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Abstract 3 

The clustering of severe European windstorms on annual timescales has 4 

substantial impacts on the re/insurance industry. Our knowledge of the risk is 5 

limited by large uncertainties in estimates of clustering from historical storm 6 

datasets typically covering the past few decades. Eight storm datasets are 7 

gathered for analysis in this study in order to reduce these uncertainties. Six of 8 

the datasets contain more than 100 years of severe storm information to reduce 9 

sampling errors, and observational errors are reduced by the diversity of 10 

information sources and analysis methods between storm datasets. All storm 11 

severity measures used in this study reflect damage, to suit re/insurance 12 

applications. 13 

The shortest storm dataset of 42 years provides indications of stronger 14 

clustering with severity, particularly for regions off the main storm track in 15 

central Europe and France. However, clustering estimates have very large 16 

sampling and observational errors, exemplified by large changes in estimates in 17 

central Europe upon removal of one stormy season, 1989/90. The extended 18 

storm records place 1989/90 into a much longer historical context to produce 19 

more robust estimates of clustering. All the extended storm datasets show 20 

increased clustering between more severe storms from return periods (RP) of 21 

0.5 years to the longest measured RPs of about 20 years. Further, they contain 22 

signs of stronger clustering off the main storm track, and weaker clustering for 23 

smaller-sized areas, though these signals are more uncertain as they are drawn 24 

from smaller data samples. These new ultra-long storm datasets provide new 25 

information on clustering to improve our management of this risk. 26 

 27 

  28 
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1 Introduction 1 

European windstorms caused economic losses in excess of 25B USD (indexed 2 

to 2008) during the landmark years of 1990 and 1999 (Barredo 2010, using data 3 

from the NATHAN database of Munich Re). These huge losses were caused by 4 

multiple occurrences of multi-billion dollar loss events, as can be seen in figure 5 

2 of Barredo (2010), and strongly suggested severe European windstorms are 6 

temporally clustered. Mailier et al. (2006) analysed clustering in the NCEP 7 

reanalysis dataset (Kalnay et al. 1996) and found clustering of winter wind 8 

storm occurrences in Europe, with evidence that clustering may be stronger for 9 

more severe storms. An analysis of similar data by Vitolo et al. (2009), and of 10 

other reanalysis datasets by Pinto et al. (2013), found similar results, and 11 

supplied clearer evidence of stronger clustering of the more severe storms. 12 

The most important practical issue caused by significant clustering of severe 13 

storms is the threat to the solvency of re/insurance companies. The first step 14 

towards a more robust re/insurance industry, one which can better withstand 15 

extreme annual losses, is to measure the observed annual clustering of storms 16 

for different severities. Meteorological measures of storm severity are common 17 

in published work, such as relative vorticity at 850 hPa used by Mailier et al. 18 

(2006) and Vitolo et al. (2009), or the depth of the central pressure used by 19 

Pinto et al. (2013) and Economou et al. (2015). The damage potential of these 20 

storms is a more appropriate measure of storm severity for insurance purposes, 21 

taking into account its variability with local wind climate (Klawa and Ulbrich, 22 

2003), and will be used throughout this study to characterise storm strength. 23 

Karremann et al. (2014a) used severity metrics which were validated for 24 

re/insurance purposes, and measured storm severity in terms of local return 25 

levels. This use of standard insurance industry expressions of severity makes 26 

their results more relevant to end-users, but perhaps of more importance is that 27 

all storm severity metrics can be easily translated to this common scale of 28 

return levels to enable inter-comparison of disparate severity measures. Return 29 

levels will be used in this study to allow inter-comparison of a wide variety of 30 

storm datasets. Karremann et al. (2014b) extend results from Germany to many 31 

other countries impacted by wind storms to provide a fuller picture of clustering 32 

as a function of local storm severity in Europe. However, the true clustering 33 

climate is obscured by large uncertainties due to sampling errors, as illustrated 34 

by the 90% bootstrap confidence interval (CI) in Fig. 6 of Vitolo et al. (2009), 35 
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based on 50 years of data. Those results imply a very wide range of true, 1 

underlying climates of storm clustering could produce the 30-year sample data 2 

of severe storms analysed by Karremann et al. 2014a and Karremann et al. 3 

2014b.  4 

Uncertainties from standard datasets are particularly large because clustering 5 

depends on the variance of annual storm counts, rather than mean behaviour. 6 

These large impacts of sampling and observational errors limit our knowledge of 7 

clustering from standard multi-decadal storm datasets. There are two options to 8 

reduce this uncertainty: (i) build models of the physical processes which 9 

produce clustering to fill in observational gaps; (ii) gain more knowledge of 10 

clustering either by new analysis methods or new historical datasets.  11 

Regarding option (i), climate models attempt to simulate climate system 12 

processes and their long simulations have the potential to provide much smaller 13 

sampling errors. However, previous studies find significant differences between 14 

climate models and observed behaviour (e.g. Kvamsto et al., 2008, and the 15 

underestimate of clustering for most severe storms in Tables 3a and b of 16 

Karremann et al., 2014a). New research by Pinto et al. (2014) looks for the 17 

underlying mechanisms generating the cyclone families and persistent climate 18 

states that produce severe clusters on seasonal timescales. This information 19 

could be used to improve climate models, or as the foundation of simpler 20 

statistical models of the underlying processes which produce clustering, both of 21 

which could fill gaps in clustering knowledge.  22 

Regarding option (ii), the novel analysis of a standard dataset by Hunter et al. 23 

