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Abstract 9 

Early warning systems (EWS) are increasingly applied as preventive measures within an 10 

integrated risk management approach for natural hazards. At present, common standards and 11 

detailed guidelines for the evaluation of their effectiveness are lacking. To support decision-12 

makers in the identification of optimal risk mitigation measures, a three-step framework 13 

approach for the evaluation of EWS is presented. The effectiveness is calculated in function 14 

of the technical and the inherent reliability of the EWS. The framework is applicable to 15 

automated and non-automated EWS and combinations thereof. To address the specifics and 16 

needs of a wide variety of EWS designs, a classification of EWS is provided, which focuses 17 

on the degree of automations encountered in varying EWS. The framework and its 18 

implementation are illustrated through a series of example applications of EWS in an alpine 19 

environment.   20 



 1 

1 Introduction 21 

A growing number of early warning systems (EWS) is developed and operated for reducing 22 

the risks imposed by a wide range of natural hazard processes. They can mitigate the 23 

consequences of hazardous events if information is issued timely. In recent years, EWS 24 

technologies have been improved significantly. In many fields, EWS are now cost-efficient 25 

alternatives to structural mitigation measures. They are applied for large scale hazard 26 

processes, such as severe weather, floods, tsunamis, volcanic eruptions or wildfires, where 27 

they complement structural measures and support the preparation and response to the hazard 28 

events (e.g. Sorensen, 2000; Zschau and Küppers, 2003; Grasso and Singh, 2009; Glade and 29 

Nadim, 2014). They are also popular as flexible and temporary mitigation measures on 30 

smaller scales. In mountain regions, they are successfully applied to mitigate risks from snow 31 

avalanches, debris flows, flash floods, rockfalls and landslides (e.g.  Bell et al., 2010; Thiebes, 32 

2012; Michoud et al., 2013; Stähli et al., 2015) .  33 

Whether or not EWS are effective and efficient risk mitigation measures can be evaluated 34 

case-specifically through cost-benefit analyses, in which the life-cycle costs and the efficiency 35 

is compared to those of alternative mitigation measures (Penning-Rowsell E., 2005; 36 

SafeLand, 2012; Špačková and Straub, 2015). In cost-benefit analyses, the efficiency is 37 

defined as the risk reduction achieved with a mitigation measure and is expressed in monetary 38 

values. To avoid expressing the risk in monetary terms, cost-effectiveness analyses can be 39 

conducted instead (Bründl et al., 2009). The effectiveness 𝐸!    is quantifiable without 40 

expressing the risk in monetary terms. For EWS, one can define it as a function of the overall 41 

risk without the EWS, 𝑅, and the risk with the EWS, 𝑅(!) (Sättele et al., 2015a):  42 

𝐸! = 1−
𝑅(!)

𝑅  (1) 

The risks with and without the EWS are evaluated by summing or integrating over all 𝑛!"#$ 43 

possible scenarios 𝑗 and all 𝑛!"# exposed objects  𝑖, which are persons or assets exposed to a 44 

hazardous scenario: 45 

𝑅 = 𝑅!"

!!"#

!!!

!!"#$

!!!

   (2) 
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Both 𝑅!" and 𝑅𝑟!"
(!) can be calculated from the probability of occurrence of a hazard scenario, 46 

𝑝!,  the probability of exposure of object 𝑖 in scenario 𝑗, 𝑝𝑒!", the vulnerability of object  𝑖 in 47 

scenario 𝑗, 𝑣!", and the value of object 𝑖,  𝐴!   (Fuchs, 2006; Bründl et al., 2009): 48 

𝑅!" = 𝑝!×𝑝𝑒!"×𝑣!"×  𝐴!     (3) 

When issuing timely information, EWS can reduce the exposure probability of persons and 49 

mobile objects (Dai et al., 2002; SafeLand, 2012; Thiebes, 2012) or their vulnerability 50 

(Einstein and Sousa, 2006). Detailed guidelines on how this risk reduction can be evaluated 51 

have been published for structural mitigation measures (e.g. Romang (2008)) but, to the best 52 

of our knowledge, not for EWS.  53 

Even without detailed guidelines, the effectiveness of EWS has been investigated previously. 54 

Thereby, it is common practice to consider both the probability that an EWS detects 55 

hazardous events, as well as the probability that the EWS leads to a false alarm. If the EWS 56 

detects a hazard event, timely warnings can initiate preventive actions, such as an evacuation 57 

of endangered persons to prevent damage. On the other hand, frequent false alarms can lead 58 

to excessive intervention costs or reduce compliance with future warnings (Pate-Cornéll, 59 

1986; Grasso et al., 2007; Schröter et al., 2008; Rogers and Tsirkunov, 2011; Ripberger et al., 60 

2014). To account for the probability that events are correctly detected (hit) and the 61 

probability that false alarms are issued (Fig. 1), the effectiveness is typically evaluated based 62 

on concepts of signal detection theory, where a classifier (in the simplest case a predefined 63 

threshold) discriminates between alarm and no alarm (Swets, 1996).  64 

 65 
Figure	   1:	   Following	   the	   principle	   of	   signal	   detection	   theory,	   a	   classifier	   (e.g.	   in	   form	   of	   a	   threshold)	  66 
discriminates	   between	   correct	   and	  wrong	   outcomes	   of	   EWS:	   EWS	   correctly	   issues	   an	   alarm	  when	   an	   event	  67 
occurs	   (hit)	   or	   no	   alarm	   when	   no	   event	   occurs	   (neutral),	   but	   can	   also	   wrongly	   issue	   false	   alarms	   or	   miss	  68 
dangerous	  events.	  	  	  69 

An optimal EWS detects all hazardous events and never produces false alarms (Intrieri et al., 70 

2013). In the operational application of EWS, false alarms cannot be avoided and an optimal 71 

trade-off between detected events and false alarm needs to be identified. To solve this 72 



 3 

optimization problem quantitatively, costs and utilities must be assigned to possible 73 

outcomes. Along these lines, Paté-Cornell (1986) suggests to optimize the effectiveness of 74 

fire warning systems operated in buildings in function of the probability that the event is 75 

detected (POD) and the probability that endangered persons comply with the warning (POC). 76 

The latter is modeled conditional on the probability of false alarms (PFA) by means of both 77 

descriptive (how do people react in real situations?) and normative (how should people 78 

optimally react?) approaches. In the normative model, the willingness of individuals to 79 

respond to an alarm is considered through a decision tree. Following that approach, decision 80 

trees have been used by others for the identification of decision rules that provide an optimal 81 

trade-off between POD and PFA (Einstein and Sousa, 2006; Rheinberger, 2013). In these two 82 

subsequent studies, the effect of false alarm on the compliance is not explicitly addressed, but 83 

the reliability is expressed in terms of POD and the PFA. This ability of the EWS to 84 

distinguish between hazard events and noise can be summarized graphically in receiver 85 

operator characteristic curves. This is the inherent reliability of an EWS and will be presented 86 

in Sec. 3.  87 

As an alternative to decision trees, influence diagrams are applied to probabilistically model 88 

decision procedures associated with EWS (Einstein and Sousa, 2006; Martina et al., 2006). 89 

