Brief Communication: A new testing field for debris flow warning systems

3 Arattano M.¹, Coviello V.¹, Cavalli M.¹, Comiti F.², Macconi P.³, Theule, J.², Crema S.¹

4 ¹ Italian National Research Council (CNR), Research Institute for Geo-hydrological Protection (IRPI), Italy

5 ² Faculty of Science and Technology, Free University of Bozen-Bolzano, Italy

6 ³ Department of Hydraulic Engineering, Autonomous Province of Bozen-Bolzano, Italy

7 Correspondence to: velio.coviello@irpi.cnr.it

8

9 Abstract

A permanent field installation for the systematic test of debris flow warning systems and algorithms 10 has been equipped on the Eastern Italian Alps. The installation was also designed to produce 11 didactic videos and it may host informative visits. The populace education is essential and should be 12 envisaged in planning any research on hazard mitigation interventions: this new installation 13 responds to this requirement and offers an example of integration between technical and 14 informative needs. The occurrence of a debris flow in 2014 allowed the first tests of a new warning 15 16 system under development and to record an informative video on its performances. This paper will provide a description of the installation and an account of the first technical and informative results 17 obtained. 18

19

20 1. Introduction

The prediction and forecasting of landslides is a very broad issue that involves the work of researchers of many different disciplines and includes several diverse topics. Among the latter, a place is held for the early warning of landslides and the study and development of Early Warning Systems (EWSs) (Intrieri et al., 2012; Rose and Hungr, 2007). Restricting further into the topic, a specific theme is represented by the early warning from rapid mass movements such as debris flows (Stähli et al., 2014).

There are two main categories of debris flow EWS, namely the advance and the event EWS (Hungr et al., 1987). Advance EWSs predict the occurrence of a debris flow by monitoring the hydrometeorological conditions that might lead to its initiation (Keefer et al., 1987) whereas event EWSs detect the debris flow when it is already occurring (Badoux et al., 2008). An event EWS may use different types of detecting devices that range from simple electrified wires, broken by the passage of the flow, to more complex types of sensors that require the development of algorithms to interpret the sensor output and recognize the debris flow occurrence. The devices employed by EWS are usually the same used for monitoring and research in rheological and modeling studies and investigations on propagation processes. They include a wide variety of sensors, such as stage sensors, seismic sensors, microphones, trip wires, and video cameras (Arattano and Grattoni, 2000; Suwa et al., 2011; Zhang, 1993).

The event EWS for debris flows usually detect the passage of a debris flow at a certain cross section 38 where the sensor is installed, but they may also be able to detect some tens of seconds in advance 39 the arrival of the debris flow when ground vibration sensors are employed (Abancó et al., 2014; 40 Koschuch et al., 2015; Schimmel and Hübl, 2015). The event EWSs that rely on the use of 41 algorithms to process the monitoring data and recognize the occurrence of a debris-flow event, 42 43 usually require long development and systematic testing. An instrumented site specifically designed 44 for testing EWSs and their algorithms would be of great help to favor their development and improvement and to increase the sites where researches on EWSs are already being performed 45 (Abancó et al., 2014; Badoux et al., 2008; Koschuch et al., 2015; Moser et al., 2002). It would also 46 47 allow to undertake a first attempt toward a standardization of procedures and methods for such testing. The standardization of monitoring and warning procedures for debris flows is in fact a need 48 49 that is starting to be felt (Arattano et al., 2015). All these needs suggested to equip a specific testing field for event EWSs and warning algorithms in the instrumented area of the Gadria creek, on the 50 North-Eastern Italian Alps. 51

The installation of a testing field for debris flow EWS is also important because it may increase the 52 public awareness on their functionality and effective performances. An EWS, in fact, cannot 53 provide a complete safety for the people that it is devoted to protect, as a certain percentage of risk 54 will always remain and false alarms will also be possible. Therefore the interested population needs 55 to learn and understand the performance of an EWS and the service it may provide. The Gadria 56 testing field, other than providing educational videos as it will be shown in the following, might be 57 58 used for guided visits that could connect public and researchers and to help reach more easily such 59 an understanding.

60

2. The Gadria testing field for debris flow warning algorithms

Any EWS needs a period of calibration and tests that precedes its operational employment. This is particularly true for the event EWS that make use of warning algorithms to process the output of the

sensors employed for detection. In fact, the warning algorithms require to be systematically and 64 extensively checked for verifying their capacity in correctly detecting the occurrence of a debris 65 flow and measuring the needed parameters. The warning algorithms that require that a certain signal 66 intensity threshold is exceeded to spread the alarm, for example, need a check of the correct choice 67 of the threshold (Badoux et al., 2008). The check must include the capability of the algorithm to 68 69 avoid the detection of other types of phenomena that might produce false alarms (Coviello et al., 70 2015). Moreover, algorithms might need improvement on the basis of their first performances and 71 also the improved versions should undergo a systematic phase of tests.

