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Abstract

This paper addresses the large differences that are found between damage estimates
of different flood damage models. It explains how implicit assumptions in flood damage
models can lead to large uncertainties in flood damage estimates. This explanation
is used to quantify this uncertainty with a Monte Carlo Analysis. As input the Monte
Carlo analysis uses a damage function library with 272 functions from 7 different flood
damage models. This results in uncertainties in the order of magnitude of a factor 2
to 5. The resulting uncertainty is typically larger for small water depths and for smaller
flood events.

The implications of the uncertainty in damage estimates for flood risk management
are illustrated by a case study in which the economic optimal investment strategy for a
dike segment in the Netherlands is determined. The case study shows that the uncer-
tainty in flood damage estimates can lead to significant over- or under-investments.

1 Introduction

Flood damage assessment is an essential aspect of flood risk management. It is used
for supporting policy analysis and flood insurance. In the Netherlands flood damage
estimates are used, for example, to determine economic optimal protection standards
for flood defenses, prioritize investments or to compare the impact of different flood risk
management strategies.

The most commonly used method for flood damage assessment is the unit loss
method (de Bruijn, 2005). This method assesses the damage for each unit separately.
This assessment is based on a maximum damage per object and a damage function. A
damage function describes the relationship between a flood characteristic (most often
water depth) and the fraction of the economic loss that occurs to the object that is
damaged.
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Most flood damage models that exist are based on the unit loss method (e.g. HIS-
SSM for the Netherlands (Kok et al., 2005), Multi Coloured Manual in the UK (Penning-
Rowsell et al., 2010), HAZUS in the USA (Scawthorn et al., 2006) and FLEMO in
Germany, Thieken et al., 2008; Kreibich et al., 2010). These models are developed
for a specific country, region and/or flood type. They are often based on either expert
judgment (synthetic models) or data from a few flood events, or combinations. Different
models can give significantly different results when applied to the same event (De Moel
and Aerts, 2011; Jongman et al., 2012; Chatterton et al., 2014). This is because models
are often tailored to characteristics of the flooding and objects in the considered region.

Jongman et al. (2012) compared the damage outcomes of seven different flood dam-
age models with the recorded flood damages from events in the UK and Germany. The
difference between the smallest and largest estimate/recording was a factor 5 for the
German event and a factor 10 for the event in the UK. Chatterton et al. (2014) com-
pared two different damage assessments for a region in the UK. The damage estimates
differed about a factor 5 to 6 for both residential and commercial damages. These large
differences indicate that flood damage models are prone to large uncertainties.

These large differences also show that potentially large errors can occur when flood
damage models are applied. To correctly interpreted results of flood damage models,
it is, therefore, important to understand these uncertainties and their implications for
decision making. A quantification of the uncertainty can help to get an insight in the
potential error that can occur in a decision based on the flood damage estimate. US-
ACE (1992) and Peterman and Anderson (1999) both showed that taking into account
the uncertainty can lead to different decisions. Furthermore, uncertainty quantification
is useful to expose key focus points for the improvement of flood damage models.
Knowing the potential costs of a decision based on a wrong damage estimate can help
making decisions about the effort to be spent on improving the flood damage estima-
tion. It could also be a motivation to collect more or different data.

Generally, uncertainty in flood damage assessment is quantified with forward un-
certainty propagation models which use Monte Carlo simulations (Merz et al., 2004;
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Egorova et al., 2008, Apel et al., 2008; De Moel et al., 2012). The results of Egorova
et al. (2008) indicate moderate uncertainties, which is in contrast with the large dif-
ferences between models that were found by De Moel and Aerts (2011), Jongman et
al. (2012) and Chatterton et al. (2014). This difference in results indicates a need for a
better understanding of uncertainties involved in flood damage modeling.

The first aim of this study is to provide a method to get a robust estimate of the
uncertainty in damage estimates. For this a damage function library is created with 272
functions from 7 different models. Furthermore, an explanation is provided for the large
differences between existing flood damage models, based on an analysis of how the
different models are created. This explanation is used as foundation for estimates about
the correlation between several input parameters used in the Monte Carlo simulations.
The assessment of these correlation factors is crucial for the analysis of the degree of
uncertainty.

The second aim of the paper is to show the quantified implications of the uncertainty
in flood damage models on flood risk management decisions. These implications are
illustrated by deriving economic optimal flood protection strategy for a dike segment.
The paper shows the potential costs of wrong or uncertain estimates of flood damages.

