Dear Dott. Catani,
Please find enclosed the revised version of our manuscript entitled “Landslide Early Warning based on Failure Forecast Models: the example of Mt. de La Saxe rockslide, northern Italy”. We have found the criticism, comments and suggestions received from the two referees very helpful and constructive, and thus we have considered all of them in the revised version of our work. Please find here below for your reference the referee’s comments, and in Bold our replies. Changes in the manuscript are highlighted by using the review functions of MS Word. 
Thanks for your time and effort spent in dealing with our manuscript as managing editor, and we look forward to receiving the final acceptance of our manuscript.
Sincerely yours,
Andrea Manconi (Corresponding author)

Anonymous Referee #1
Received and published: 17 March 2015
1. Figures are not clear or very strong. They do not overly help the reader understand your discussion 
We regret to say that this comment of referee 1 is very generic. In order to modify the figures accordingly, we would need specific details on which parts of the discussion were not fully supported by our current figures. Moreover, we notice that Referee 2 did not comment at all the figures, thus we suppose they were clear and/or strong enough to support the main text. 
2. Your conclusions are not overly strong (Strongly stated). They should be more clear
As above, this comment is also very generic. In any case, we have now slightly modified the conclusions, and we think they are now explained in a clearer and concise way. 
3. How local is the method? What would be the challenges to another site? 
We thank the referee 1 for this question. In the discussion, we have better specified that our method can be applied to different sites, provided near real time monitoring data is available. 
4. Can Radar alleviate some of the concerns? Or help your technique?
We thank the referee 1 for this question. GB-SAR is a powerful monitoring technique, which can be extremely helpful in several scenarios to measure the surface displacements of unstable slopes at very high spatial and temporal resolutions. We pointed out that RTS data suffer the limitation of being point-like measurements. Under these conditions, the use of time series retrieved from GB-SAR, which provide a spatially distributed map of surface displacements, can be helpful; however, SAR data may suffer the occurrence of very large and/or rapid deformation, hindering its measuring capabilities due to signal decorrelation issues (e.g., Casu et al., 2011). Moreover, we pointed out additional concerns on FFM methods are mostly relevant to the variability of the landslide behavior rather than the techniques used to observe the surface displacements.
5. Please avoid using pronouns.
We regret to disagree with this comment of the referee 1. The use of active vs. passive voice in scientific writing is a matter of intense debate. There is a broad literature on this topic, showing pros and cons of both approaches; however, there is a general understanding that importance should be given to the scientific correctness and clarity of the manuscript structure, while the use of active or passive voice is, basically, a matter of style.
https://cgi.duke.edu/web/sciwriting/index.php?action=passive_voice 
Moreover, looking at the guidelines of top-level scientific journals, the active voice is always preferred. For example:
“Nature journals prefer authors to write in the active voice ("we performed the experiment...") as experience has shown that readers find concepts and results to be conveyed more clearly if written directly.”
http://www.nature.com/authors/author_resources/how_write.html
Would, instead, the editors think that the use of passive voice is preferred for NHESS, we will update the manuscript accordingly. 