(2015) reveals a link between annual frequency and severity of storms which 24 

informs on clustering behaviour. Alternatively, we can gain new knowledge of 25 

clustering from new storm datasets. This article presents new extended storm 26 

datasets and analyses their clustering character to produce a fuller picture of 27 

clustering. To this end, seven extended records of historical storms are 28 

described in Section 2, in addition to a more standard dataset of 42 years in 29 

length. The seven extended historical records reduce sampling errors by their 30 

increased length, and provide insight into impacts of observational errors, since 31 

these datasets are based on independent data sources and analysis methods. 32 

Section 3 describes the method of analysing data and has two main parts: first, 33 

the measure of clustering for a group of storms is defined, and second, the 34 

method of converting the disparate measures of storm severity in the eight 35 
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different datasets to a common form is described. The observed clustering of 1 

European windstorms is presented in Section 4, together with a discussion of 2 

estimates and errors. A summary is given in the final section. 3 

 4 

2 Data 5 

A total of eight storm datasets are used in this study, all of which contain the 6 

date and a measure of damage severity of each storm. Table 1 provides a 7 

summary description of all storm datasets described in more detail below. The 8 

last column of Table 1 provides the brief name used for each dataset. 9 

Two extended datasets of storms in the U.K. are studied. The first (UK-Lamb-10 

300) is the list of storms and their Storm Severity Index (SSI) values listed in 11 

pages 8 to 10 of Lamb and Frydendahl (1991). Their SSI measures are 12 

estimated from surface weather reports, meteorological analyses and damage 13 

information from a variety of documentary sources and reflect the damage 14 

severity of storms. The clustering analysis presented in Sect.4 is restricted to 15 

the storms in the period from 1690 to 1989, due to incompleteness of reportage 16 

in earlier times, and to those 44 storms with SSI values of 2000 or higher. This 17 

high severity threshold ensures both a more homogeneous time-series and 18 

more confident estimates of their severity, due to the increased attention and 19 

better documentation of the most severe storms in this period.  20 

The second U.K. dataset (UK-RMS-160) is a list of storm fatalities in the UK in 21 

the period 1835 to 1994 gathered by Risk Management Solutions (hereafter 22 

RMS). This was extracted from archives of The Times newspaper by searching 23 

its Index using the terms “storm” and “gale” (Robert Muir-Wood, personal 24 

communication). The fatalities are considered to be accurately reported 25 

throughout this period, and the dataset is considered complete since bigger 26 

national issues would reduce space or prominence attached to more minor 27 

storms events but not remove them completely. Two factors were applied to 28 

reported fatalities to homogenise this dataset: first, a population factor indexes 29 

all fatalities to 1994 national population levels, and second, night-time storm 30 

fatalities are scaled by a factor four to produce as-if daytime fatalities. Storm 31 

fatalities reflect population densities hence this index is more closely related to 32 

actual damage than wind speed intensity, and given the much more densely 33 

populated southern half of the U.K., the dataset is viewed as a proxy of storm 34 
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damage severity in the southern half of the country. Figure 1 shows a time-1 

series of standardised storm fatalities for the full 160 year record. 2 

Extended 105-year records of winds at five stations from the Royal Netherlands 3 

Meteorological Institute (KNMI) are used to define storminess in the 4 

Netherlands in the period from 1910 to 2014 (NL-KNMI-105). The data and 5 

analysis are described in Cusack (2013). In brief, the winds from five weather 6 

stations are merged to form an aggregate SSI value for each storm. The data 7 

are complete, and the spread of station locations geographically ensures the 8 

storm severity represents national values. The largest uncertainties arise from 9 

several significant changes in wind measurement practice in the first few 10 

decades. Intensive homogenisation methods are applied, based on station 11 

metadata made available by KNMI, complemented with statistical methods (see 12 

Supplementary Information of Cusack, 2013). The homogenisation serves to 13 

reduce but cannot completely remove observational errors, and the final time-14 

series of storm severities will inevitably contain uncertainties. The top 30 or so 15 

storms have been compared with documentary sources such as the KNMI list 16 

available at http://projects.knmi.nl/hydra/cgi-bin/storm_list.cgi , and other 17 

independent sources based on documentary records, and corroborate the 18 

significant storms in this KNMI-derived dataset. 19 

The public website of Deutscher Wetterdienst (DWD) provides peak gust data 20 

and associated metadata for climate stations covering the past 60 years (DE-21 

DWD-60). Seven stations with minimal changes to the wind observing system 22 

over their entire records were chosen, with locations shown in Fig. 2. SSI values 23 