The paper focuses on direct material damage. Indirect damages including damages
due to business interruption are not considered here, since their analysis requires dif-
ferent methods. The paper starts with a qualitative analysis of the uncertainty found in
flood damage models. This qualitative analysis is the basis for the assumptions made
in the Monte Carlo analysis model which is used to quantify uncertainty. Next, the
Monte Carlo analysis model is described and discussed in detail. Finally, the Monte
Carlo analysis model is applied and the resulting uncertainties in damage estimates
and the effects on flood risk management decisions are discussed.
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2 Qualitative uncertainty analysis
2.1 The unit loss method for flood damage assessment

The unit loss method uses relationships between flood characteristics and damages to
a unit. In the unit loss method four elements are crucial: the maximum damage s; for
each category, the flood characteristics (such as water depth d at all locations j, the
damage functions (f(d)) for all categories which determine the damage fraction and
the number of objects affected (n). Damage of an area is assessed as the sum of all
damage categories / for all grid cells n by the following formula (Egorova et al., 2008):

m
Damage = ZS,Zf,-j (d;)n;; (1)
=1 j=1

Potentially relevant flood characteristics are the maximum water depth, flood dura-
tion, flow velocity, pollution, warning time and other possible aspects of the flood. In
general, only the water depth is used in flood damage modeling, occasionally supple-
mented by one or two other parameters. The uncertainties in the flood characteristics
which are used as input for the damage estimation are not part of this paper.

Damage is usually calculated for categories such as houses, industries, and com-
mercial companies, roads, and agriculture. These object categories differ in maximum
damage and flood damage functions. The object and flood characteristics are linked
by damage functions which give the fraction of the maximum damage which occurs
as a function of the flood intensity1. The damage fraction is then multiplied with the
maximum damage to get the damage.

The maximum damage can be defined in different ways. In this analysis we define
the maximum damage as the expected damage corresponding with an extreme water

'Some models use absolute damage functions which relate the flood intensity directly to
the damage and not to a fraction of the maximum damage. An example of such a model is the
Multicoloured Manual (Penning-Rowsell et al., 2010).
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depth. This means that the damage function will reach one for the most extreme water
depths and it means that the maximum damage already holds information about what
part of the total value is susceptible to flood damage. The maximum damage does not
include value which is not or unlikely to be susceptible to floods, such as the value of
the ground, the costs of building the foundation or the value present on high floors in
buildings that are unlikely to collapse. Other models, such as SSM2015 also use this
definition (De Bruijn et al., 2014). However, also models exist which include more items
in the maximum damage and apply damage functions which never reach one if part of
that value is on average not susceptible to flooding. When comparing different models,
the definitions of maximum damage and damage functions first need to be aligned to
make a fair comparison.

2.2 Types of uncertainty

In the uncertainty analysis in flood damage assessment two types of uncertainty are
distinguished: aleatory and epistemic uncertainty (Merz et al., 2009).

Aleatory uncertainty is related to the variability or heterogeneity within a popula-
tion which can be expressed by statistic parameters such as the mean, variance, and
skewness. This uncertainty is introduced by using average data: we use the maximum
damage value of an average residence, although we know that some houses will suffer
more, and other will suffer less damage. In small flood events which only affect a few
houses, these few houses may differ significantly from the “average house” and there-
fore the damage estimate for these houses is uncertain. In large flood events which
affect many houses it is likely that deviations from the mean damage cancel out. This
means that for large floods this type of uncertainty is of lesser importance.

Uncertainty by using averages can sometimes be reduced by applying more differ-
entiation. E.g. the uncertainty within the maximum damage of a residence is reduced
by using more differentiation in house types. The variation in maximum damage per
house type is then less than if all houses together would be considered as one cate-
gory “houses”.
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Epistemic uncertainty is the lack of understanding of a system and can in theory be
reduced by further study or more data. In other words, also the average damage itself
is not certain. For flood damage assessments, data is only available for a small num-
ber of events and those events often differ significantly from each other. This variation
between events is still very little understood and is therefore related to epistemic un-
certainty. The epistemic uncertainty as stated above is not reduced when many objects
are flooded. Therefore, it is the dominant uncertainty type for large flood events.

This type of uncertainty is especially relevant when a damage module made for
another area is used. In such a case, for example the maximum damage values within
the model related to houses, may be valid for other types of houses than present in the
area of consideration. It would therefore be good not to mix up models from different
areas. However, given the data scarcity this leaves many modelers with the difficult
choice between a foreign model based on some recorded data or a synthetic local
estimate.

2.3 Uncertainty in unit loss method

Uncertainty in the unit loss method consists of uncertainty in object data, in maximum
damage figures and in the damage functions. Table 1 shows an overview of the uncer-
tainties present in these aspects of the unit loss method.