Influence diagrams are based on Bayesian networks (BN), which are graphical models that 90 

consist of nodes representing random variables and arcs describing the statistical 91 

dependencies among them (Jensen and Nielsen, 2007). They have been successfully applied 92 

in the field of environmental modeling and civil engineering due to their intuitive nature, their 93 

ability to deal with uncertainty and performing Bayesian analysis, and because of their 94 

strengths in representing dependence in large scale systems (Straub, 2005; Straub and Der 95 

Kiureghian, 2010). Causal relations between components are defined through conditional 96 

probability tables, describing the probability distributions of the variables conditional on their 97 

parent nodes. Influence diagrams extend BNs for decision analysis by including decision 98 

nodes and utilities  (Shachter, 1986). 99 

In Sturny and Bründl (2014), a BN has been constructed to model the technical reliability of a 100 

glacier lake EWS. In their study, it was possible to model the entire technical system with a 101 

BN, which was not possible with a fault tree in a previous study on the reliability of Swiss 102 

avalanche forecasting system (Bründl and Heil, 2011). The first BN, which models both the 103 

technical and the inherent reliability of a EWS, is described for a debris flow EWS in (Sättele 104 
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et al., 2015a). In a subsequent case study, the reliability of a partly automated rockslide 105 

warning system is assessed (Sättele et al., 2015b). The automated part is again modelled in a 106 

BN and human decision-procedures of the non-automated part are assessed through a Monte 107 

Carlo analysis.  108 

In the present contribution, a comprehensive framework approach for the evaluation of EWS 109 

is presented, with three main objectives. The first objective, addressed in section 2, is the 110 

development of a classification for EWS, which serves as a basis for a structured evaluation 111 

of EWS. The second objective is the development of evaluation methods for the technical and 112 

the inherent reliability of EWS. The third and final objective is the development of an overall 113 

framework for assessing the effectiveness of EWS. The individual steps of the framework 114 

approach are presented in section 3, illustrated by the insights gained in the case studies. The 115 

paper concludes with a discussion of the applicability of the framework, its limitations and 116 

future work (section 4). 117 

2 Generic classification for EWS  118 

EWS can be defined as “sets of capacities needed to generate and disseminate timely and 119 

meaningful warning information to enable individuals, communities and organizations 120 

threatened by a hazard to prepare and to act appropriately and in sufficient time to reduce the 121 

possibility of harm or loss” (UNISDR, 2007). EWS currently operated in practice have widely 122 

varying designs, because they are preliminary developed as prototypes to fit specific needs. 123 

They are ambiguously referred to as alarm, alert, detection, early warning, forecasting, 124 

monitoring and warning systems. To facilitate a structured evaluation of EWS, a recognized 125 

classification should be established.  126 

A classification for landslide EWS is proposed by (Bell et al., 2010), in which monitoring 127 

systems, alarm and expert systems are distinguished. We adapt this proposal by classifying 128 

EWS in function of their degree of automation into: alarm, warning and forecasting systems 129 

(Sättele et al., 2012). In Fig. 2, each system class is depicted with the three main units for 130 

monitoring, data interpretation and dissemination. To indicate the degree of automation, 131 

components, which are operated automatically are highlighted in grey. 132 
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 133 
Figure	  2:	  Classification	  for	  EWS:	  Each	  EWS	  class	  includes	  typical	  system	  components	  facilitating	  the	  monitoring,	  134 
interpretation	  of	  data	  and	  dissemination	  of	  warnings.	  Automated	  system	  parts	  are	  highlighted	  in	  grey.	  135 

In this classification, monitoring systems are not considered as a stand-alone class, because 136 

they do not actively issue warning information (Schmidt, 2002; Glantz, 2003). They are a 137 

central unit of every EWS, in which the environment is observed and relevant data are 138 

collected to increase the processes understanding. As proposed by Bell (2010), alarm systems 139 

are understood as threshold-based fully automated EWS. The term “expert system” is omitted 140 

because it is already used in the field of artificial intelligence to signify computer systems that 141 

imitate the decision ability of humans (Jackson, 1990). Instead, the terms warning and 142 

forecasting system are used to distinguish to two types of partly automated EWS. All three 143 

classes are named according to how they disseminate information. While alarms are signals 144 

activated to inform endangered persons on on-going dangerous events, warnings provide 145 

information on imminent or probable events by including suggestions or orders on protective 146 

risk mitigation actions (Villagrán de León, 2013). Forecasts deliver more general information 147 

on the probability of hazard events in endangered or affected regions for certain time frames 148 

in the future (Hamilton, 1997).   149 

The applicability of this novel classification was tested by assigning state-of-the-art EWS to 150 

the three classes (Sättele, 2015), including EWS installed worldwide for meteorological, 151 

flood, earthquake, tsunami, wildfire, volcanic eruptions and mountain hazards. The results are 152 

summarized in Fig. 3, where natural hazards are arranged according to the amount and 153 
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expressiveness of available precursors and according to the lead time that typical EWS can 154 

provide.  155 

 156 
Figure	   3:	   Assignment	   of	   natural	   hazard	   processes	   to	   the	   proposed	   classification	   for	   EWS:	   the	   system	   class	  157 
depends	  on	  the	  availability	  and	  expressiveness	  of	  precursors	  and	  the	  available	  lead	  time.	  158 

In the following, general characteristics of each EWS class are introduced (see Table 1) and 159 

illustrated through a system example. These example systems have been investigated in 160 

detailed case studies previously (Sättele et al., 2015a; Sättele et al., 2015b) and key results of 161 

these case studies are used in Section 3 to demonstrate individual steps of the proposed 162 

framework approach.  163 

Table	  1:	  Characteristics	  associated	  with	  EWS	  classes.	  164 

Alarm system Warning system Forecasting system 

Fully automated Partly automated Lowest degree of automation 

Detect on-going process parameters  Monitor precursors  Monitor precursors 

Short lead times Extended lead times Extended lead times 

Thresholds serve as decision instance First decision is based on threshold, 
the final one is made by experts  

Experts conduct analysis in regular 
intervals and not based on thresholds 

Automated intervention measures 
such as automated barriers on roads 
or interrupted power lines at railways 

Organized intervention actions such 
as an evacuation 

Forecast the danger level for predefined 
warning regions to enable preventive 
actions and preparation 

 165 
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2.1 Alarm system 166 

Alarm systems are fully automated EWS (Table 1; Fig. 2a). In the monitoring unit, sensors 167 

are installed to detect process parameters of already ongoing hazard events. They are 168 

primarily installed for processes triggered rather spontaneously, such as earthquakes, 169 

wildfires, tornados, small rockfalls, debris flow or scattered landslides (Sättele, 2015).  Thus, 170 

the remaining lead time is short and procedures include a minimal number of interfaces to 171 

ensure a reliable and fast information flow. Sensors are directly connected to a control tool, 172 

e.g. a data logger, in the interpretation unit. Here, data are analysed to issue and transfer 173 

automated warnings or to initiate mitigation actions when predefined thresholds are exceeded. 174 