Anonymous Referee #2
Received and published: 26 April 2015
GENERAL COMMENTS:
The paper deals with a major problem in landslide risk management, i.e. the definition of the landslide time of failure in Early Warning perspective. This is a debated topic due to the gap between the availability and the real-world applicability of empirical or physically based methodologies (see for example Cloutier et al., 2015 for a discussion). Therefore, the contribution is very welcome and fully suitable for the journal NHESS. The authors proposed a forecasting methodology built on the well-known “inverse velocity method”, which is based on experimental evidence and theory of tertiary creep. The idea is generally meaningful and has some interesting implications. Nevertheless, the authors fail to convince me regarding the overall robustness and practical applicability of their methodology in real applications. I list the most important points here, and further ones in the “detailed comments” sections.
We thank referee 2 for recognizing that our contribution is suitable for publication in NHESS. According to his comments and detailed suggestions, we have now revised the manuscript and we hope to have addressed all doubts on the overall robustness and practical applicability of our method in real cases.
1) I am not sure that the submitted contribution is new. The authors refer to their paper: Manconi and Giordan (2014) Landslide failure forecast in near-real-time. Geomatics, Natural Hazards and Risk, DOI:10.1080/19475705.2014.942388 for more details on the methodology, and propose the paper submitted to NHESSD as an application to the Mt. De La Saxe. Unfortunately I have no access to that publication, but the abstract of the published paper suggest that the contents of the two papers are pretty similar. Could the authors explain what’s new in the submitted paper with respect to the published one?
In the revised version, we have better specified the main differences between the paper published on Geomatics, Natural Hazards and Risk, DOI:10.1080/19475705.2014.942388. In particular, Manconi and Giordan 2014 describes into details the approach used to compute confidence bounds on the time of failure forecast. In this contribution, instead, we aim at defining thresholds for the management of EWS based on the results of FFM. In addition, we also provide here a detailed analysis of the performance of the method on the 2014 and 2013 failures observed at the Mt de La Saxe rockslide, and we discuss the general applicability of this method to other case scenarios.   
2) The “inverse velocity method” is simple and based on a physically-consistent theory (Voight, 1988), thus it attracted the interest of many researchers and practitioners. When it works well (typically in engineered slopes in mining environments), it does not require many adds to be used as a powerful real-time early warning tool, provided that it is deployed and evaluated by expert staff. On the other hand, the applicability of this approach has several important limitations. They are related to non-steady loading conditions (changing stress state in the slope), non-constant empirical method “constants”, and varying external loads (pore pressures, rainfall and snowmelt), and introduce significant biases in the forward application of the method. All these limitations also affect the method proposed here by the authors, but they do not discuss them despite paper conclusions outline substantial problems in the predictive capabilities of the method. I would suggest them to discuss this point carefully to explain the strengths and limitations of their approach. Which are the advantages to use their method with respect to the “ordinary” inverse velocity method in real conditions affected by the problems listed above?
We thank reviewer for this comment. The methodology developed and presented in Manconi and Giordan 2014 aims at mitigating the limitations of the Fukuzono’s approach, well outlined by the referee. Indeed, the time of failure is not computed with a “single-shot”, but bootstrap is used with the purpose to diminish the effect of noise on near real time data. Moreover, the use of different computation windows allows mitigating biases caused by variable external conditions. The details of the technique, as well as its advantages with respect to the standard application of the inverse-velocity method, are explained in Manconi and Giordan 2014. Due to space restrictions on the manuscript, indicated by the Editors for the current NHESS special issue, we have decided to keep the focus of this paper on the definition of thresholds based on the results of the FFM, while we refer readers to Manconi and Giordan 2014 for specific details on the method.   
3) the method proposed by the authors assumes that landslide evolution to collapse corresponds to a progressively better fit of displacement data to the inverse velocity model (i.e. better correlation indicates closer failure). In fact, Figure 1 suggests that early warning thresholds can be defined based on the goodness of such fit. I have some serious concerns about the robustness of this assumption:
a) better data fit to Fukuzono’s model toward failure is often observed in back analyses, but it is often not required for collapse to occur: “noisy” data can be observed even if a generally consistent 1/v trend is followed until failure. Conversely, very well-fitting trends can in turn deviate from the path to failure depending on changes in landslide behaviour or changes in boundary conditions;
The method developed, by applying bootstrap and relying on the computation of inverse velocity on different temporal windows, is exactly aimed at mitigating the effect of noisy data and/or changes in boundary conditions that in near real time applications could deviate the results.
b) in geotechnical engineering (also applying to slope stability), the concept of reliability is related to probabilistic analysis, and expresses how far a present state is from critical (e.g. limit equilibrium) conditions, normalized by the variability of the estimates (standard deviation). This is quite different from the concept suggested by the authors, and I am not sure that it is correct to interpret goodness-of-fit as reliability (and to use it directly to establish EW thresholds);
Formally, the bootstrap is a recognized statistical approach that works by treating inference of the true probability distribution, given the original data, as being analogous to inference of the empirical distribution, given the resampled data. Thus, bootstrapping allows assigning measures of accuracy in terms of bias, variance, confidence intervals, or some other such measure. Due to this premise, we think it is reasonable to consider the “goodness of fit” as reliability.  
c) stronger data-model fit approaching failure may simply suggest that the “signal” of tertiary creep behaviour is stronger that the “noise” related to measurement errors and landslide physics. This is certainly an interesting supporting indicator for early warning, but I am not convinced that this is the major one, unless the physical nature of “noise” is not well known.
In our experience, as also stated by the referee, the use of reliability can be considered as a supporting indicator for EW purposes. Of course, we would need more case studies to verify this hypothesis, as we outlined in the conclusions.
All these points seem to hamper the robustness of the basic assumptions: in fact, in the conclusions the authors suggest that the methods is not performing very well: they start aiming at the evaluation of the landslide time of failure, but eventually give up and settle on the evaluation of “critical time ranges”. The latter sound not very useful, since the method was invented to manage the final stage of early warning, which is a critical time range by definition. I suggest that the authors address very carefully the points listed above to support the validity of their method.
Please see our reply to your detailed comment on this issue.
4) the paper is intended to be a case study application of a method presented elsewhere, but eventually the application is made on a single, poorly described event in the framework of a very complex landslide which is not explained at all. I understand that the authors provided some references, but I suggest that at least the most important information on the landslide model and on the monitoring network (techniques deployed, spatial distribution and significance of measurements, frequency of measurements, reasons why the authors used TS measurements, etc.) should be provided to the reader.
We have now included additional information on the La Saxe rockslide and on its monitoring network.
5) English could be improved with the help of a native speaking colleague
We have submitted the revised manuscript to the American Journal Experts service. Thus, English has been now proofread by a native speaker.