2.3.1 Uncertainty in object/land use data

Uncertainties are found in the location data and the quantity of objects at the location.
The precise location of objects is important, since the hazard may differ from location
to location. Each object should be linked to the hazard value present at the location of
the object (e.g. water depth). The effect of the uncertainty on the precise location of
objects on damage estimates is smaller for more homogeneous hazards. For exam-
ple, in a deep flat polder the exact location of an object is not important because the
water depth is the same everywhere. When a hazard becomes more heterogeneous
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the uncertainty in the geographical data is relevant. Geographical data uncertainties
are especially significant in areas which flood frequently, but with small water depths,
because in such areas typically all valuable objects are placed at safe local elevations.
Damage estimates may be very wrong if the approach used was too coarse to see
these local elevations. For example, the Dutch standard damage model HIS-SSM esti-
mated EUR 100 million damage for an event in an unprotected area that in reality had
only caused about EUR 30000 in damages (Slager et al., 2013).

Such errors are, however, unlikely when objects are not on purpose elevated, placed
on safe locations or protected in other ways. Without this local protection for some
objects the damage will be overestimated and for others it will be underestimated. If
many objects are affected, these errors gcompensate each other which reduces the
uncertainty in the total area damage. Use of high resolution elevation information is
also very useful to reduce this uncertainty (Koivumaki et al., 2010).

Uncertainty in the quantity of objects can be caused by errors in data, or by using
data sources that are inappropriate for the intended application. This uncertainty de-
pends on the quality of the dataset that is used. De Moel and Aerts (2011) illustrated
that this type of uncertainty may be small as they showed that different types of land
use maps for the same area only have a small impact on the resulting damage esti-
mate. In the uncertainty quantification for this paper the uncertainty in the geographical
data is neglected.

2.3.2 Uncertainty in maximum damage figure

The uncertainty in the maximum damage figure can be divided into two parts: the
uncertainty in the value of the object and in the part of that value that is susceptible to
flood damage.

There are generally two ways to obtain the maximum damage for a flood damage
model: deriving this from economic data or by looking at synthetic (hypothetical) build-
ings.
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Economic data typically provides a total value per sector of all physical assets in
the economy. To obtain a maximum damage figure per unit, this total value can be
divided by the number of units within that sector. Next, the part of this total value which
is susceptible to flooding must be identified. The strength of this method is that the
mean value will be accurate. However, uncertainty is still present in the part of the
maximum damage that is susceptible to flood damage. A similar method is to use
average construction costs and to correct this for the fraction that is actually susceptible
to flooding.

Alternatively, the maximum damage of a category can be obtained by defining a “hy-
pothetical” average company or object, and assessing the damage of all parts/aspects
within that hypothetical company. The strength of this method is that the damage func-
tion and the maximum damage are well connected. Furthermore, the part of the value
that is susceptible to flood damage is determined in a systematic way. The disadvan-
tage of this approach is that epistemic uncertainty is introduced in the value of the
object as the assumptions about this may be wrong.

2.3.3 Uncertainty in damage functions

Damage functions can be obtained in two ways: by analyzing data on observed dam-
ages to objects in past flood events, or by defining hypothetical “average” objects and
assessing their damage corresponding with different flood intensities. Also a combina-
tion of both approaches may be used.

Flood damage data is rarely collected in a systematic way, and not always available
for research. When it is available it is often limited to a single or a few events. These
events are often not representative for other types of floods or other countries or areas.
Cultural or geographical differences can cause the use of different building or interior
materials between regions and events, making one dataset not applicable to other ar-
eas. Another problem is that data is often limited to certain ranges of a flood parameter.
For example, data may be only available for low water depths or the flood that was the
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source of the data may have coincided with a storm. In such cases the data cannot be
used for events with larger water depths or no storm.

In general, transferring data from one event to another is error-prone. This makes
it very difficult to apply knowledge derived from one event on another. Even when the
data is applied to the same area as the data was taken from, problems may arise.
Different flood events in the same area may lead to very different damages due to
different human responses. For example, the same area in the Netherlands flooded in
1993 and 1995 with approximately the same water levels. The second time the damage
to housing content was about 80 % less (Wind et al., 1999). Also the damages due to
Rhine floods of 1995 were less than half of the damages that occurred in 1993, as a
result of precaution measures taken by households (Bubeck et al., 2012). This shows
the sensitivity of flood damage to other factors than water depth. These other factors (in
this case flood experience) are often neglected in the recordings. This example shows
that a dataset based on a small number of events is too small to catch all possible
variable values.

Synthetic damage functions solve many of the problems of having too little empirical
data on actual damages. In this method a hypothetical building is defined and flood
damage is assessed for each building part. The hypothetical building should be rep-
resentative for the average building in the area. When it is not, or when the damage
estimates for the different building parts are not right, the damage function is wrong.