Measured sensor data are transferred and stored in a central data management unit, which is 175 

commonly equipped with a diagnostics system. In the dissemination unit, automated 176 

intervention measures use optical signals or sirens to generate warnings. In some cases, power 177 

cut-offs are initiated to stop approaching trains. At the same time, risk-managers and system 178 

operators receive information. 179 

Example: A fully automated alarm system is operated to protect persons from debris flows 180 

within the Illgraben catchment in Switzerland (Badoux et al., 2009). One single geophone in 181 

the upper catchment and two geophones and two radar devices some hundred meters below 182 

should detect ongoing events in real-time (Fig. 4).  They measure the ground vibrations and 183 

the flow depth in the river bed. The upper geophone is controlled by one logger and another 184 

logger controls the remaining four sensors. An automated alarm is initiated if predefined 185 

thresholds are exceeded. The alarm information is transmitted via modem and communication 186 

devices to activate audible signals and red lights at three alarm stations. In parallel 187 

information is sent to system operators.  The lead time of the alarm system is between 5 and 188 

15 minutes. 189 
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 190 
Figure	   4:	   System	   sketch	   of	   the	   debris	   flow	   alarm	   system	   in	   the	   Illgraben	   catchment	   including	   automated	  191 
procedures	  in	  the	  monitoring,	  interpretation	  and	  dissemination	  unit.	  [Figure	  based	  on	  pixmaps	  2015	  swisstopo	  192 
(5704	  000	  000).]	  193 

2.2 Warning system 194 

Warning systems are partly automated EWS (Table 1; Fig. 2b). In the monitoring unit, 195 

sensors or human observers monitor precursors of hazardous processes. Precursors are either 196 

events that trigger the hazard, such as intense rainfall, or relevant changes in the disposition 197 

that occur prior to the event. Therefore, warning systems are typically installed for natural 198 

hazard processes that evolve over time and provide precursors, such as tsunamis announced 199 

by earthquakes, volcanic eruption or large scale rockfalls (Sättele, 2015). Lead times are 200 

extended and enable a two-instance decision-making procedure in the interpretation unit. The 201 

first instance is automated: sensor data is transferred to a control tool that typically uses 202 

predefined thresholds to initiate automated warnings, similar to alarm systems. The warning is 203 

not directly issued to endangered persons but to experts, which are the second decision 204 

instance. Experts analyse measured sensor data, and to predict the final event they often apply 205 

models or consults additional information sources, such as remote sensing data or reports 206 

from local observers. In the dissemination unit, organized intervention actions, such as 207 

evacuations and/or closures of roads and railway sections, are set up to mitigate the risk.  208 
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Example: In Preonzo, Switzerland, a warning system was installed to predict a mid-209 

magnitude rockslide (Willenberg et al., 2009; Loew et al., 2012), which eventually occurred 210 

on May 15, 2012, with about 300’000m3 rock mass (Fig. 5). Five extensometers and a total 211 

station with 14 reflectors monitored increased displacement rates. In the automated part, 212 

warning information was sent when predefined thresholds were exceeded. In the non-213 

automated part, displacement data was analysed by experts and the inverse velocity model 214 

was applied to predict the event timing, on the basis of which it was decided on further 215 

activities. Evacuations were ordered to protect the underlying factories and road. The 216 

available lead time is in the order of days. 217 

 218 
Figure	  5:	  System	  sketch	  of	  the	  rockslide	  warning	  system	  in	  Preonzo	  including	  partly	  automated	  procedures	  in	  219 
the	  monitoring,	   interpretation	   and	   dissemination	   unit.	   [Figure	   based	   on	   pixmaps	   2015	   swisstopo	   (5704	   000	  220 
000).]	  221 

2.3 Forecasting system 222 

Forecasting systems have the lowest degree of automation (Table 1; Fig. 2c). In the 223 

monitoring unit, sensors or human observers monitor precursors to indicate the likelihood of 224 

dangerous events.  They are chiefly operated to extend the short lead time achieved with 225 

alarm systems for spontaneous processes, such as severe weather, wildfires or snow 226 
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avalanches,  but can also be found for processes that are more predicable such as rain induced 227 

flood events (Sättele, 2015).  In contrast to warning systems, the data interpretation is not 228 

initiated when predefined thresholds are exceeded, but conducted at regular intervals. 229 

Measured sensor data are transferred to a central data management unit, where experts 230 

analyse data and apply models to forecast the danger level for predefined warning regions. If 231 

predefined danger levels are exceeded, information is disseminated to public and/or risk 232 

managers via media such as mobile phones, Internet, radio and TV. Based on this information 233 

and local assessments, risk managers typically initiate a chain of preventive measures by 234 

following operation and intervention plans.  235 

Example: The Swiss avalanche system operated by the WSL Institute for Snow and Avalanche 236 

Research SLF is an example of a forecasting system (Fig. 6). A network of about 160 snow 237 

and weather stations monitors precursors, such as snow height, air and snow temperature 238 

and humidity, solar radiation, wind direction and wind speed at regular intervals. Observers 239 

transfer measurements and observations to the national centre (Techel and Darms, 2014). 240 

Data analysis is conducted by experts on a regular basis. They merge and analyse measured 241 

data and data collected by human observers; moreover they apply models and consult 242 

meteorological models to predict the danger level for the next day. The forecasts are 243 

disseminated in the form of a bulletin, in which warning regions are assigned to five danger 244 

levels defined in the uniform European Avalanche Hazard Scale (Meister, 1995). The bulletin is 245 

published via radio, TV and Internet, and if danger level four is exceeded, warnings are 246 

actively communicated to cantonal authorities and to the public by the National Emergency 247 

Operations Centre (Hess and Schmidt, 2012). Based on this information and local 248 

assessments, local avalanche safety officers take measures, such as road closures or 249 

controlled avalanche release. 250 
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 251 
Figure	   6:	   System	   sketch	   of	   the	   national	   avalanche	   forecasting	   system	   in	   Switzerland	   including	   mainly	   non-‐252 
automated	   procedures	   in	   the	   monitoring,	   interpretation	   and	   dissemination	   unit.	   [Figure	   based	   on	   pixmaps	  253 
2015	  swisstopo	  (5704	  000	  000).]	  254 

3 Framework for the evaluation of EWS 255 

Based on the classification, we suggest a framework for a structured evaluation of EWS 256 

effectiveness, consisting of three parts as illustrated in Fig. 7. For fully automated alarm 257 

systems, parts I and III are sufficient, for partly automated warning and forecasting systems 258 

all three parts should be executed.  259 

In parts I and II, reliability analyses are conducted, including the technical and the inherent 260 

reliability. The technical reliability analysis accounts for the availability of technical system 261 

components and their interdependencies in the system. The inherent reliability analysis differs 262 

for parts I and II. While the inherent reliability of automated EWS (part I) depends on 263 

automated decision instances such as signal thresholds, non-automated EWS (part II) rely 264 

primarily on human decision-making and the accuracy of models. In some cases, the model 265 

accuracy needs to be considered in part I as well, e.g. when earthquake alarm systems use 266 

models to detect events in real time. In both parts, the inherent reliability is expressed in terms 267 

of POD and PFA, as is the overall reliability.  268 
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 269 
Figure	  7:	  Framework	  approach	  comprises	  three	  major	  parts	  that	  can	  be	  selected	  dependent	  on	  the	  EWS	  class	  270 
to	  quantify	  the	  effectiveness	  as	  a	  function	  of	  the	  reliability.	  	  271 

