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 8 

Abstract 9 

As the risk for a forest fire is largely influenced by weather, evaluating its tendency under a 10 

changing climate becomes important for management and decision making. Currently, biases 11 

in climate models make it difficult to realistically estimate the future climate and consequent 12 

impact on fire risk. A distribution-based scaling (DBS) approach was developed as a post-13 

processing tool that intends to correct systematic biases in climate modelling outputs.  In this 14 

study, we used two projections, one driven by historical reanalysis (ERA40) and one from a 15 

global climate model (ECHAM5) for future projection, both having been dynamically 16 

downscaled by a regional climate model (RCA3). The effects of the post-processing tool on 17 

relative humidity and wind speed were studied in addition to the primary variables 18 

precipitation and temperature. Finally, the Canadian Fire Weather Index system was used to 19 

evaluate the influence of changing meteorological conditions on the moisture content in fuel 20 

layers and the fire-spread risk. The forest fire risk results using DBS are proven to better 21 

reflect risk using observations than that using raw climate outputs. For future periods, 22 

southern Sweden is likely to have a higher fire risk than today, whereas northern Sweden will 23 

have a lower risk of forest fire. 24 

 25 

1 Introduction 26 

A forest fire is an uncontrolled fire event. It can exert a destructive influence on ecosystems, 27 

affecting climate and weather (Flannigan, 2009). In summer 2014, the largest forest fire in 28 

Sweden since at least the mid-1900s occurred in the county of Västmanland, causing damages 29 
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valued at around 1 billion SEK (Skydd & Säkerhet, 2014). On the other hand, it also has 1 

beneficial effects on wilderness areas where some species depend on prescribed fire for 2 

growth and reproduction (Brockway and Lewis, 1997) and on fire hazard reduction 3 

(Fernandes and Botelho, 2003). 4 

Forest fire activity is strongly affected by two factors: weather conditions and availability of 5 

fuels. The weather conditions directly and indirectly affect fire behaviour during both ignition 6 

and burning by influencing the fuel conditions, especially through the moisture content in the 7 

uppermost dead fuel (Fosberg and Deeming, 1971). Over the past century, global warming 8 

caused by an anthropogenic increase in greenhouse gases has shown its impact on present 9 

climate (IPCC, 2007). This is likely to have even more of an impact if these gases continue to 10 

increase with human activities. The changing climate will thus likely accelerate the water 11 

cycle on a global scale, subsequently intensify the uneven distribution of precipitation, and 12 

cause more extreme weather conditions locally (IPCC, 2013). Studying the changes in fuel 13 

conditions caused by changing climate is hence important for decision making, both for 14 

public authorities and in forest management. 15 

In an international context, the forest fire risk in Sweden is limited. Owing to efficient fire 16 

suppression, during years with average or low fire hazard the total annually burnt area of 17 

forest is commonly not exceeding 5000 ha since 1950s. However, during the high-hazard 18 

years the burnt area can be substantial, for instance, the fires in Gotland (1992, 1 000 ha), 19 

Tyresta (1999, 450 ha), Bodträskfors (2006, 1900 ha), Hassela (2008, 1300 ha) and the most 20 

recent one in Sala (2014, ~14000 ha) that caused damages valued at around 1 billion SEK 21 

(http://sv.wikipedia.org/wiki/Skogsbranden_i_V%C3%A4stmanland_2014 and Skydd & 22 

Säkerhet, 2014). Today, most of the ignitions are human caused, followed by lightning 23 

ignition (Granström, 1993). Extreme weather condition such as the conditions prior and 24 

during the Sala fire (i.e., extremely low relative humidity, strong wind speed and extreme 25 

high temperature) is also one of causes that make fuels conductive to ignition and spread 26 

(Fendell and Wolff, 2011; Ryan, 2002). Dendrochronological fire studies have indicated a 27 

large temporal and spatial variability in fire activity in Sweden during the last 500 years 28 

(Niklasson and Granström, 2000; Drobyshev et al., 2014). A recent study by Drobyshev et al. 29 

(2014) reveals that a geographical division between one northern and one southern region 30 

with different characteristic fire activity could be found around 60° N. 31 
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In climate change studies, global climate models (GCMs) and regional climate models 1 

(RCMs) are widely used tools to simulate climate at different scales. RCMs in general 2 

outperform GCMs in many aspects due to 1) a better representation of geographical features 3 

such as orography thanks to finer spatial resolution (typically at 25–50 km) and 2) a better 4 

description of physical processes by means of, e.g., sub-grid scale parameterisation and more 5 

detailed land surface schemes (Giorgi and Marinucci, 1996; Samuelsson et al., 2010). 6 

However, the mismatch between RCM-simulated and observed climatological conditions still 7 

cannot be neglected. A study conducted by the Swedish Commission on Climate and 8 

Vulnerability (SOU, 2007) demonstrated the limitations of using raw data from a climate 9 

model for forest fire danger estimation, as historically simulated fire danger levels were 10 

consistently lower compared to risk levels estimated using meteorological observations. This 11 

discrepancy is very likely caused by biases in driving variables from climate model outputs.  12 

One conventional approach to tackle climate model bias is the Delta Change method (DC) by 13 

which an observed data time series is perturbed with a projected climate change (Flannigan et 14 

al., 1991; Stocks et al., 1998; Hay et al., 2000). Typically, the changes in long-term 15 

climatology on a monthly or seasonal basis are superimposed on the observation records over 16 

the entire frequency distribution, i.e., for both extreme and normal events. This approach is 17 

easy to implement and keeps exactly the same change in climatological mean in 18 

meteorological variables as that in climate projection, but with two limitations. The first 19 

limitation is that only average change in monthly variables is incorporated. The variance in 20 

future climate comes either from observed data or from perturbed data, but it does not directly 21 

come from climate projection. The second limitation is that changes in regional climate (i.e., 22 

one grid cell) are assumed to be the same for all locations in the same region, which is very 23 

unlikely to be true. Another widely used approach in forest fire risk studies is built on the 24 

statistical relationship of weather conditions at the point scale (i.e., single station) and at its 25 

corresponding climate model grid cell (Mearns et al., 1995; Logan et al., 2004). The approach 26 

has been applied in a number of case studies (Bergeron and Flannigan, 1995; Wotton et al., 27 

2003). By this approach, various correction processes were designed for different variables: 1) 28 

precipitation frequency and humidity magnitude are corrected using the statistical relationship 29 

identified under present climate; 2) noon temperature is simply estimated as modelled 30 

maximum daily temperature minus 2.0 ºC; 3) wind speed comes directly from model output 31 

and remains uncorrected. This approach makes model output more realistic for use in fire risk 32 

studies; however, it merely treats a small part of the bias in variables in a simple way. That is, 33 
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the frequency of rainy days is corrected but not precipitation magnitude; humidity variables 1 

are corrected in terms of long-term mean but without consideration of variance; no treatment 2 

is carried out for bias in modelled maximum daily temperature and wind speed.  3 

Recently, the quantile-mapping approach has been developed to correct bias in climate model 4 

outputs. The approach mainly focuses on correcting the biases in precipitation (and/or 5 

temperature) from RCMs to better reflect observations via mapping either parametric or non-6 

parametric cumulative distribution functions (CDFs) to observed and projected climate 7 

variables (Piani et al., 2010; Themeßl et al., 2010; Yang et al., 2010). A few studies have 8 

focused on correcting RCM bias in other hydrologically relevant meteorological variables, 9 

e.g., relative humidity, wind speed and solar radiation (Wilcke et al., 2013). 10 

This study presents work regarding the forest fire risk in Sweden under changing climate. The 11 

forest fire model, observations and climate data are introduced in section 2. The systematic 12 

bias originated from RCMs is removed by one of the quantile-mapping approaches, the 13 

distribution-based scaling (DBS), which is extended to support bias correction of wind speed 14 

and relative humidity (See section 3). Following the experimental set-up in section 4, the 15 

newly developed approach was calibrated and validated, and then further applied to the 16 

impact study. Ultimately, an impact study was carried out via two RCM simulations, one 17 

reanalysis-driven historical run for method development and validation under present climate 18 

and one GCM-driven future projection for estimating the climate change impact. Their 19 

corresponding results are discussed in section 5. At the end of the paper, some conclusions 20 

and remarks on future development are given in section 6. 21 

 22 

2 Fire risk model and data 23 

2.1  Fire Weather Index System (FWI) 24 

The Fire Weather Index system, FWI, is a major component of the Canadian Forest Fire 25 

Weather Danger Rating System (Stocks et al., 1989). It was originally designed for a 26 

standardised forest type in Canada and has lately been used for fire danger estimation by 27 

many other countries (Viegas et al., 1999; Carvalho et al., 2008). 28 

The details of the application of the FWI can be found in Van Wagner (1987) and Dowdy et 29 

al., 2010. Here, only the key features of each component are summarized. The FWI system 30 
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tracks daily moisture content variations in three stratified fuel layers in forests (Fig. 1), coded 1 

as primary indices: the Fine Fuel Moisture Code (FFMC), the Duff Moisture Code (DMC) 2 

and the Drought Code (DC). For every index, two phases are considered: rainfall phase and 3 

drying phase. They are determined by a threshold value given as an empirical value in the 4 