for Germany were computed for individual storms over the past 60 years using 24 

the method from Cusack (2013) applied to these seven stations. While the 25 

stationary observational practices reduce uncertainties in results from 26 

inhomogeneities, the small number of selected stations covering such a large 27 

area introduces errors in estimated severity. The top storms produced by this 28 

analysis were compared to the list of DWD storms provided in Table 1 of 29 

Karremann et al. (2014a) – based on much higher station density – and there is 30 

high correlation. The larger spatial extent of more severe storms leads to this 31 

result. 32 

Brázdil et al. (2004) describe windstorm damage in the Czech Republic from 33 

1500 to 1999 based on research of a wide variety of documentary sources (CZ- 34 

Brázdil-500). Their detailed descriptions have been manually analysed into two 35 

http://projects.knmi.nl/hydra/cgi-bin/storm_list.cgi
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storm severity classes: class 1 for local-scale damage, or large-scale weak 1 

damage, and class 2 for widespread, intense damage. Summer storms forced 2 

by convection have been removed. Figure 3 displays the number of storms per 3 

century for each severity class. Strong temporal trends can be seen in these 4 

data: there is a large increase in frequency of weaker storms in the last 200 5 

years, and increasing occurrence of the stronger storms throughout the period. 6 

These temporal trends are most likely due to changes in amount of 7 

documentary evidence through time. Figure 3 indicates that the reduction in 8 

sampling error achieved by such a long dataset will be offset to some extent by 9 

larger uncertainties from reporting inhomogeneities. The impact of these non-10 

stationarities will be explored in the Results section. 11 

Stucki et al. (2014) describe a database of wind storms in Switzerland during 12 

the period 1859-2011 (CH-Stucki-153). In brief, they use a wide variety of 13 

information, including damage information from buildings and forestry and 14 

meteorological information from anemometers and reanalyses, to identify storm 15 

events then assign one of three severity ratings to each storm, depending on 16 

the severity and spatial scale of damage in Switzerland. Summer wind storms 17 

are not infrequent in Switzerland, and all damaging wind events from May to 18 

September in the Stucki et al. database are excluded from this analysis of extra-19 

tropical cyclone clustering. A full listing of the wind damage events in their 20 

database is given in the Supplementary Information of Stucki et al. (2014). 21 

Emmanuel Garnier (private communication) provided a dataset of storms in 22 

France covering the period 1500-1999 based on his research of documentary 23 

archives for descriptions of wind damage (FR-Garnier-350). The historical 24 

storms are assigned a severity using the Beaufort scale, based on the 25 

documented damage severity and spatial extent. The present analysis will focus 26 

on the 1650 to 1999 period when documentary evidence is considered more 27 

complete and homogeneous for severe storms. Our internal validation indicated 28 

gaps in the Garnier record in the 19th century, and this has been alleviated by 29 

the inclusion of storm information from Bessemoulin (2002) to produce a more 30 

complete dataset of historical storm damage in France, though the 31 

completeness of the dataset in the late 18th and early 19th centuries is uncertain, 32 

since both sources contain little information in a period when other parts of 33 

Europe were stormy, especially in the 1815 to 1840 period. The count of storms 34 
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by decade is shown in Fig. 4, split by their damage severity measured using the 1 

Beaufort Scale. 2 

The storm footprints described in Bonazzi et al. (2012) are the most spatially 3 

comprehensive set of storms (EU-RMS-42). In brief, these footprints are derived 4 

from datasets of weather station peak gusts from fifteen countries beginning in 5 

1972. The gust datasets comprise freely available data from national 6 

meteorological services, together with some RMS purchases from private 7 

providers. The locations of weather stations with 15 or more years of peak gust 8 

measurements are shown in Figure 5. There are several hundred stations with 9 

shorter records, particularly in east Europe, to complement the stations shown 10 

in Figure 5. Each storm footprint consists of the maximum observed gusts at 11 

each station for the entirety of the storm, which are then spatially interpolated to 12 

a more regular grid. The SSI is used to characterise the damage severity of 13 

these storms using the method described in Cusack (2013). The 135 footprints 14 

used in Bonazzi et al. (2012) are supplemented with seven storms in 2011 to 15 

2013 (Yoda in November 2011; Friedrich, Joachim and Patrick/Dagmar in 16 

December 2011; Ulli in January 2012; Christian in October 2013 and Xaver in 17 

December 2013) using the same data and methods, to form a set spanning the 18 

42 year period from 1972 to 2013. This set of 142 storms contains the top 20 to 19 

25 of the strongest storms in major countries such as Germany, France, U.K. 20 

and Netherlands, and the top 10 to 20 storms in other countries, for the 1972-21 

2013 period. However, due to the large footprints, all fifteen countries are 22 

affected by many more storms than these limits. More specific details on this 23 

dataset are given in Bonazzi et al. (2012). 24 

 25 

3 Analysis methods 26 

The strength of clustering used in most research to date adopts the metric first 27 

proposed by Mailier et al. (2006). Given a time-series of annual storm counts, 28 

