

1 **Inversion kinematics at deep-seated gravity slope
2 deformations: A paleoseismological perspective**

3

4 **Federico Pasquare Mariotto¹, Alessandro Tibaldi²**

5 [1] {Department of Theoretical and Applied Sciences, Insubria University, Varese, Italy}

6 [2] {Department of Earth and Environmental Sciences, University of Milan-Bicocca, Milan,
7 Italy}

8 Correspondence to:

9 Alessandro Tibaldi, Department of Earth and Environmental Sciences, University of Milan-
10 Bicocca, Milan, Italy. E-mail: alessandro.tibaldi@unimib.it, tel. +39 0264482052, fax +39
11 0264482073

12

13 **Abstract**

14 We compare data from three deep-seated gravity slope deformations (DSGSDs) where
15 paleoseismological techniques were applied in artificial trenches. At all trenches, located in
16 metamorphic rocks of the Italian Alps, there is evidence of extensional deformation given by
17 normal movements along slip planes dipping downhill or uphill, and/or fissures, as expected
18 in gravitational failure. However, we document and illustrate - with the aid of trenching - the
19 evidence of reverse movements. The reverse slips occurred mostly along the same planes
20 along which normal slip occurred, and produced drag folds in unconsolidated Holocene
21 sediments as well as the superimposition of substrate rocks on Holocene sediments. The
22 studied trenches indicate that reverse slip might occur not only at the toe portions of DSGSDs,
23 but also in their central-upper portions. When the age relationships between the two
24 deformation kinematics can be sorted out, they clearly indicate that reverse slips postdate
25 normal ones. Our data suggest that during the development of long-lived DSGSDs, inversion
26 kinematics may occur in different sectors of the unstable rock mass. The inversion is
27 interpreted as either due to locking of the frontal blocks of a DSGSD, or the relative decrease
28 in the rate of downward movement in the frontal blocks with respect to the rear blocks.

29

Eliminato: Since

Eliminato: at

Eliminato: are located in different positions with respect to the slope affected by the DSGSD, it is possible to suggest that reverse slip might occur both at the toe portions of DSGSDs and in

35 **1 Introduction**

36 Deep-seated gravitational slope deformations (DSGSDs) are ten to hundred meter-thick rock
37 masses, which can involve the whole slope of a mountain and are affected by gravitational
38 instability (Zischinsky 1966; Nemcok 1972; Radbruch-Hall et al. 1977; Savage and Varnes
39 1987). These phenomena have been intensively studied by several authors in terms of their
40 geomorphological features (Mahr 1977; Dramis and Sorriso-Valvo 1994; Tibaldi and Viviani
41 1999; Rohn et al. 2004), geotechnical properties (Braathen et al. 2004; Pellegrino and
42 Prestininzi 2007), through numerical modelling (Forlati et al. 2001; Hürlimann et al. 2006;
43 Apuani et al. 2013), analogue modelling (Chemenda et al. 2005; Bachmann et al. 2009),
44 interferometry (Tarchi et al. 2003; Antonello et al. 2004; Saroli et al. 2005), structural
45 methods (review in Stead and Wolter 2015), and geophysical methods (Ferrucci et al. 2000;
46 Meric et al. 2005; Pánek et al. 2009). In order to improve the hazard assessment of DSGSDs,
47 the reconstruction of their kinematics is of paramount importance to gain a better knowledge
48 of their evolution, expected ground deformation, and inner workings. This is usually achieved
49 thanks to in-situ instrumentation and interferometric techniques designed to analyse active
50 structures. However, the above types of approach are applicable to slopes subjected to
51 medium-to-high deformation rates (in the order of mm/yr to cm/yr), whereas in the case of
52 extremely slow DSGSDs, interferometric techniques might not be a suitable option. At
53 presently inactive DSGSDs, only trenching methods can be used to asses the age of the latest
54 movements. Above all, it has been proven that DSGSD deformations develop not only as a
55 consequence of creeping and progressive deformation (Genevois and Tecca 1984; McCalpin
56 and Irvine 1995; Evans and Clague 2003), but also through episodic movements (Beget 1985;
57 Thompson et al. 1997; McCalpin 1999; McCalpin and Hart 2003; Tibaldi et al. 2004;
58 Gutiérrez-Santolalla et al. 2005). Since DSGSDs can move through episodic movements,
59 interleaved by periods marked by very low activity or even inactivity, an approach based
60 upon in-situ instruments and interferometric techniques is not always reliable enough to look
61 into the behaviour of slope deformation.

62 In recent years, paleoseismological techniques by means of artificial trenching have begun to
63 be applied to DSGSDs (McCalpin and Irvine 1995; Tibaldi et al. 1998, 2004; Onida et al.
64 2000; McCalpin and Hart 2003; Gutiérrez-Santolalla et al. 2005; Tibaldi and Pasquaré 2007;
65 Gutiérrez et al. 2008, 2010, 2015; Agliardi et al. 2009; McCalpin et al. 2011; Pánek et al.
66 2011; Moro et al. 2012; Gori et al. 2014). By trenching methods, it is possible to reveal the

Eliminato: be not
Eliminato: or non-active
Eliminato: that are presently not active
Eliminato: useful
Eliminato: last
Eliminato: motions
Eliminato: it is not worth employing the aforementioned techniques.
Eliminato: such slope

Eliminato: the above mentioned types of approach are

Eliminato: Trenching
Eliminato: techniques are capable of
Eliminato: ing

80 presence of shallow deformation structures, measure their geometry and kinematics and
81 define their spatial and chronological characteristics. Given the importance of this
82 methodology to elucidate subsurface structures within DSGSDs, in this work we combine and
83 reinterpret our data coming from trenches excavated across gravitational structures in the Alps
84 (Fig. 1). Such trenches have been selected because they show intriguing similarities to each
85 other. Our interpretations might help shed light into the workings of gravitational structures
86 and contribute to understanding how DSGSDs may develop during time.

87

88 **2 Case studies**

89 **2.1 Mt Scincina, Western Alps**

90 Tibaldi et al. (2004) documented the occurrence of a series of DSGSDs in a hilly region in
91 Piedmont, in the western Italian Alps (Fig. 1). The DSGSD here described, is located near Mt.
92 Scincina and affects a slope extending from 860 m a.s.l. down to 625 m in altitude (Fig. 2).
93 The slope is characterised by slight changes in dip and a few uphill-facing short slopes
94 trending NNW-SSE. Most of the uphill-facing slopes have been filled by sediments that
95 smoothed out the morphology. The uppermost part of the slope terminates against a gentle
96 dipping downhill-facing scarp, mostly trending NNW-SSE, with an arcuate shape in plan
97 view. This scarp is suggested by the asymmetric slope dip of the mountain summit sector that
98 is much steeper along the western flank.