FWI literature for the purpose of each index: 0.5 mm rainfall for the FFMC, 1.5 mm rainfall 5 

for the DMC and 2.8 mm for the DC. Any rainfall below the threshold value is to be ignored 6 

in individual layers. As the three layers differ in fuel type and in their connections to the 7 

weather conditions in the proximity, they play different roles in potential fire behaviour. What 8 

they have in common are the influencing factors. They are present as moisture content in the 9 

fuel, drying rate and weather states of being dry or wet (i.e., rainy or non-rainy day). The 10 

details of the application of the FWI can be found in Van Wagner (1987).  11 

2.1.1 Fine fuel Moisture Code Primary indices: FFMC, DMC and DC 12 

The uppermost surface layer, described by the FFMC, responds rapidly to the short-term 13 

changes in weather conditions that are described by precipitation, P [mm], temperature, T [º 14 

C], relative humidity, H [%] and wind speed, W [km h-1]. It is the most important layer in the 15 

FWI and other fire risk models when assessing fire risk.  16 

( ) )2.147/(5.591012.147 +−×= mcmcFFMC  (1) 17 

where mc [%] is moisture content in the fuel. The drying rate, k [log10 % day-1], is computed 18 

as a function of temperature, relative humidity and wind speed by following Eqs. (2) and (3): 19 
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where kd indicates the log drying rate at the normal temperature of 21.1 ºC and kw, is named as 24 

the log wetting rate, which accounts for the process of atmospheric wetting at high humidity. 25 

Considering the temperature effect, the final log drying (or wetting) rate is computed as 26 

shown in Eq. (4). Finally, mc in the fuel is calculated by Eqs. (5) or (6), depending on the 27 
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difference between the magnitude of the moisture content in fuel and the equilibrium moisture 1 

content, E [%], determined by relative humidity and temperature in the environment: 2 

dk
dd EmcEmc −−+= 10)( 0   (5) 3 

wk
ww mcEEmc −−+= 10)( 0  (6) 4 

where Ed and Ew are the equilibrium moisture contents for drying and for wetting and mc0 5 

stands for previous day’s moisture content.  6 

2.1.2 Duff Moisture Code  7 

The middle layer is a loosely compacted organic layer on the forest floor. The DMC was 8 

designed to reflect its average moisture content. It gives an indication of the slow-drying 9 

forest fuel consumed in burning. This layer is influenced by all input variables except wind 10 

speed. Again, the moisture content, mc [%], is an indicator to reflect the moisture condition in 11 

the fuel.: 12 

)20ln(43.4372.244 −−= mcDMC  (7) 13 

Differently from the computation in the FFMC layer, the drying rate, k [log10 % day-1], in the 14 

DMC layer is calculated as proportional not only to temperature and the deficit in relative 15 

humidity but also to the day length varying with season, Le [hours]., as shown in Eq. (8):  16 

610)100)(1.1(894.1 −−+= eLHTk  (8) 17 

2.1.3 Drought Code  18 

The bottom layer is a very slow-drying compact organic fuel in the deeper soil layers. Its 19 

corresponding code, DC, reflects the influence of long-term drying on the fuels (Turner, 20 

1972). It is used to detect extremely long dry conditions in lower layers of deep duff, which 21 

may result in persistent smouldering. DC is calculated as: 22 

)/800ln(100 QDC =  (9) 23 

where Q [0.01 inch] is the moisture equivalent. 24 

This layer does not have direct contact with the atmosphere. It only absorbs moisture through 25 

rainfall and dries out through the evapotranspiration process. Therefore, its final code 26 

computed from moisture equivalent is a function of the previous code value and potential 27 

evapotranspiration, V [0.01 inchmm/day]: 28 
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VDCDC 5.00 +=  (10) 1 

fLTV ++= )8.2(36.0  (11) 2 

where Lf [-]  is the seasonal daylength adjustment and DC0 stands for previous day’s DC value.  3 

2.1.42.1.2 Integral indices: Build-Up Index, Initial Spread Index and Fire 4 

Weather Index  5 

The Build-Up Index (BUI) and the Initial Spread Index (ISI) are two intermediate sub-indices 6 

computed based on the aforementioned primary moisture indices. They were designed to 7 

describe the fire behaviours, the available fuel and the rate of fire spread for combustion. BUI 8 

is built up by the combination of the DMC and the DC. It indicates all fuel available for 9 

consumption during the burning process. ISI is computed by combining moisture content in 10 

the fine fuel and W using a wind function, f (W), and a fine fuel moisture function, g (FFMC) 11 

(Van Wagner, 1987). It is used as an indicator for the potential rate of fire spreading.  12 

)()(208.0 FFMCgWfISI =  (12) 13 

)4.0/(8.0 DCDMCDCDMCBUI +×=   (13) 14 

Ultimately, the Fire Weather Index (FWI) is an integrated function of a function of ISI, h 15 

(ISI), and a function of ISI, l (BUI), to represent fire intensity as energy output rate per unit 16 

length of fire front.  17 

)()( BUIlISIhFWI ×=   (14) 18 

2.1.52.1.3 Application of the FWI system in Sweden 19 

At SMHI, the original FWI system has been run operationally since 1998. Fire danger classes 20 

(FWIX) for different FWI ranges have, however, been corrected to be suitable for Swedish 21 

conditions (Table 1) (Gardelin, 1997). In Gardelin (1997), the FWI model was evaluated by 22 

comparison with forest fire statistics in the eastern parts of Kalmar and Jönköping County 23 

where 675 fires were reported from 1989 to 1994. Fire danger classes (FWIX) for different 24 

FWI ranges have, however, been corrected to be suitable for Swedish conditions (Table 1) 25 

(Gardelin, 1997). Since 1999 Tthe system is used to make nationwide fire risk forecasts at 11 26 

x 11 km resolution during the fire season from April to October. The estimated fire risks serve 27 

as the basis for general forest fire warnings to the public, rescue services and emergency 28 
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centres in Sweden. Previous studies concluded that the original FWI system generally works 1 

well for Swedish conditions (Gardelin, 1997; Granström and Schimmel, 1998). Strong 2 

relationships between index levels (FFMC, DMC and DC) and measured moisture content 3 

were found. The relationships are highly varying depending on the fuel types. Additionally, 4 

the final FWI index well represented the forest fire statistics in terms of number of fires and 5 

burnt area for the forest fire-prone regions during past and present climate in Sweden. The 6 

FWI system is therefore chosen for climate change impact studies. 7 

2.2 Data 8 

Observations 9 

Data from meteorological stations with observed 24-h accumulated precipitation (P-obs) as 10 

well as temperature (T-obs), wind speed (W-obs) and relative humidity (H-obs) at 12UTC 11 

were compiled, covering a reference period from 1966 to 2005. They were extracted from the 12 

Swedish network of observation stations (see Fig. 21) with at least 30-year long 13 

measurements with less than 20% missing values in the reference period, to ensure coverage 14 

of various climate phenomenaasignificant statistical properties. The following requirements 15 

were considered: 1) geographically evenly distributed to represent most of the Swedish 16 

climatic regions; 2) observations of high quality. It should be emphasised that wind speed is 17 

inherently hard to measure in a consistent way over long time periods because the instruments 18 

are repositioned, nearby buildings are put up or torn down; forests grow up or get cut, etc. 19 

Nevertheless, some findings can be summarized by analysing the observations, which will be 20 

described in section 5.1.1.  21 

RCM simulations 22 

Two climate simulations, denoted as RCA3-ERA40 and RCA3-E5r3-A1B, were used in this 23 

study. They were both dynamically downscaled to 25 km resolution by the RCM, the RCA3, 24 

but driven by different large-scale forcing data as lateral boundaries. The RCA3 is the 3rd full 25 

release of the Rossby Centre Regional Climate model, developed at the Swedish 26 

Meteorological and Hydrological Institute (SMHI) (Samuelsson et al., 2010). For many near-27 

surface variables, the RCA3 represents the European climate well when compared to other 28 

RCMs (Hagemann et al., 2004).  29 
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The RCA3-ERA40 simulation uses the ERA40 reanalysis data as its boundary condition and 1 

covers the period from 1961 to 2000. It is assumed to represent the reality as represented by 2 

local observations and was therefore used to verify the methodology in this paper. The RCA3-3 

E5r3-A1B transient projection from 1961-2100 is based on the ECHAM5 GCM (Roeckner et 4 

al., 2006), forced with the IPCC emissions scenario A1B, an intermediate scenario with 5 

respect to the magnitude of future global warming (Nakicénović et al., 2000). In this 6 

experiment, the RCA3-E5r3-A1B projection was first evaluated for past climate and then 7 

used for future impact assessment. Within the ensemble of 16 climate projection studies by 8 