Xi, where i=1, 2, …, N and N is the total number of storm years, Mailier et al. 29 

(2006) defined clustering using the dispersion statistic D: 30 

𝐷 =
𝑉𝑎𝑟(𝑋)

𝐸(𝑋)
− 1       (1) 31 
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where Var(X) is the variance and E(X) is the expected (or mean) value of 1 

observed yearly storm counts. As the variance of a Poisson process is equal to 2 

its expected value, Eq. (1) can be re-written as: 3 

𝐷 =
𝑉𝑎𝑟(𝑋)−𝑉𝑎𝑟(𝑃𝑜𝑖𝑠)

𝑉𝑎𝑟(𝑃𝑜𝑖𝑠)
      (2) 4 

where Var(Pois) is the variance of a Poisson process with expected value E(X). 5 

Mailier et al.’s metric of clustering is the relative excess variance of the data 6 

above a Poisson process. 7 

Raschke (2015) described how D is proportional to the total rate of storms in the 8 

set being analyzed. Therefore, D reflects both the strength of clustering and the 9 

size of the storm group studied. Raschke proposed a new metric of clustering 10 

called “Beta” which isolates clustering strength from the size of storm group 11 

being studied. Raschke’s metric simplifies to the dispersion statistic in Eq.(1) 12 

normalized by the expectation of observed yearly storm counts (the mean rate): 13 

𝛽 =
𝐷

𝐸(𝑋)
        (3) 14 

Since the variation of clustering with storm strength will be explored, and more 15 

severe storms are rarer, Eq. (3) will be used for all results in Sect. 4 to ensure 16 

no artefact of dependence on storm numbers. 17 

For each dataset, all storms matching or exceeding a specified damage 18 

threshold in storm years defined from July to following June were identified, 19 

then estimates of variance and mean annual occurrence rates are estimated 20 

directly from the data, which are used to specify β in Eq. (3). Various damage 21 

thresholds are used in each dataset to explore the variation of clustering 22 

strength with storm severity. These severity thresholds are expressed as return 23 

levels, following Karremann et al. (2014a; 2014b), and we refer to them as 24 

return periods (RP). In brief, the RP is defined to be the inverse of the annual 25 

frequency of storms greater than or equal to the particular threshold severity. 26 

For example, if a group of storms contain an average annual rate of 0.5 storms 27 

per year matching or exceeding the threshold, then the storm severity is defined 28 

to be RP = 2 years. This representation unifies dissimilar measures of severity 29 

(e.g. SSI, damage classes in Switzerland, U.K. storm fatalities) to enable their 30 

inter-comparison. 31 
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The uncertainties in the best estimates of β are analysed to provide more 1 

information on estimates of storm clustering. The first source of uncertainty is 2 

due to the effect of finite sample sizes on estimates of β and is related in 3 

concept to the standard error. It is a measure of the spread of β values 4 

associated with finite sampling of the true storm population and its estimation is 5 

now described. From the historical sample containing N years of historical 6 

storms, the parameters of a Negative Binomial model are estimated. Then, an 7 

artificial set of N data points are randomly drawn from this model, and repeated 8 

to make 50,000 artificial datasets. The β values of each of the 50,000 time-9 

series are computed, from which the 95th confidence interval (CI) is obtained. 10 

The 95th CI is used to represent impacts of finite sample sizes on β estimates. 11 

The second source of uncertainty is referred to as observational error and is 12 

due to inaccuracies in measured data which are independent of errors due to 13 

finite sample sizes. This type of error is unique to the observational datasets 14 

being studied. A method of approximating its impact was created for storm 15 

datasets, and is described using an illustrative example in which observational 16 

errors are to be computed for the subset of storms exceeding RP1 severity in a 17 

40-year dataset. There are 40 storms with RP1 or greater severity in a 40-year 18 

time-series. It is assumed that the strongest storms in the top half of this subset 19 

– 20 storms – are known and fixed, while the storms of rank 21 to 40 are 20 

subject to measurement uncertainty. This uncertainty is simulated by randomly 21 

selecting 20 storms from ranks 21 to 60 of the original storm set, to form a new 22 

subset of 40 RP1+ storms. The random selection of 20 storms from ranks 21 to 23 

60 is repeated to make 1,000 storm sets, and the 95th CI is formed from the 24 

1,000 β values. This method is intended to produce a plausible guide to impacts 25 

of measurement errors on estimates of β values. 26 

 27 

4 Results and discussion 28 

Figure 6 displays the variation of clustering with storm severity based on the 29 