Damage data can also be combined with synthetic knowledge. Probably the most
common method to create a damage model is by picking and choosing damage func-
tions from other models based on an analysis of which existing damage function best
represents the area considered. Or, the average between different functions could be
used as a damage function, this was for example done for this paper. The challenge
with this combined method is to understand the background assumptions between the
models that are brought together or compared. For example, a common challenge may
be that the maximum damage definitions do not match.
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The ideal case is to combine the best of the two methods. The damage data avail-
able should be used to calibrate a synthetic model. This limits the possibility that large
errors are made in the interpretation of the damage data (e.g. wrong definition of the
maximum damage), by forcing the modeler to think about the processes. Furthermore,
it gives the modeler the freedom to diverge from the observed data in situations that do
not match any of the recorded events.

A common problem in constructing damage functions is that it is difficult to include
the large number of parameters that may influence the flood damage. The parameters
that are not used are implicitly considered. Each model based on a limited number
of parameters is therefore making assumptions on the effect of the non-explicitly con-
sidered parameters. Those non-considered parameters have been very significant in
a subset of the events. For example, in the 2002 Elbe floods contamination was criti-
cal (Thieken et al., 2005), in the Meuse floods flood experience was critical (Wind et
al., 1999) and in the 1945 floods in the Wieringermeerpolder in the Netherlands the
waves in the flood water were critical (Duiser, 1982). This last example is complicated
by a study of Roos (2003) who showed that the findings of the 1945 Wieringermeer-
polder flood are not valid for modern buildings. So also the construction year of a
building can in some cases be a critical parameter. Other possibly significant param-
eters are, for example: building style, flow velocity, flood duration, warning time and
preparation.

Parameters that are not used can have a correlation with parameters that are used.
For example, the water depth is correlated with the flood duration for floods in the
Netherlands (Duiser, 1982; Wagenaar, 2012). Because of this correlation, the uncer-
tainty caused by not knowing the flood duration is limited for a Dutch model. This rela-
tionship between two parameters may, however, be completely different for other types
of floods (e.g. flash floods). A generally applicable damage model therefore needs all
parameters.
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3 Methodology
3.1 Overview of the method

For the quantitative uncertainty analysis a Monte Carlo analysis is used, in which the
uncertainty of the inputs is propagated into uncertainty in the output. The qualitative un-
certainty analysis discussed in the previous section is used to estimate the uncertainty
in the inputs and the correlations between the different input parameters.

The damage analysis in this paper is limited to two damage categories: houses and
companies; as they are represented in the different models on which this research is
based. Both damage categories are divided into damage to buildings and damage to
content. Many individual models provide several more detailed sub categories for these
basic categories. Our approach may therefore lead to slightly larger uncertainties than
present in such more detailed models.

A crucial aspect of this Monte Carlo simulation is the correlation amongst the uncer-
tainty of the different input parameters, such as the maximum damages of houses. If
the maximum damage of for example house X is overestimated, the maximum dam-
age of house Y may also be overestimated. The parameters that are homogeneous
within one event, but vary between events will have a strongly correlated uncertainty
value: e.g. if damage depends on warning time and in one particular event the warning
time is unusual short, this is more or less the case for all houses which were affected
in that event. Such aspects are therefore sampled for the entire area at once. Other
parameters vary between neighborhoods, or from place to place, such as for example
the building type. Those need to be sampled on a smaller level then the entire area at
once. Sampling will therefore be done at two different levels: for the entire event and
on a more detailed sub-event level.

Figure 1 gives an overview of the calculations process which is repeated ten thou-
sand times. This results in ten thousand different damage estimates which together
make up the distribution of possible damages.
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3.1.1 Input information
Flood damage library

A damage function library was constructed containing 262 different damage functions
from 7 different models. These functions were the basis for the damage fraction and the
susceptibility to flooding. The damage fraction was sampled by picking functions from
a model. These functions were individually all scaled to one to ensure that the same
maximum damage definition is applied everywhere. Table 2 gives an overview of the
models included in the damage function library. The Tebodin model only has damage
functions for companies and the Billah (2007) model only has damage functions for
houses.

Land-use maps

The model needs input about the number of houses and jobs affected. For the case
study the number of houses was taken from the geographical database BAG. This
database is made by the Dutch Cadastre, Land Registry and Mapping Agency. For the
number of jobs the background data of HIS-SSM was used (Kok et al., 2005).

Waterydepth map

This model works for a particular flood scenario, represented as a water depth map.
For the case study a water depth map was used from the VNK project (VNK, 2014).
For the model behavior tests a table was used showing the number of objects/jobs per
water depth class.