Kjellström et al. (2011), RCA3-E5r3-A1B represents projections in the small-to-medium 9 

range with respect to the expected future increase of both P and T. 10 

The same variables as those collected at observation stations were extracted for the following 11 

experiment. They are grid-averaged daily precipitation (P-raw), 2 m temperature (T-raw), 2 m 12 

relative humidity (H-raw) and 10 m wind speed (W-raw). Time series from the RCA3 grid 13 

cell covering each of the stations were used. 14 

 15 

3 RCM bias correction for fire risk modelling  16 

The DBS method is a parametric quantile-mapping approach. It aims to correct systematic 17 

bias in GCM/RCM outputs while preserving the temporal variability in meteorological 18 

variables resulting from climate projections over time. In DBS, as opposed to common non-19 

parametric quantile-mapping approaches, meteorological variables are fitted to appropriate 20 

parametric distributions that allow for generation of values outside the range of the reference 21 

period and thus simulation of previously unobserved conditions in future climate periods. 22 

The general form of the DBS approach is: 23 

[ ]ObsObsSimSim
Org
SimSimObs

Corr
Sim xFFx ϕγϕγ ,),,( ,

1−=       (1)(15) 24 

where γ and ϕ are distribution parameters estimated from the climate model (subscript Sim) 25 

and from the observations (subscript  Obs) by the Maximum Likelihood Estimator (MLE), the 26 

method of moments, iterative or other approximate methods; Org
Simx is the original output of 27 

variable x simulated by a climate model and Corr
Simx  is the result after correction. FSim and FObs

-1 28 

stand for the cumulative distribution function (CDF) and its inverse of a suitable parametric 29 

distribution for each variable of interest.  30 
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The distribution parameters of precipitation are estimated for every season, whereas the 1 

distribution parameters of other variables are estimated using a 31-day moving window for 2 

every Julian day, and fourier series are used to describe the distribution parameters over the 3 

year in a smooth way:  4 

 [ ]∑
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where a0, ak, bk, c0, ck and dk are the Fourier coefficients, t* is the day of the year; w equals 7 

2π/n, where n is the time units per cycle (in our case 365 days) and k stands for the nth 8 

harmonic. Theoretically, (t*/2 + 1) harmonics are able to represent a complete cycle perfectly, 9 

with the drawback of a potential overfitting of the data. Five harmonics have been found to be 10 

sufficient in Yang et al. (2010). 11 

3.1 DBS for P and T: an overview 12 

A detailed description of the DBS for P and T correction can be found in a previous study by 13 

Yang et al. (2010). In the following, only a summary is given.    14 

To tackle the common RCM bias in terms of the overestimated frequency of rainy days with 15 

small rainfall amount (i.e., wet frequency bias, “drizzle effect”) a cut-off value is identified as 16 

a threshold to correct the frequency of rainy days (P > 0.1 mm) in climate projections. Any 17 

drizzle, generated by the RCM model, with intensity smaller than the threshold is removed, 18 

and the day with the drizzle is treated as a dry day. Dry frequency bias, i.e., the tendency of 19 

RCMs to underestimate wet-day frequency, is rather uncommon in Europe but may occur, 20 

e.g., during summer in south-eastern Europe and in the Alps (Hagemann et al., 2004; Jacob et 21 

al., 2007). In the current DBS method, such wet-day deficit is handled by adding a small 22 

rainfall amount at the end of wet spells, starting with the longest ones, until the correct 23 

frequency is obtained. In-depth analysis and research work are progressing.  24 

After the precipitation frequency bias has been corrected, the remaining modelled 25 

precipitation is then transformed to match the distribution of observed precipitation. The full 26 

time series is divided into two partitions separated by the 95th percentile identified from sorted 27 

observation records and model simulation. This approach intends to capture the main 28 
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properties of normal low-to-medium-intensity precipitation as well as the high-intensity 1 

extremes. A double-gamma distribution, instead of a conventional gamma distribution, is 2 

accordingly implemented. Two sets of parameters – α, β (normal precipitation) and α95, β95 3 

(extremes) – are estimated by the Maximum Likelihood Estimator (MLE) from observations 4 

and from the RCM output in the reference period. The fitted scaling parameters are then 5 

applied to correct the RCM outputs for the entire projection period by Eq. (15). For impact 6 

studies in Europe, four seasons are normally used. They are winter (Dec-Feb), spring (Mar-7 

May), summer (Jun-Aug) and autumn (Sep-Nov).   8 

Daily temperature values are described using a Gaussian distribution. For every Julian day, 9 

the distribution parameters, µT and σT, are estimated from observations and RCM data. 10 

Considering the dependency between P and T, the statistics of temperature are calculated 11 

separately for wet days (i.e., rainy days) and dry days (i.e., non-rainy days). 12 

3.2 DBS for H and W: method development 13 

The approach for correcting H and W is similar to that for daily P and T. The factors used to 14 

scale H and W were defined conditioned on the location of the station and the season of 15 

interest. For wind speed scaling, the precipitation state (i.e. wet or dry) is considered as an 16 

influencing factor.  17 

Relative humidity is different than other variables in that its value is restricted to the interval 18 

of [0, 1]. To cope with this property, the commonly used Beta distribution (Yao, 1974) is 19 

chosen, the density distribution of which is:  20 

 11 )1(
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where p and q are the two parameters of the distribution and Γ is the gamma function. By 22 

different combinations of p and q, a wide range of distribution shapes maybe represented. The 23 

distribution parameters can be fitted by the method of moments using the equations below:  24 
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where µ and σ are the statistical mean and standard deviation of the data to be fitted.  27 
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The Beta density function is not analytically integrable; however, its cumulative probability, 1 

F, can be obtained through numerical methods by using the incomplete Beta function 2 

(Abramowitz and Stegun, 1984; Press et al., 1986).   3 

Wind speed is an atmospheric variable characterised by properties that are similar to 4 

precipitation, i.e., positive skewness and non-negative property. It is commonly described by 5 

the Weibull distribution (Pavia and O’Brien, 1986; Seguro and Lambert, 2000). Its density 6 

distribution is given as: 7 
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where the two parameters κ and λ are shape and scale parameters, respectively. The shape 9 

parameter, κ, describes numerous shapes with different magnitudes of positive skewness, 10 

while the scale parameter, λ, controls the stretch of the distribution.  11 

The Weibull distribution has several special forms when setting the shape parameter κ to 12 

different values. For instance, the Weibull distribution is identical to the gamma distribution 13 

when κ equals 1, and it is very similar to the Gaussian distribution when κ equals 3.6. It can 14 

also be transformed to be an Extreme Value Distribution (EVD) with location parameter µ = 15 

log (κ) and scale parameter σ = λ−1. Because of its particular properties, it can also be used to 16 

solve other distributions after transformation. The distribution parameters of the Weibull 17 

distribution are conventionally estimated using MLE. As its density function is analytically 18 

integrable, as expressed in Eq. (228), it is straight-forward to calculate the probability and 19 

solve the inverse function:  20 
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 22 

4 Experimental set-up and evaluation 23 

RCM-simulated P-raw, T-raw, H-raw and W-raw at 12 UTC were bias-corrected using 24 

observations from meteorological stations (see Section 3). Along with original outputs from 25 

RCMs and observed variables, the corrected variables were used to drive the FWI system for 26 

assessing forest fire danger. The internal variables (FFMC, DMC, DC) as well as the 27 



 13

integrated indices BUI, ISI, the final index (FWI), and the fire danger level (FWIX) were all 1 

used for evaluating the influence of the DBS approach.  2 

To validate the approach, 1966-1985 (20 years) was used as the calibration period for both 3 

simulations; 1986-2000 (15 years) was used as the validation period for the RCA3-ERA40 4 

simulation (as the reanalysis data i.e., ERA40 ends by 2000), and 1986-2005 (20 years) was 5 

used for the RCA3-R3E5-A1B simulation. Basic statistics such as the climatological mean 6 

(Avg) and the standard deviation (SD1) were calculated in both the calibration and validation 7 

periods. For P, the seasonal mean (Acc) is used to present its long-term mean. Because of 8 

discrete-continuous property of precipitation and wind speed, an additional statistic, the 9 

frequencies of rainy and windy days are computed to study how the model captures their 10 

properties. In the following, they are denoted as Freq-P (i.e. occurrence of days with rainfall 11 

amount larger than 0.1 mm) and Freq-Ws (i.e. occurrence of days with wind speed above 12 

0 m s-1). Moreover, a standard distance (SD2) was included to investigate the spatial variations 13 

of every variable.  It is computed as the standard deviation of the mean values of all stations. 14 

A larger value indicates a higher variability in space, and vice versa.  15 

Apart from that, how well climate models can capture the observed probability distribution of 16 

individual variables was also studied using a PDF Skill Score (SS) (Perkins et al., 2007). The 17 

SS is a quantitative assessment of goodness-of-fit in terms of probability distribution to 18 

evaluate the consistency between two data sets. The results reflect the agreement, with a 19 

perfect agreement resulting in an SS of 1.0 and a poor agreement in an SS close to 0. In this 20 

work, the SS is calculated from observation, raw and corrected RCM outputs. Its formula is 21 

expressed as in Eq. (23a9a) and (239b), where m is the number of bins used to calculate the 22 