99 In order to better evaluate the age and kinematics of this DSGSD, an artificial trench located
100 in correspondence of the northern part of the slope is here described. The trench, located at an
101 altitude of 750-760 m and trending N117° (Figs. 2 and 3), shows three main fracture planes
102 that correspond with the contacts between the metamorphic basement (MB) and Quaternary
103 glacial deposits (YQU). The local basement is composed of micaschists belonging to the
104 Scisti dei Laghi Unit (Boriani et al., 1990). In the log performed on the northern trench wall
105 (Fig. 3A), starting from the left (i.e. west) there is a main slip plane (S1) dipping 80° downhill
106 (in the log section the dip is apparent) with well-defined wall contacts and striae. The slip
107 plane strikes N85° and the striae have a pitch of 47-49°W (see also the stereograms in Fig. 3).
108 The plane puts into contact basement metamorphic rocks in the hanging wall block on the
109 northern side of the fracture, with glacial deposits from the Late Glacial Maximum (YQU,
110 dated at 26.5-32.2 ka BP) in the footwall block. This geometry and the striae indicate

Eliminato: allowing

Eliminato: to

Eliminato: ing

Formattato: Tipo di carattere:(Predefinito) Times New Roman

Formattato: Tipo di carattere:(Predefinito) Times New Roman

Eliminato: here

Formattato: Tipo di carattere:(Predefinito) Times New Roman

115 transpressional kinematics with a subordinate right-lateral component. The right-lateral
116 strike-slip component is quite obvious due to the location of the trench at the northern side of
117 the deforming slope, whereas the reverse motion component is quite uncommon. A fish-eye
118 structure (Fig. 3B) in the metamorphic rocks shows the bending of schistosity along the plane
119 at the contact with unit YQU, consistent with the component of reverse motion. Close to the
120 slip plane, the metamorphic rocks are intensely folded. A few meters away from the plane, the
121 metamorphic rocks are marked by more open folds with axial surfaces dipping at low angles
122 (10–15°) to the NNE. Further east, two, N20°-striking parallel vertical fractures are observed,
123 1.5 m apart from one another. They put YQU deposits into contact with metamorphic rocks in
124 the form of a fissural structure that suggests an about E-W-trending dilation.

125 The remaining portions of the DSGSD are characterised by downhill-facing scarps in the
126 upper section of the slope that suggest extensional deformations, and by a bulging of the slope
127 toe.

128 **2.2 Foscagno Pass, Central Alps**

129 In the upper Valtellina region, Central Alps (Italy), near the Foscagno Pass (Figs. 1 and 4),
130 several indications of recent deformation can be individuated. Such morphostructures mostly
131 consist of downhill- and uphill-facing scarps, linear troughs, and double crested ridges,
132 regarded as the effects of a DSGSD. The slope affected by the DSGSD extends from the
133 mountain crest at about 2900 m a.s.l., down to 2260 m at the valley bottom. The total
134 potential volume composing the DSGSD is about 1.5 km³. Most of the mountain top is
135 affected by a trench several meters to tens of meters wide. The trenches are parallel to the
136 local slope and are bounded by two sub-parallel to parallel mountain crests, up to several
137 meters in height. These structures indicate extensional deformation of the uppermost part of
138 the unstable slope with a NE-SW to ENE-WSW direction of elongation. The central and
139 lower parts of the slope are characterized by three main, well-defined, uphill-facing scarps
140 that strike NW-SE to NNW-SSE, and are from a few tens of meters to 1 km long. These
141 scarps are sub-parallel to the slope contour lines, but have a more rectilinear trace in plan
142 view (Fig. 4). This geometry suggests that the planes along which the motions took place are
143 steeply-dipping or sub-vertical. They cut the metamorphic bedrock as well as some of the
144 surface deposits and glacial landforms attributed to LGM and post-LGM phases by means of
145 radiometric dating (Calderoni et al. 1998) and field evidence (Forcella et al. 1998). The local
146 basement is composed of dominant micaschists. The observed uphill-facing scarps do not

Formattato: Tipo di carattere:(Predefinito) Times New Roman

Eliminato: it is uncommon to have

Formattato: Tipo di carattere:(Predefinito) Times New Roman

Eliminato: parts

Formattato: Tipo di carattere:(Predefinito) Times New Roman

Eliminato: portion

Formattato: Tipo di carattere:(Predefinito) Times New Roman

Eliminato: is

Formattato: Tipo di carattere:(Predefinito) Times New Roman

Formattato: Tipo di carattere:(Predefinito) Times New Roman

Eliminato: here

152 show, in general, any correlation with rock fabric. We describe hereunder a trench dug across
153 one of the uphill-facing scarps.

154 The trench was excavated at the toe of the DSGSD, at an altitude of 2320 m (Fig. 4). An
155 analysis of the trench log reveals layers of poorly aggregated sedimentary deposits that rest on
156 the metamorphic basement and are bounded by erosive or slip surfaces (Fig. 5). The lower
157 units (marked as B-C in Fig. 5), limited by a graben-like structure, rest in direct contact with
158 the basement. Such units, dated between 10,975 ys BP and 5065 ys BP, are intensely faulted,
159 hence revealing a late Holocene age of deformation. In units B-C, the bedding is accentuated
160 by textural features and the preferential elongation of pebbles. The alignment of pebbles
161 shows a local bending, which can be correlated with slip planes having different size and
162 kinematics. Downslope (i.e. eastward), three minor slip surfaces occur (S2, S3 and S4), which
163 caused dm-sized normal dislocations through the basement/cover boundary and in the
164 sedimentary layers (see also stereograms in Fig. 5). Upslope (i.e. westward), layers B-C are
165 bent against the main slip plane (S1) that dips steeply in a downhill direction. Further
166 westward (to the left side of Fig. 5), the deposit labeled as “D” can be observed, the lowest
167 portion of which is composed of *in-situ* fractured basement rock that transitions up into a
168 poorly-organized deposit of boulders and pebbles encased in a matrix of clay and fine sand.
169 Deposit D can be interpreted as the accumulation of scree into an open fissure. Moreover,
170 deposit D is bent along plane S1 with a geometry that is consistent with reverse kinematics
171 (see box in Fig. 5). All the above described deposits and slip planes are unconformably
172 covered and sealed by two heterogeneous, lenticular and chaotic debris flow deposits (E and F
173 in Fig. 5).

174 An interpretation of the above illustrated data, allows to put forward three main phases of
175 deformation: 1) after the emplacement of deposits B-C, a first extensional phase produced the
176 activation of the steeply-dipping slip planes along which normal movements took place,
177 which resulted in a small semi-graben structure; 2) this phase was followed by the formation
178 of a wide sub-vertical open fissure uphill of the semi-graben, which acted as a trap for the
179 infilling of detritus D; 3) an inversion of kinematics occurred along the valley side wall of the
180 previous fissure, and reverse movements developed along surface S1 as suggested by the
181 dragging of layers.

182 **2.3 Bregaglia Valley, Central Alps**

183 The third DSGSD we examined is sited in the Bregaglia Valley (Central Alps, Italy) (Fig. 1)
184 along the tectonic Gruf Line (Tibaldi and Pasquare 2007). The latter is a zone of intense
185 ductile shearing corresponding to the verticalized tectonic contact between the Tambo nappe -
186 Chiavenna ophiolite complex to the N and the Gruf migmatite complex to the S (Schmid et al.
187 1996; Berger et al. 1996). The mountain affected by the slope deformation rises at an
188 elevation of 2370 m, and the valley bottom lies at an elevation of 520-630 m (Fig. 6). The
189 DSGSD affects the slope from the valley bottom to a maximum elevation of about 1700 m.
190 The slope dips towards the north, and is interrupted by several downhill- and uphill-facing
191 scarps, each from a few meters to several hundreds meters long. Most of the identified scarps
192 strike E-W, but some strike also WNW-ESE, especially in the northeastern sector of the
193 DSGSD. Two deeply-incised gorges bound the sides of the DSGSD. The rocks cropping out
194 along these valleys are pervasively crushed, with several vertical to sub-vertical planes
195 striking N-S to NW-SE that should correspond to the side walls of the DSGSD. The head of
196 the DSGSD is represented by a northward steeply-dipping scarp that represents the zone of
197 detachment and coincides with the trace of the Gruf Line (Fig. 7B). This area was affected by
198 a strong N-S extensional gravity deformation. The whole DSGSD is broken down into four
199 main blocks, separated by three slip planes dipping at high angle towards the valley floor (i.e.
200 towards the north, Fig. 7), which highlight local strong N-S-directed gravity extensional
201 deformation. The blocks are internally dissected by pervasive, subsidiary, synthetic and
202 antithetic slip planes that indicate more complex local kinematics. The toe of the slope is
203 characterised by a major bulging area that might represent a sector subjected to contractional
204 deformation. The studied DSGSD can be regarded as belonging to the “block slide” type
205 (Varnes 1978) in view of the fact: a) the basal sliding surface is well-defined; b) the
206 movement of the DSGSD has occurred in a mainly translatory fashion; c) internal slip planes
207 break the DSGSD into different blocks; d) “*horst and graben*” type structures are noted
208 near the tip of the gravitational deformation (Fig. 3B).