In part III, the EWS effectiveness is quantified as function of POD and PFA. The 272 

effectiveness is a direct function of POD, because timely detection leads to intervention 273 

measures that reduce consequences. A high number of false alarms may not only cause large 274 

costs for unnecessary interventions, but also decrease the probability that persons comply 275 

(POC). The POC is estimated from a basic compliance rate, combined with reduction factors 276 

to account for the effect of false alarms (PFA), insufficient lead time and possibly other 277 

effects related to the communication and perception of the alarm/warning.  278 

In the following, the three parts of the framework are summarized and individual steps are 279 

demonstrated with results of the two case studies Illgraben and Preonzo (Sättele et al., 2015a; 280 

Sättele et al., 2015b).  281 

3.1 Part I: Reliability analysis of automated EWS  282 

In part I, the reliability achieved with fully automated alarm systems and the automated part 283 

of warning and forecasting systems is assessed in six steps (Fig. 8). Both the technical and 284 

inherent reliability are modelled together in a BN, which results in the POD and PFA of the 285 

automated system.  286 
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 287 
Figure	  8:	  Part	  I	  includes	  six	  steps	  to	  model	  the	  technical	  and	  inherent	  reliability	  of	  automated	  EWS.	  288 

1st draw system sketch: A system sketch is an essential basis to understand the EWS design 289 

and the dependencies among the components (see Fig. 4-6). It can be constructed according to 290 

the three main units of an EWS and contains all main system components. The information 291 

flow is indicated by arcs and components are represented in form of squares or nodes. 292 

Redundant system parts are depicted redundantly in the sketch.  293 

2nd design BN: The basic BN can be derived from the system sketch. It consists of nodes and 294 

arcs, which can be structured according to the same three units (see Fig. 9). Oval nodes 295 

represent system components, and they are arranged according to the causal chain from the 296 

hazard event to the warning. This includes the main functionalities such as data measured, 297 

event indicated, warning issued, transmitted and released. Redundant system components and 298 

functionalities are also depicted redundantly in the BN. The arcs in the BN are directed to 299 

follow the information flow between functionalities and components. Decision nodes 300 

(squared nodes) are added in the BN to specify decision criteria on varying levels (see 5th 301 

step).  302 

3rd determine conditional probabilities: Interrelations between the components and 303 

functionalities in the causal chain can be specified in conditional probability tables of oval 304 

nodes. In many instances, AND or OR relations are sufficient to describe the dependencies of 305 

individual components and functionalities, but any other type of logical or probabilistic 306 

relation can also be specified. AND relations represent serial connections, in which all 307 
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components must work to ensure the underlying functionality; OR-relations can be used to 308 

model redundant configurations. 309 

4th estimate component availabilities: The availability of individual components is specified 310 

in the conditional probability tables of oval nodes representing components. If the component 311 

can assume exactly two states (functioning or fail), the random variable is binary. If additional 312 

states are possible, these are specified in the conditional probability tables. Availabilities can 313 

often be derived from failure rates specified by the supplier, to which one should add the rate 314 

of failures caused by external sources, such as extreme temperatures or disturbances due to 315 

human and animal activity. 316 

5th include sensor data and decision instances: Decision instances, such as warning 317 

thresholds, are added as squared decision nodes on various levels, either for single sensors or 318 

to specify warning criteria to combine information from several sensors. Probabilities of 319 

measured sensor data to exceed these criteria are included in the conditional probability tables 320 

of the nodes representing sensor signals. These probabilities are estimated conditional on the 321 

occurrence of an event. This 5th step is not necessary for forecasting systems, which do not 322 

use automated decision instances. 323 

6th quantify the reliability: The last node of the causal chain (warning) is used to assess the 324 

overall reliability of the EWS. POD and PFA are obtained by changing the status of the top 325 

node (hazard event) and evaluating the BN. If the top node is set to “event”, the probability of 326 

the last node being in state “alarm” is equal to the overall system POD. Similarly, the PFA is 327 

obtained by setting the top node to “no event”.  The same BN facilitates that the technical and 328 

the inherent reliability are assessed together or separately. To model the technical reliability 329 

alone, the status of the node “event indicated” is set to “yes”; to assess the inherent reliability 330 

the status of all nodes representing technical system components is set to the state 331 

“functioning”.  332 

3.1.1 Illustrative examples from the Illgraben and Preonzo case studies 333 

The reliability of the fully automated Illgraben alarm system and the automated part of the 334 

Preonzo warning system is quantified following the six steps of part I (Fig. 8).  335 

1st draw system sketch: For the Illgraben and the Preonzo case study, system sketches are 336 

designed following the three main units for monitoring, data interpretation and information 337 

dissemination, as shown in Fig. 4 and 5. The sketch includes only main components to keep 338 
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the following steps manageable. For example, the data logger is considered together with the 339 

included software.  340 

2nd design BN: The BNs constructed for the Illgraben and Preonzo EWS vary strongly. For 341 

the fully automated Illgraben debris flow alarm system, a comprehensive reliability analysis 342 

for the entire warning chain from the hazard event to warning is conducted as illustrated in 343 

Fig. 9. The inherent and the technical reliability are evaluated together and are expressed in 344 

terms of POD and the PFA. Grey nodes represent the causal chain, white nodes the 345 

components and thresholds are defined through the black decision-nodes.  346 
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 347 
Figure	  9:	  The	  BN	  to	  model	  the	  overall	  reliability	  of	  the	  Illgraben	  alarm	  system	  is	  structured	  according	  to	  three	  348 
main	  units.	  	  Grey	  nodes	  represent	  main	  functionalities	  in	  the	  causal	  chain;	  white	  nodes	  represent	  components	  349 
and	  squared	  black	  nodes	  the	  decision-‐instances	  on	  two	  levels,	  for	  details	  see	  (Sättele	  et	  al.,	  2015a).	  350 

For Preonzo a simplified BN is constructed to model the ability of the system to provide 351 

timely warning information to decision-makers (Fig. 10).  Here, the technical reliability alone 352 

is modelled, and sensor data and decision nodes are not included, so that the PFA cannot be 353 

computed here. This simplification is possible because warnings are sent directly to experts 354 

whose compliance should not be reduced by frequent warning information. 355 
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 356 
Figure	  10:	  The	  BN	  to	  model	  the	  technical	  reliability	  achieved	  in	  the	  automated	  part	  of	  the	  Preonzo	  warning	  357 
system.	  The	  redundant	  monitoring	  unit	  includes	  5	  extensometers	  and	  14	  reflectors.	  In	  the	  data	  interpretation	  358 
unit,	  warning	  information	  is	  issued	  automatically	  to	  decision-‐makers.	  For	  details	  see	  (Sättele	  et	  al.,	  2015b).	  359 