PDF for a given variable per station, Zraw (and Zcorrected) is the probability in a given bin from 23 

model simulation before and after bias correction, respectively, and ZObs is the probability in a 24 

given bin from the observed data. 25 

( )∑=
m

Obsrawraw ZZSS
1

,min         (9a)(23a) 26 

( )∑=
m

Obscorrectedcorrected ZZSS
1

,min        (9b)(23b) 27 

All these statistics were calculated from the climate projections’ output before and after bias 28 

correction, and observations. For P, H and W, their relative differences in Avg were used for 29 

bias evaluation, whilst for T, the differences in Avg were used. In terms of the two SD (SD1 30 
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and SD2), the ratio of their values calculated from model outputs and from the observations 1 

was used to identify the differences in describing the variances.  2 

For future climate change (CC) assessment, the scaling parameters obtained from the 3 

reference periods (i.e., 1966–1995) were applied to individual variables for the future periods 4 

in climate projections. Subsequently, the corrected variables were used to run the FWI 5 

system. The transient future projections were divided into three 30-year time periods – 2011–6 

2040, 2041–2070, 2071–2100 – for analysing the climate change signals and influence of the 7 

DBS method on meteorological variables and further on the forest fire danger in near, 8 

intermediate and distant futures. The results for the period, 2071-2100, are to be presented in 9 

this paper. 10 

This paper focuses on the results for the period from March to November, a typical fire period 11 

for Europe. Thus, the three seasons MAM (Mar-May), JJA (Jun-Aug) and SON (Sep–Nov) 12 

are studied in the following. One station – Edsbyn – is used to illustrate the results from the 13 

DBS correction, and another station – Växjö – is used to present the climate change impacts. 14 

 15 

5 Results and discussion 16 

5.1 Evaluation for present climate  17 

5.1.1 Meteorological variables  18 

Sweden is characterised as a mixture of temperate and continental climate with four distinct 19 

seasons. The seasonal temperature varies on average from – 4 °C in winter (not shown here) 20 

to 18.3 °C in summer (see Table 2). Due to its large coverage in latitude, the temperature in 21 

Sweden varies greatly from north to south, with 12 ºC difference in winter temperature and 22 

6 ºC difference in summer temperature (not shown here). 23 

Precipitation in Sweden occurs throughout the whole year. In general, it often rains less in 24 

spring and winter, whereas it rains heavily in summer and autumn with stronger variability. 25 

The rainfall frequency in spring is in the same range as that in summer, but approximately 26 

21 % less compared to that in autumn; however, the accumulative precipitation amount in 27 

spring is much lower compared to the other two seasons (i.e. 42.8 % compared to summer and 28 

50.6 % compared to autumn), which implies drier conditions in spring (see Table 2 and Fig. 29 

32).   30 
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In terms of relative humidity, the distribution varies from season to season. On average, the 1 

relative humidity in Sweden appears to be relatively low in spring and summer (i.e., in the 2 

range of 55 – 65 %) and reaches its minimum value in summer. From autumn onward, its 3 

value continuously increases until its annual maximum in winter (see Table 2, Fig. 3 2 and 4 

43).    5 

Annual mean wind speed in Sweden varies between 2 and 5 m s-1, with an average of 4 m s-1. 6 

In southern Sweden it is generally high because this region is more exposed to westerly and 7 

south-westerly wind. Wind speed closer to the coast features stronger variability than that in 8 

the inner region. Wind speed in the inner regions of central Sweden such as Edsbyn is 9 

characterised as a general weak annual cycle with the weakest wind in winter (see Fig. 32).  10 

With respect to its spatial distribution (see SD2 in Table 2) precipitation is a localised 11 

variable, while the rest of the variables are largely influenced by large-scale effects. 12 

As reanalysis data (i.e., ERA40) is generally assumed to be the closest dataset to the real 13 

climate, the deviations from observations in the RCA3-ERA40 run are considered to mainly 14 

reflect RCA3 model bias. The main findings from a comparison between observed and 15 

RCA3-ERA40 simulated climate statistics include the following (see Tables 2 and 3):  16 

− The seasonal precipitation amount is generally overestimated for all three seasons, 17 

whereas variability is in general slightly lower than that of the observations (see Std1 18 

in Table 2). The climate model estimates the frequency of wet days with the lowest 19 

accuracy for summer, in which almost 100% bias was found in comparison to the 20 

observations; the overestimation in autumn was 66.7 % and in spring it was 80.8 %. 21 

The average SS had a value of 0.60. Again, the summer precipitation is the least 22 

accurately simulated, with an SS value of approximately 0.56 (See Table 3). 23 

Concerning spatial variability, modelled precipitation tends to be more unevenly 24 

distributed than observations in spring and summer, which is in contrast to the 25 

situation in autumn. 26 

− A cold bias appears during all fire seasons. The largest bias (-2.3 °C) was found in 27 

summer, whereas the lowest bias (-0.9 °C) appeared in autumn. This is also reflected 28 

by the SS being 0.80 for spring, 0.85 for autumn and 0.71 for summer (See Table 3). 29 

Similar to precipitation, the spatial variability at point stations is underestimated by 30 
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the climate model in autumn (-7.7 %), whereas it is overestimated by ~30 % in spring 1 

and summer. 2 

− The variability of relative humidity is in general well reproduced, being within -2.5 ~ 3 

+6.1 % of the observed variance. However, the magnitude in summer is overestimated 4 

by 18.8 %. The largest deviation of relative humidity is found in summer, followed by 5 

autumn and spring. The climate model generates more days with higher Rh-raw than 6 

in the observations. The high SS for spring (i.e., 0.81) indicates a good match between 7 

simulation and observation, but the skill scores for summer (0.72) and autumn (0.74) 8 

are relatively lower (See Table 3). Again, an overestimated spatial variability (i.e., 9 

148.4 % in spring and 36.4 % in summer) is found in the modelled data for the fire 10 

season except for autumn (-14.3 %).  11 

− Wind speed and its variance are evidently underestimated during all seasons of 12 

interest. Its distribution is positively skewed but with a larger proportion of low wind 13 

speeds and a smaller proportion of high wind speeds in the simulated data (Fig. 43). In 14 

the RCM run, Ws-raw of more than 6 m s-1 seldom occurs, which differs from those in 15 

the observations in which speeds up to 15 m s-1 occur. The SS is on average 0.70 (See 16 

Table 3). In contrast to the other variables, for modelled wind speed the SD² is 17 

significantly lower (~ -75%) than that in the observations.  Such a damped spatial 18 

variability is noted in all fire seasons, as shown in Table 2. 19 

− Summer is always the season with the largest bias. 20 

One source of bias is the mismatch of spatial scale between station data (point scale) and 21 

RCA3 grid cells (25×25 km). Compared to a GCM (~ 200 km) the spatial resolution of the 22 

RCMs is clearly more suited for approximating local conditions, but still the difference in 23 

statistical characteristics between point scale and averages over thousands of km² is huge for 24 

highly spatially varying variables, notably precipitation and wind. It should be emphasized 25 

that bias is also caused by measurement errors and uncertainties, e.g. precipitation undercatch, 26 

incorrect temperature observations in cold conditions and changing surroundings affecting 27 

wind gauges. 28 

Apart from that, the biases are also likely caused by limitations in the climate models’ process 29 

descriptions. Biases in precipitation may be linked to an overestimation of cloud fraction in 30 

mountainous areas (Willén, 2008), incorrectly solved convective triggering and lack of details 31 

in geographical information, which lead to unrealistic precipitation simulation. The cold bias 32 
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(~-2°C) in summer and in autumn over northern Europe may be partly because of an 1 

overestimation of cloud water by the RCA3, which leads to too much shortwave radiation 2 

being reflected and subsequently an underestimation of the incoming shortwave radiation at 3 

the surface (Willén, 2008). Additionally, the bias in relative humidity in summer may be due 4 

to overestimated cloud water that subsequently leads to an underestimation of maximum 5 

summer temperatures over Northern Europe (Samuelsson et al., 2010). In terms of wind 6 

speed, a general bias is noted when comparing model output to long-term climatological 7 

means. This can be attributed to the parameterization utilized in unresolved orography, and 8 

uncaptured small scale features, for instance, the influence of hills, lakes, valleys, etc.  9 

Furthermore, the incorrect seasonal wind speed variation generated by the climate model 10 

implies that the RCA3 model well captures large-scale forcing but no other influencing 11 

processes such as seasonal variations and atmospheric stability over land and water that 12 

largely influence the wind speed (Achberger et al., 2006). For inland stations, such as Edsbyn, 13 

the seasonal variation in stability over the land is smaller than that over the sea, which reduces 14 

the seasonal wind speed variation compared to stations close to the sea (Achberger et al. 15 