Eliminato: suffered

209 The trench site is characterised by an ENE-striking, uphill-facing scarp that cuts the bedrock
210 (Figs. 6 and 7 for location). The log of the wall exposed by the artificial trench reveals a series
211 of slide surfaces affecting the bedrock and the sedimentary infill of the depression induced by
212 the uphill-facing scarp (Fig. 8). It is possible to highlight that the deformation of the DSGSD
213 was a multistage one, which developed through decreasing incremental offsets (i.e. older
214 layers were subjected to larger offsets), until very small offsets (a few decimetres) were

Eliminato: huge
Eliminato: of

218 produced in the later stages. Above the metamorphic substrate (A) there is a coarse deposit
219 encased in a silty matrix (B) and containing several boulders up to 60 cm in diameter. This
220 deposit, characterized by a quite regular thickness, abruptly abuts against slip plane S3 and is
221 offset by slip plane S4 (see also the stereogram in Fig. 8). These slip planes are steeply
222 dipping uphill (i.e. southward); moreover, S3 merges upward with slip plane S2. Quite a few
223 fragments from deposit B are aligned along S1 and the upper sector of S2, all the way up to a
224 few dm from the topographic surface (small box in Fig. 8B). Above B, deposit C is
225 characterised by several tree fragments, and is overlain by a series of thin, silt and clay
226 deposits (D and E). Layers D and E are folded against slip plane S2, indicating reverse
227 motions. The undeformed and recentmost clay-silt deposit F lies in unconformity above
228 deposit E. The lower stratigraphic unit (B), which was sampled along the slip plane, was
229 dated to AD 400–570, whereas the upper unit (E) was dated to AD 1380–1450 and AD 1300–
230 1370. Dendrochronology age determinations performed on two trunks of alpine larch trees
231 from unit C provided the same year: AD 1523 (Tibaldi and Pasquaré, 2007).

232 The above illustrated data allows to identify the following evolution: 1) an extensional phase
233 affected the studied sector of the DSGSD as proved by the emplacement of a series of
234 sedimentary units in onlap against an uphill-facing scarp, starting with unit B. The
235 deformation was incremental with the larger offset at unit B along plane S3 and possibly
236 along plane S4; 2) deposit C partially filled the depression and was followed by deposition of
237 units D and E in the interval AD 400-1523; 3) further normal movements have occurred after
238 AD 1523, as witnessed by small normal offsets affecting also deposits C and D, along some
239 of the slip planes (however, it is problematic to quantify them); slip planes S3 and S4 locked;
240 4) slip plane S2 inverted its kinematics producing the dragging of layers D and E, compatible
241 with reverse motions.

242

243 **3 Discussion**

244 **3.1 Extensional deformation**

245 The paleoseismological analyses illustrated in this work were performed on trenches
246 excavated in different locations of a DSGSD; the Foscagno trench is located in the toe section
247 of the DSGSD, whereas the Scincina and Bregaglia trenches are located in the central-upper
248 part of the slope, at about 2/3 of the length of the DSGSD. All trenches show the presence of

249 extensional deformations: at Bregaglia and Foscagno they are expressed in the form of slip
250 planes dipping downhill or uphill, with normal kinematics. Within the Foscagno and Scincina
251 trenches there is also evidence of formation of extensional fissures along vertical to sub-
252 vertical planes striking normal to the general slope dip. At the Foscagno trench, it has been
253 possible to establish that extensional fissuring developed only after the formation of the first
254 normal slip planes. As a consequence, the Foscagno site suggests that activation of at least a
255 part of a DSGSD can originate from progressive downslope movements of the unstable rock
256 mass along discrete slip planes. Successively, slip locking can occur and extension is released
257 by fissure deformation. The presence of these two types of deformation has been detected also
258 at the Scincina site, although the exposure did not allow to establish the relative chronology of
259 deformation. At other DSGSDs, especially in sedimentary rocks, it has been proposed that,
260 usually, fissuring precedes the development of normal slip planes (e.g. Margielewski and
261 Urban 2003). We stress that caution should be used in generalising the mode of deformation
262 at DSGSDs because, as shown by our data, the steps of development of the rock mass
263 instability may be more complex, depending on several different parameters.

264 Regarding the relations of fissuring vs. normal slip planes with respect to the presence of
265 predisposing mechanical anisotropy, in the Bregaglia Valley study, the upper portion of the
266 DSGSD originated in correspondence of the tectonic Gruf Line (Fig. 7B). Moreover, most of
267 the slip planes of this DSGSD strike in the same trend as the Gruf Line, suggesting that, here,
268 ancient tectonic deformation events produced a preferential rock anisotropy. Gravity
269 reactivated part of these tectonic structures that correspond to the upper vertical to subvertical
270 sections of the DSGSD slip planes. This situation seems to favour the inception and
271 development of slip planes instead of extensional fissuring, as confirmed by the fact that the
272 latter deformation type is not present at the Bregaglia trench site. The dominance of slip
273 planes has also been documented at other trench sites within DSGSDs, such as at Mt.
274 Morrone (Appennines, Italy) (Gori et al. 2014), whose data revealed that the DSGSD initiated
275 after the activation of a dip-slip fault. The activity of this fault resulted in increased local
276 relief, while another close tectonic fault acted as a sliding plane in its surficial portion. The
277 activity of both faults produced structural features and discontinuities that weakened the rock
278 mass and provided preferential sliding zones. A similar situation has been observed also at
279 another DSGSD studied by means of paleoseismological techniques at Mt. Serrone (Central
280 Italy) by Moro et al. (2012). Also in the Carpathian Mountains, Panek et al. (2011) suggested
281 that the spatial coincidence of gravitational morphostructures with an inherited structural

282 anisotropy represents the evidence of a strong predisposition of the initiation of DSGSDs to
283 be controlled by pre-existing tectonic structures, a characteristic that has been more and more
284 discussed lately (see Stead and Wolter 2015, and references therein).

285 On the contrary, in the two other trench sites described in this work (Foscagno and Scincina),
286 there exists no geometric relation between gravity structures and regional tectonic structures.
287 This means that pure gravity forces were able to induce rupture of the rocks along planes of
288 shear concentration, independently from the pre-existing rock anisotropy.

289 **3.2 Inversion kinematics**

290 In all the studied trench sites we documented the presence also of reverse kinematics. The
291 reverse motions are expressed by drag folds of the recent sedimentary strata that infilled the
292 previous depressions created by the DSGSD uphill-facing scarps or by extensional fractures.
293 The recent sedimentary strata are folded against the slip planes with a unique geometry.
294 Moreover, at the Foscagno and Scincina trench sites, the substratum rocks are displaced in the
295 hanging wall block above the Holocene sedimentary strata, which compose the footwall
296 block. Finally, also flat clasts are systematically re-oriented along slip planes, a geometry that
297 is compatible with reverse kinematics.