3rd determine conditional probabilities: In both BNs, the interrelations among system 360 

elements are specified either deterministically or stochastically in the conditional probability 361 

tables of grey nodes. In the causal chain of the Illgraben BN, warning information is 362 

transmitted if either sensor unit 1 or 2 issues an event (Table 2a), but the warning in sensor 363 

unit 2 is only issued if a at least one of the geophones and one radar device indicates an event 364 

(Table 2b).  365 

Table	  2:	  The	  causal	  relations	  between	  functionalities	  and	  components	  are	  specified	  in	  the	  conditional	  366 
probability	  tables	  of	  grey	  nodes.	  Here,	  two	  examples	  of	  deterministic	  nodes	  are	  shown.	  a)	  OR	  logic	  of	  the	  367 
redundant	  sensor	  units;	  b)	  AND	  logic	  of	  sensors	  in	  monitoring	  unit	  2.	  368 

a) sensor unit 1 indicates event yes no 
 sensor unit 2 indicates event yes no yes no 
 warning 

transmitted  
yes 1 1 1 0 

 no 0 0 0 1 

  369 
b) event indicated 1 (geophone 1) yes no 
 event indicated 2 (geophone 2) yes no yes no 
 event indicated 3 (radar 1) yes no yes no yes no yes no 
 event indicated 4 (radar 2) yes no yes no yes no yes no yes no yes no yes no yes no 
 

warning issued 2 
yes 1 1 1 0 1 1 1 0 1 1 1 0 0 0 0 0 

 no 0 0 0 1 0 0 0 1 0 0 0 1 1 1 1 1 

 370 
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4th estimate component availabilities: In both case studies, availabilities of components are 371 

specified in the CPTs of white nodes. All components can assume exactly two states; 372 

functioning and failed. For the Illgraben case study, availabilities 𝐴 of system components are 373 

calculated following Eq. 4 and are in the order of 0.9995 for most components (Sättele et al., 374 

2015a).  375 

𝐴 ≈   1−   (𝜆!" +   𝜆!")×E[𝑇!]   (4) 

𝜆!" are internal failure rates and 𝜆!" are external failure rates; E[𝑇!] is the expected time it 376 

takes to detect and repair a failure. Internal failures rates 𝜆!" are derived from the specified 377 

mean time to failure (MTTF) and the mean time between failure (MTBF) values and external 378 

failure rates 𝜆!" are estimated by experts. 379 

5th include sensor data and decision instances: In the Illgraben case study, past event data 380 

from 44 events are used to determine probabilities of thresholds being exceeded on both event 381 

and non-event days (see Table 1 in (Sättele et al., 2015a)). The BN constructed for the 382 

warning system in Preonzo is developed to facilitate the assessment of the technical reliability 383 

alone and does not include thresholds or measured sensor signals (details see 2nd step).  384 

6th quantify the reliability: In the Illgraben case study, the inherent reliability for varying 385 

thresholds is modelled for each sensor separately (see Fig. 11). Besides the threshold, the 386 

positioning of the sensors has a major influence on the EWS reliability, whereas technical 387 

failures of individual components have a comparatively low impact due to high redundancies 388 

(Sättele et al., 2015a).   389 

For Preonzo we find that the technical reliability, i.e. the POD of the automated part, is high 390 

(0.988) due to multiple redundancies in the sensor unit and a diagnostic system that 391 

immediately detects and reports component failures to minimize downtimes of the system. 392 

The inherent reliability is close to one, but is not assessed quantitatively with the BN. This is 393 

not necessary because the warning threshold were set low to ensure that the EWS sends 394 

timely information to the expert team responsible for the final decision on an evacuation. The 395 

system is furthermore designed as fail-safe, i.e. in case of a technical failure, the experts are 396 

alerted. 397 



 19 

 398 
Figure	  11:	  Reliabilities	  of	  individual	  sensors	  in	  the	  Illgraben	  alarm	  system	  vary	  strongly	  and	  can	  be	  graphically	  399 
summarized	   as	   receiver	   operator	   characteristic	   curves,	   in	   which	   the	   dependence	   between	   POD	   and	   PFA	   is	  400 
shown	  (Sättele	  et	  al.,	  2015a).	  401 

3.2 Reliability analysis II: non-automated EWS  402 

In part II, reliability analyses of non-automated parts of warning and forecasting systems are 403 

conducted. Here, the ability of the decision-makers to correctly predict or forecast events is 404 

evaluated. This ability depends on (potentially complex) human and model-based decision 405 

procedures, which are difficult to quantify in practical applications. If the reliability cannot be 406 

expressed quantitatively in terms of POD and PFA, a qualitative or semi-quantitative analysis 407 

should be conducted instead. This evaluation should address both the technical and the 408 

inherent reliability and can be conducted in five steps (Fig. 12). 409 
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 410 
Figure	  12:	  	  Part	  II	  includes	  five	  steps	  to	  model	  the	  reliability	  of	  non-‐automated	  EWS.	  411 

1st determine minimal required lead time: Lead times associated with the non-automated 412 

part of warning and forecasting systems are typically larger than those of alarm systems, often 413 

in the range of one to several days (see Section 2.2). During this time period, additional data 414 

and information is collected and predictions become increasingly accurate (see e.g. Grasso et 415 

al., 2007; Schröter et al., 2008). The reliability analysis in part II is therefore conducted as a 416 

function of the lead time. The reliability can either be evaluated for a fixed lead time or for a 417 

set of lead times. For a given lead time, one should consider the reliability associated with that 418 

lead time, as well as the related intervention costs, e.g. those caused by an early evacuation. 419 

2nd estimate failure probabilities of remote components: Non-automated EWS measure 420 

precursors and thus provide extended lead times. Nevertheless, their reliability increases with 421 

shorter lead times. For some EWS, destructive pre-events can lead to an increased failure 422 

probability of system components, e.g. sensors, as the event approaches. A typical example is 423 

provided by the Preonzo case study, summarized in Sec. 3.2.1. The technical failure 424 

probability associated with the minimum required lead time is the input for determining the 425 

remaining number of sensors, which will in turn affect the forecast accuracy that is evaluated 426 

in the next step.  427 

3rd estimate model accuracy: Experts often apply models to predict the event magnitude, 428 

time and spatial dimensions. Flood forecast are for example based on coupled hydro-429 

meteorological models, which become probabilistically when Hydrological Ensemble 430 