DETAILED COMMENTS:
1) Page 1512, line 15: “management of the territory” may better read “landplanning and management”
Done, thanks.
2) Page 1512, line 24: “may lead to”. Early warning thresholds do not lead to landslide occurrence but are indicators of likely landslide occurrence. I would suggest “indicate the likely occurrence of landslides in a specific area with a specified degree of prediction uncertainty”
Done, thanks.
3) Page 1513, line 5: “single phenomenon”. What makes the prediction of large landslides different from the prediction of small, fast rainfall induces landslides (e.g. soil slips) is not only their individual character, but notably their scale and long-term evolution 
We modified the sentence deleting “single phenomenon” in order to avoid misunderstandings. 
4) Page 1513, line 6: “instable” reads “unstable”. Here and elsewhere in the paper, I suggest the authors to improve English phrasing and words, maybe with the help of a native speaking colleague.
Done, thanks. The manuscript was proofread by a native speaker.
5) Page 1513, line 8: “wide range of landslides” would better read “wide range of behaviours”
Done, thanks.
6) Page 1513, line 14: what is a “complex monitoring network”?
We modified the sentence deleting “complex” in order to avoid misunderstandings. 
7) Page 1513, line 20: “problems on... these thresholds are well known”. If so, it is important that the author list and discuss them with respect to the validity and applicability of the proposed method (see general comments); 
The identification of thresholds on rockslides displacements/velocities is generally approached by performing back analyses on the available monitoring data and/or considering similarities to previous case studies, in terms of geology and volumes of the materials involved. However, this is not always possible. The main difference and advantage of the herein presented method is that additional thresholds are based on the results of failure forecast models computed in near real time, and thus rely only on the status of the landslide defined by the measurements currently available. 
8) Page 1513, lines 23-24: “when the last threshold is exceeded, EWS end their efficacy”. If early warning thresholds are correctly established (physically meaningful, reliable, expressed in terms of suitable predictors), they should be the core of an early warning system and guarantee its efficacy. I understand that available methods to establish early warning thresholds are affected by many and severe limitations, thus near-real-time management of early warning is required
Due the recognized limitations on the definition of thresholds in EWS, it is a matter of fact that in many emergency scenarios relevant to landslides it is unclear how to approach the period lasting from the exceeding of the last defined threshold towards the failure occurrence. With this work, we aim at providing an additional tool to respond to this real need. 
9) Page 1514, lines 6-9: see General Comment n.2.
Please see our reply to the general comment 2.
10) Page 1514, lines 12: unfortunately I have no complete access to the cited paper by Manconi and Giordan (2014), but I went through the abstract and it is quite difficult for me to understand what’s new in the present manuscript submitted to NHESS (see general comments)
Please see our reply to the general comments.
11) Page 1514, line 22: “usually”: the temporal evolution of landslides depends on landslide type, scale, and timescale. The authors should clearly state the conditions to which their method applies.
The conditions in which our method applies are clearly stated in the Discussion and conclusions section.
12) Page 1515, lines 5-6: “values based on the actual deformation measured do not provide any information about the possible evolution…” Why?
Please see our reply to the general comments.
13) Page 1515, lines 20-25: see General Comment n.3
Please see our reply to the general comment 3
14) Page 1516, line 10: “active mass movement”: “large active landslide”?
Done, thanks.
15) Page 1516, line 17: “continuous monitoring of surface modifications”: “continuous monitoring of surface displacements”. Which type of continuous monitoring is undertaken? Using which techniques? At which measurement rate? With which degree of spatial coverage (i.e. point-like or distributed)? All these points greatly affect the interpretation of the collected time series and their use in early warning. The authors should provide some information on this;
Done, thanks. We have now added some information on the monitoring network.
16) Page 1516, line 27: “24 h”: is this a time window used to compute an average velocity to be compared to thresholds? Isn’t is quite a long period when approaching collapse very closely?
24 h is the temporal windows of analysis for the FFM. This does not means that we rely on a single value of velocity relevant to the last 24 h. Values of velocities are computed in near real time after each new measurement is available. Assuming a revisit time of 1 h, this means that the inverse velocity fit is computed, each hour, considering the last 24 velocity values available. Details of this are explained in Manconi and Giordan, 2014. 
17) Page 1517, lines 4-15: see the General Comment n. 4.
Please see our reply to general comment 4.
18) Page 1518, line 2: “predefined value”: how set up?
Please see our reply to detailed comment 7
19) Page 1518, lines 13-14: basically, the authors are stating that they are quite confident in their ability of predicting the failure when failure is already almost there. This is perfectly meaningful, but suggest that the method is not able to solve the issues of real-world early warning;
We regret to disagree with this comment. Our method has been indeed applied in real-world early warning context, and considered reliable to support near real time decision making in one of most critical emergency scenarios relevant to landslides in Italy of the last years. We remark that the method does not need calibration, nor back analyses.  The definition of “critical time ranges” was necessary during the 2014 La Saxe failure because the available time series were related to optical prisms installed outside the area that actually collapsed. This is not a limitation of the method, but of the measuring technique available for the application of the failure forecast. Theoretically, having spatially and temporally dense (continuous) measurements would further increase our capability to better infer the time of failure. In this specific case, GB-SAR would have been the solution; however, due to the large displacements revealed GB-SAR data suffered decorrelation and thus could not be used for reliable estimations. It is clearly stated in the manuscript that our method does not resolve all the issues related to EWS, but aims at being a step forward to support decision makers during critical emergency scenarios.   
20) Page 1518, lines 29: “critical time ranges”. See the General Comment n. 3.
Please see our reply to the previous comment and the general comment 3.
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[bookmark: _GoBack]Abstract
We investigate the use of landslideapply failure forecast models by exploiting near-real-time monitoring data. for the La Saxe rockslide, a large unstable slope threatening Aosta Valley in northern Italy. Starting from the inverse velocity theory, we analyze landslide surface displacements automatically and in near real time on different temporal windows, and apply straightforward statistical methods to obtain confidence intervals on the estimated time of failure. Here, we present the result obtained for the La Saxe rockslide, a large unstable slope located in Aosta Valley, northern Italy. Based on this case study, we identifiedidentify operational thresholds that are established on the reliability of the forecast models, in order to support. Our approach is aimed at supporting the management of early warning systems in the most critical phases of the landslide emergency. 
 