298 Other different possible causes for these compressional deformations, such as glaciotectonics,
299 have to be ruled out, because the studied drag folds occurred in the late Holocene when
300 glaciers did not cover any longer the studied areas. Moreover, the drag folds developed within
301 protected depressions carved in the slopes, or even at some meters of depth such as at the
302 Foscagno trench. In any case, glaciotectonics could not play any role whatsoever in the
303 observed structural superimposition of metamorphic rocks above Holocene strata,
304 documented at the Scincina trench.

305 Alternative interpretations in a more strictly structural sense, might be: i) dragging along
306 listric planes, and ii) reverse fault dragging. Regarding point i), it is well known that
307 movements along a fault which is not rectilinear in section view require adaptation of the rock
308 volume in the hanging wall block as a consequence of changing fault dip (Wernicke and
309 Burchfiel 1982; Dula 1991; Higgs et al. 1991; Ruch et al. 2010). In the case of a fault plane
310 whose dip decreases with depth, a roll-over anticline may develop (Fig. 9A). In this case, the
311 bending of the hanging-wall layers develops in correspondence of the greater decrease in fault
312 dip. However, in our case studies this possibility needs to be ruled out as there is no change in

313 attitude of the slip planes along which the drag folds developed; hence, a geometric
314 adaptation of the hanging-wall layers is not required. In regard to point ii), as can be seen in
315 Figure 9B, usually a normal fault can show fault dragging which is compatible with the sense
316 of shear. Instead, the phenomenon of reverse fault dragging is represented by the possibility
317 that normal faulting was accompanied by an apparent dragging that suggests an opposite
318 sense of slip, i.e. reverse movement (Fig. 9C) (Grasemann et al., 2005). These authors
319 suggested that reverse dragging may stem from perturbation flow induced by fault slip.
320 Material on both sides of the fault is displaced and ‘opposing circulation cells’ arise on
321 opposite fault sides. This anomalous pattern may develop at the fault center, depending on the
322 angle Θ between the layers and the fault: a correct dragging develops there for low angles (Θ
323 $<30\text{--}40^\circ$), and an “apparent” reverse drag for higher angles. In our studied trenches, we do
324 admit that the angle between the deformed layers and the slip plane is $>40^\circ$, and thus
325 theoretically “apparent” reverse fault dragging might have occurred. However, the surface
326 condition studied at the trenches is very different from the depth condition analysed in the
327 work of Grasemann et al. (2005). Moreover, the studied bending of layers is observed in the
328 uppermost part of the slip plane, near the tip, and not in the central part of a fault where
329 reverse dragging may occur. We also emphasize that in our case we clearly observed also the
330 superimposition of substrate rocks onto Holocene deposits, which indicate an unambiguous
331 reverse kinematics.

332 We conclude that our field data suggest that slip planes inherited from a previous phase of
333 extensional deformation, linked to the earlier development of the three studied DSGSDs, were
334 re-activated in the form of reverse kinematics. As far as we know, these are the first artificial
335 trenches that, by means of paleoseismological observations, illustrate the presence of
336 compressional deformations within DSGSDs. Moreover, since our trenches are placed in
337 different positions within the DSGSDs, we also document the possible kinematic inversion
338 with development of reverse slip planes in different parts of the unstable slopes.

339 At the Foscagno and Bregaglia trenches, since uphill-facing scarps are still present, the
340 reverse offsets were not large enough to nullify the previous normal offsets. At the Scincina
341 site, a morphological scarp is not present in correspondence of the reverse slip plane. This
342 may be due to deletion of previous normal offset by kinematic inversion, or because the latest
343 offset is older than at the other trench sites and thus at Scincina the scarp was eroded away, or
344 a combination of both. In agreement with the latter interpretation, the deformed deposits at

345 Scincina have an age of 32.2-26.5 ka BP, whereas at the other trenches the deformed deposits
346 are much younger (deformations younger than 5455 yr BP).

Formattato: Tipo di carattere:(Predefinito) Times New Roman

347 Compressional deformation linked with gravity slope failure is more easily recognized at
348 rockslide avalanches, as described by Shea and van Wyk de Vries (2008). However, such
349 structures are very different from the ones described here, since rockslide avalanches
350 represent deposits produced by the complete failure of a slope rock mass, whereas DSGSDs
351 involve still-in-place rock masses whose movements are orders of magnitude lower than
352 avalanches. Compressional features have been recognized by Braathen et al. (2004) at the
353 surface of slopes affected by large deep-seated instability, such as in the Norwegian
354 mountains. Braathen et al. (2004) described the possibility of the development of extensional
355 structures in the upper part of a DSGSD, linked to low basal friction, and contractional
356 features at the toe expressed by a stacking of blocks by back-thrusting. The contraction part
357 may be due to high friction along the basal surface, or to “ploughing” due to blocking of the
358 toe (Fig. 9D). Braathen et al. (2004) suggested also a more complex scenario with higher parts
359 of the DSGSD under compression due to spatially changing basal friction (Fig. 9E). Anyhow,
360 we need to stress that in the above cases, low angle reverse faults have been consistently
361 observed, differently from what seen in our trenches where slip planes subjected to reverse
362 motions are steeply dipping. Low-angle reverse slip planes and other contractional structures
363 such as folds, have been recognized at the toe of DSGSDs by Mahr and Nemčok (1977),
364 Savage and Varnes (1987), Chigira (1992), Hermann et al. (2000), Baroň et al. (2004), and
365 Hippolyte et al. (2006).

366 **3.3 Mechanisms of overall deformation**

367 The studied DSGSDs show different mechanisms of overall deformation. The Foscagno
368 DSGSD is characterised by a series of parallel, uphill-facing scarps, rectilinear in plan view,
369 and by the presence of a double crest at the mountain top (crest trench) (Fig. 4). These
370 structures are typical of a sackung-type overall deformation mechanism, as illustrated in
371 Figure 10A. After normal slip and fissuring, reverse motions developed here along a slip
372 plane steeply-dipping downhill, suggesting a change in the kinematics and geometry of
373 deformation, as shown in Figure 10B.

374 The Scincina DSGSD is characterised by an overall amphitheatre morphology with a
375 semicircular head scarp (Fig. 2), and narrowing of the valley bottom compatible with bulging

376 at the foot of the DSGSD. These morphostructures are more typical of translational
377 movements along downhill-dipping main slip planes (Fig. 10C). The development of
378 transpressional kinematics with a dominant reverse component found at the Scincina trench
379 site suggests locking of the downhill movement of the frontal block with consequent back-
380 thrusting. Back-thrusting has two components of deformation: one of contraction along the
381 slope dip, and one of uplift as indicated by the arrow in Figure 10C. At both the Foscagno and
382 Scincina sites, the block located downhill of the trench (i.e. downhill of the reverse fault)
383 experienced uplift.

384 The Bregaglia DSGSD is characterised by a well developed system of downhill- and uphill-
385 facing scarps, with main slip planes dipping towards the valley floor and antithetic slip planes,
386 and possibly one or more, well developed planes reaching the valley bottom (block-slide type)
387 (Fig. 10D). However, this architecture does not “explain” the inversion of movement found at
388 the trench site, which is represented by uplift of the block located uphill of the trench (i.e. the
389 block uphill of the reverse fault). This is compatible with an episode of forward-thrusting,
390 either due to the locking of a block in a more frontal position, or to a higher rate of downslope
391 movement of the rear block with rotational movements (Fig. 10E). This may produce the
392 local, reverse reactivation of a previously normal slip plane also at a higher elevation within
393 the DSGSD.

