

cluster (category) is characterized by low-rainfall, duration of 1-2 days, which are mainly the sporadic rainfalls (the 253 

red cluster in Fig. 7). The characteristics of the second type of rain are comparatively less volume, but with long 254 

duration and no interruption (the green cluster in Fig. 7). The third type of rainfall is characterized by short duration, 255 

usually 1-2 days, but the rainfall volume is very big (storms, the blue cluster in Fig. 7). Finally, the fourth type of 256 

rainfall is long duration with moderate rainfall volume and intermittent rainfall (the magenta cluster in Fig. 7).  257 

Rainfall volume is the most important factor in causing the variations of displacement in the cleavage-parallel 258 

landslide (Gariano et al., 2015). Therefore, after categorization, we use rainfall volume as the feature for extraction, 259 

taking the total rainfall volume in the same category as the feature of that particular category. In displacement 260 

prediction as described later in this paper, we conduct statistics on the rainfall volume per month of each type of 261 

rainfalls. For example, in the period between August 16 and September 15, 2008, there were five events of effective 262 

rainfall. The five samples were measured using our (r, d, T) set at (0.98, 2, 11), (3.39, 2, 11), (3.68, 3, 11), (3.43, 1, 263 

11) and (1.07, 1, 11), respectively. Among this small sample set, there were 2 first-type rainfalls, 0 second-type 264 

rainfalls, 3 third-type rainfalls, and 0 fourth-type rainfalls. The total rainfall volumes were 30.3, 0, 212.5, and 0 mm 265 

for each type of the rainfall respectively. Using feature extraction, the feature vector for rainfall in that month would 266 

be (30.3, 0, 212.5, 0). 267 

3.4 Prediction of landslide displacement with BP neural network 268 

After the discussion of rainfall feature characterization and extraction with the clustering algorithm, we are ready to 269 

touch the major topic of the effect of rainfalls on landslides displacement. Using simple correlation just shown as Fig. 270 

8 below, one can find that the connection between rainfall and landslide displacement at the Baishuihe site is quite 271 

obvious. Nevertheless, more closed and quantitative examination is needed to enable us reach more definitive 272 

conclusion of this causality. 273 
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The back propagation (BP) network is a kind of multilayer feedforward neural network. It is a widely tested and 274 

validated error back propagation algorithm. The network consists of an input layer, a number of hidden (middle) layers 275 

and an output layer. Based on Kolmogorov's theorem, a three layer BP neural network can achieve approximation for 276 

any arbitrary nonlinear functions, so that we choose BP neural network to carry out this quantitative examination. 277 

To verify the effectiveness of feature extraction after using cluster analysis, we utilize BP neural network to predict 278 

displacement with the following three treatments of the rainfall data: 1) original daily rainfall (mm); 2) monthly total 279 

rainfall (mm); and 3) the extracted rainfall feature processed through cluster analysis and feature extraction. We use 280 

the rainfall data of the current month and the last month, along with the displacement of last month as the input to 281 

predict the displacement in the current month with BP neural network. We use only one hidden layer. And the node 282 

number is 𝑛1 with: 𝑛1 = √𝑛 + 𝑚 + 𝑎; where n is the input layer node number, m is the output layer node number; 283 

and a is a constant, which is set to be 2 in this work. 284 

 285 

Figure 8. The monthly rainfall in Zigui County and displacement recorded by GPS survey mark ZG93 at the Baishuihe 286 

site for the period from June 2003 to December 2008. 287 

 288 

First, we use rainfall data and displacement data between June 2003 and December 2005 to train the BP neural 289 

network. Then we use the trained neural network to predict displacement between January 2006 and December 2008. 290 

In the prediction process, once the prediction of the displacement of each month is finished, we use the newly obtained 291 

data to train the neural network again, and use the newly trained network for prediction of the displacement of next 292 

month. The prediction results are shown as Figs. 9 and 10; and the network structure; the errors of training; operation 293 

times of training and prediction by BP neural network is shown in Table 2. 294 

 295 
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Table 2. The root mean square error of training of and prediction by BP neural network. 296 

 
Network structure 

[n, n1, m] 

RMSE of 

training 

Operation times of 

training 
RMSE of prediction 

Daily rainfall of 60 days [61,9,1] 4.55E-04 1.21E+09 3.23E+02 

Monthly total rainfall [3,4,1] 1.08E+00 2.33E+07 4.08E+02 

Extracted rainfall feature [9,5,1] 2.43E-03 1.40E+08 2.62E+02 

 297 

 298 

Figure 9. Landslide displacement prediction based on 3 types of rainfall input. 299 



14 

 

 300 

Figure 10. Comparison of the displacement prediction errors based on 3 types of rainfall input. 301 

 302 

Figure 11: The q-q plot for landslide displacement prediction based on 3 types of rainfall input. 303 