2006). However, it seems that Edsbyn was modelled as a coastal location where winter wind 16 

speed is enhanced because of less stably stratified atmosphere over water and the stronger 17 

pressure gradient in winter.  18 

Bias in GCM-forced RCM runs reflects the integral influence of GCM and RCM. In 19 

comparison of the two RCA3 simulations, the reanalysis-forced run (i.e., RCA3-ERA40) is 20 

found to outperform the GCM-forced run (i.e., RCA3-E5R3A1B), however, the difference is 21 

overall small and their annual cycles are very similar (see Fig. 32). As shown by the statistics 22 

in Table 2 and frequency distribution in Fig. 43, the RCA3-E5R3A1B generally performs 23 

similarly or worse in terms of the statistical mean and variability. The largest differences 24 

appear for precipitation simulation for which RCA3-E5R3A1B generated up to 105% higher 25 

wet-day percentage and 118 % more accumulated precipitation than present in the 26 

observations in summer. In terms of precipitation frequency distribution RCA3-ERA40 tends 27 

to generate a slightly higher number of days with small rainfall amount and fewer days with 28 

extreme amounts. Temperature is another variable with visible difference between the two 29 

simulations. Again, the largest differences appear in summer in which RCA3-E5r3-A1B is 30 

inclined to be slightly colder and with less variability than RCA3-ERA40. The distributions of 31 

relative humidity and wind speed generated from two simulations are in general almost 32 

identical.   33 
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Though the two climate projections are driven by different forcing, many of their 1 

characteristics are highly consistent, implying that the majority of the biases are likely to 2 

originate from the RCM. The alternative conclusion would be that the ERA40 is as bad as the 3 

GCM in simulating the statistics of these four variables.  4 

As the climate projection forced by GCM is the basis for assessing future impact, we will 5 

mainly focus on evaluating the results from RCA3-E5r3-A1B in the following.  6 

5.1.2 Effect of the DBS approach 7 

Fig. 5 4 and 6 5 illustrate how the DBS method improves the FWI input variables.  In the 8 

calibration period (not shown here) the bias-correction effectively removed the majority of 9 

biases in all of the variables, which is expected as the bias-correction parameters have been 10 

calibrated on the same set of data. In the following we will focus the analysis on the 11 

validation period to illustrate the effect of DBS.  12 

The correction was first applied to the two primary variables, P and T. The cut-off values 13 

obtained from the parameter estimation process for precipitation scaling (see Section 3.1) 14 

range from 0.6 to 3.2 mm over all stations during the fire seasons. The largest cut-off value 15 

always appears in summer, followed by autumn and then spring. At station Edsbyn, the cut-16 

off value varies from 0.85 mm/day (spring) to 1.56 mm/day (summer). After removing the 17 

bias, the corrected P shows a better match with observed data over all three seasons, though 18 

partial biases in volume still remain, as shown by Fig. 54. The improvement in temperature is 19 

noticeable in terms of both the full distribution and the annual cycle. The major improvement 20 

occurs for summer and spring where the cold bias appears in modelled data. The corrected T 21 

is statistically equivalent to that from the observations in terms of climatological mean and 22 

standard deviation of temperature conditioned on dry and wet days. As with temperature, the 23 

corrected relative humidity shows a better annual distribution. The overestimation of relative 24 

humidity is largely reduced, but some bias still remains at the tail of the distribution. Wind 25 

speed gets substantially improved in terms of both magnitude and annual distribution. The 26 

overestimated number of days with small wind speeds is reduced, and the probability of 27 

higher wind speed is largely improved, but the DBS-corrected data tends to overestimate the 28 

wind speeds over 6 m s-1. Taking a closer look at the PDF of meteorological variables from 29 

different data sources by comparison of Fig. 4 3 and Fig. 65, we find that the effect of the 30 

DBS largely depends on the performance of raw climate projections. Whether the climate 31 
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model is capable of reflecting the changes between the calibration and validation period is 1 

very significant. In observation time series, the local climate at the station Edsbyn is found to 2 

be warmer (except for summer) and wetter (except for autumn) in the validation period than 3 

that in the calibration period. The largest rise in temperature appears in winter (i.e., 2.2 ºC), 4 

followed by a large rise in spring (i.e., 0.9 ºC) and a moderate rise in autumn (i.e., 0.4 ºC). In 5 

summer, the temperature is found to drop by 0.7 ºC. For precipitation the seasonal 6 

precipitation is found to be wetter in spring (i.e., 4.3 %) and summer (i.e., 13.3 %), but drier 7 

in winter by 14.0 % and in autumn by 11.7 % (not shown here). In the climate model’s output 8 

(i.e., the R3E5A1B) for the same period a similar trend for temperature is found but with 9 

smaller magnitude; however a different trend for precipitation is found. The climate model 10 

simulates generally wetter conditions in the validation period over the whole year with a rise 11 

of more than 10 % per season except for autumn (i.e., 6.6 %). The increment in spring and 12 

summer may even reach 15.0 % and 13.6 %. That is, the climate model does not correctly 13 

capture the trend in variables and also largely overestimates their changing rate. As a result, 14 

unstable statistics in raw climate projections make it difficult to obtain a correction as good as 15 

in the calibration period, which subsequently leads to an imperfect match in fire risk index, 16 

e.g., the DC in Fig. 76. 17 

Apart from computed statistics, the distribution corrections are also reflected by the SS. The 18 

SS in Table 4 show general improvement in all variables, i.e., the SS are on average ~ 0.93 for 19 

precipitation, ~ 0.90 for temperature, ~ 0.83 for relative humidity and 0.83 for wind speed, 20 

though the seasons differ.  The largest improvements appear in the summer season in which 21 

the major biases tend to occur in the raw climate projections. Similar improvement has been 22 

found when the correction was applied to the RCA3-ERA40 run (not shown here). 23 

5.1.3 Forest fire risk indices  24 

The major forest fire risk indices – FFMC, DMC, DC, BUI, ISI and FWI – are plotted as 25 

long-term average annual cycles over the calibration (1966–1985) and the validation (1986–26 

2005) periods in Fig. 7 6 and 87.  27 

The calculated fire risk indices using raw RCA3 outputs are at first studied in comparison to 28 

those obtained using station data. The deviation (see blue and black lines in Fig. 7 6 and 87) is 29 

intuitively understandable. Too many drizzle days in the raw RCA3 data are very likely to 30 

cause oversaturation in the soil that may not dry out between rainfall events as in the 31 
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reference simulation driven by station data. Furthermore, along with lower temperature, the 1 

water content in the deepest fuel layer might be increased, affecting long-term drying 2 

conditions of the soil. Higher relative humidity as well as lower wind speed leads to a 3 

decrease of the drying rate. As a whole, moisture content in the uppermost layer is 4 

overestimated and the corresponding fire risk described by the FFMC index is underestimated 5 

(Fig. 76). Similar effects also work on the slow-drying fuel layer (DMC) and the deepest fuel 6 

layer (DC). Because of the unrealistic values of the DMC and DC indices, the modelled BUI 7 

and ISI are also, as expected, far from the observed (Fig. 87). Ultimately, the final FWI is 8 

substantially underestimated. Correction of input variables is thus of uttermost importance 9 

when climate projections are utilised for forest fire risk assessment. 10 

The DC is an integrating index reflecting the combined effect of precipitation and 11 

temperature; it was therefore used to study the correcting impact induced by the DBS on these 12 

two variables. As the rainfall cut-off values for all stations are seldom above 2.8 mm (i.e., the 13 

threshold values given in the FWI literature, described in section 2.1), the major impact on the 14 

DC values is considered to be from the correction of P and T. During the drying phase, the 15 

moisture depletion is governed by evapotranspiration, which is proportional to noon 16 

temperature and also influenced by the seasonal day-length. During the rainfall phase, any 17 

rainfall more than the threshold value is first reduced to an effective rainfall by a linear 18 

function and then simply added to the existing moisture equivalent. After bias was removed, 19 

the corrected noon temperature was in general increased, which led to stronger 20 

evapotranspiration. Additionally, the reduction of precipitation amounts (see Fig. 5 4 and 65) 21 

resulted in less moisture equivalent. Ultimately, the fire risk in the slowly-acting fuel, 22 

described by the DC value, was found to be considerably enlarged in comparison to that 23 

which was computed using raw climate output (see Fig. 76) as well as closer to that computed 24 

using observations.  25 

The DMC represents the moisture content of real slow-drying forest fuel. It is a function of 26 

precipitation, temperature and relative humidity. For the RCA3-R3E5A1B the cut-off values 27 

for the summer season (i.e., JJA) are often more than 1.5 mm (i.e., the threshold values given 28 

in the FWI literature, described in section 2.1), but seldom in other seasons. Therefore, for 29 

summer, not only precipitation amount but also precipitation frequency will affect the DMC 30 

value. After applying the DBS, H became less overestimated and the cold bias in noon 31 

temperature was removed (see Fig. 5 4 and 65), which led to the larger drying rate. For the 32 
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rainfall phase the DBS not only removed the small rainfall events but also reduced the portion 1 

of medium-size rainfalls via correcting the precipitation distribution (see Fig. 5 4 and 65). As 2 

a result, the overestimated moisture level and consequently also the integral value of the 3 