394 Another possibility for the development of reverse motions during the evolution of a DSGSD
395 is represented by the presence of a main basal slip plane with a complex geometry. The sketch
396 of Figure 10F, which refers to an analogue model developed by McClay and Ellis (1987) for
397 extensional tectonics, is providing just as an example of the complexity of structures that may
398 develop above a multi-curved basal plane, and caution must be used to apply it to real-case
399 DSGSDs. However, this example with a “ramp and flat” type geometry of the basal plane in
400 section view, shows that the hanging-wall block undergoes different deformation during the
401 translation of the rock succession above parts of the basal sliding plane marked by different
402 geometries. The translation above parts of the sliding plane with a downward convex side
403 produces local extension, whereas the translation above parts with an upward convex side
404 produces local compression. During the slip of the DSGSD rock mass, different parts of the
405 rock succession may experience translation across the extensional dominion and then across
406 the compressional dominion. This creates the conditions for inversion of kinematics. The

Eliminato: In t

Eliminato: example

Eliminato: taken

Eliminato: ed

Eliminato: there is a complex

Eliminato: extrapolate

Eliminato:

Eliminato: s of

Eliminato: Anyway

Eliminato: of

Eliminato: . The movements of

Eliminato: above this geometry

Eliminato: suffers

Eliminato: determine the

Eliminato: with

Eliminato: a

Eliminato: y

Eliminato: .

425 hypothesis that the basal sliding planes of the Bregaglia or the Scincina DSGSDs may be
426 marked by a complex geometry, cannot be ruled out.

Eliminato: like the one illustrated in Figure 10F,

427 In regard to the lithology of the involved rock masses, it can be pointed out that the Foscagno
428 and the Scincina DSGSDs are characterised by a quite monotonous succession of micascists,
429 whereas the Bregaglia DSGSDs have more varied lithologies, although all belonging to
430 metamorphic rock types. Although it may be claimed that the presence of different lithotypes
431 at the Bregaglia site is consistent with the more complex structural architecture of this
432 DSGSD, we argue that the amount, orientation and kinematics of the various slip planes of a
433 DSGSD can result from a more complex series of parameters; these may be explained in
434 terms of: i) the presence of slip planes inherited from previous tectonic phases, ii) the amount
435 of gravity deformation and hence the degree of development of the DSGSD, iii) the geometry
436 of the basal main slip plane, iv) the topography, and v) the lithology of the involved rock
437 types.

Eliminato: s

Eliminato: the

Eliminato: Even if one might

Eliminato: case

Eliminato: retain

Eliminato: composite

Eliminato:

Eliminato: related mainly

Eliminato: to

Eliminato: ;

Eliminato: ,

Eliminato: to

Eliminato: thus to

Eliminato: ;

Eliminato: , to

Eliminato: ;

Eliminato: ,

Eliminato: to

Eliminato: ,

Eliminato: to

438 **3.4 Creep versus stick-slip behaviour and related hazard**

439 The hazard posed by DSGSDs can be very different based on their behaviour. The literature
440 suggests that DSGSDs generally evolve with long-term creep movements (e.g. Bisci et al.
441 1996), although episodic accelerations of deformation can occur (McCalpin and Irvine 1995).

442 A long-lasting creep behaviour represents the lowest level of hazard, since slow damages at
443 infrastructures can be limited to those exactly placed on the boundary zone of the unstable
444 block. This is the case, for example, of the edifices placed along the boundary zone of the
445 DSGSD of the eastern Mt Etna flank (Pernicana fault), and of the pipes and roads crossing it
446 (Groppelli and Tibaldi, 1999). In the case of large sudden offset at a DSGSD, the hazard can
447 be much larger with the possibility of having local very shallow earthquakes due to stick-slip
448 and more diffuse damage to the infrastructures and edifices resting above the sliding block.

449 The trenches analysed in this work are useful to gain further insight into the evolution of
450 deformation at DSGSDs and to help improving hazard assessment. We also believe that the
451 application of paleoseismological studies with trenches can help to better understand the
452 behaviour of DSGSDs elsewhere. The Scincina and Foscagno trenches show the presence of
453 buried debris wedges developed at the foot of the slip plane scarp. In tectonic contests, debris
454 wedges usually result from the erosion of fault scarps exhumed by coseismic increments of
455 fault offsets (McCalpin 2009, and references therein). The same debris wedges may be, in

477 turn, offset by successive increments of faulting. The formation of a debris wedge is related to
478 the rapid and localised erosion induced by the creation of an unstable scarp. On the contrary,
479 the slow continuous faulting of the creeping type is usually not accompanied by any debris
480 wedge formation. In case of an uphill-facing scarp, creeping movements may act as a
481 continuous trap for colluvial deposits originated uphill. This geometry, with deposits
482 onlapping the uphill-facing scarp, is more consistent with our observations at the Bregaglia
483 trench, and thus here creeping probably represents the main mechanism of deformation.

484 Instead, data from the Scincina and Foscagno trenches indicate that these DSGSDs moved
485 through sudden increments in movement, which resembles the stick-slip behaviour of tectonic
486 faults. We point out that also in other instances, paleoseismological investigations at trenches
487 showed the presence of debris wedges compatible with a stick-slip behaviour, such as for
488 example at the Mt Serrone DSGSD (Italy) (Moro et al. 2012), and at the Canelles Reservoir
489 DSGSD (Spain) where a sudden slip increment took place in correspondence of a historic
490 earthquake (Gutierrez et al. 2015). At the Mt Morrone DSGSD, Gori et al. (2014) documented
491 a dominant creeping behaviour, punctuated by abrupt gravitational displacements, similarly to
492 several other examples of DSGSDs studied by means of trenches.

493 However, our work suggests more prudence in establishing the creeping behaviour of a
494 DSGSD. In fact, it has to be clarified that the inversion of kinematics along the sliding planes
495 is accompanied by fault scarp enhancement, and thus debris wedge formation, if the uplifting
496 block is located downward with respect to the fault, as in the case of the Scincina and
497 Foscagno trenches. On the contrary, if the uplifting block is located uphill with respect to the
498 normal slip plane with an inverted kinematic, as in the case of the Bregaglia trench, the scarp
499 is subjected to a reduction in height. As a consequence of the above, in the latter case the
500 debris wedge will not form and the possible occurrence of stick-slip motion will not be
501 recorded.

502

503 **4 Conclusions**

504 Through the application of paleoseismological techniques in artificial trenches excavated in
505 different position at three deep-seated gravity slope deformations (DSGSDs) in the Italian
506 Alps, it has been possible to observe that at all trenches there is evidence of extensional
507 deformations, given by normal movements along slip planes dipping downhill or uphill,
508 and/or fissures, as expected in gravitational failure. At one trench, crosscutting relationships

509 with the deposits indicate that fissure formation postdates the development of steeply-dipping
510 slip planes, suggesting that fissuring does not always precede shear.

511 Moreover, we illustrated in trenches the evidence of reverse motions. The reverse slips
512 occurred mostly along the same planes that hosted the normal slips, and produced drag folds
513 of unconsolidated Holocene sediments, and superimposition of substrate rocks onto the same
514 sediments. This suggests the possibility of inversion kinematics at DSGSD slip planes. Since
515 we found inversion kinematics at trenches located in different positions with respect to the
516 slope affected by the DSGSD, we also propose that reverse slip might occur both at the toe of
517 slope deformation, as well as in its central-upper sector.