These needs have suggested the realization of a specific facility where the required tests could systematically be performed with the needed recurrence and continuity. The ideal location of such an installation would have been an already existing instrumented area for debris flow monitoring where events occurred with a high enough frequency to grant the possibility of a significant number of tests. The Gadria catchment, located in the Eastern Italian Alps provided a good opportunity. Information concerning the Gadria catchment, its past debris flows and its monitoring installations can be found in (Comiti et al., 2014).

The testing field has been realized in 2014 along a straight reach of the Gadria creek (Fig. 1). Downstream of this reach there is a deposition basin where the debris flows generally completely stop. At the downstream end of this basin a slit check dam allows the passage of water and finer sediments. The deposition basin is periodically mechanically emptied. Few kilometers downstream of the check dam there are some roads, bridges and a small village located in the proximity of the channel. Despite the presence of the retention basin, some residual risk still exists: a large debris flow event could exceed the capacity of the retention basin, especially in the case it is not empty.

The chosen reach was already equipped with different types of sensors for the monitoring of debris flows (Comiti et al., 2014), including raingauges, three video cameras shooting the channel, two radars for flow stage measurements and four geophones. The downstream boundary of the testing field is determined by the most upstream of the fixed video cameras. This video camera (Fig. 2a) is in fact an essential part of the EWS testing field installation, as it will be shown in the following.

About 150 m upstream of the video camera, a specific equipment was installed (Fig. 2b) that has been designed by the CNR IRPI researchers and constructed by the Company SIAP+MICROS (*Siapmicros, 2015*), which also contributed to fund the research along with the EU-funded SedAlp project (*Sedalp, 2015*). This equipment is named ALMOND-F, which stands for "ALarm and MONitoring system for Debris-Flows". The ALMOND-F is designed to host different types of sensors, including pendulums, radar and ultrasonic sensors, but was particularly intended for the

seismic detection of debris flows. In fact, when connected to geophone sensors, the system allows 97 to set different values of signal amplification (gain range 1 - 128) for each geophone. This permits 98 to install the geophones also at great distance from the torrent, according to the specific 99 morphologic conditions that may be found in the field. The ALMOND-F automatically samples the 100 geophone signal at a frequency of 128 Hz and then calculate the signal Amplitude directly on board. 101 It may implement different warning algorithms aboard that can be directly uploaded with a laptop 102 computer. Finally, a flashing light (Fig. 2) has been installed on the bank of the torrent 75 m 103 downstream of the ALMOND-F equipment and has been cabled together. 104

The flashing light is framed by the fixed video camera (Fig. 1) and is activated by the algorithm. 105 This allows a visual verification of the efficacy of the algorithm under test. The activation of the 106 flashing light is in fact recorded by the video camera, which also records the arrival of the debris 107 flow. By analyzing the video recordings, it is possible to verify the moment when the light starts to 108 flash and the contemporary occurrence of the debris flow. When the warning system is capable of 109 110 providing an alarm in advance, as it occurs when it makes use of seismic sensors (Abancó et al., 2014), it becomes possible to appreciate visually the amount of time elapsed between the activation 111 of the flashing light and the actual arrival of the debris flow. 112

An event EWS may also have a closure algorithm which recognizes when the event is finished and turns off the alarm. This would correspond to the restoring of the green light in case the EWS were connected to a traffic light to stop the vehicles and impede the access to an endangered stretch of road or railways. The flashing light of the Gadria EWS testing field also permits an easy check of such closure algorithms, visualizing the turning off of the flashing light and the correspondent flow that is occurring in the channel at that moment.

119

120 **3.** An educational and informative site

The shooting of videos that show the activation and deactivation of the flashing light was specifically intended to show the performances of an EWS to decision makers, practitioners and the general public and to make them aware of its functionality. The involvement and the education of the interested populace are important goals and essential steps in almost any hazard mitigation activity. These goals should not be pursued as something separated by the research activities carried out in the field or in the laboratory. On the contrary, they should be kept in mind during all the phases of the research and possibly integrated within the research activity.