1.	Introduction
The use of analytical and numerical models to determine the occurrence of natural hazards is a major research subject. For landslides, this topic not only has great relevance in the scientific community, but leads to strong effects also onstrongly affects best practices for an efficient land planning and management of the territory.. The approaches used to forecast landslide occurrence mainly depend on the spatial scale analyzed (regional vs. local), ) and the temporal range of forecast (long- vs. short-term), as well as the triggering factor and the landslide typologytype being considered. A consistent portion of landslide phenomena iscertain proportion of landslides are triggered by intense and prolonged rainfall events,; thus, a large number of studies have focused on the relationship between intensity/duration of the rainfalls,rainfall and the consequent activation (or re-activation) of landslides (Wieczorek and Guzzetti, 1999). In general, the main inputs for these analyses are retrieved from rain gauges gauge data and historical landslide catalogues.catalogs. Models are used to identify and calibrate the intensity/ and duration thresholds that, if overcomeexceeded during a rainfall event, may uncertaintylead toindicate the likely occurrence of landslides in a specific area. with a specified degree of uncertainty. Early Warning Systems (EWS) based on this approach rely on the acquisition of near -real -time rain gauges data, from rain gauges and consider both the measured precipitation measured as well asand rain forecasts based on meteorological models (Rossi et al., 2012). EWS of this kindtype are used worldwide and are usually applied at regional scales, and can be well considered as; they constitute a suitable solution in areas where the combination of peculiar climatic conditions, landslide susceptibility, and dense population generategenerates high-risk exposure.
By considering large slope instabilities at the scale of a single phenomenon, event forecast attempts are generallyforecasting may be approached in a different manner. Large instableunstable slopes includedisplay a wide range of landslidesfailure behaviors, from slow slope deformations to rapid and catastrophic rockslides. One of the most critical issues related to these phenomena is their attitude to evolvelikelihood of evolving into impulsive gravitational events of impulsive nature, involving a partialsome or total portionall of the instableunstable mass (e.g.., rock falls and/or rock avalanches). In this context, surface displacements and/or deep-seated deformation represent often the key information for a proper understanding and interpretation of the phenomenon (Wieczorek and Snyder, 2009). When instable slopes menace population and/or important infrastructures, complex monitoring networks are set up as the base of EWS.often represent the key information for a proper understanding and interpretation of the phenomenon (Wieczorek and Snyder, 2009). 
In such situations, EWS may rely on thresholds defined on direct measurements of physical parameters describing the landslide evolution over time, i.e. surface and/or sub-surface displacements data (Michoud et al., 2013). If thresholds are exceeded, specific actions are typically predisposed to reduce the consequences of a potential landslide failure on the population and/or exposed infrastructures (Medina-Cetina and Nadim, 2008). Problems on the identification of these thresholds are well known, and are mainly caused by the complexity of the phenomena analyzed, as well as by the large number of variables to consider (Crosta and Agliardi, 2002). Moreover, an additional limitation of this approach is that, when the last threshold is exceeded, EWS end their efficacy. This is usually the most critical stage of the landslide emergency; indeed, the time lasting before a (partial or total) landslide failure occurrence is still unknown, and thus the critical situation can be protracted for long periods.
In the last decades, several modeling procedures have been proposed for the estimation of the Time of Failure (ToF) for landslide phenomena. These approaches, hereafter cited as Failure Forecast Methods (FFMs), analyze the evolution of the landslide deformation over time (i.e., the strain rate), and are based on the assumption that under constant stress conditions landslide materials follow the creep mechanism. After the pioneeristic work of Saito, M., 1965, a number of authors have attempted the estimation of ToF using different approaches, including simplified empirical and/or graphical solutions, analytical models known as “regression-only” methods, as well as physically consistent methods (see Federico et al., 2012, and references therein). The “inverse-velocity” method proposed by Fukuzono, 1985 has been widely considered, and lead to successful applications both in large-scale laboratory experiments as well as in real landslide scenarios (Dick et al., 2014; Mazzanti et al., 2014; Rose and Hungr, 2007). This approach exploits the evolution over time of the inverse value of the surface velocity (v), by assuming that failure approaches while v-1 tends to zero. 
When unstable slopes menace populations and/or important infrastructure, monitoring networks are set up as the basis of EWS. In such situations, EWS may rely on thresholds defined with respect to direct measurements of physical parameters describing the landslide evolution over time, i.e., surface and/or sub-surface displacement data (Michoud et al., 2013). If thresholds are exceeded, specific actions are typically prescribed to reduce the consequences of a potential landslide failure on the population and/or exposed infrastructure (Medina-Cetina and Nadim, 2008). The identification of thresholds for rock slide displacements (or velocities) is generally approached by performing back analyses on the available monitoring data and/or considering similarities to previous case studies in terms of geology and volume of the material involved. However, this is not always possible. Problems with the identification of these thresholds are well known, mainly resulting from the complexity of the phenomena analyzed, as well as from the large number of variables involved (Crosta and Agliardi, 2002). Moreover, an additional limitation of this approach is that the efficacy of EWS is lost when the last threshold is exceeded. Once this condition is reached, the time before a slope failure produces a (partial or total) landslide occurrence is still unknown, and thus the critical situation can be protracted for long periods. This is usually the most critical stage of the landslide emergency. 
In the last decades, several modeling procedures have been proposed for the estimation of the Time of Failure (ToF) for landslide phenomena. These approaches, hereafter referred to as Failure Forecast Methods (FFMs), analyze the evolution of the landslide deformation over time (i.e., the strain rate) and are based on the assumption that under constant stress conditions, landslide materials follow the creep mechanism. After the pioneering work of Saito, M., 1965, a number of authors have attempted to estimate ToF using different approaches, including simplified empirical and/or graphical solutions, analytical models known as “regression-only” methods, and physically consistent methods (see Federico et al., 2012, and references therein). The “inverse-velocity” method proposed by Fukuzono, 1985 has been widely considered and has led to successful applications both in large-scale laboratory experiments and in real landslide scenarios (Dick et al., 2014; Mazzanti et al., 2014; Rose and Hungr, 2007). This approach exploits the evolution over time of the inverse value of the surface velocity (v) by assuming that failure approaches as v-1 tends to zero. 
Recently, starting from the Fukuzono’s method, Manconi and Giordan, 2014,Manconi and Giordan, 2014 proposed a new approach to achieve landslide ToF forecast by considering near-real-time monitoring data. In this paper,While in Manconi and Giordan, 2014 we start from the method proposed by Manconi and Giordan, 2014, aiming at a more efficient management of landslide EWS.presented the details on the failure forecast modeling approach, in this paper we aim to define operative thresholds based on the results of the failure forecast models. Our goal is to contribute to filling an important gap, i.e. support., supporting authorities and decision makers during the time frame lasting frombetween the point when the predefined thresholds set on displacements (or its derivatives) haveare exceeded, up to and the occurrence of a (partial or total) landslide failure. In the following, we outline the main principles of the method, and we show an application to a real landslide emergency scenario.