Prediction Systems are used (Wetterhall et al., 2013). The accuracy of models depends on 431 
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their capabilities, their case-specific applicability and on the quality of the available input 432 

data. The quality of the data is determined by the number, the type and the positioning of 433 

sensors. The model accuracy is evaluated for the selected minimal lead time and expressed 434 

qualitatively or semi-quantitatively (see 5th step). The estimated model accuracy directly 435 

influences the ability of decision-makers to set up intervention measures correctly. If no 436 

models are applied, this step can be skipped.   437 

4th evaluate human decision-makers: In the non-automated part of EWS, the final decision 438 

is made by humans. The involved decision procedures are typically complex and can only in 439 

some cases be assessed quantitatively (see 3.2.1). In most cases, a qualitative or semi-440 

quantitative analysis is more suitable, in which possible outcomes, the degree of risk aversion 441 

and the expertise of individuals and effects associated with group dynamics are addressed. 442 

Decision-makers are evaluated according to their ability to correctly detect dangerous events 443 

(POD) and avoid false alarms (PFA). Both terms can be rated in predefined evaluation scales 444 

e.g. as low, medium or high.  445 

5th evaluate the reliability: The reliability achieved in the non-automated part of the EWS is 446 

evaluated as a function of the lead time. It depends on the procedures to initiate and carry out 447 

intervention measures following a warning, such as evacuation. The decision on a warning is 448 

influenced by the accuracy of the applied forecasting models and the quality of available 449 

information from different sources, such as measured sensor data, data from other sources and 450 

reports from human observers. The quality of the input information directly influences the 451 

forecast ability of models and the success of human decision-making. Whether damage is 452 

successfully prevented depends also on the quality and the feasibility of predefined 453 

intervention plans. In a comprehensive reliability analysis, all these factors and their 454 

dependencies are considered. In most cases, this analysis will be qualitative. However, the 455 

final reliability should be expressed (semi-)quantitatively in terms of POD and PFA. To this 456 

end, values for POD and PFA may be assigned to qualitative rating scales (e.g. low 457 

(POD=0.90 and PFA=0.1), medium (medium POD=0.95 and PFA=0.05) and high 458 

(POD=0.99 and PFA=0.01).  459 

3.2.1 Illustrative example from the Preonzo case study 460 

In a detailed case study, the reliability of the non-automated part of the Preonzo warning 461 

system is assessed. To enable a quantitative reliability evaluation, a post-event analysis of a 462 
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large event (about 300’000m3) that occurred on May 15, 2012 is conducted, following the five 463 

steps of part II.  464 

1st determine minimal required lead time: If decision-makers release the information one day 465 

in advance, the evacuation can be carried out successfully and sufficient time for intervention 466 

teams to set up protective measures is available. The quality of the prediction is also 467 

maximum for short lead times, and the intervention costs, which occur due to business 468 

interruptions in the underlying factory buildings, can be kept relatively low. Hence, one day is 469 

selected as the lead time.  470 

2nd estimate failure probabilities of remote components:  Sensors fail before the event in 471 

May 2012, and shortly before the instable mass collapses, a majority of sensors are destroyed. 472 

To account for the increasing failure rate, a function is fitted to the number of observed 473 

failures (Fig. 13). The estimated failure probability of sensors at the minimal required lead 474 

time (t = 1 day) necessary to set up an evacuation successfully is 0.4. 475 

 476 

 477 
Figure	  13:	  Shortly	  before	  the	  event	  in	  May	  2012	  a	  large	  number	  of	  sensors	  is	  destroyed:	  the	  green	  function	  is	  478 
fitted	  to	  the	  observed	  percentage	  of	  destroyed	  sensors	  (Sättele	  et	  al.,	  2015b).	  479 

3rd estimate model accuracy:  To predict the event time, the inverse velocity model is applied 480 

on sensor data measured in Preonzo before May 15. In Fig. 14, the predicted event dates 481 

modelled between April 1 and May 14 by sensors installed close to the release area are 482 

summarized. As the event approaches, the prediction made by individual sensors becomes 483 

more uniform. One day before the event occurred, at the minimal lead time, ten out of twelve 484 
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available sensors predict the event to occur on the next day. However, on May 6, most sensors 485 

predict the event for the next day and an unnecessary evacuation is set up on May 7 and 486 

annulled a day later when accelerations slow down again.  487 

 488 
Figure	  14:	  In	  Preonzo,	  the	  model	  accuracy	  increases	  with	  decreasing	  lead	  time.	  In	  April,	  sensor	  forecasts	  made	  489 
with	  the	  inverse	  velocity	  model	  vary	  strongly	  among	  different	  sensors.	  On	  May	  14,	  ten	  out	  of	  twelve	  sensors	  490 
predict	  the	  event	  correctly	  for	  the	  next	  day	  (Sättele	  et	  al.,	  2015b).	  	  491 

4th quantify human decision-makers: In Preonzo, the final decision on setting up intervention 492 

measures is made by an expert team. As a first attempt to quantify the decision-making 493 

procedure, the experts are characterized by simple decision rules. According to these rules, an 494 

evacuation is set up if less than a certain amount of initial sensors remain intact (technical 495 

criterion) or if a certain percentage of initial sensors predict the event for the following day 496 

(inherent criterion), as summarized in Table 3.  The amount of initial sensors is varied in the 497 

Preonzo study from 5 to 50. 498 

Table	  3:	  To	  quantify	  the	  human	  decision-‐maker,	  two	  risk	  types	  are	  specified	  with	  different	  evacuation	  criteria	  499 
(Sättele	  et	  al.,	  2015b).	  500 

risk type 
technical evacuation criterion, 

evacuate when: 

inherent evacuation criterion,                              

evacuate when: 

less risk tolerant less than 6 sensors are functioning 20% of sensors forecast the event for the next day  

more risk tolerant  less than 3 sensors are functioning 50% of the sensors forecast the event for the next day 
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 501 

5th quantify the reliability: The overall reliability achieved in the non-automated part of the 502 

Preonzo warning system is assessed probabilistically through a Monte Carlo simulation. The 503 

model accuracy and the sensor failures are randomized, to quantify the probability that 504 

evacuation measures are set up on the day of the event (POD) (Fig. 15a). In addition, the costs 505 

for intervention are calculated, which are decreasing with increasing number of sensors, and 506 

which are smaller for the risk-tolerant decision-maker (Fig. 15b). Analyses are conducted for 507 

a varying number of initial sensors and two risk types (see Table 3 ) and confirm that the risk 508 

tolerance of human-decision makers have a significant influence on the reliability of non-509 

automated parts of EWS. Figure 15a shows that even with a high number of sensors, the 510 

probability of the risk tolerant decision maker to detect the event is never exceeding 0.85.  511 

 512 
Figure	   15:	   The	   reliability	   (POD)	   and	   costs	   for	   intervention	   are	  modeled	   for	   two	  decision	  makers	   and	   varying	  513 
number	  of	   initial	  sensors:	  a)	  the	   less	  risk	  tolerant	  decision-‐maker	  reaches	  high	  values	  of	  POD	  independent	  of	  514 
the	   number	   of	   sensors;	   the	   risk	   tolerant	   decision-‐maker	   only	   reaches	   a	   POD	   up	   to	   0.85;	   b)	   the	   more	   risk	  515 
tolerant	  decision-‐maker	  creates	  lower	  expected	  costs,	  which	  reach	  a	  minimum	  of	  215,000	  CHF	  with	  around	  20	  516 
sensors	  or	  more;	  for	  details	  see	  (Sättele	  et	  al.,	  2015b).	  517 

3.3 Part III: Effectiveness Analysis 518 

The effectiveness of an EWS, 𝐸!, is defined as the relative risk reduction achieved with the 519 

EWS and can be quantified following Eq. 1 as a function of the risk without the EWS 𝑅 and 520 

the risk with the EWS 𝑅(!). EWS reduce the risk when timely information leads to 521 

intervention measures that decrease either the exposure probability 𝑝𝑒!" or in some cases the 522 
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vulnerability in Eq. 3. By combining Eqs. 1-3, the effectiveness of an EWS can be calculated 523 

as:  524 

𝐸! = 1−
𝑝!×𝑝𝑒!"