DMC were corrected (see red line in Fig. 76). In comparison to the DMC value computed by 4 

corrected P and T (i.e., denoted as corrected PT and marked as green line in Fig. 76), 5 

correcting H and W (red line) leads to additional improvement. Especially in summer and 6 

autumn seasons, the maximum improvement reaches as much as 50 %. It is likely because of 7 

the removal of drizzle in the precipitation frequency correction which reduced the moisture 8 

content in the fuel.  9 

The FFMC reflects the integrated effect of all meteorological input variables. In the drying 10 

phase, its drying rate varies with temperature, relative humidity and wind speed. After 11 

applying the DBS the drying rate was increased upon correcting the cold bias in T, the 12 

overestimated H and the underestimated W, as shown in Fig. 5 4 and 65. Moreover, the 13 

computed equilibrium moisture content by drying and by wetting, Ed and Ew, became smaller 14 

(not shown here). In the rainfall phase, only the current moisture content and rainfall amount 15 

matter. As the cut-off values estimated at all stations were all above 0.5 mm (i.e. the threshold 16 

values given in the FWI literature, described in section 2.1), any correction of precipitation 17 

frequency influenced the final FFMC value. By applying the DBS, many periods of drizzle 18 

were removed and the overestimated precipitation amount was corrected. As a result, 1) the 19 

wet spells were shortened and the moisture content in the fuels had time to dry out; 2) the fire 20 

risks described by the FFMC value largely increased (see red line in Fig. 76).  21 

In Fig. 87, the fire behaviour indices, the ISI and the BUI, as well as the final fire risk index, 22 

the FWI, were studied. As ISI is a product of wind speed and fine fuel moisture, it is directly 23 

influenced reflects directly when these two are changed. As the W was not perfectly corrected, 24 

over- or underestimated W after bias correction caused larger variation in the ISI index in 25 

comparison to that computed using observations. BUI depends on the variation in the DMC 26 

and the DC values, with more weight given to DMC. Hence, the BUI shows a similar pattern 27 

to the DMC index. Ultimately, the final index, the FWI (Fig. 87), and the fire danger classes, 28 

the FWIX (Fig. 98), used for issuing fire risk warnings (i.e. danger class > = 5 in Table 1) 29 

were significantly improved.  30 

The fire risk related indices generally showed improvement when all variables were corrected 31 

compared to only a partial bias-correction of precipitation and temperature. This suggests that 32 
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the bias-correction does not destroy the physical consistency between the variables in such a 1 

way that it would degrade the validation results when multiple variables are bias-corrected. 2 

Apart from that, the improvements imply that the relative humidity and wind speed do play 3 

important roles in final fire danger level and appropriate correction of these two variables 4 

adds value to fire risk assessment. Particularly, the wind speed works as a dominant factor for 5 

cases of extremely large forest fire risk (see danger class >= 5 in Fig. 98). This finding 6 

matches the conclusion drawn from a recent study in Greece (Karali et al., 2014), in which a 7 

sensitive sensitivity test of the FWI indices to the meteorological variables was carried out. It 8 

was found that precipitation and wind speed play the most important roles in final indices. 9 

Specifically, for wind speed, even a moderate wind speed leads to index values over the 10 

critical risk thresholds, and a high wind speed results in an extremely high value of the FWI. 11 

Figure 10 gives an overview of how often the high risk indices of forest fire (i.e., FWI >= 5) 12 

are likely to occur in past climate (1966-1995) at the 14 stations used in this study. Colour 13 

markers indicate the average number of days with the FWI index of 5 and 6 per fire season 14 

(the months of April to October). At most stations, the occurrence of high risk indices derived 15 

from simulations forced by observed data are less than 20 days per fire season. In the southern 16 

parts of Sweden the high risk indices of forest fire appear more frequently, whereas in 17 

northern and central Sweden the occurrence of high risk indices are lower except at the station 18 

Edsbyn (i.e., 20 days per fire season). In comparison with the risk level calculated using the 19 

observations, the risk level calculated using raw meteorological variables from the climate 20 

projection, R3E5A1B, shows obvious underestimation. No high risk level is reflected at any 21 

of 14 stations (shown in Fig. 10b11b). After correcting the biases in meteorological variables, 22 

the fire risk in the reference period is significantly increased and it shows a similar spatial 23 

distribution pattern to that calculated from observations (see Fig. 10a 11a and c). However, 24 

underestimation in the calculated occurrence of high risk indices (i.e., an average of -6 days 25 

per fire season) still exists. None of the stations reaches the number of days identified from 26 

those calculated using the observations. The maximum number of days calculated using 27 

corrected meteorological variables is 20 days.   28 

5.2 Future projection (RCA3-E5r3-A1B) 29 

The climate projection was run until the end of 2100 with a transient mode simulation, which 30 

makes it possible to investigate the evolution of climate change in a continuous manner 31 

(Kjellström et al. 2006). The historical observations used to obtain the scaling factors cover 32 
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the period from 1966 to 1995, the longest observation period available for the study area. 1 

Topics that will be discussed in this section include whether the DBS alters the climate 2 

change signals in input variables as well as the FWI index and how fire risk will evolve in 3 

Sweden in the future.  4 

Figure 9 11 and Figure 12 presents the climate change signals in all input variables at two 5 

stations, Edsbyn in northern Sweden and Växjö in southern Sweden. As projected by RCA3-6 

E5r3-A1B, the local climate in Edsbyn will become wetter, warmer, more humid and slightly 7 

windier in the future. During fire seasons, a general increase in the precipitation amount is 8 

found during the complete future period, particularly during spring in the intermediate and 9 

distant future (~40% increase). Temperature and relative humidity are also characterised by a 10 

general rise during the whole period. The air gets warmer and moister at the beginning of 11 

spring in the near future and this tendency is enhanced until 2100. The largest rise appears in 12 

spring and the smallest in summer. Compared to the present climate, it is likely to be warmer 13 

by 2 ºC (5 ºC) in 2011-2040 (2071-2100) and moister by 8 % (15 %) in 2011-2040 (2071-14 

2100).  The change in wind speed is smaller when compared to other variables. It varies 15 

mainly within the range of -6 % to 6 % in the study periods, with the largest increase in the 16 

near future. The maximum increase appears in autumn in every future period. The local 17 

changes in Växjö are projected to be similar to those in Edsbyn, but with stronger seasonal 18 

variations during the fire season. As in Edsbyn, temperature and relative humidity exhibit a 19 

consistent future increase. Their rate of increase increases with time until 2100 (i.e., 1.5 °C (4 20 

ºC) warmer until 2011–2040 (2071–2100) and 5% (15 %) moister until 2011–2040 (2071–21 

2100)). The changes of the other two variables fluctuate around zero with a different sign at 22 

different period of the year. Precipitation decreases during the fire season except in spring, 23 

whereas wind speed increases in late summer with a maximum of 10 %.  24 

In general, the corrected data well reproduce the climate change signal in the raw climate 25 

model output reasonably well. However, in some cases DBS was found to alter the changes 26 

projected by the climate model. It might be caused by non-linearity in RCM biases. That is, 27 

the biases caused by an imperfect model representation of atmospheric physics for the present 28 

climate are likely to be altered by the changes in relevant climatic variables in the future. For 29 

instance, the described changes in temperature bias can be related to changes in cloud cover 30 

and the corresponding response in radiative surface heating, soil moisture feedback and sea 31 
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level pressure (Maraun, 2012), which are not accounted for in the bias correction approach. 1 

As all bias correction methods, applying DBS is built upon an assumption of stationary bias.  2 

By running the FWI system, the integral impact on the long-term mean future fire risk danger 3 

was evaluated (Fig. 1310). Because the figures aim to present the average situations for every 4 

30-year period, extreme values cannot be seen. However, their relative changes in FWI 5 

compared to that for the present climate is quite consistent though different in magnitude. The 6 

differences in CC signal between the raw and DBS-corrected data, respectively, are partly 7 

because of biases in driving variables as described in section 5.1.3. Moreover, as the three 8 

primary indices of the FWI (i.e., FFMC, DMC and DC) are computed for drying and wetting 9 

phases that are determined by a threshold value for each fuel, any correction of precipitation 10 

amount may have an impact on the indices that subsequently influences the final index, FWI, 11 

and its CC signals.  12 

Using the corrected data, early springautumn at the Edsbyn station is found to become more 13 

prone to forest fire, followed by springautumn, and then summer (top panel in Fig. 1310). It is 14 

mainly due to the increase of temperature and wind speed. For today’s main fire risk season, 15 

summer, the relative change in the FWI value tends to be negative. In the near future, the fire 16 

risk level is likely to reduce by 20% at the end of spring and the beginning of summer. In the 17 

intermediate future, the risk in early summer becomes even lower (i.e., approximately -18 

50 20 %). It recovers in late summer and keeps increasing up to 30 % in the last 30 years of 19 

the century. The moister air, the increased precipitation and relatively stabilised wind speed 20 

balance out the effect from warmer climate. The fire risk in autumn gradually increases with 21 

regard to the last 30 years, particularly the beginning of autumn, which is most likely because 22 

of relatively drier and warmer air combined with stronger wind speeds. At the Växjö station 23 