The Gadria testing field was designed with this in mind and can be considered a first attempt of 128 129 such an integration. In fact, it has an importance and a utility that goes beyond the simple mechanical test of new algorithms. This latter, in fact, might have been pursued from a mere 130 technical point of view, without the need of a video camera and a flashing light, but by simply 131 designing and installing the ALMOND-F equipment and then analyzing the recorded data in a 132 laboratory. The installation of a flashing light framed by a video camera, however, makes the 133 functionality of a warning system and its performances much more evident and understandable. 134 Decision makers, practitioners and the general public could not analyze complex files of data and 135 136 the formulas of an algorithm, but can certainly recognize if a flashing light was correctly activated 137 and then if it was correctly turned off.

The Gadria testing field, thanks to the described structure, is therefore an important source of didactic videos (Dutto et al., 2015). It is also a possible destination for educational trips, carried out for information and divulgation purposes, and it may be a font of news that can be published on popular magazines widely circulated, as it has recently occurred (Bignami, 2015).

142

143 4. First tests performed in the Gadria EWS testing field

The Gadria EWS testing field has provided a chance, in 2014, to test a new warning algorithm, 144 developed by the researchers of CNR IRPI. The algorithm is designed to detect debris flows 145 through the use of geophones. A first version of the algorithm, which uses the Signal-to-Noise Ratio 146 147 (SNR) as a warning parameter instead of the usual threshold of the signal intensity (see Abancó et al., 2014 and Badoux et al., 2008), was implemented aboard the alarm and monitoring unit of the 148 Gadria EWS testing field at the beginning of the 2014 summer season. The SNR was chosen as 149 150 warning parameter to investigate the possibility to detect earlier the arrival of the debris flow than only using a threshold of the signal intensity. The results obtained for the 2014 event seem to 151 152 support this possibility.

The warning algorithm processes the amplitude signal provided by three vertical 1D, 10-Hz 153 geophones. These geophones are installed at three different locations, some tens of meters apart 154 along the channel (Fig. 1) and connected to the ALMOND-F equipment that records the data. The 155 156 warning algorithm makes use of the signal of three geophones to reduce the possibility of false alarms. It is in fact required by the algorithm that a certain site specific threshold of the SNR is 157 158 exceeded on at least two geophones to issue the alarm (turn on the flashing light). The amplitude has been preferred to the method of impulses as a method to process the seismic signal, to avoid the 159 160 difficulties posed by the choice of the threshold for the impulse calculations (Arattano et al., 2014).

On July 15, 2014 a debris flow occurred in the Gadria creek and provided a chance for the test of the warning algorithm. Both the opening and closure algorithms performed well. The recorded video shows the activation of the flashing light about three minutes before the arrival of the debris flow main front. When the flashing light turned on, the Gadria Creek was affected by a turbulent wave with intense bed load transport. After the passage of the 8 surges composing the debris flow event, the flashing light was correctly turned off, as it is possible to observe in the recorded images (Fig. 3). No other surge followed the turning off of the flashing light.

Within the 51 days of tests carried out during the 2014 summer season, 2 false alarms were detected 168 by the system. One was likely produced by the passage of a vehicle along the track located on the 169 left bank of the torrent (Fig. 1) and the other by a distant source of vibration that caused 170 simultaneous recordings at the three sensors. The relative data were recorded by the monitoring 171 equipment. The recorded video of the July debris flow event and the monitoring data concerning the 172 173 false alarms have provided precious information regarding the performances of the algorithm. This 174 latter will be consequently improved to reach better performances and reduce the number of false 175 alarms. The improvements are currently under development and an improved version of the algorithm is actually under test. Moreover, another monitoring equipment composed by one 176 177 geophone and an infrasound sensor (Schimmel and Hübl, 2015) was recently installed in the Gadria testing field by the researchers of BOKU University. This equipment was developed for warning 178 179 purposes and is expected to contribute developing and testing other types of debris flow warning algorithms. 180

181

182 **5. Conclusions**

183 A testing field for debris flow warning systems has been instrumented in the Gadria basin. The installation provides a site where different types of warning systems and algorithms for debris flows 184 185 can be tested. It encompasses a specifically designed alarm and monitoring equipment that can be linked to different types of sensors and implement different algorithms aboard. A flashing light 186 187 framed by a video camera and activated by the algorithm under test permits a visual verification of the performance of this latter. The importance of the installation is also due to the chance that it 188 189 may offer to increase the public awareness about the functioning of an EWS and the hazard mitigation that it may allow. This goal could be pursued through the realization of didactic videos, 190 191 guided visits and the spreading of informative news on the debris flow events that occur in the Gadria Creek. So far, such instrumented basin has provided some first important indications for the 192 enhancement of the algorithms currently under investigation. 193

195 Acknowledgments

- 196 This study is funded by the European Territorial Cooperation Alpine Space Programme 2007-2013
- 197 SedAlp project, by the Autonomous Province of Bolzano and by the Company SIAP+MICROS
- 198 S.r.l.. The monitoring station of the Gadria basin is managed by the Autonomous Province of
- 199 Bozen-Bolzano (Department of Hydraulic Engineering).
- 200

201 References

Abancó, C., Hürlimann, M. and Moya, J.: Analysis of the ground vibration generated by debris

flows and other torrential processes at the Rebaixader monitoring site (Central Pyrenees, Spain),
Nat. Hazards Earth Syst. Sci., 14(4), 929–943, doi:10.5194/nhess-14-929-2014, 2014.