3.1.2 Step 1: event-level sampling (epistemiec-uneertainty)

The sampling on the event level is done by sampling a damage model and using-thaj_
throughout thaf damage calculation. This sampled model will be applied to all cate-
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gories and will be used as source for the damage functions and for the susceptibility to
flooding of the maximum damages. The advantage of this is that a realistic combination
of inputs will be sampled. This procedure prevents that on average a higher damage
for small water depths than for large water depths are sampled or that functions with
different implicit assumptions are merged.

3.1.3 Step 2: sub-event level sampling (aleatery-uncertainty)

Group size and dependency

For the sub-event level sampling, uncertainty values are sampled for small groups of
houses or for a company. Houses and jobs are grouped because in reality also often
similar houses are built near each other and also a company is expected to be relatively
homogeneous in damage per job. It is therefore not realistic to sample all houses and
all individual jobs in an area completely independent from each other. By sampling in
small groups of houses/jobs total dependency is assumed within the group and total
independency between the groups.

The way in which the area is grouped determines the dependency for this aleatory
uncertainty. This buildup of groups is therefore also sampled again for each Monte
Carlo simulation. This sampling should therefore be seen as a sampling of the depen-
dencies between the damage of different objects. For houses the area is split in groups
of 1, 10 or 100 houses for every simulation. Houses are only grouped when they have
a similar water depth. This is done to keep the calculation simple but also because sim-
ilar water depths typically occur in locations that are geographical close. Furthermore,
the group sizes are so small that for medium, or larger, sized events this assumption
has no influence on the results. For companies, the jobs are grouped per company.
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Damage curves

Within each group every house/job receives the same damage fraction and maximum
object value. Sampling for the damage fraction is done based on the set of damage
functions within the model sampled in step 1. For example, if the model sampled has
3 damage functions for houses, for each group one of the three damage functions is
randomly used.

Maximum damages

The yalues are based on De Bruijn et al. (2014) and Gauderis (2012). De Bruijn et
al. (2014) estimated the structural value of a house on EUR 125 000. The minimum and
maximum from the triangular distribution are estimated at +EUR 75 000 for structural
damage. For content damage De Bruijn et al. (2014) estimated a maximum damage
of EUR 70000, for which also a triangular distribution is assumed, with +EUR 50 000.
These assumptions lead to a symmetric probability distribution, while it is probably in
reality positively skewed. This is neglected in this study because the impact is expected
to be very small.

Gauderis (2012) estimated physical value per job for 62 different categories of com-
panies. These estimates are taken together to produce a distribution of the physical
value of a company per job. Because not all company categories are equally common,
the values were weighted in the distribution based on their quantity in the Netherlands.
The results are shown in Fig. 2. These values include both the structure and the con-
tent. It was assumed that 50 % of the value is content and 50 % structure.

4 Model behavior: trial of the method on hypothetical flood maps

To gain understanding in the model behavior it was tried on hypothetical flood depth

maps, one with small water depths (< 0.5m), one with medium water depths (0.5-2 m)

and one with large water depths (2-3m). These had average water depths of 0.35,
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1.25 and 2.5m. These maps were used for calculations with 150 and 15000 houses
and jobs. In total thus 6 different trials were carried out and the resulting uncertainty
values were compared.

The uncertainties in the damage estimates are expressed with the coefficient of vari-
ation. This is the standard deviation of the damage divided by the mean of the damage.
It has no unit and is therefore independent of the size of the flood event. This makes it
a good measure to compare the uncertainties in different areas.

Figure 3 shows the results of this hypothetical analysis. It stands out that both a
smaller water depth and a smaller area increase the uncertainty significantly. This is
because at small water depths the different models differ significantly more from each
other than at large water depths. This indicates that the uncertainty in damage esti-
mates for events like for example small regional levee failures is much larger than the
uncertainty in damage estimates for large scale floods with large water depths.

Another observation is that the distribution of the damage for small events looks very
different from the distributions of the damage of large events. The main reason for this
is that for large events the aleatory uncertainty in the damages within models can be
reduced significantly by the law of large numbers, but not the epistemic uncertainty.

Epistemic uncertainty is therefore the significant uncertainty for larger events. The
frequency distributions therefore show then clearly separate peaks related to the dam-
age functions of the separate damage models.

It is difficult to determine for what event size the variation between the models be-
comes more important than the variation within models. For the uncertainty model
created in this paper this point is somewhere between 100 and 3000 houses plus jobs.
This critical size depends on the dependencies between individual objects. These de-
pendencies determine how fast the law of large numbers will reduce the aleatory uncer-
tainty. For this paper this was estimated by sampling in groups instead of in individual
objects. The size of these groups therefore determines when the epistemic uncertainty
becomes dominant. These group sizes were based on a rough estimate in this paper
and should be calibrated for better results.
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5 Case study

A case study is done in the Betuwe, Tieler-en Culemborgerwaarden area (dike ring 43)
in the Netherlands to show the effect of the uncertainty in the flood damage estimation
on investment decisions for flood risk management. Dike ring 43 is located between
Rhine branches in the Netherlands. In the west the area is closed with a high dike
(border to next dike ring area). The area slopes down to the west. The difference in
height between the eastern and western part is about 10 m.