EU-RMS-42 dataset. The dashed lines in Fig. 6 represent the 95th CI for each β 30 

estimate, while the dotted lines represent uncertainty due to observational 31 

errors, and they indicate large uncertainty in estimated β values from both 32 

sampling and observational errors. Combining these two sources of uncertainty 33 

leads to the conclusion that the amount of clustering at any specific severity 34 
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threshold would not be distinguished from a Poisson process (β=0) at the 5% 1 

level.  2 

This assessment of uncertainties at individual points is distinct from the broader 3 

question of whether the entire collection of data in Fig. 6 is clustered. This is 4 

assessed as follows: a set of storms equal to the largest rate (2.0 in Fig. 6, or 5 

RP=0.5) is created, with randomly assigned storm strengths, then a time-series 6 

of occurrence following a random Poisson process is generated; the clustering 7 

coefficient is computed for each severity threshold, depending on the earlier 8 

designated severity assignments; this is repeated with 50,000 random sets of 9 

data, to form 50,000 Poisson samples of β vs RP. The empirical probability that 10 

the β of the observed storms is greater than the Poisson sample is recorded at 11 

each RP, and the probabilities at each RP are multiplied together to form a 12 

score corresponding to the likelihood that the observed β values are above that 13 

of a Poisson process. The likelihood score is computed for each of the 50,000 14 

Poisson samples, and it is found that the observations exceed 99.6% of all 15 

Poisson samples. This finding suggests European storms with severity between 16 

RPs of 0.5 and 3 years are significantly different from a Poisson process at the 17 

1% level. 18 

Results in Fig. 6 suggest greater clustering for more severe storms, though the 19 

uncertainties are large. The question of whether there is an increase in the 20 

clustering for more severe storms is now addressed by analysing β gradients, 21 

as follows: compute the best linear fit between observed β and severity 22 

expressed as the logarithm of RP; fit Negative Binomial model parameters to 23 

observed time-series at RP=0.5 threshold; generate a random Negative 24 

Binomial sample and assign storm strength ranks randomly to it, then form 25 

subsets for each RP severity threshold (this is essentially the same method as 26 

above, except for a Negative Binomial rather than a Poisson); compute β vs RP 27 

for this random sample, then find the best fitting gradient of β vs log(RP); finally, 28 

repeat this 50,000 times to obtain a set of 50,000 gradients. It was found that 29 

the gradient of β versus severity in the observed storm set was more positive 30 

than 98.9% of all randomly generated samples. This leads to the conclusion 31 

that greater clustering with stronger storms at the Europe-scale is much more 32 

likely than not, though the fact that 1.1% of samples with randomly assigned 33 

severity relationships have a more positive gradient indicates some uncertainty 34 

in this finding.  35 
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The relationship between clustering strength and storm severity in previous 1 

studies is obscured by the rate dependency of the dispersion parameter 2 

described in Raschke (2015). However, some previous studies contain storm 3 

rate information which enables β to be derived from dispersion values, and 4 

these are now described. Figure 3 of Pinto et al. (2013) indicates higher β for 5 

more severe storms in North Atlantic and Europe from three different re-6 

analyses products. Figure 6 of Vitolo et al. (2009) contains storm numbers as 7 

well as dispersion and conversion to β suggests a general upward trend of 8 

clustering strength with storm severity. Both observational studies are in general 9 

agreement with behaviour in the extended storm datasets analysed here, 10 

though the different measures of storm severity in the three studies confound 11 

their comparison. In contrast, Raschke (2015) finds a constant β is appropriate 12 

for RPs from 1 to 5 years, using storm occurrences from a modern coupled 13 

climate model simulation. The climate model data are described in Karremann 14 

et al. (2014a) and they employ a severity measure similar to that used in 15 

analysis of the long historical datasets. This suggests we cannot gain the 16 

benefits of smaller sampling errors from long integrations of the ECHAM5 17 

climate model at the present time, due to its inability to simulate observed 18 

stronger clustering of more severe storms. Kvamsto et al. (2008) note 19 

significant differences in clustering between a different climate model and 20 

observations, though β versus storm severity is not analysed. These two studies 21 

suggest climate models have different clustering behaviour from observed, 22 

however, they represent a small sample, and analysis of more climate models is 23 

needed to make firmer, useful conclusions on climate models’ quality of 24 

clustering simulations. Finally, it is worth noting how constant β with severity is 25 

explained by a model assuming independent storm events following an 26 

inhomogeneous Poisson process (Raschke, 2015). An alternative model is 27 

needed to explain increased β values for more severe storms found in historical 28 

storm datasets.  29 

The clustering behaviour at national scales in the EU-RMS-42 dataset is now 30 

explored. Figure 7a displays β versus RP curves for some countries in the 31 

northern part of the European area shown in Figure 5, while Fig. 7b displays 32 

curves for some of the more southern countries. The large uncertainties in β 33 

values discussed above apply to national scales too. Thus the differences 34 

between northern countries in Fig. 7a lie well within the limits of error, and 35 

similarly for southern countries in Fig. 7b. However, comparison of Figs. 7a and 36 
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b reveals a signal of stronger clustering for more severe storms in the southern 1 

part of the domain. The main driver of this north-south difference is the 2 

exceptional nature of the storminess in January to March 1990 in the southern 3 

countries. Figure 8 contains β versus RP curves for southern countries when 4 

the 1989/90 storm season is removed, and it can be seen how clustering 5 

strengths at RPs of 1 to 3 years are now much more similar between northern 6 

(Fig. 7a) and southern (Fig. 8) parts of the domain. This exemplifies the large 7 

sampling errors shown in Fig. 6: if this season had not occurred, the clustering 8 

strengths in more southern countries would be very different (Fig. 8 versus 7b). 9 