(!)×𝑣!"
(!)×  𝐴!  

!!"#
!!!

!!"#$
!!!

𝑝!×𝑝𝑒!"×𝑣!"×  𝐴!  
!!"#
!!!

!!"#$
!!!

 (5)	  

 525 

To determine 𝑝𝑒!"
(!)and 𝑣!"

(!), the POD and PFA estimated in the reliability analyses of part I 526 

and II, are used.   527 

The exposure probability 𝑝𝑒!"
(!) is reduced when persons are successfully evacuated or when 528 

intervention measures avoid that persons enter endangered areas. Organized evacuations are 529 

often initiated by warning and forecasting systems installed for tsunami, flood, volcanic, large 530 

scale slope failures and wild fires. Automated measures for keeping people from the 531 

endangered area are activated by alarm systems installed for debris flows, avalanches and 532 

small magnitude rockfalls.  533 

The vulnerability 𝑣!"
(!) is reduced if the EWS sends timely information that leads to temporary 534 

measures, which decrease the susceptibility of objects to damage. If storm events are 535 

announced timely, movable objects can be fixed; if flood warnings are issued, protective 536 

temporary measures such as sandbags or wooden barriers can be installed. Modern earthquake 537 

alarm systems can slow down trains or shut down critical processes in factories when strong 538 

shaking is detected in time.  539 

The reduction of the exposure probability and the vulnerability is equal to the probability that 540 

the event is detected and intervention measures are initiated (POD) and that endangered 541 

persons comply with the warning (POC). The latter is not relevant for fully automated 542 

intervention measures such as power cut-offs. If EWS issue warnings to persons, a high POC 543 

is crucial. It can be quantified as a function of the general compliance rate 𝑃𝑂𝐶! and 544 

reduction factors 𝑅𝐹, e.g. due to false alarms 𝑅𝐹 𝑃𝐹𝐴  or insufficient lead time 𝑅𝐹 𝐼𝐿𝑇 : 545 

𝑃𝑂𝐶 =   𝑃𝑂𝐶!  ×𝑅𝐹(𝑃𝐹𝐴)×𝑅𝐹(𝐼𝐿𝑇) (6)	  

The basic compliance rate and the reduction factors must be determined case-specifically. The 546 

basic compliance rate depends on type of intervention measures and human decision-making. 547 

If, for example, barriers are closed on a road, car drivers have to comply, while red lights can 548 
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be ignored. Moreover, it can be assumed that regular trainings and education leading to a 549 

higher awareness of potential consequences can improve the basic compliance rate.  550 

The reduction factor due to false alarms 𝑅𝐹(𝑃𝐹𝐴) accounts for the cry-wolf effect, namely 551 

that people have an increased tendency to ignore warnings after experiencing (multiple) false 552 

alarms. This effect depends, among other factors, on past experiences, expected consequences 553 

and the degree of risk aversion of the recipients.  554 

The reduction factor due to insufficient lead time 𝑅𝐹(𝐼𝐿𝑇) express the ability to comply. In 555 

certain cases, EWS have to be constructed in a way that the available lead time may not be 556 

sufficient and not everybody willing to comply can successfully evacuate. In the case of 557 

earthquake alarm systems, lead times are in the range of just a few seconds; or for avalanche 558 

alarm systems constructed above railways, the lead time is limited by the distance from the 559 

railway to the release point.  560 

3.3.1 Illustrative example from the Illgraben case study 561 

In the Illgraben case study, the effectiveness 𝐸! is calculated as a function of POD and PFA. 562 

The alarm system reduces the exposure probability of persons in the Illgraben catchment. 563 

Therefore, the effectiveness is equal to the reduced exposure probability with the EWS.  To 564 

simplify the analysis, different debris flow types are not distinguished, and only one scenario 565 

𝑗 is considered. The exposure probability is the same for all persons 𝑖, 𝑝𝑒!" = 𝑝𝑒!, and it 566 

follows: 567 

𝐸! = 1−
!!×!"!

! × !!"×  !!  
!!"#$
!!!

!!×!"!× !!"×  !!  
!!"#$
!!!

 = 1−
!"!

(!)

!"!
   (7) 

The reduced exposure probability is evaluated as a function of the POD and the POC: 568 

𝑝𝑒!
(!) = 𝑝𝑒!(1− 𝑃𝑂𝐷×𝑃𝑂𝐶) 	  (8)	  

Inserting in Eq. (7), the effectiveness becomes  569 

𝐸! = 𝑃𝑂𝐷×𝑃𝑂𝐶 	  (9)	  

POD values result from the reliability analysis and POC is calculated as a function of PFA. 570 

To this end, we adapt the basic compliance rate 𝑃𝑂𝐶! = 0.95 from published traffic analyses  571 

(Rosenbloom, 2009; Johnson et al., 2011) and the 𝑅𝐹 𝑃𝐹𝐴  is adapted from a existing case 572 
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study in which the compliance frequency of students as a function of false alarms is assessed 573 

(Bliss et al., 1995).  As illustrated in Figure 16, the compliance frequency strongly decreases 574 

with an increasing ratio of false alarms. 575 

 576 
Figure	  16:	  Compliance	  frequency	  in	  function	  of	  the	  false	  alarm	  ratio	  	  (Sättele	  et	  al.,	  2015a).	  577 

In the Illgraben case study we extend the BN to a decision graph and identify the threshold 578 

combination that leads to a maximal effectiveness following Eq. (9). In Fig.17, the resulting 579 

effectiveness is shown as a function of POD and PFA, together with the POD and PFA values 580 

associated with the best system configurations. For this highly reliable EWS, the effectiveness 581 

decreases faster with increasing PFA than with increasing POD. 582 

 583 
Figure	  17:	  The	  effectiveness	  of	  the	  Illgraben	  alarm	  system	  could	  be	  quantified	  as	  a	  function	  of	  POD	  and	  PFA;	  i.e.	  584 
the	  reliability	  (Sättele	  et	  al.,	  2015a).	  585 
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4 Discussion 586 

The proposed classification for EWS distinguishes alarm, warning and forecasting systems 587 

according to their degree of automation, their lead time, and the expressiveness of the 588 

available precursors (Figs. 2 and 3). The selection of an EWS class depends strongly on the 589 

underlying natural hazard process. Different process types allow for different monitoring 590 

strategies, which are associated with different lead times and degrees of automation. 591 