The uncertainty model is applied on a water depth map resulting from a simulated
dike breach (VNK, 2014) along the Rhine river near Bemmel in the Netherlands (see
Fig. 4 for its location). This dike section is about 26 km long. Bemmel is situated in
the eastern upstream part of the Betuwe area. When the dike breaches, water flows
through the Betuwe area to the west where it is stopped after about 70 km by the
western embankment. The maximum water depths due to this dike breach vary from
less than 50cm in the east to over 5m in the west. In this dike-breach scenario a
total area of 626 km? is inundated. This area contains several small cities and villages,
with a total population of around 300 000 people. The large flood extent and the large
number of affected residences and companies and the large variation in water depths
are expected to have a reducing effect on the aleatory uncertainty in the total damage
of the dike-ring area.

The damage assessed for this flood scenario was EUR 16 billion with a standard
deviation of EUR5.6billion based on 10000 simulations. The resulting damage out-
comes are shown in the Fig. 5. The peaks in Fig. 5 are related to the damage models
and illustrates the large differences between the different damage models.

The results in Fig. 5 are used to find the optimum flood protection standard and in-
vestment strategy for the dike segment from an economic viewpoint. The optimum flood
protection standard and investment strategy is calculated using a simplified version of
the approach of Kind (2013). Kind (2013) assesses which investment strategy has the
smallest total costs. These total costs consist of the present value of the EAD (ex-
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pected annual damage) and the present value of all future investments. In this paper
we assess the effects of uncertainty in damage estimates on the economic optimal
flood protection standard and the total investment costs. We do that by determining
the investment strategy for five different damage estimates. The first four estimates re-
late to the first four peaks. For the highest damage estimate the 98 % percentile of the
damage outcomes was used.

The optimal investment strategy depends not only on the flood damage, but also
on the current protection level, consolidation of the dike, correction factor for indirect
damages, fixed and variable costs of dike improvements, climate change predictions,
economic growth predictions for the area protected by the dike segment and the dis-
count rate to calculate the present value. These parameters were all taken from the
WV21 project (Kind, 2011).

The analysis in this paper focuses on the first investment made. In all five alternatives
this investment is done in 2015. The second investment is in all alternatives planned
about 75 years later and a third investment is suggested about 50 years after the sec-
ond one (around the end of the time span considered). The total investment costs are
mainly determined by the first investment, because the weight of later investments is
very small due to the use of the net present value which gives future costs and bene-
fits a much lower weight than current costs and benefits. The calculations assumed a
discount rate of 5.5 % (based on WV21 Kind, 2011).

The results in Table 3 show that the optimal investment strategy is at first glance not
very sensitive to the precise damage estimate. The difference between the five alter-
natives in required dike heightening is only 18 cm (88—70 cm). This small difference is
partly explained by the strong sensitivity of the flood probability to the precise height of
the dike. The dike segment in this case study becomes 10 x safer by raising it with only
34 cm. If the flood probability would be less sensitive to height changes the differences
in dike height between a low and a high damage estimate could be much larger. If the
dike should be increased with 1 m to reduce the flood probability with a factor 10, the
difference between the top and lower damage estimate would be 47 cm.
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If the flood damage applied in the cost benefit analysis differs from the flood damage
that would actually occur, a suboptimal investment strategy would be applied. Table 4
shows the costs of using a wrong damage estimate. It gives the unneeded cost made
by assuming a certain damage for different “real damage values”. This cost varies in
this case study between EUR 0 and 12 million and is on average about EUR 2 million,
which is 1.4 % of the total costs and for this case study about EUR 75000 km~'. The
maximum error is 9 % of the total costs and for this case study EUR 500 000 km™".

This case study illustrates how the uncertainty model may be used to assess the
uncertainty in damage assessments, and how the effect of this uncertainty on invest-
ment costs may be determined. In the case study here, the effect is small. However,
if we take into account the fact that in the Netherlands we have about 3000 km of em-
bankments and that EUR 12 million might be unnecessary spend per 26 km, the total
amount of money spend unnecessary may then be large. It is also likely that in cases
with lower flood probability standards, or with smaller flood events the effects of this
uncertainty are much larger.