518 Inversion kinematics may be due either to the effect of locking of frontal blocks of a DSGSD,
519 or to the relative decrease in the rate of downward movement of the frontal blocks with
520 respect to the rear blocks.

521

522 **Author contribution**

523 F. P. M. studied the Bregaglia Valley trench and elaborated the related description in the
524 manuscript. A. T. studied also the other trenches and described them. Both authors
525 contributed to the discussion and conclusions.

526

527 **Acknowledgements**

528 This work is dedicated to our teacher, and then colleague and friend Franco Forcella, who
529 introduced us to the study of deep-seated gravity slope deformations. He will always remain
530 in our memory. We acknowledge the precious comments and suggestions on an earlier
531 version of the paper by an anonymous referee and the editor, Andreas Günther.

532

Eliminato: useful

Eliminato: of one

Eliminato: of

536 **References**

537 Agliardi, F., Crosta, G., Zanchi, A., Ravazzi, C.: Onset and timing of deep-seated gravitational
538 slope deformations in the eastern Alps, Italy, *Geomorphology*, 103, 113–129, 2009.

539 Antonello, G., Casagli, N., Farina, P., Leva, D., Nico, G., Sieber, A. J., Tarchi, D.: Ground-
540 based SAR interferometry for monitoring mass movements, *Landslides*, 1(1), 21-28, 2004.

541 Apuani, T., Corazzato, C., Merri, A., Tibaldi, A: Understanding Etna flank instability through
542 numerical models, *J. Volcanol. Geotherm. Res.*, 251, 112–126, 2013.

543 Bachmann, D., Bouissou, S., Chemenda, A.: Analysis of massif fracturing during deep-seated
544 gravitational slope deformation by physical and numerical modelling, *Geomorphology*, 103,
545 130-135, 2009.

546 Baroň, I., Cílek, V., Krejčí, O., Melichar, R., Hubatka, F.: Structure and dynamics of deep-
547 seated slope failures in the Magura Flysch Nappe, outer Western Carpathians (Czech
548 Republic), *Nat. Hazard Earth Sys.*, 4, 549–562, 2004.

549 Beget, J. E.: Tephrochronology of antislope scarps on an alpine ridge near Glacier Peak,
550 Washington, USA, *Arctic Alpine Res.*, 17, 143–152: 1985.

551 Berger, A., Rosenberg, C., Schmid, S. M.: Ascent, emplacement and exhumation of the Bergell
552 pluton within the Southern steep belt of the Central Alps, *Schweiz Miner. Petrog.*, 76, 357-
553 382, 1996.

554 Bisci, C., Dramis, F., Sorriso-Valvo, M.: Rock flow (sackung). In: Dikau R, Brunsden D,
555 Schrott L, Ibsen ML (eds) *Landslide Recognition, Identification, Movement and Causes*, John
556 Wiley and Sons, New York, pp 150-160, 1996.

557 Boriani A., Giobbi Origoni E., Borghi A., Caironi V.: The evolution of the Serie dei Laghi
558 (Strona-Ceneri and Scisti dei Laghi): the upper component of the Ivrea-Verbano crustal
559 section; Southern Alps, North Italy and Ticino, Switzerland. Tectonophysics, 182, 103-118,

560 1990.

561 Braathen, A., Blikra, L. H., Berg, S. S., Karlsen, F.: Rock-slope failures of Norway, type,
562 geometry deformation mechanisms and stability, *Norsk Geol. Tidsskr.*, 84, 67-88, 2004.

563 Calderoni, G., Guglielmin, M., Tellini, C.: Radiocarbon dating and postglacial evolution,
564 upper Valtellina and Livignese area (Sondrio, Central Italian Alps). *Permafrost Periglac.*, 9,
565 275-284, 1998.

566 Chemenda, A., Bouissou, S., Bachmann, D.: Three-dimensional physical modeling of deep-
567 seated landslides: New technique and first results, *J. Geophys. Res.-Earth*, doi:
568 10.1029/2004JF000264, 2005.

569 Chigira, M.: Long-term gravitational deformation of rocks by mass rock creep, *Eng. Geol.*,
570 32, 157–184, 1992.

571 Dramis, F., Sorriso-Valvo, M.: Deep-seated gravitational slope deformations, related
572 landslides and tectonics, *Eng. Geol.*, 38, 231-243, 1994.

573 Dula, Jr., W. F.: Geometric Models of Listric Normal Faults and Rollover Folds, *AAPG Bull.*,
574 75, 1609-1625, 1991.

575 Evans, S. G., Clague, J. J.: Origin and activity of antislope scarps in the mountains of
576 southwestern British Columbia, *Geol. Soc. Am. Abstracts with Programs*, 35, 310, 2003.

577 Ferrucci, F., Amelio, M., Sorriso-Valvo, M., Tansi, C.: Seismic prospecting of a slope
578 affected by deep-seated gravitational slope deformation: the Lago Sackung, Calabria, Italy,
579 *Eng. Geol.*, 57, 53-64, 2000.

580 Forcella, F., Onida, M., Tibaldi, A.: Risultati preliminari di un'indagine di tipo
581 paleoseismologico applicata allo studio di deformazioni recenti in ambiente alpino, alta
582 Valtellina (Alpi Centrali, Italia), *Geol. Insubr.*, 3, 63-72, 1998.

583 Forlati, F., Gioda, G., Scavia, C.: Finite element analysis of a deep-seated slope deformation,
584 *Rock Mech. Rock Eng.*, 34, 135-159, 2001.

585 Genevois, R., Tecca, P. R.: Alcune considerazioni sulle deformazioni gravitative profonde in
586 argille sovra consolidate, *Boll. Soc. Geol. It.*, 103, 717-729, 1984.

587 Gori, S., Falcucci, E., Dramis, F., Galadini, F., Galli, P., Giaccio, B., Messina, A., Pizzi, P.,
588 Sposato, A., Cosentino, D.: Deep-seated gravitational slope deformation, large-scale rock
589 failure, and active normal faulting along Mt. Morrone (Sulmona basin, Central Italy):
590 Geomorphological and paleoseismological analyses, *Geomorphology*, 208, 88-101, 2014.

591 Grasemann, B., Martel, S., Passchier, C.: Reverse and normal drag along a fault, *J. Struct.*
592 *Geol.*, 27, 999-1010, 2005.

593 Grippelli, G., and Tibaldi, A.: Control of rock rheology on deformation style and slip-rate
594 along the active Pernicana fault, Mt. Etna, Italy, *Tectonophysics*, 305, 521-537, 1999.

595 Gutiérrez-Santolalla, F., Acosta, E., Ríos, S., Guerrero, J., Lucha, P.: Geomorphology and
596 geochronology of sackung features (uphill-facing scarps) in the Central Spanish Pyrenees,
597 *Geomorphology*, 69, 298–314, 2005.

598 Gutiérrez, F., Ortúñoz, M., Lucha, P., Guerrero, J., Acosta, E., Coratza, P., Piacentini, D.,
599 Soldati, M.: Late Quaternary episodic displacement on a sackung scarp in the central Spanish
600 Pyrenees: Secondary paleoseismic evidence? *Geodin. Acta*, 21, 187–202, 2008.

601 Gutiérrez, F., Lucha, P., Galve, J. P.: Reconstructing the geochronological evolution of large
602 landslides by means of the trenching technique in the Yesa Reservoir (Spanish Pyrenees),
603 *Geomorphology*, 124, 124-136, 2010.