(bottom panel in Fig. 13), the most fire prone season in future is likely to be summer where 24 

less precipitation, warmer temperatures and higher wind speeds are projected.  In the near 25 

future, the fire risk in summer rises by 5 % because of less precipitation ( -16 %) and higher 26 

wind speed (10 %), whereas the fire risk in spring drops by 10% because of increased 27 

precipitation and slightly increased relative humidity, which may probably balance out the 28 

effect of slightly increased temperature and wind speed during the same period. In the 29 

intermediate future, both precipitation and wind speed decrease, which keeps the fire risk 30 

level in summer at a consistent high level (3%) until the end of autumn. In contrast to the 31 

summer, increased precipitation and relative humidity make the fire risk level in spring even 32 
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lower (-2 %) than that in the near future. In the last 30 years, the local climate gets even 1 

wetter, moister and less windy in spring, which reduces the fire risk level by 15 % compared 2 

to the present day. However, the fire risk in summer increases by 10 20 % as the climate in 3 

the distant future becomes drier, warmer and windier. 4 

The relative changes in the number of days with high fire risk (i.e., the FWI >=5) during the 5 

fire season are presented in Fig. 1411d. Northern Sweden is likely to be a fire resistant region 6 

in the future climate where the number of days with high fire risk is found to be lower than 7 

today.  In contrast, southern Sweden is projected to become a more fire prone region where an 8 

increased number of days with high fire risk is found in almost all stations in all three periods. 9 

The stations located in central Sweden are projected to face an increased risk of forest fire in 10 

the near future, after which the risk decreases until end of the century. The changes at those 11 

stations vary from time to time, which is probably because of local climate factors at different 12 

time periods. 13 

 14 

6 Conclusions 15 

In this study, two climate projections driven by different forcing were investigated for direct 16 

use of a climate model (i.e., GCM or GCM/RCM) in forest fire risk studies. The raw climate 17 

model outputs show a clear mismatch with the observations in all influencing variables used 18 

in fire risk modelling: precipitation, temperature, wind speed and relative humidity. This is 19 

likely caused by uncertainties in observations as well as improper descriptions of physical 20 

processes and coarse resolutions in the present generation of RCMs.  21 

Two parametric distributions were tested for correcting the biases in relative humidity (a Beta 22 

distribution) and wind speed (a Weibull distribution). In a cross-validation, the DBS method 23 

is demonstrated to substantially reduce the bias in driving meteorological variables and thus 24 

facilitates the utilisation of climate projections in forest fire risk studies. Regarding the 25 

simultaneous bias-correction of multiple variables, the result showed an improved description 26 

of fire-risk related indices when all variables were corrected compared to only a partial bias-27 

correction of precipitation and temperature. This suggests that the bias-correction does not 28 

destroy the physical consistency between the variables to such an extent that it degrades the 29 

validation results when multiple variables are bias-corrected.  30 
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For the present climate, by using bias-corrected meteorological variables the FWI model 1 

generates realistic results that are well in line with those derived from observations. The 2 

frequency of extremely high fire risk is significantly better reproduced when compared to 3 

directly using raw climate projection data, though some underestimation remains.  Further 4 

development of the DBS method is therefore required to, e.g., better represent the influencing 5 

variables by removing remaining biases, keep consistency amongst meteorological variables 6 

in terms of their temporal and spatial covariance, and capture the non-stationaries of climate 7 

model biases.  8 

Concerning the future climate, the climate projection used here projects a climate in Sweden 9 

that is warmer, wetter and windier than today. Southern Sweden, where it is normally warmer 10 

and windier than in other parts of Sweden, is likely to become a more fire prone region in the 11 

future, whereas northern and central Sweden will face a similar or lower fire risk than today. 12 

Forest fire activity and its spread is a result of combinations of weather, fuels and topography 13 

as well as incident management decisions. Thus, fuel bed structure and fire potential are 14 

influencing factors in addition to the changing climate. This kind of studies for Sweden has 15 

been partly done previously (Granström et al., 2000 and Granström and Schimmel, 1998). 16 

With changing climate, there may be a northward displacement of the broad vegetation belts 17 

with an increasing component of broad-leaved tree species at the expense of spruce (Koca et 18 

al., 2006). Fuel beds in the north may then shift from moss to leaf litter, with unknown effects 19 

on ignition potential and fire behavior. Apart from reducing human-caused ignition, 20 

experience concerning rescue tactics suppression methods need to be collated. An ongoing 21 

project will develop a national preparedness strategy for forest fires with consideration of 22 

changing climate. 23 

 Our results do not completely agree with the work of Flannigan et al. (2013), who found 24 

significant increases in the Northern Hemisphere by applying a combination of three GCMs 25 

and three emission scenarios. For Sweden, an overall and large increase was projected. One 26 

reason for the differences may be the way the climate change signal is treated. The DBS 27 

approach focuses on preserving the variability produced by individual climate projection, 28 

which is different from the traditional delta change (DC) approach by which the average 29 

changes are transferred onto the observations. Another difference concerns the spatial and 30 

temporal resolutions of the observed reference data. Compared to the large-scale data used in 31 
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Flannigan et al., 2013, using regional/local data is beneficial in studies including localized 1 

variables such as precipitation and wind speed.  2 

Forest fire regimes with different climatic sensitivity in northern and southern Sweden have 3 

also been revealed in earlier studies. The results in Drobyshev et al. (2014) pointed towards 4 

the presence of two well-defined zones with characteristic fire activity, geographically 5 

divided at approximately 60º N. Such division was also reflected in Dai et al. (2012) who 6 

applied the self-calibrated Palmer drought severity index to study the global aridity in present 7 

and future climate. The calculated indices indicated drier conditions in southern Sweden than 8 

in the northern part under present climate. In the future, more precipitation was projected in 9 

northern Sweden in comparison with relative dryness in the southern Sweden.  10 

For improved interpretation of the assessment results, all uncertainties in the full production 11 

chain must be considered. Reliance on a single climate projection (combination of GCM and 12 

RCM) to represent the current and future climate is not sufficient given the amount of 13 

uncertainty involved in the climate models themselves. As forest fire is largely affected by 14 

weather conditions in close proximity and influencing forcing is very local, including 15 

different projections is required for forest fire impact assessment. A full-scale evaluation of 16 

the future forest fire risk should include an ensemble of projections covering different aspects 17 

such as parameterisation of sub-grid scale processes in GCMs and RCMs, initialisation of 18 

GCMs, spatial resolutions and emission scenarios. Also, other uncertainty sources should be 19 

assessed. One concerns the quality of observation data, which limits the application of the 20 

bias correction method to the climate projections. Another source is the choice of bias 21 

correction method, which is likely to influence the results. Finally, the choice of forest fire 22 

model adds uncertainty. For example, the connection between fuel layers is switched off in 23 

the drying process within the FWI, whereas in other models (e.g., Fosberg, 1975) a more 24 

complete drying model that couples heat and vapour transport is included.  The way a model 25 

describes the processes may potentially give a different response to the projected driving 26 

meteorological variables. 27 
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Table 1. Range of FWI for fire danger classes in Sweden. 1 

Danger class (FWIX) FWI range  

6 (5E) - Extremely high *)                  28 ≤ FWI   

5 - Very high    22 ≤ FWI < 28 

4 - High    17 ≤ FWI < 22 

3 - Normal      7 ≤ FWI < 17 

2 - Low      1 ≤ FWI < 7 

1 - Very low            FWI < 1 

*) in operational use. danger class 6  2 
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Table 2. Statistical characteristics of P, T, H and W during the calibration period (1966-1985) over all stations. Comparison between observation, raw RCA3-1 

ERA40 and raw RCA3-E5r3A1B. The bold number in brackets presents the biases between modelled value and observed value in % except Avg. of T. 2 

 P  T  H  W  

Acc. 