 304 
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As can be seen from the Figs. 9, 10 and Table 2, when using the original daily rainfall of 60 days, we have too much 305 

data for the neural network to process. The operation time of training is as high as 1.21E+09. The neural network, 306 

unfortunately, has very limited capability to handle large volume of data. There are too many possible matching 307 

internal functions in the training stage. Therefore, we have the smallest mean squared error in the training stage but 308 

not the best prediction among the three methods. 309 

In the second approach, when we use monthly total rainfall to forecast displacement, the volume of data to be 310 

processed is greatly reduced; but it is at the sacrifice of great reduction in rainfall features. In both the training and 311 

prediction stage, the results are the worst among the three approaches. 312 

In the third method, when we the extracted rainfall feature after feature extraction, we also have much less volume 313 

of data for the neural network to process, by comparison with using the first rainfall type; meanwhile, it is not at the 314 

sacrifice of great reduction in rainfall features when compared with the second approach. Although we have slightly 315 

higher mean squared error in the training stage, but the prediction results are the best among the three methods. 316 

The q-q plot shown in Fig. 11 is an exploratory graphical expression used to check the validity of a distributional 317 

assumption for data sets. It is employed for analyzing the relationship between observed displacement data and the 318 

predictions with three types of rainfall input. If the observed and the predicted data sets have the same distribution, 319 

the fitted line in the q-q plot will approach y=x. As can be seen from Fig. 11, the fitted curve of the data points from 320 

the prediction with extracted rainfall feature is closer to the line y=x with slope of 1; while the prediction with monthly 321 

total rainfall is overestimated and the prediction with daily rainfall of 60 days is underestimated. It indicates that the 322 

extracted rainfall feature represents real rainfall better than daily rainfall of 60 days and monthly rainfall in landslide 323 

displacement prediction. 324 

4 Result Discussion 325 

After analysing the precipitation and evaporation of the region studied, rainfall data is categorized by times based on 326 

three indexes: rainfall volume, rainfall duration and rainfall time. As for different study areas, category numbers should 327 

vary accordingly with the geological characteristics, so that features extracted can be more in line with the real 328 

situation. 329 

Some scholars mentioned the effect of different rainfall types on landslide before (Brand et al. 1984; Glade et al. 330 

2000; Glade 2000). However few study conducted the analysis and discussion of the comprehensive effect mixed-331 

type rainfall contributes on landslide. In this paper, a tentative research is proposed and reasonable results are obtained. 332 

Four cumulative rainfall volume of each category in each month are used as the monthly rainfall feature in the 333 

prediction for landslide displacement, by which the influence of category sequence and non-raining days within each 334 

rainfall event can be circumvented. Study considering non-raining days within each rainfall event requires a large 335 

amount of penetration and evaporation data, which is our further study focus. 336 

We used 2 years and 7 months data to train the BP neural network and 3 years for forecasting of the displacement 337 

of landslides (Figs. 9 and 10). The results showed some important features. First, by using the proposed feature 338 

extraction approach of the rainfall data, the computational burden for forecasting was greatly reduced. Second, the 339 
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comparison of the predicted and the observed displacement indicates that using the feature extraction approach has 340 

led less forecasting error than using other rainfall reduction methods (e.g., monthly total rainfall or daily rainfall of 60 341 

days). Moreover, one more interesting feature is noteworthy. From the prediction results (Fig. 9) we can see that the 342 

forecasting capability has no significant decay with the increase of time accumulation. The prediction of the 343 

displacement peak in the summer of 2008 is even more precise than the prediction of the peak in summer 2007. This 344 

fact may lead us to suspect that either there are other significant contributing factor(s) to the displacement peak in 345 

2007; or there are more characteristics in the rainfall in summer 2007 that has not been essentially characterized by 346 

the current approach. After all, we can confidently state that the feature extraction approach is an important 347 

improvement in rainfall-landslide characterization process. 348 

5 Conclusions 349 

In this paper, we first analysed the characteristics of rainfall data, extracted the volume, duration and onset time for 350 

each single rainfall event. With this process, the amount of rainfall data is greatly reduced and the characteristics of 351 

rainfall data are substantially preserved and extracted. As the second step, the featured information of rainfalls was 352 

used in landslide displacement prediction. We used the extracted features for the characteristic analysis and prediction 353 

to the Baishuihe Landslide in the Three Gorges area on the Yangtze River. The BP neural network method is applied 354 

to three types of rainfall data: the characteristic value, the daily rainfall, and the monthly rainfall, as the input into BP 355 

neural network to forecast the landslide displacement, respectively. Comparisons of the errors and efficiency for these 356 

three approaches are made and the main conclusions are described as follows:  357 

1) We have carried out statistical analysis on original rainfall events. By taking this approach we preserved the 358 

rainfall details as much as possible, while reduced the burden of processing large amount of raw data. 359 

2) We introduced the K-means cluster algorithm for those rainfall events sharing maximum similarity. 360 

3) The four cumulative rainfall volumes of K categories in each month are used as the monthly rainfall feature. 361 

4) Finally, our analysis results showed that using the rainfall feature extracted can lead to a better performance in 362 

landslide displacement prediction. 363 
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