2.	Failure forecast in near real time
Let us assume that an active monitoring network is deployed on the landslide area, and that the information on the deformation field is delivered in near real time. Figure 1 depicts an example of the temporal evolution that might be observed in landslide surface velocity prior to failure occurrence. Under these conditions, the monitoring network is usually coupled to aan EWS based on three stages, each one associated to the overcome ofwith two predefined velocity (v) thresholds: (i) v<thr1= landslide velocity is below values considered critical; (ii) v>thr1= warning conditions; (iii) v>thr2 = alarm. When thr1 or thr2 are exceeded at a specific measurement point (or area), the EWS can be set to send alert messages (e.g., via SMS and/or email) to the responsible authorities. The latter have tomust evaluate the situation and eventually activate specific civil protection procedures (Allasia et al., 2013; Intrieri et al., 2012).(Allasia et al., 2013; Intrieri et al., 2012). An EWS using as thresholds only values based only on the actual measured deformation measured dovalues does not provide any information about the possible evolution of the landslide towards failure. Thus, to overcome this issue, whenIndeed, the time between the passing of thr2 has been exceeded an automatic procedure to the slope failure is activatedunknown, posing serious concerns for the management of emergency scenarios. For example, if the civil protection procedures associated with the stage “v>thr2” are “evacuation of inhabited buildings” or “closure of the access roads”, the main question of decision makers under these conditions is “how long should we keep buildings empty and/or roads closed?” In several scenarios, due to the high variability of landslide behavior, uncertainty over which protection procedures to provide aadopt can last for several days or even weeks, causing discomfort to the population and economic loss. Adoption of failure forecast. models during this critical phase could mitigate these problems. More specifically, the here we apply Fukuzono’s inverse-velocity method is applied by considering several Calculation Time Windows (CTWCTWs, e.g., data acquired over the last 12- hours, 24- hours, 48- hours, 1- week, etc.), and iteratingiterate the procedure several times (e.g., N=1000 iterations) within a bootstrap resampling strategy (readers are referred to Manconi and Giordan, 2014Manconi and Giordan, 2014, for more detailsdetail). This approach is aimed at evaluating the evolution of the landslide status by considering data over different periods, as well as to derivederiving robust assessments of errors associated towith the estimated ToF estimate. In addition, the fitnessfit of the forecast vs.to the observations is evaluated by calculating the Pearson’s correlation coefficient (CC) between the model and the data. Normalized CC values, when statistically significant, can be interpreted as a measure of the Reliability reliability (R) of the computed forecast model. At this stage, we consider a number of model reliability R ranges, as follows: (i) 50%<R<60% = model reliability is low, failure is unlikely but the situation has tomust be surveyed; (ii) 60%<R<75% = model reliability is higher, a failure within the estimated ToF range starts to be more likely; (iii) 75%<R<90% = model reliability is high, a failure within the estimated ToF range is likely; (iv) R>90%= model reliability is very high, a failure within the estimated ToF range is highly probable. In general, the results of the failure forecast procedure herein presented have toherein must be read as follows: “if the landslide velocity continues to increase as in the last CTW, the probability to observeof observing a failure within the estimated ToF range is R% %.”
Additional information to take into account when interpreting the FFM results is the consistency of the forecast among different CTW,CTWs as well as the evolution of R tendency of R. For example, if R progressively increases and/or remains stable over high values (e.g., R>75%), the probability to observeof observing a failure is higher.
In order toTo facilitate the exploitation of the this information based on failure forecast,forecasting as well as to provide a straightforward understanding of the modeling results also to people without detailed knowledge onof the inverse-velocity theory, we designed specific representations aimed at summarizing the obtained results (see Figure 2). We have implemented this procedure within the ADVICE system (Allasia et al., 2013),(Allasia et al., 2013), and “Failure Forecast plots” are generated automatically when a monitored target velocities exceed v>thr2.