Arattano, M., Abancó, C., Coviello, V. and Hürlimann, M.: Processing the ground vibration signal
produced by debris flows: the methods of amplitude and impulses compared, Comput. Geosci., 73,
17–27, doi:10.1016/j.cageo.2014.08.005, 2014.

Arattano, M., Cavalli, M., Comiti, F., Coviello, V., Macconi, P. and Marchi, L.: Standardization of
methods and procedures for debris flow seismic monitoring, in Engineering Geology for Society
and Territory - Volume 3, edited by G. Lollino, M. Arattano, M. Rinaldi, O. Giustolisi, J.-C.
Marechal and G. F. Grant, pp. 63–67. Springer International Publishing, Switzerland, 2015.

211 Marechal, and G. E. Grant, pp. 63–67, Springer International Publishing, Switzerland., 2015.

Arattano, M. and Grattoni, P.: Using a fixed video camera to measure debris-flow surface velocity,
in Second International Conference on Debris-flow Hazards Mitigation: Mechanics, Prediction, and
Assessment, edited by G. F. Wieczorek and N. D. Naeser, pp. 16–18, Balkema, Rotterdam, Taipei.,
2000.

- Badoux, A., Graf, C., Rhyner, J., Kuntner, R. and McArdell, B. W.: A debris-flow alarm system for
 the Alpine Illgraben catchment: design and performance, Nat. Hazards, 49(3), 517–539,
- 218 doi:10.1007/s11069-008-9303-x, 2008.
- Bignami, L.: Droni, fibre ottiche, sensori chimici: i metodi per prevenire crolli e smottamenti sono
 sempre più efficaci, Focus (Madison)., 104–108, 2015.
- 221 Comiti, F., Marchi, L., Macconi, P., Arattano, M., Bertoldi, G., Borga, M., Brardinoni, F., Cavalli,
- 222 M., D'Agostino, V., Penna, D. and Theule, J.: A new monitoring station for debris flows in the
- European Alps: first observations in the Gadria basin, Nat. Hazards, 73(3), 1175–1198,
 doi:10.1007/s11069-014-1088-5, 2014.
- Coviello, V., Arattano, M. and Turconi, L.: Detecting torrential processes from a distance with a
 seismic monitoring network, Nat. Hazards, doi:10.1007/s11069-015-1819-2, 2015.
- 227 Dutto, F., Arattano, M., Bacenetti, M., Chiarle, M., Contrafatto, C., Giardino, M., Longo, F.,
- 228 Perotti, L., Racca, F., Rocci, L. and Turconi, L.: Interactive, 3D Simulation of Natural Instability
- 229 Processes for Civil Protection Purposes, in Engineering Geology for Society and Territory -