The conclusion is that sampling errors have a major impact when storm 10 

datasets are limited to the past few decades. Longer records help to reduce 11 

such large sampling errors and place 1989/90 into a fuller historical context. 12 

This is the motivation for analysing longer historical datasets. 13 

Figure 9 contains results from an analysis of the longer storm datasets in the 14 

U.K. and Netherlands. Figure 7a indicates low values of β in the U.K. at all RPs, 15 

and a test of the hypothesis that the group of all data points are significantly 16 

different from a sample of Poisson data is rejected at the 0.1 significance level, 17 

in common with most northern countries. The results from extended U.K. storm 18 

datasets in Fig. 9a show β values of about 1.0 for storms with severities 19 

exceeding RPs of 5 years. The lengths of UK-Lamb-300 and UK-RMS-160 20 

datasets, and their independent methods of gathering and assessing storm 21 

severities, combine to produce significantly smaller uncertainties than those 22 

shown in Fig. 6, raising confidence that more severe U.K. storms are clustered. 23 

Figure 9b shows low levels of clustering in the Netherlands from the NL-KNMI-24 

105 storm dataset, which is consistent with analysis of EU-RMS-42 in NL. The 25 

raised clustering value at the RP of 6 years in NL-KNMI-105 is very uncertain 26 

due to limited sample sizes. However, similar behaviour in the longer and 27 

independent datasets in the neighbouring U.K. supports the raised clustering of 28 

storms above RP6 severity in NL-KNMI-105. 29 

Figure 10 contains the clustering strengths found in four extended datasets in 30 

the southern part of the study area. Results in Fig. 10a indicate lower levels of 31 

clustering in DE-DWD-60 compared to the EU-RMS-42 dataset. The DWD 32 

clustering is more similar to the EU-RMS-42 dataset with 1989/90 removed. 33 

This may be due to greater weighting of far northern Germany in the DWD 34 

dataset (3 of the 7 stations), since the 1989/90 season was less extreme in this 35 
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area, relative to local storm climate. The dotted lines in Fig. 10a represent β 1 

versus RP when one station is removed from DE-DWD-60, and show DWD 2 

clustering is not especially sensitive to any single weather station. 3 

The results of analysing FR-Garnier-350 dataset are shown alongside those of 4 

EU-RMS-42 in Fig. 10b. The much longer storm dataset contains clear signs of 5 

clustering of the most severe storms in France. The independence of the 6 

information sources, and the increased length of the Garnier-Bessemoulin 7 

dataset, raises confidence in the conclusion of stronger clustering of more 8 

severe storms in France.  9 

Figure 10c shows the results from analysing CZ-Brázdil-500 dataset in Czech 10 

Republic, alongside those from EU-RMS-42. The results from the shorter 11 

dataset showed great sensitivity to the inclusion of the 1989/90 storm season 12 

and an independent, longer dataset is very useful to help place 1989/90 in 13 

historical context. However, the reporting inhomogeneities in this long dataset 14 

(Sect. 2) are a source of significant uncertainty in results. Table 2 shows the 15 

clustering coefficient for class 1 storms for a range of different time periods in 16 

CZ-Brázdil-500, and Table 3 shows results for class 2 storms. Β varies 17 

substantially according to the time period studied, though a clear signal 18 

emerges of lower values at RP threshold of around 1 year, and significantly 19 

stronger clustering of more severe storms (RP threshold of around 10 years). 20 

Using the information in Fig. 3, the 1800 to 1999 period is chosen to represent 21 

clustering of class 1 storms and stronger, whereas 1700 to 1999 is chose to 22 

represent class 2 storms, in Fig. 10c. The main finding from this much longer 23 

dataset is weaker clustering around RP1 thresholds and notably stronger 24 

clustering of more severe storms. Further investigation of EU-RMS-42 at shorter 25 

RP thresholds reveals a 6 year period of elevated gust readings from about 26 

1989 to 1995 suggesting inhomogeneous observation practices. This adds to 27 

the acute sensitivity of β to the inclusion of the 1989/90 season in the shorter 28 

dataset, as shown in Fig. 10c. The existence of significant observational errors 29 

in the most recent records of storms illustrates the benefits of analysing 30 

multiple, independent storm datasets.  31 

Figure 10d contains the results from an analysis of Swiss storms. The extended 32 