[mm] 

SD
1
 

[-] 

SD
2
 

[-] 

Freq-P 

[%] 

Avg 

[º C] 

SD
1
 

[-] 

SD
2
 

[-] 

Avg 

(%) 

SD
1
 

[-] 

SD
2
 

[-] 

Avg 

[m/s] 

SD
1
 

[-] 

SD
2
 

[-] 

Freq-Ws 

[%] 

M
A

M
 

 

Observation 

 

82.3 3.2 20.0 42.8 6.6 6.5 1.9 63.6 18.6 3.1 4.0 2.4 0.8 92.1 

RCA3-ERA40 
175.4 

(+113.1) 

3.1 

(-3.1) 

21.4 

(+7.0) 

77.4 

(+80.8) 

5.0  

(-1.6) 

5.4 

(-16.9) 

2.5 

(+31.6) 

66.4  

(+4.4) 

19.0 

(+2.2) 

7.7 

(+148.4) 

3.2  

(-20.0) 

1.4 

(-41.7) 

0.2 

(-75.0) 

100.0 

(+8.6) 

RCA3-E5r3A1B 

 

183.8 

(+123.3) 

 

3.2 

(-) 

 

23.0 

(+15.0) 

 

77.4 

(+80.8) 

 

5.0  

(-1.6) 

 

5.5 

(-15.4) 

 

2.4 

(+26.3) 

 

67.9 

(+6.8) 

 

18.9 

(+1.6) 

 

7.3 

(+135.5) 

 

3.1 

(-22.5) 

 

1.4 

(-41.7) 

 

0.2 

(-75.0) 

 

100.0 

(+8.6) 

JJ
A

 

 

Observation 

 

143.9 5.0 28.0 43.7 18.3 4.3 1.4 57.6 16.5 3.3 3.8 2.2 0.8 90.6 

RCA3-ERA40 
265.5 

(+84.5) 

4.8 

(-4.0) 

32.1 

(+14.6) 

86.5 

(+97.9) 

16.0  

(-2.3) 

2.8 

(-34.9) 

1.8 

(+28.6) 

68.4 

(+18.8) 

17.5 

(+6.1) 

4.5 

(+36.4) 

2.6 

(-31.6) 

1.2 

(-45.5) 

0.2 

(-75.0) 

100.0 

(+10.4) 

RCA3-E5r3A1B 

 

313.9 

(+118.1) 

 

4.8 

(-4.0) 

 

41.5 

(+48.2) 

 

89.9 

(+105.7) 

 

15.0  

(-3.3) 

 

2.5 

(-41.9) 

 

1.5 

(+7.1) 

 

71.5 

(+24.1) 

 

17.5 

(+6.1) 

 

3.6 

(+9.1) 

 

2.7 

(-28.9) 

 

1.3 

(-40.9) 

 

0.3 

(-62.5) 

 

100.0 

(+10.4) 

S
O

N
 

 

Observation 

 

166.6 4.4 38.6 54.3 7.2 6.2 2.6 75.4 16.3 2.1 3.7 2.6 1.1 88.3 

RCA3-ERA40 
267.1 

(+60.3) 

3.9 

(-11.4) 

27.8 

(-28.0) 

90.5 

(+66.7) 

6.3  

(-0.9) 

5.3 

(-14.5) 

2.4 

(-7.7) 

80.6  

(+6.7) 

15.9 

(-2.5) 

1.8 

(-14.3) 

3.2 

(-13.5) 

1.5 

(-42.3) 

0.4 

(-63.6) 

100.0 

(+13.3) 

RCA3-E5r3A1B 

 

287.6 

(+72.6) 

 

4.1 

(-6.8) 

 

27.1 

(-29.8) 

 

92.6 

(+70.5) 

 

6.7  

(-0.5) 

 

4.7 

(-24.2) 

 

2.2 

(-15.4) 

 

82.3 

(+9.2) 

 

15.1 

(-7.4) 

 

1.8 

(-14.3) 

 

3.2 

(-13.5) 

 

1.4 

(-46.2) 

 

0.4 

(-63.6) 

 

100.0 

(+13.3) 

3 
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Table 3. PDF skill scores (SS) of raw data from RCA3-ERA40 and RCA3-E5r3-A1B (1966-1985), averaged over all stations.   1 

 
Precipitation Temperature Relative humidity Wind speed 

Mean Min. Max Mean Min. Max Mean Min Max Mean Min Max 

M
A

M
 RCA3-ERA40 0.64 0.59 0.69 0.80 0.74 0.86 0.83 0.76 0.87 0.75 0.65 0.84 

RCA3-E5r3A1B 0.65 0.60 0.70 0.80 0.75 0.85 0.81 0.76 0.86 0.69 0.57 0.76 

JJ
A

 RCA3-ERA40 0.56 0.48 0.60 0.71 0.67 0.76 0.72 0.63 0.78 0.70 0.55 0.83 

RCA3-E5r3A1B 0.54 0.45 0.60 0.59 0.54 0.63 0.67 0.60 0.72 0.66 0.52 0.76 

S
O

N
 RCA3-ERA40 0.62 0.58 0.58 0.85 0.89 0.81 0.78 0.74 0.89 0.76 0.62 0.86 

RCA3-E5r3A1B 0.61 0.68 0.65 0.82 0.79 0.79 0.74 0.69 0.84 0.68 0.58 0.83 

 2 

3 
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Table 4. PDF skill scores (SS) of data from raw and corrected RCA3-E5r3A1B (1986-2005), averaged over all stations.  1 

 
Precipitation Temperature Relative humidity Wind speed 

Mean Min. Max Mean Min. Max Mean Min Max Mean Min Max 

M
A

M
 Raw 0.62 0.58 0.65 0.78 0.74 0.85 0.75 0.66 0.81 0.73 0.60 0.88 

Corrected 0.93 0.86 0.96 0.89 0.83 0.91 0.84 0.75 0.88 0.82 0.73 0.93 

JJ
A

 Raw 0.57 0.53 0.60 0.58 0.53 0.61 0.66 0.57 0.73 0.64 0.51 0.77 

Corrected 0.93 0.91 0.95 0.91 0.89 0.93 0.81 0.75 0.86 0.83 0.73 0.94 

S
O

N
 Raw 0.60 0.57 0.62 0.83 0.80 0.86 0.72 0.66 0.78 0.77 0.63 0.92 

Corrected 0.93 0.91 0.95 0.90 0.86 0.92 0.83 0.77 0.89 0.84 0.77 0.92 
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 1 

Figure 1. Map showing the locations of the observation stations 2 

3 
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Figure 2. The structure of the Fire Weather Index (FWI) system 15 
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 1 

Figure 2Figure 3. Seasonal variation of the FWI inputs (P, T, H and W) presented as 7-day moving 2 

average value at Edsbyn station. Comparison of observational data and raw output of the climate models 3 

from RCA3-ERA40 and RCA3-E5r3-A1B simulations (calibration period 1966-1985). 4 

5 
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 2 

Figure 3Figure 4. Probability density functions of precipitation, temperature, relative humidity and 3 

wind speed at Edsbyn station. Comparison of observational data and raw output of the climate models 4 

RCA3-ERA40 and RCA3-E5r3-A1B (1966-1985). 5 

6 
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 2 

Figure 4Figure 5. Seasonal variation of the FWI inputs (P, T, H and W) presented as 7-day moving 3 

average value at Edsbyn station. Comparison of observational data, raw output of the climate models 4 

from RCA3-E5r3-A1B simulation, and its corresponding corrected output (validation period 1986-2005). 5 

6 
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 2 

Figure 5Figure 6. Comparison of observational data, the raw output of the climate model, RCA3-3 

E5r3A1B, and its corresponding adjusted output at Edsbyn station for validation period 1986-2005.  4 

5 
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 1 

a) 1966-1985 b) 1986-2005 

 2 

Figure 6Figure 7. Seasonal variation of FFMC, DMC and DC index at Edsbyn station. Comparison of 3 

values based on observations (black line), raw output from climate model (blue line), RCA3-E5r3A1B, 4 

corrected P and T uncorrected H-raw and W-raw (green line) and corrected P, T, H and W (red line) for 5 

period a) 1966-1985 and b) 1986-2005. Note that the DC is influenced by P and T (see blue, green and 6 

black lines).                    7 
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1a) 1966-1985 2b) 1986-2005 

 1 

Figure 7Figure 8. Seasonal variation of BUI, ISI and FWI index at Edsbyn station. Comparison of values 2 

based on observations (black line), raw output from climate model (blue line), RCA3-E5r3A1B, corrected 3 

P and T uncorrected (raw) H and W (green line) and corrected P, T, H and W (red line) for period a) 1966-4 

1985 and b) 1986-2005. 5 

 6 
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 1 

Figure 8Figure 9. The occurrence frequency of fire danger classes (i.e., FWIX) at Edsbyn station 2 

calculated from observation, raw climate model output, RCA3-E5r3A1B, and after correcting 3 

meteorological variables. 4 

5 
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 1 

 2 

Observation a) Raw R3E5A1B b) Corrected R3E5A1B 

Figure 10. Annual mean of number of days with high fire risk (FWIX >= 5) during the 3 

calibration period (1966-1985)4 
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Figure 9Figure 11. Climate change signals in P, T, H and W at Edsbyn and Växjö station, reflected in 3 

RCA3-E5r3-A1B before and after correction during three periods, 2011-2040, 2041-2070 and 2071-2100 4 

(from top to bottom).  5 

6 
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Edsbyn Växjö 

  

 2 

Figure 10Figure 13. Climate change (CC) signals in the FWI reflected in RCA3-E5r3-A1B during the 3 

period of 2011-2040, 2041-2070 and 2071-2100 at Edsbyn and Växjö station (from top to bottom panel). 4 
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a) Observation b) Raw R3E5A1B d) [2071-2100]-[1966-1995] 

   

c) Corrected R3E5A1B   

Figure 11. Number of days during the calibration period (1966-1995) presented by a) observation, b) Raw 2 

R3E5A1B and c) Corrected raw R3E5A1B; and changes of number of days in percentage during the 3 

period of d) 2071-2100. 4 
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