- Volume 7, edited by G. Lollino, M. Arattano, M. Giardino, R. Oliveira, and S. Peppoloni, pp. 125–
 130, Springer International Publishing, Switzerland., 2015.
- Hungr, O., Morgan, G. C., VanDine, D. F. and Lister, D. R.: Debris flow defenses in British
- Columbia, in Debris Flows/Avalanches: Process, Recognition, and Mitigation, vol. 7, edited by J. E.
 Costa and G. F. Wieczorek, pp. 201–222, Geological Society of America., 1987.
- Intrieri, E., Gigli, G., Mugnai, F., Fanti, R. and Casagli, N.: Design and implementation of a
- landslide early warning system, Eng. Geol., 147-148, 124–136, doi:10.1016/j.enggeo.2012.07.017,
 2012.
- Keefer, D. K., Wilson, R. C., Mark, R. K., Brabb, E. E., Brown, W. M., Ellen, S. D., Harp, E. L.,
 Wieczorek, G. F., Alger, C. S. and Zatkin, R. S.: Real-time landslide warning during heavy rainfall,
- 240 Science (80-.)., 238(4829), 921–5, doi:10.1126/science.238.4829.921, 1987.
- 241 Koschuch, R., Jocham, P. and Hübl, J.: One Year Use of High-Frequency RADAR Technology in
- 242 Alpine Mass Movement Monitoring: Principles and Performance for Torrential Activities, in
- Engineering Geology for Society and Territory Volume 3, edited by G. Lollino, M. Arattano, M.
- Rinaldi, O. Giustolisi, J.-C. Marechal, and G. E. Grant, pp. 69–72, Springer International
- Publishing, Switzerland., 2015.
- 246 Marchi, L., Arattano, M. and Deganutti, A. M.: Ten years of debris-flow monitoring in the
- 247 Moscardo Torrent (Italian Alps), Geomorphology, 46(1-2), 1–17, doi:10.1016/S0169248 555X(01)00162-3, 2002.
- 249 Moser, M., Pichler, A., Hübl, J., Ganahl, E. and Steinwendtner, H.: Transfer from a monitoring
- system to an early warning system : development of a debris flow warning system at
- 251 Wartschenbach (Eastern Tyrol, Austria), in ERB and Northern European FRIEND Project 5 Conference, Demänovská dolina, Slovakia, 2002
- 252 Conference, Demänovská dolina, Slovakia., 2002.
- Rose, N. D. and Hungr, O.: Forecasting potential rock slope failure in open pit mines using the inverse-velocity method, Int. J. Rock Mech. Min. Sci., 44(2), 308–320,
- doi:10.1016/j.ijrmms.2006.07.014, 2007.
- 256 Schimmel, A. and Hübl, J.: Approach for an Early Warning System for Debris Flow Based on
- 257 Acoustic Signals, in Engineering Geology for Society and Territory Volume 3, edited by G.
- Lollino, M. Arattano, M. Rinaldi, O. Giustolisi, J.-C. Marechal, and G. E. Grant, pp. 55–58, Springer International Publiching, Switzerland, 2015
- 259 Springer International Publishing, Switzerland., 2015.
- 260 Stähli, M., Sättele, M., Huggel, C., McArdell, B. W., Lehmann, P., Van Herwijnen, a., Berne, a.,
- 261 Schleiss, M., Ferrari, a., Kos, a., Or, D. and Springman, S. M.: Monitoring and prediction in Early
- Warning Systems (EWS) for rapid mass movements, Nat. Hazards Earth Syst. Sci. Discuss., 2(11), 7149, 7179, doi:10.5194/phased 2.7149.2014
- 263 7149–7179, doi:10.5194/nhessd-2-7149-2014, 2014.
- Suwa, H., Okano, K. and Kanno, T.: Forty years of debris-flow monitoring at Kamikamihorizawa
- 265 Creek, Mount Yakedake, Japan, in 5th International Conference on Debris-Flow Hazards
- 266 Mitigation: Mechanics, Prediction and Assessment, edited by R. Genevois, D. L. Hamilton, and A.
- Prestininzi, pp. 605–613, Casa Editrice Università La Sapienza, Roma., 2011.
- Turconi, L., Coviello, V., Arattano, M., Savio, G. and Tropeano, D.: Monitoring Mud-Flows for
 Investigative and Warning Purposes: The Instrumented Catchment of Rio Marderello (North-

- 270 Western Italy), in Engineering Geology for Society and Territory, vol. 3, edited by G. Lollino, M.
- 271 Arattano, M. Rinaldi, O. Giustolisi, J.-C. Marechal, and G. E. Grant, pp. 85–90, Springer
- 272 International Publishing, Switzerland., 2015.
- 273 Zhang, S.: A Comprehensive Approach to the Observation and Prevention of Debris Flows in
- 274 China, Nat. Hazards, 7(1), 1–23, doi:10.1007/BF00595676, 1993.

Figure 1. The Gadria testing field (black rectangle) for debris-flow warning systems and algorithms.

278 Background image coordinate system: WGS 1984 UTM Zone 32N.

Figure 2. (a) The ALMOND-F equipment installed on the left bank of the Gadria torrent including a raingauge, a solar panel and the box containing the data logger; (b) the area downstream the ALMOND-F: the video camera visible in this picture shot the frames reported in Fig. 3.

285

Figure 3. Frames from the video camera part of the EWS testing field (Fig. 2b) showing the debris flow occurred on 15 July 2014 in the Gadria creek. Time in the upper-left corner of each frame is in UTC+1 (local time). The closure algorithm correctly turned off the flashing light at the end of the process: (a) the creek before the process (flashing light off); (b) arrival of the main front (flashing light on, as pointed out by the white arrow); (c) a secondary surge (flashing light still on); (d) the end of the process (flashing light off).