604 Gutiérrez, F., Linares, R., Roqué, C., Zarroca, M., Carbonel, D., Rosell, J., Gutiérrez, M.:
605 Large landslides associated with a diapiric fold in Canelles Reservoir (Spanish Pyrenees):
606 Detailed geological–geomorphological mapping, trenching and electrical resistivity imaging,
607 *Geomorphology*, 241, 224-242, 2015.

608 Hermann, S. W., Madritsch, G., Rauth, H., Becker, L. P.: Modes and structural conditions of
609 large scale mass movements (Sackungen) on crystalline basement units of the Eastern Alps
610 (Niedere Tauern, Austria), *Mitteilungen des Naturwissenschaftlichen Vereines für
611 Steiermark*, 130, 31-42, 2000.

612 Higgs, W. G., Williams, G. D., Powell, C.M.: Evidence for flexural shear folding associated
613 with extensional faults, *Geol. Soc. Am. Bull.*, 103, 710-717, 1991.

614 Hippolyte, J.-C., Brocard, G., Tardy, M., Nicoud, G., Bourlès, D., Braucher, R., Ménard, G.,
615 Souffaché, B.: The recent fault scarps of the Western Alps (France): tectonic surface ruptures
616 or gravitational sackung scarps? A combined mapping, geomorphic, levelling, and ^{10}Be
617 dating approach, *Tectonophysics*, 418, 255–276, 2006.

618 Hürlimann, M., Ledesma, A., Corominas, J., Prat, P. C.: The deep-seated slope deformation
619 at Encampadana, Andorra: Representation of morphologic features by numerical modelling,
620 *Eng. Geol.*, 83, 343-357, 2006.

621 Mahr, T.: Deep-Reaching gravitational deformations of high mountain slopes, *Bull. Intern.
622 Assoc. Eng. Geol.*, 16, 121-127, 1977.

623 Mahr, T., Nemčok, A.: Deep-seated creep deformation in the crystalline cores of the Tatry
624 Mts, Bull. Intern. Assoc. Eng. Geol., 16, 104–106, 1977.

625 Margielewski, W., Urban, J.: Crevice-type caves as initial forms of rock landslide
626 development in the Flysch Carpathians, Geomorphology, 54, 325-338, 2003.

627 McCalpin, J. P.: Criteria for determining the seismic significance of sackungen and other
628 scarplike landforms in mountainous regions. In: Hanson KL, Kelson KI, Angell, MA, Lettis
629 WR (eds) Techniques for Identifying Faults and Determining their Origins, U.S. Nuclear
630 Regulatory Commission, Washington, pp 255–259, 1999.

631 McCalpin, J. P.: Paleoseismology, 2nd edition, Academic Press, San Diego, 2009.

632 McCalpin, J. P., and Hart E. W.: Ridge-top spreading features and relationship to earthquakes,
633 San Gabriel Mountain region, southern California. In: E.W. Hart (Ed.), Ridge-Top Spreading
634 in California; Contributions Toward Understanding a Significant Seismic Hazard, California
635 Geological Survey, CD 2003-05, disk 1 of 2, 2003.

636 McCalpin, J. P., Irvine, J. R.: Sackungen at the Aspen Highlands Ski Area, Pitkin County,
637 Colorado, Environ. Eng. Geosci., 1, 277–290, 1995.

638 McCalpin, J. P., Bruhn, R. L., Pavlis, T. L., Gutierrez, F., Guerrero, J., Lucha, P.: Antislope
639 scarps, gravitational spreading, and tectonic faulting in the western Yakutat microplate, south
640 coastal Alaska, Geosphere, 7, 1143–1158, 2011.

641 McClay, K. R., Ellis, P. G.: Geometries of extensional fault systems developed in model
642 experiments, Geology, 15, 341-344, 1987.

643 Meric, O., Garambois, S., Jongmans, D., Wathelet, M., Chatelain, J. L., Vengeon, J. M.:
644 Application of geophysical methods for the investigation of the large gravitational mass
645 movement of Séchilienne, France, Can. Geotech. J., 42, 1105-1115, 2005.

646 Moro, M., Saroli, M., Gori, S., Falcucci, E., Galadini, F., Messina, P.: The interaction
647 between active normal faulting and large scale gravitational mass movements revealed by
648 paleoseismological techniques: a case study from central Italy, Geomorphology, 151, 164-
649 174, 2012.

650 Nemcok, A.: Gravitational slope deformation in high mountains. Proceedings of the 24th
651 International Geological Congress, Montreal, 13, 132–141, 1972.

652 Onida, M., Tibaldi, A., Forcella, F., Galadini, F.: Analysis of deep-seated slope deformations
653 by paleoseismic technique. In: Girard J, Liebman M, Breeds C, Doe T (eds) Proceedings of
654 the Fourth North American Rock Mechanics Symposium, Balkema, Rotterdam, 515–521,
655 2000.

656 Pánek, T., Hradecký, J., Minár, J., Hungr, O., and Dušek, R.: Late Holocene catastrophic
657 slope collapse affected by deep-seated gravitational deformation in flysch: Ropice Mountain,
658 Czech Republic, *Geomorphology*, 103(3), 414-429, 2009.

659 Pánek, T., Tábořík, P., Klimeš, J., Komárková, V., Hradecký, J., and Šťastný, M.: Deep-
660 seated gravitational slope deformations in the highest parts of the Czech Flysch Carpathians:
661 evolutionary model based on kinematic analysis, electrical imaging and trenching,
662 *Geomorphology*, 129(1), 92-112, 2011.

663 Pellegrino, A., Prestininzi, A.: Impact of weathering on the geomechanical properties of rocks
664 along thermal–metamorphic contact belts and morpho-evolutionary processes: The deep-
665 seated gravitational slope deformations of Mt. Granieri–Salincriti (Calabria–Italy),
666 *Geomorphology*, 87, 176-195, 2007.

667 Radbruch-Hall, D. H., Varnes, D. J., Colton, R. B.: Gravitational Spreading of steep-sided
668 ridges ("Sackung") in Colorado. *Journal of Research of the US Geological Survey*, 5, 359-
669 363, 1977.

670 Rohn, J., Resch, M., Schneider, H., Fernandez-Steeger, T. M., Czurda, K.: Large-scale lateral
671 spreading and related mass movements in the Northern Calcareous Alps, *Bull. Eng. Geol.*
672 *Environ.*, 63, 71–75, 2004.

673 Ruch, J., Acocella, V., Storti, F., Neri, M., Pepe, S., Solaro, G., Sansosti, E.: Detachment
674 depth revealed by rollover deformation: An integrated approach at Mount Etna, *Geophys.*
675 *Res. Letts*, 37(16), 2010.

676 Saroli, M., Stramondo, S., Moro, M., Doumaz, F.: Movements detection of deep seated
677 gravitational slope deformations by means of InSAR data and photogeological interpretation:
678 northern Sicily case study, *Terra Nova*, 17, 35-43, 2005.

679 Savage, W. Z., Varnes, D. J.: Mechanics of gravitational spreading of steep-sided ridges
680 (sackung), *Bull. Intern. Assoc. Engin. Geol.*, 35, 31-36, 1987.

681 Schmid, S. M., Berger, A., Davidson, C., Giere, R., Hermann, J., Nievergelt, P., Puschnig, A.
682 R., Rosenberg, C.: The Bergell pluton (southern Switzerland, northern Italy): overview
683 accompanying a geological-tectonic map of the intrusion and surrounding country rocks,
684 Schweiz Miner. Petrog., 76, 329– 355, 1996.

685 Shea, T., van Wyk de Vries, B.: Structural analysis and analogue modelling of the kinematics
686 and dynamics of rockslide avalanches, Geosphere, 4, 657–686, 2008.