Earthquakes, for example, occur without clear precursors and damage can only be reduced by 592 

fully automated alarm systems with very short lead times. In contrast, large river floods 593 

provide clear precursors and damage can be reduced when warnings or forecasts are made 594 

early enough to set up temporary intervention measures. 595 

A differentiation of EWS according to their degree of automation has proven to be a valuable 596 

basis for evaluating EWS. The system requirements differ strongly between automated and 597 

non-automated EWS and these should be addressed separately. Typical procedures conducted 598 

within automated EWS parts are less complex than human- and model-based decision 599 

procedures that are part of non-automated EWS. Part I of the proposed framework consists of 600 

a six step method for a quantitative reliability assessment of automated EWS; and part II 601 

contains five steps for a qualitative or semi-quantitative evaluation of non-automated parts.  602 

Through the two case studies, we demonstrate that this framework approach is applicable to 603 

assess alarm and warning systems installed for gravitational processes in mountain regions. 604 

With the Preonzo case study, we moreover show that under some conditions the reliability of 605 

non-automated EWS can be quantified as well. Here, a post event analysis is conducted, in 606 

which human-decision makers are specified through simple decision rules. When specifying 607 

less risk tolerant decision rules (Table 3), the analysis leads to similar recommendations than 608 

the ones that were actually made by the experts. However, to refine the framework approach 609 

for the application on EWS operated for earthquakes, floods, meteorological hazards, 610 

tsunamis, volcanic eruptions and wildfires, the following steps of the procedure should be 611 

further enhanced.   612 

In part I, the technical and the inherent reliability of automated EWS are quantified in a BN. 613 

For the construction of the BN, a system sketch forms the basis for understanding key system 614 

components and their interrelations. To keep the complexity of the BN and the proceeding 615 

steps low, only essential components should be considered. In step 4, availabilities of 616 

individual system components are estimated. Internal failure rates can be derived from 617 
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specifications of manufacturers, but external failure sources such as extreme temperatures and 618 

lightning, which are more difficult to estimate, must be considered as well. However, for 619 

many EWS such as the Illgraben case study, the influence of technical reliability is low 620 

compared to the inherent reliability, i.e. the ability to interpret data correctly. The assessment 621 

of the inherent reliability is challenging in the design phase of EWS or for EWS installed for 622 

rare events such as large-magnitude rockfalls. In these cases, sensor data are not yet available 623 

to estimate probability distributions of EWS signals. Other EWS, such as earthquake alarm 624 

systems, use real-time models to estimate the magnitude on a spatial dimension whenever 625 

unexpected ground shakings are detected. Here, measured signals are vector-values and vary 626 

in space and time; they need to be further processed in models before a classifier can be 627 

applied to distinguish critical events from non-occurrences. In these instances BN must be 628 

enhanced; e.g. to model the reliability dependent on the lead time.  629 

In part II, a qualitative or semi-quantitative evaluation is proposed, to assess time dependent 630 

human and model based decision procedures. Although a concrete evaluation method, such as 631 

the BN of part I, is not provided, the overall procedure for the evaluation of non-automated 632 

EWS is presented. The reliability is estimated as a function of the lead time. In step 2, the 633 

increase in sensor failure probability before the event must be addressed, as demonstrated in 634 

the Preonzo case study. Another example is provided by the 2011 Tohoku earthquake in 635 

Japan 2011, where a majority of the offshore sensors failed before the tsunami hit the 636 

mainland (Wei et al., 2013). It may be possible that no sensor data are available for an event 637 

prediction in the critical phase. The accuracy of predictive models (step 3) depends on the 638 

capacity of the model, its applicability and the availability of sensor data. For natural hazards 639 

EWS, it is common practice to express the accuracy of models in terms of POD and PFA (see 640 

Simmons and Sutter, 2009). As we demonstrate, the framework enables to include the 641 

possibility of technical system component failures into POD and PFA, to obtain a single 642 

measure of EWS reliability. In some cases, e.g. for flood models, the ability to spatially and 643 

temporarily predict the event should be addressed in the reliability analysis (Wheater et al., 644 

2005). In these cases, the reliability is ideally described by the prediction errors of the timely 645 

forecasted discharge and not (only) in terms of POD and PFA. In non-automated EWS, the 646 

final decision is made by humans, often together with models applied on available sensor 647 

data. In most cases, human-decisions are not rule-driven and cannot be quantified easily, but 648 

depend on factors such as experience, risk tolerance and the environment in which the 649 

decision is made. To account for those factors, a qualitative evaluation is proposed, in which 650 
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the performance of human decision makers is rated in predefined scales (e.g. low, medium, 651 

high) as it is common for the evaluation of structural mitigation measures (Margreth and 652 

Romang, 2010). The final reliability should then be evaluated in a semi-quantitative 653 

procedure where values for POD and PFA are assigned to different rating scales, e.g. high 654 

POD (0.95-1.0), limited POD (0.8-0.95) and low POD (0-0.8). 655 

In part III, the effectiveness is quantified as a function of POD and PFA. The reduction of the 656 

exposure probability and vulnerability is a direct function of POD. In some instances, the 657 

EWS effectiveness is directly proportional to POD, as demonstrated in the Illgraben case 658 

study. The PFA determines the probability that persons comply with the warning (POC). It is 659 

also used to estimate the costs caused by unnecessary evacuations. The costs and the 660 

effectiveness are main criteria for the identification of optimal risk mitigation measures for 661 

natural hazards. 662 

The overall user-friendliness of the novel framework can be improved if a convenient 663 

software tool is provided. Such a software tool can be developed following the three steps 664 

defined by the framework approach. The reliability evaluation for automated system parts can 665 

be done by running a BN in the background. The user interface should be designed user-666 

friendly, including simple input fields in which e.g. system components, their technical failure 667 

probabilities and dependencies can be specified in order to optimize a system. Finally, it could 668 

be embedded in a software environment in which risk reduction of an EWS can be compared 669 

to alternative measures to support decision makers in the identification of optimal mitigation 670 

measures.  671 

5 Conclusion 672 

With the proposed framework approach, the effectiveness of EWS is evaluated as a function 673 

of the reliability through three main parts. To enable a structured evaluation of EWS, a 674 

generic classification is provided, differentiating EWS into alarm, warning and forecasting 675 

systems according to their degree of automation, lead time and the availability of clear 676 

precursors. In function of the EWS class, different parts of the framework are selected. Each 677 

part is structured along predefined steps, which are here illustrated with the result of two case 678 

studies. The reliability assessment of the automated part of EWS is performed quantitatively 679 

through a Bayesian network. To evaluate non-automated EWS parts, which involve the 680 
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decision making of experts, a qualitative or semi-quantitative approach is generally 681 

preferable. However, as exemplified in the Preonzo case study, a quantitative assessment can 682 

be possible and provide insights. 683 

The framework should be tested and further developed through additional case studies. 684 

Findings of these studies can be implemented in the existing approach, which is flexible 685 

enough to cover various needs.  686 
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