3.	Application to Mont de La Saxe rockslide
Active mass movement affects a large portion of the southern flank of the Mount de la Saxe, northwestern part of Aosta Valley, northern Italy. The rockslide, hereafter referred to as La Saxe, involves an instable volume of ca. 8x106 m3 (Crosta et al., 2013; Crosta et al., 2015) and menaces part of the Courmayeur municipality, i.e. Entreves and La Palud villages. In addition, the landslide threats also a crucial point of the route E25, an important highway connection crossing Europe from north to south, and ensuring commercial activities between Italy and transalpine countries. Continuous monitoring of surface modifications started from 2009, and evidenced that snow melting during spring seasons causes progressive acceleration of the surface displacements, which may locally reach up to several decimeters (or even meters) per day. Over the years, these acceleration phases lead to failures of portions of the landslide body, with volumes ranging from minor rock falls up to relatively larger mass wasting (>1x104 m3). The monitoring network deployed includes several instruments, which allow following the surface and subsurface evolution of the landslide over time (Crosta et al., 2013); however, the EWS is based mainly on thresholds set on measurements performed via a Robotized Total Station (RTS). When one or more RTS point targets overcome predefined warning and/or alarm levels (1 and 2 mm/hour, respectively, considered in a 24-hours observation window), specific civil protection procedures are activated, including the interruption of roads traffic, and evacuation of inhabitants from edifices located in areas potentially involved by a failure event. 
Active mass movement affects a large portion of the southern flank of the Mont de la Saxe, in the northwestern part of Aosta Valley, northern Italy. The rockslide, hereafter referred to as La Saxe, involves an unstable volume of ca. 8x106 m3 (Crosta et al., 2013; Crosta et al., 2015) and poses a hazard to part of the Courmayeur municipality, i.e., Entreves and La Palud villages. In addition, the landslide threatens a crucial point of route E25, an important highway connection crossing Europe from north to south and ensuring commercial activities between Italy and transalpine countries. Continuous monitoring of surface displacements started in 2009 and showed that spring snowmelt causes progressive acceleration of the surface displacements, which may locally reach up to several decimeters or even meters per day. Over the years, these acceleration phases have led to failures of portions of the landslide body, with volumes ranging from minor rock falls up to relatively larger mass wasting (>1x104 m3). The monitoring network deployed includes several instruments to measure surface displacements (Crosta et al., 2013), as follows: (i) a Robotized Total Station (RTS) measuring every hour the 3D position of approximately 30 optical targets installed on the landslide body; (ii) a Ground Based Synthetic Aperture Radar (GB-SAR), measuring at time intervals ranging from a few minutes to approximately one hour, adapted depending on the current landslide velocity; (iii) 8 Continuous GPS receivers, also installed on the landslide body. However, the EWS thresholds are based mainly on measurements performed via the RTS. When one or more RTS point targets overcome predefined warning and/or alarm levels (1 and 2 mm/hour, respectively, considered over a 24-hour observation window), specific civil protection procedures are activated, including the interruption of road traffic and evacuation of inhabitants from edifices located in areas potentially involved in a failure event. 
Starting fromat the end of March 2014, a specific sector of the La Saxe rockslide started again to accelerate (see Figure 3), with surface velocities reaching values up to 5-6 centimeters per day. This acceleration phase lead tohas caused a large number of minor rock falls, but also to as well as two main failure events: (i) 17 April 2014, CET 20:00, ca. 5x103 m3; (ii) 21 April 2014, CET 23:00, ca. 3x104 m3. Figure 4 showshows examples of the failure forecast plots generated in near real time from RTS measurements on target “B4” during this particular phase. The targetTarget B4 was installed close to the zone characterized by the largerlargest displacements, and at that moment was considered asto be one of the most representative for understanding the evolution of the most active kinematic domain. We noticenoticed that from March 31 to April 15, the reliability of the FFM has progressively increased for all the CTWs considered CTWs. At this stage, landslide material had reached surface displacement rates larger than several centimeters per hour, and a failure was considered highly probable.