CH-Stucki-153 dataset indicates weak clustering at shorter RPs, and slightly 33 

larger values at longer RPs, which supports the findings from EU-RMS-42. Β 34 

values are lower than in nearby France, Germany and Czech Republic around 35 
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RP1 to 3 thresholds. The most unique feature of Switzerland relative to these 1 

nearby countries is its much smaller spatial extent. This suggests a dependence 2 

of local β values on size of area studied, which is consistent with the lower 3 

dispersion values for narrower latitudinal barriers reported in Vitolo et al. (2009).  4 

Results from all extended storm datasets are presented in Fig. 11. The results 5 

contain two main features. First, there is generally stronger clustering in 6 

southern countries: at shorter RPs, the Netherlands β values are generally 7 

below those of Germany, Czech Republic and Switzerland, while the U.K. 8 

values at longer RPs are generally lower than in France and the Czech 9 

Republic. This geographical variation is consistent with that found by comparing 10 

Figs. 7a and b, however, the signal is smaller in longer datasets. Given the 11 

varied nature and independence of these datasets, and their much longer 12 

records of storm history, there is some confidence that countries further from 13 

the main storm track in Europe experience stronger clustering of storms, though 14 

significant uncertainties in our clustering knowledge remain. The second 15 

notable aspect of results in Fig. 11 concerns the earlier finding of a strong 16 

sensitivity of β values in more southern countries to inclusion of the 1989/90 17 

season (Figs. 7b and 8). The β values around RP1 to 3 year thresholds from the 18 

extended datasets are lower than those in Fig. 7b (with 1989/90) and closer to 19 

those in Fig. 8 (without 1989/90). This is a practical illustration of large impacts 20 

from sampling errors in datasets spanning a few recent decades: too much 21 

weight is placed on the big cluster in 1989/90 inflating β values, and longer-term 22 

records are needed to place the 1989/90 storm cluster in fuller historical 23 

context. 24 

 25 

5 Summary  26 

The clustering of extra-tropical cyclones in Europe has been investigated from 27 

the perspective of the re/insurance sector since they suffer the most material 28 

impacts from this phenomenon. Specifically, storms were gathered into groups 29 

according to exceedance of damage severity thresholds expressed as return 30 

periods (RP), and clustering on annual timescales was studied.   31 

Perhaps the most notable characteristic of clustering is the unusually large 32 

uncertainties of estimates based on typical storm dataset lengths of a few 33 

decades, due to its dependence on storm count variance. This was found in 34 
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previous research and has been explored in more detail in this study. Both the 1 

sampling and observational errors are large for estimates of clustering for any 2 

single group of storms.  3 

Eight different storm datasets were gathered to reduce these large 4 

uncertainties. The mix of different information sources and storm severity 5 

measures reduce observational errors, and six of the datasets were more than 6 

100 years in length and help reduce sampling errors. Quality control was 7 

applied to each dataset: the biggest issue with such long datasets is temporal 8 

inhomogeneity and the period of analysis was shortened for some datasets to 9 

improve this aspect. Finally, the inter-comparison of data with different units of 10 

storm severity (e.g. SSI, damage severity classes, fatalities) was made possible 11 

by expressing each dataset’s storm severities in units of local RP.  12 

The evidence from all datasets strongly suggests that clustering increases with 13 

storm severity, for the range of severities analysed, from RP 0.5 up to about 20 14 

years. The 42-year RMS storm database shows a distinction between northern 15 

areas with weaker clustering, to regions off the main storm track in central 16 

Europe and France with stronger clustering of severe storms. However, the 17 

removal of one very stormy season (1989/90) eliminates differences between 18 

the two regions. This epitomises the large sampling errors of clustering 19 

estimates based on a few decades of data. The longer datasets also contain 20 

signs of stronger clustering in countries off the main storm track, with notable 21 

years in history of multiple severe storms. Conversely, countries closer to the 22 

storm track show little signs of clustering of storms at RPs around one year, 23 

though three longer datasets in the U.K. and Netherlands indicate some 24 

clustering of storms at RPs longer than 5 years. While the differences between 25 

individual countries are less significant due to large uncertainties, there is 26 

evidence from multiple, diverse historical datasets for the difference between 27 

regions on and off the storm track. Finally, the comparison of clustering in 28 

Switzerland with larger neighbours indicates weaker clustering with smaller 29 

spatial scales of analysis, which is consistent with earlier published findings. 30 

While the multiple datasets used in this study reduce uncertainties in estimates 31 

of severe storm clustering, there is plenty of scope for further reductions. 32 

Europe is relatively rich in historical documentation and expanded research into 33 

these archives would be very beneficial. Climate models have the capability to 34 

provide much smaller sampling errors via millennial-scale simulations, and it is 35 
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hoped models with validated relations between clustering strength and storm 1 

severity will be available in the future. 2 
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Table 1: summary of storm datasets 1 

Country Source Time 
period 

Storm data type  Processing Brief name* 

Europe RMS storm 
database 

1972 to 
2014 

Measured wind speeds 
from 1000’s of weather 
stations across EU 

Compute SSI values for 
142 major storms 

EU-RMS-42 

United 
Kingdom  

Lamb and 
Frydendahl 
(1991) 

1690 to 
1989 

Estimated storm severity 
index based on surface 
weather reports, 
meteorological analysis 
and documentary 
damage information 

Restricted analysis to 
1690-1989 due to 
incompleteness of 
reportage in earlier times.  