A striking observation in the results of Table 4 is that the costs of overestimating
the damage are significantly lower than the costs of underestimating the damage. The
difference in costs is on average a factor 2 (see Table 4). This can be explained by
the non-linear relationship between the flood probability reduction and the investment
costs. The flood probability can be reduced a lot with a small extra investment, thus
when too little is invested the EAD goes up faster than the investment costs go down.
This implies that under uncertainty it would be economically efficient to add a safety
factor to avoid investing too little.

6 Discussion

This paper discusses a new method for the quantification of uncertainties and applieg,
this method in a case study. The case study is a good illustration of the method and
its use, but the calculated uncertainty, the damage frequency distribution and the effect
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of uncertainty on investment decisions, may not be representative for all situations.
First of all, because several damage determining aspects were neglected in the case
study. The damage is assumed to consist only of damage to buildings and companies.
Other damage categories, such as affected perseng and fatalities may also be relevant
to quantify and can be taken into account in a CBA. Another simplification is that the
entire cost benefit analysis in the case study is based on only one flood scenario at one
breach location and at one water level (at the design water level of the dike). A more
precise way would have been to include multiple breach locations and water levels,
these effects are however assumed to be negligible for the conclusions of this paper.

Secondly, because the exact location and number of peaks in the damage frequency
distribution depend on the input damage models in the uncertainty analysis. The set of
7 damage models used does not cover all possible damage models. If an extra model
would have been added to the damage function library an entire new peak could ap-
pear. The frequency distributions of the outcomes must therefore be considered as an
example of what a frequency distribution could look like and how far the peaks are ap-
proximately apart from each other. It is impossible to make a real frequency distribution
because the major uncertainties are epistemic uncertainties. Epistemic uncertainties
are by definition not understood and can therefore not be represented by a frequency
distribution (Helton and Oberkampf, 2004).

Thirdly, the costs of a wrong estimate which were estimated for the case as about
1% and at maximum 10 % may also be different for other cases. It depends amongst
others on the costs required to reduce the failure probability with a factor 10, on the
damage itself and on the uncertainty in the damage interaction (which will be larger for
small areas and areas with little flood water depths).

Finally, the uncertainty in the damage estimate was, in this case study, directly linked
to an error in the investment strategy. However, in the determination of the optimal
investment strategy not only uncertainties in the damage estimate, but also in other
components play an important role. Uncertainty in the costs of dike strengthening, in
the discount rate, in the future economic growth, in the flood pattern and so on, all add
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to the uncertainty in the optimal investment strategy. These uncertainties may partly
compensate each other, but can also aggregate each other. Their relative importance
differs per case depending on local characteristics (De Moel et al., 2014).

We tried to combine information from different damage models to get a better quan-
tification of uncertainties in damage outcomes. This can only be done when the dam-
age models may all be applicable to the flood scenario which is being modeled.
Whether flood models are equally applicable is sometimes difficult to establish. Meta-
data of the source of the damage models is not always available and sometimes infor-
mation on the event on which the model is based, is also lacking. This makes it difficult
to compare damage models and to understand why they have different estimates for
the same flood patterns. Relevant metadata on parameters which may be obvious for
a certain event, but vary from event to event are needed. Examples of such parame-
ters are for example flood experience of the population, building style, flood duration,
contamination of the flood water, etc.

Metadata for flood damage functions should give clear instructions about the type of
events for which damage functions are applicable and for what events they are not. This
could lead to a classification of different flood types with their own damage functions.
This would first lead to a better transferability of models and could eventually lead to
generally applicable models.

7 Conclusions

Uncertainties in flood damage estimates can be large. This study showed uncertainties
of an order of magnitude of 2-5. This uncertainty is mainly caused by a lack of knowl-
edge. Most flood damage models are based on data resulting from a small number of
events. Because flooding can occur in many different ways (water depths, contamina-
tion, flow velocities, flood durations, etc.) and in many different types of areas (building
types, flood experience local population) any model will miss considerable parts of the
spectrum of possible options. Data from one event therefore is often not transferrable
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to other areas or events. Since only data representative for the event under consider-
ation can be used, little data is available and hence large uncertainties are introduced
in flood damage modeling.

This study introduced a method to quantify these uncertainties using a set of damage
models which have all been applied in the past to river floods (not flash floods) or
storm surges in developed countries. To quantify the uncertainty a distinction was made
between epistemic and aleatory uncertainties. Epistemic uncertainties are introduced
by a lack of knowledge about the spectrum of possible flood events and areas in which
they could occur. The size of this spectrum was for this study estimated by using the
difference between flood damage models. Aleatory uncertainties are introduced by
local variations between objects and circumstances. These uncertainties were for this
study estimated with the variations within different flood damage models.