4.	Discussion and conclusions
We presented an approach aimed at updating operational EWS thresholds by including a values based on the results of the Failure Forecast Method. Our approach has been applied to forecast landslide events associated towith the evolution of the La Saxe rockslide during the 2014 emergency scenario. OurThe results show that reliability thresholdthresholds applied to FFM results can be used to help the interpretation of the evolution of the landslide body towards a failure, and to provide an additional support for early warning purposes. Despite the number of events observed is yet very limited, we evaluated the performance of the proposed methodology by building contingency tables (Jolliffe and Stephenson, 2012). For this purpose, we have taken into account the failure forecast results for the la Saxe failure event occurred in April 21, 2013 (see Manconi and Giordan, 2014) and the two major events occurred on 2014. In particular, the analysis was performed by assuming as “event forecast and to provide additional support for early warning purposes. Despite to the limited number of events observed so far, we evaluated the performance of the proposed methodology by building contingency tables (Jolliffe and Stephenson, 2012). For this purpose, we have taken into account the failure forecast results for the La Saxe failure event of April 21, 2013 (see Manconi and Giordan, 2014) and the two major events that occurred in 2014. In particular, the analysis was performed by using for “event forecasting” only those models with Reliability (R) higher than a predefined value. Among them, models predicting a ToF range that included the time of the real events observed have been considered asto be “true positive”, while “false alarms” are models predicting a ToF range antecedentearlier than the real event occurrence, whileand “missed alarms” are models predicting a ToF range successive to later than the real event occurrence. Despite, modelsModels with R below the predefined reliability threshold have been considered asto be “non-event forecast”,forecasts” and thus as “true negatives”.. The analysis was performed on forecast models obtainingproducing reliability thresholds R>75% and R>90% in the week preceding the failure (see Supplementary information). We note that the model hit-rate for the 2013 event is inon the order of 0.8 (see Table S7),) and highly depends highly on the considered computational time windows. Despite considered. However, the modeling procedure yields to a consistent number of false alarms, although among themthese, the mean distance between the predicted and the real event is inon the order of 2.5-3 days. Moreover, we note that by considering only the forecast models with R>90%, the number of missed alarms tends towardsapproaches zero. For the 2014 events, the evaluation of the model performance with standard contingency estimators is of difficult interpretation. Indeed, on to interpret. The event of April 21, 2013, the event occurred after a straightforward evolution towards failure, and the target analyzed was installed right on the top of the collapsed landslide sector (see Figure 3). On the contraryBy contrast, the 2014 emergency scenario was characterized by a different evolution. In particular, in the period starting from April 15, 2014 up to April 21, 2014, a progressively largeincreasing number of rock falls and minor collapses waswere observed (Bertolo and Arrighetti, 2014), and the landslide acceleration was highly non-linear especially. In addition, while the landslide acceleration trend was recorded by several RTS targets, none of them was located right on the sectors that finally collapsed (see Figure 3). This is a main limitation of using this typologytype of failure forecast modelsmodel on point data acquired on a punctual basis: if the point is not representative of the collapsing sector, the forecasted time of failure can be inaccurate. Under these conditions, the use of time series retrieved from GB-SAR, which provide a spatially distributed map of surface displacements, can be helpful; however, in this specific case, SAR data accuracy suffered from the occurrence of very large and/or rapid deformation, hindering its measuring capabilities due to signal decorrelation (see Casu et al., 2011).
For the above-discussed reasons, it is difficult to identify proper failure events for cases aslike those encountered induring the La Saxe 2014 emergency phase. InsteadIn these specific cases, instead of failure events, it is more appropriate to define a “critical time range” wherewhen failure may occur. Based on the modeling results obtained for the La Saxe case study, we can consider thr3= R>75% asto be a good compromise to catch in advance the occurrence of the critical time range (see Figure 1). We remindemphasize that, as for forecast models relevant to other natural phenomena (e.g., meteorological events), our results are based on a statistical inference, and they have to bemust always be considered in terms of probability. Moreover, unpredictable changes of the boundary conditions, as well as deviations of the material behavior from the classical creep theory  may deeply affect the results of the forecast model (Mazzanti et al., 2014). It is worth to mention that our method has been developed to achieve reliable short-term failure forecast, but is not intended for medium- and long-term predictions of the ToF. On the contrary, we aim at providingin the material behavior from the classical creep theory, may deeply affect the results of the forecast model (Mazzanti et al., 2014). 
The main advantage of the method presented herein is that additional thresholds are based on the results of failure forecast models computed in near real time and thus rely only on the status of the landslide as defined by the measurements currently available, requiring neither a calibration period nor back analyses. It is worth mentioning that our method has been developed to achieve reliable short-term failure forecasts and is not intended for medium- and long-term predictions of the ToF. On the contrary, we aim to provide a supporting toolbox to manage EWS in critical situations, especially when predefined early warning thresholds are overcome.exceeded. EWS managers can benefit offrom the additional information provided by the FFM, because when the reliability of the forecast is high and thus a landslide failure thus more likely, authorities can be informed in advance (in automatic and/or semi-automatic manner),) and thus have the time to take eventual countermeasures. The final interpretation on of landslide failure potential has tomust be provided by experienced users, which who have a deep knowledge of landslide phenomena, have access to additional data on the landslide status, and are conscious of the limitations of FFM. Thus, the FFM information can be better interpreted by taking carefully into account additional evidence from other data sources, depending on the specific context. Further investigation will be performed on the reliability and accuracy of the herein method presented methodherein will be performed, mainly by considering different data sources, as well as performing tests on a larger number of case studies. 
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Figures
Figure 1: Schematic representation of the evolution over time of landslide velocity prior to a failure event, by considering materials behaving under creep conditions. The evolution towards failure may have different phases characterized by non-linear accelerations. While thr1 and thr2 are static thresholds defined from a-priori information on the landslide behavior, thr3 is based on the results from the failure forecast modeling obtained in near real time.  
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Figure 2: Example of the “Failure Forecast Plots”. X-axis represent the different computational time windows (CTW), while in the y-axis is indicated the predicted Time to Failure (TTF= ToF-now, where now is the time of the current computation). The bar length is function of the TTF range between 5 and 95 percentiles computed with the bootstrap procedure (see text for details). The bar colors depend on the forecast model reliability values (R). Black triangles indicate the reliability tendency with respect to the previous model: increase (or decrease) occurs when current R is higher (or lower) by 1%. N/A indicates that the modeling results are not reliable, thus the failure forecast model is not applicable.
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Figure 3: Frontal view of the La Saxe rockslide (April, 2013). Red dashed line is the limit of the instableunstable slope, while blue dashed line defines the most active landslide sector. B4 and B6 are the location of the RTS targets considered for the failure forecast.  Colored areas represent the zones collapsed on April 21, 2013 (reddish), April 17, 2014 (orange), and April 21, 2014 (yellow), respectively. 
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Figure 4: results of the failure forecast procedure obtained in near real time during the 2014 emergency scenario. Note how the TTF predicted varies depending on the CTW considered. 
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Supplementary Information
Table S1: Scheme of the contingency table used
	Event Forecast
	Event Observed

	
	Yes
	No
	Marginal Total

	Computation 
Time Windows
	12-hr
	24-hr
	48-hr
	7-days
	12-hr
	24-hr
	48-hr
	7-days
	12-hr
	24-hr
	48-hr
	7-days

	Yes
	a=True positive
	b=False alarms
	a+b

	No
	c=Missed alarms
	d=True negatives
	c+d

	Marginal Total
	a+c
	b+d
	a+b+c+d



Table S2: Event=21 April 2013, R>75%
	Event Forecast
	Event Observed

	
	Yes
	No
	Marginal Total

	CTW
	12-hr
	24-hr
	48-hr
	7-days
	12-hr
	24-hr
	48-hr
	7-days
	12-hr
	24-hr
	48-hr
	7-days

	Yes
	16
	5
	4
	0
	76
	69
	43
	7
	92
	74
	47
	7

	No
	2
	1
	1
	0
	152
	163
	164
	168
	154
	164
	165
	168

	Marginal Total
	18
	6
	5
	0
	228
	232
	207
	175
	246
	238
	212
	175



Table S3: Event= 21 April 2013, R>90%
	Event Forecast
	Event Observed

	
	Yes
	No
	Marginal Total

	CTW
	12-hr
	24-hr
	48-hr
	7-days
	12-hr
	24-hr
	48-hr
	7-days
	12-hr
	24-hr
	48-hr
	7-days