UK-Lamb-300 

United 
Kingdom  

RMS (internal) 
fatality list  

1835 to 
1994 

List of fatalities compiled 
from newspaper archives 

Applied population factor 
to index fatalities to 1994 
population, and night 
factor to scale night-time 
fatalities to daytime 

UK-RMS-160 

Netherlands Cusack (2013)  1910 to 
2014 

Measured wind speeds 
based on Royal 
Netherlands 
Meteorological Institute 
(KNMI) data 

Homogenized using KNMI 
metadata, and computed 
national SSI values for 
each storm 

NL-KNMI-105 

Germany Deutsche 
Wetterdienst 
(DWD) 

past 60 
years  

Publicly available peak 
gust data for climate 
stations, available on the 
DWD web site 

Selected seven stations 
with minimal changes to 
wind observing system 
over time, then compute 
national SSI values for 
each storm 

DE-DWD-60 

Czech 
Republic 

Brázdil et al. 
(2004)  

1500 to 
1999 

Detailed damage 
descriptions 

Assigned storms into two 
severity classes: (1) local 
or large-scale weak 
damage, (2) widespread 
intense damage 

CZ-Brázdil-500 

France Emannuel Garnier 
(private 
communication) 
and Bessemoulin 
(2002) 

1650 to 
1999 

List of storms with 
documentary 
descriptions of wind 
damage 

For Bessemoulin dataset, 
we assigned a Beaufort 
scale severity based on 
documentary damage 
severity and spatial extent 

FR-Garnier-350 

Switzerland Stucki et al. 
(2014)  

1859 to 
2011 

List of storms, some with 
documentary 
descriptions 

Damage severity taken 
directly from Stucki et al. 
dataset. Summer storms 
(May to September) are 
excluded. 

CH-Stucki-153 

* This brief name will be used in text to refer to each dataset 2 

 3 
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 1 

Table 2: β for class 1 storms in the Brazdil dataset, for various time periods. 2 

 1500–1599 1600–1699 1700–1799 1800–1899 1900–1999 1800–1999 1500–1999 

RP (years) 1.80 2.38 1.54 0.90 0.58 0.71 1.12 

CC 1.19 0.27 -0.32 0.52 0.11 0.28 0.59 

 3 

 4 

 5 

 6 

Table 3: as Table 2, for class 2 storms. 7 

 1700–1849 1850–1999 1700–1999 1500–1999 

RP (years) 7.89 10.00 8.82 11.09 

CC 4.07 1.74 3.19 2.97 

 8 
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 1 

 2 

 3 

 4 

 5 

 6 

Figure 1: time-series of storm fatalities in the U.K. from the UK-RMS-160 7 

dataset. All data are adjusted as-if storms occurred during daytime, and trended 8 

to 1994 population levels. 9 
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 4 

 5 

Figure 2: the location of the seven DWD weather stations in the DE-DWD-60 dataset. 6 
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 5 

 6 

Figure 3: Histogram of storm occurrences per century in Czech Republic from the CZ-7 

Brázdil-500 dataset for (a) weaker class 1, and (b) stronger class 2 storms. 8 
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 6 

Figure 4: Count of storm occurrences per decade in France from the FR-Garnier-350 7 

dataset, split into three damage severity categories.  8 
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 5 

 6 

 7 

Figure 5: the location of weather stations with 15 or more years of peak gust 8 

measurements in the EU-RMS-42 dataset. 9 

  10 



27 
 

 1 

 2 

 3 

 4 

 5 

Figure 6: clustering strength (β) as a function of the storm severity groupings for 6 

historical storms in the EU-RMS-42 dataset. The dashed lines show the 95
th
 confidence 7 

interval based on sampling error, and the dotted lines represent the 95
th
 confidence 8 

interval of observational errors. 9 
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 6 

 7 

Figure 7: As Fig. 6, for various countries in (a) northern part and (b) southern part of the 8 

study area. 9 
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Figure 8: as Fig. 7b, with 1989/90 storm season excluded. 4 
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 7 

 8 

Figure 9: clustering strength (β) as a function of the storm severity groupings for (a) 9 

U.K. and (b) Netherlands. 10 

  11 



31 
 

 1 

 2 

 3 

 4 

Figure 10: clustering strength (β) as a function of storm severity for (a) Germany, (b) 5 

France, (c) Czech Republic and (d) Switzerland. 6 
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 6 

Figure 11: clustering strength (β) versus storm severity from extended historical storm 7 

datasets. 8 
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