These aleatory uncertainties are large for small flood events and much smaller for
large flood events affecting many objects. Epistemic uncertainties are not smaller for
large areas, since they are not related to deviations of single objects from the average
object for which the damage functions were derived. Epistemic uncertainties can only
be reduced with new knowledge. The resulting uncertainty estimation model therefore
shows larger uncertainties for small areas. However, at a certain event size the epis-
temic uncertainties become dominant.

These uncertainties in flood damage modeling can potentially have a significant ef-
fect on investment decisions. In this study a case study was carried out to calculate the
economic optimal investment strategy for a dike segment. This case study showed that
uncertainties in damage estimates can lead to sub-optimal investment decisions. In
the worst case scenario (maximum error in damage estimate), the difference between
the total costs (remaining risks and investment costs) may be as high as EUR 500 000
per km dike. The expected difference between the optimal and sub-optimal investment
strategy was, however, significantly lower (EUR 75000 km"1). These findings need to
be verified with further research in other areas.
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The paper provides a good first approach for uncertainty quantification in damage
estimates and shows how this approach can be used to improve investment decisions.
Further research including other areas and more flood events is recommended to de-
velop the approach further.
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Table 1. Overview of the uncertainties in flood damage modeling.

Element Uncertainty Type Expected significance
Object data Quantity Both Depends on input data
expected to be often
insignificant
Location Both Depends on area, often

insignificant

Maximum damage Value of the object  Mostly aleatory Varies
Susceptible to flood Mostly Significant
damage epistemic

Damage function Parameter Both Significant
representation
Knowledge Epistemic Significant
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Table 2. Overview of the damage models from which damage functions are included in the
damage function library.

Model

Description

HIS-SSM

The standard Dutch flood damage model (Kok et al., 2005). It is based on
several earlier Dutch flood damage studies (Duiser, 1982; Briene et al., 2002).
The functions are based on expert estimates combined with data from the 1953
flood in Zeeland and the 1945 flood of the Wieringermeerpolder.

HAZUS-
MH

An American disaster impact model with a flood module. This model was
created by the federal government agency FEMA. It is described in FEMA
(2008) and Scrawthorn et al. (2006). HAZUS provides a large set of American
flood damage functions. From the HAZUS library a subset was used in the
library presented here. The functions taken for houses were based on American
insurance data and the functions for companies are based on expert judgment
from the USACE.

MCM

The Multi Coloured Manual (MCM) is a British flood damage model. For the
library presented in this document the version of Penning-Roswell (2005) was
used. MCM-based on a systematic expert judgment approach were a
hypothetical building is split up in smaller parts, with each part being
evaluated separately. The model has a large number of functions for different
types of company buildings.

FLEMO

A German flood damage model based on data from the Elbe floods of 2002.
The functions were derived from FLEMOps for houses (Thieken et al., 2008)
and FLEMOcs for companies (Kreibich et al., 2010). The functions include
alow and a high estimate.

Rhine Atlas

This second German model is based on expert judgement taking into account
and-data from an earlier German damage database (HOWAS). More
information about these functions is available in Jongman et al. (2012).

Tebodin

This is a Dutch study, based on a detailed, systematic and well documented
expert judgement approach. This study only provides damage functions for
industry. It is detailed: it provides functions for many different industrial types
and it has separate functions for areas protected by flood defences and for
unprotected areas (Snuverink et al., 1998; Sluijs et al., 2000).

Billah,
2007

This is a research project in which the systematic expert judgment approach as
used in MCM was applied to Dutch houses.
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Table 3. Optimal investment strategy given different damage estimates. The flood protection
standard is a return period based on the direct method described in Kind (2011), note that the
actual return period of the investment strategy differs per year.

Damage Extra height Flood PV PV EAD PV Total cost
(EUR in million) for the protection Investment (EUR in million) (investment cost
investment  standard  cost +EAD)
(cm) (year) (EUR in million) (EUR in million)
8000 70 25000 109 11 121
12000 77 40000 114 11 126
15000 80 50000 117 11 128
18000 82 58000 118 12 130
25000 88 83000 122 12 134
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Table 4. Cost of a damage estimate error for this dike segment in EUR million.
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Figure 1. Overview of the different sample steps undertaken in the Monte Carlo analysis.
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Figure 2. Probability density function of the average company value per job based on 62 differ-
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Figure 3. Results of the Monte Carlo simulations applied on synthetic flood maps shown as
frequency distributions and coefficient of variations for different types of hypothetical areas
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Figure 4. Map of the casestudy area. The green line is the dike segment that is looked at, the

cross indicates the location of the breach scenario which was used.
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Figure 5. Frequency distribution of the damage in the case study area (based on 10 000 Monte

Carlo simulations).
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