	Yes
	11
	2
	1
	0
	49
	32
	29
	0
	60
	34
	30
	0

	No
	0
	0
	0
	0
	157
	166
	167
	168
	157
	166
	167
	168

	Marginal Total
	11
	2
	1
	0
	206
	198
	196
	168
	217
	200
	197
	168



Table S3: Event=17 April 2014, R>75%
	Event Forecast
	Event Observed

	
	Yes
	No
	Marginal Total

	CTW
	12-hr
	24-hr
	48-hr
	7-days
	12-hr
	24-hr
	48-hr
	7-days
	12-hr
	24-hr
	48-hr
	7-days

	Yes
	79
	44
	26
	7
	29
	56
	52
	97
	108
	100
	78
	104

	No
	44
	52
	49
	65
	89
	124
	142
	161
	133
	176
	191
	226

	Marginal Total
	123
	96
	75
	72
	118
	180
	194
	258
	241
	276
	269
	330



Table S4: Event=17 April 2014, R>90%
	Event Forecast
	Event Observed

	
	Yes
	No
	Marginal Total

	CTW
	12-hr
	24-hr
	48-hr
	7-days
	12-hr
	24-hr
	48-hr
	7-days
	12-hr
	24-hr
	48-hr
	7-days

	Yes
	79
	44
	26
	7
	25
	45
	48
	97
	104
	89
	74
	104

	No
	32
	49
	48
	65
	89
	124
	142
	161
	121
	173
	190
	226

	Marginal Total
	111
	93
	74
	72
	114
	169
	190
	258
	225
	262
	264
	330



Table S5: Event=21 April 2014, R>75%
	Event Forecast
	Event Observed

	
	Yes
	No
	Marginal Total

	CTW
	12-hr
	24-hr
	48-hr
	7-days
	12-hr
	24-hr
	48-hr
	7-days
	12-hr
	24-hr
	48-hr
	7-days

	Yes
	26
	4
	1
	0
	123
	138
	119
	171
	149
	142
	120
	171

	No
	18
	8
	0
	0
	157
	179
	182
	183
	175
	187
	182
	183

	Marginal Total
	44
	12
	1
	0
	280
	317
	301
	354
	324
	329
	302
	354







Table S6: Event=21 April 2014, R>90%
	Event Forecast
	Event Observed

	
	Yes
	No
	Marginal Total

	CTW
	12-hr
	24-hr
	48-hr
	7-days
	12-hr
	24-hr
	48-hr
	7-days
	12-hr
	24-hr
	48-hr
	7-days

	Yes
	16
	4
	0
	0
	112
	125
	106
	143
	128
	129
	106
	143

	No
	10
	0
	0
	0
	167
	179
	183
	183
	177
	179
	183
	183

	Marginal Total
	26
	4
	0
	0
	279
	304
	289
	326
	305
	308
	289
	326



Table S7: Contingency estimators, event 21 April 2013
	CTW
	12-hr
	24-hr
	48-hr
	7-days

	R
	>75%
	>90%
	>75%
	>90%
	>75%
	>90%
	>75%
	>90%

	Accuracy 
(a+d)/n
	0.68
	0.77
	0.7
	0.84
	0.79
	0.85
	0.96
	1

	Hit rate 
a/(a+c)
	0.88
	1
	0.8
	1
	0.83
	1
	-
	-

	False alarm ratio 
b/(a+b)
	0.82
	0.81
	0.93
	0.94
	0.91
	0.96
	1
	-

	Bias 
(a+b)/(a+c)
	5.1
	5.4
	12.3
	17
	9.4
	30
	-
	-

	CSI 
a/(a+b+c)
	0.17
	0.18
	0.06
	0.05
	0.08
	0.03
	0
	-



Table S8: Contingency estimators, event 17 April 2014
	CTW
	12-hr
	24-hr
	48-hr
	7-days

	R
	>75%
	>90%
	>75%
	>90%
	>75%
	>90%
	>75%
	>90%

	Accuracy 
(a+d)/n
	0.69
	0.74
	0.60
	0.64
	0.62
	0.63
	0.50
	0.50

	Hit rate 
a/(a+c)
	0.64
	0.71
	0.45
	0.47
	0.34
	0.35
	0.09
	0.09

	False alarm ratio 
b/(a+b)
	0.26
	0.24
	0.56
	0.50
	0.66
	0.64
	0.93
	0.93

	Bias 
(a+b)/(a+c)
	0.87
	0.93
	1.04
	0.95
	1.04
	1
	1.40
	1.44

	CSI 
a/(a+b+c)
	0.51
	0.58
	0.28
	0.31
	0.20
	0.21
	0.04
	0.04



Table S9: Contingency estimators, event 21 April 2014
	CTW
	12-hr
	24-hr
	48-hr
	7-days

	R
	>75%
	>90%
	>75%
	>90%
	>75%
	>90%
	>75%
	>90%

	Accuracy 
(a+d)/n
	0.56
	0.6
	0.55
	0.59
	0.6
	0.62
	0.51
	0.56

	Hit rate 
a/(a+c)
	0.59
	0.65
	0.33
	1
	1
	-
	-
	-

	False alarm ratio 
b/(a+b)
	0.82
	0.87
	0.97
	0.96
	0.99
	1
	1
	1

	Bias 
(a+b)/(a+c)
	3.3
	4.9
	11.8
	32.2
	120
	-
	-
	-

	CSI 
a/(a+b+c)
	0.15
	0.11
	0.02
	0.03
	0.008
	0
	0
	0
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