687 Stead, D., Wolter, A.: A critical review of rock slope failure mechanisms: The importance of
688 structural geology, J. Struct. Geol., 74, 1-23, 2015.

689 Tarchi, D., Casagli, N., Moretti, S., Leva, D., Sieber, A. J.: Monitoring landslide
690 displacements by using ground - based synthetic aperture radar interferometry: Application to
691 the Ruinon landslide in the Italian Alps, J. Geophys. Res., Solid Earth, 108(B8), 2003.

692 Thompson, S. C., Clague, J. J., Evans, S. G.: Holocene activity of the Mt. Currie scarp, Coast
693 Mountains, British Columbia, and implications for its origin, Environ. Eng. Geosci., 3, 329–
694 348, 1997.

695 Tibaldi, A., Pasquaré, F.: Quaternary deformations along the ‘Engadine–Gruf tectonic
696 system’, Swiss–Italian Alps, J. Quaternary Sci., 23, 475–487, 2007.

697 Tibaldi, A., Viviani, C.: Prima individuazione di deformazioni profonde di versante nella
698 Valle Agogna, Brovello–Carpugnino (VB): loro geometria, età e dinamica. Vol. Spec. Studi
699 Geografici e Geologici in Onore di S. Belloni, Genova, 609–630, 1999.

700 Tibaldi, A., Onida, M., Pasquarè, G., Forcella, F.: Trenching and palaeoseismic researches
701 along Holocene deformation zones in the upper Valtellina region, Central Alps (Italy). 3rd
702 Workshop on Alpine Geological Studies, Oropa–Biella, 29 Sept. - 1 oct. 1997. Quaderni di
703 Geodin. Alpina e Quat., 4, 219–220, 1998.

704 Tibaldi, A., Rovida, A., Corazzato, C.: A giant deep-seated slope deformation in the Italian
705 Alps studied by paleoseismological and morphometric techniques, Geomorphology, 58, 27–
706 47, 2004.

707 Varnes, D. J.: Slope movements types and processes. In: Schuster R.L. & Krizek R.J. (eds.),
708 Landslides, Analysis and Control. Natl. Acad. Sci., Washington D.C., Transp. Res. Board,
709 Spec. Rep., 176, 11–33, 1978.

710 Wernicke, B., Burchfiel, B.C.: Modes of extensional tectonics, *J. Struct. Geol.*, 4, 105-115,
711 1982.

712 Zischinsky, U.: On the deformation of high slopes. *Proc. 1st Conf. Int. Soc. Rock Mech.*,
713 Lisbon, Sect. 2, 179-185, 1966.

714

715 **FIGURE CAPTIONS**

716

717 Figure 1. Location of the study areas in the context of the Western and Central Italian Alps.

718

719 Figure 2. Digital Elevation Model of the area of the Deep-seated Gravitational Slope
720 Deformation (DSGSD) at Mt. Scincina (western Alps, Italy) with location of the trench
721 studied by way of paleoseismological techniques, and trace of the main morphostructures
722 indentified at the DSGSD.

723

724 Figure 3. (A) Log of the northern trench wall excavated across the central-upper part of the
725 DSGSD at Mt. Scincina (western Alps, Italy, for location see Fig. 2). Note the
726 superimposition of the substratum metamorphic rocks (MB) onto Late Quaternary deposits
727 (YQU) along reverse oblique slip plane S1. S2 and S3 are extensional fractures filled by YQU
728 deposits. Stereograms (Schmidt's projection, lower hemisphere) show the geometry of slip
729 planes and orientation of the trench. (B) Photo of the reverse oblique fault that puts into
730 contact MB in the hanging-wall block with YQU in the footwall block. (Modified after
731 Tibaldi et al. 2004).

732

733 Figure 4. Digital Elevation Model of the area of the DSGSD near the Foscagno Pass (Central
734 Alps, Italy), with location of the trench studied by paleoseismological techniques, and trace of
735 the main Holocene morphostructures of the DSGSD.

736

737 Figure 5. Log of the southern trench wall excavated across the lower DSGSD structure near
738 the Foscagno Pass (Central Alps, Italy, see Fig. 4 for location). Inset shows a log of the
739 southern trench wall where the dragging of layers and clasts along the slip plane S1 is
740 consistent with reverse movements. Plane S1 was previously an extensional fracture.
741 Stereograms (Schmidt's projection, lower hemisphere) show the geometry of slip planes and
742 orientation of the trench.

743

744 Figure 6. Digital Elevation Model of the area of the Bregaglia Valley DSGSD (Central Alps,
745 Italy), with location of the trench studied by way of paleoseismological techniques, and trace
746 of the main Holocene morphostructures of the DSGSD.

747

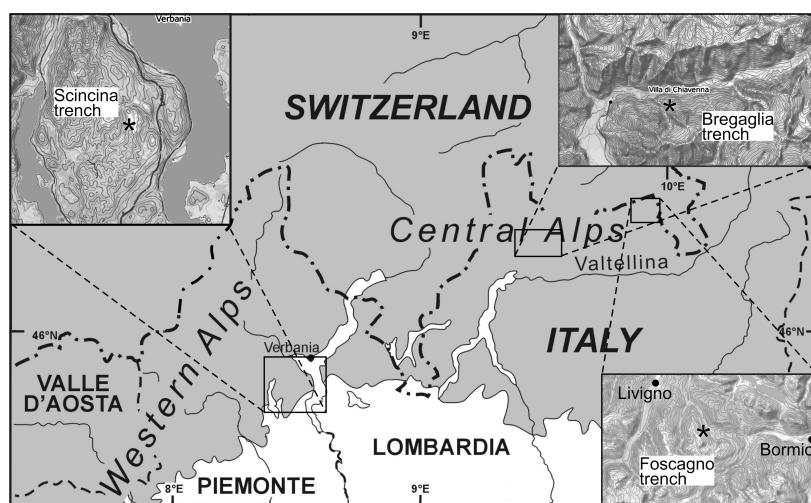
748 Figure 7. (A) Photo of the Bregaglia Valley DSGSD (Central Alps, Italy) studied by
749 paleoseismological techniques and location of the artificial trench. The DSGSD is subdivided
750 into four main blocks by three slip planes steeply dipping toward the valley floor. Arrows
751 indicate the relative block movements. (B) Geological-structural section across the DSGSD.
752 The location of the artificial trench of Figure 8 is shown. Trace X-X' of the section in Figure
753 7A (modified after Tibaldi and Pasquaré 2007).

754

755 Figure 8. (A) Photo of a portion of the wall exhumed during the excavation of the artificial
756 trench at the Bregaglia Valley trench and (B) complete log of the same wall. A series of slide
757 surfaces offset the bedrock and the sedimentary infill of the depression induced by the uphill-
758 facing scarp. Note that offset increases with the age of the layers. Absolute dating was
759 obtained by radiocarbon ^{14}C and dendrochronology techniques. Note the dragging of strata
760 along slip plane S2, compatible with a small uplift of the hanging wall block located uphill of
761 the slip planes. Stereogram (Schmidt's projection, lower hemisphere) shows geometry of the
762 slip planes and orientation of the trench. (Modified after Tibaldi and Pasquaré 2007).

763

764 Figure 9. (A) Bending of strata due to adaptation along a listric normal fault (rollover
765 anticline); (B) normal fault with normal bending of layers, coherent with the sense of shear;
766 (C) normal fault with reverse (apparent) sense of shear due to a high angle Θ (B and C
767 redrawn after Grasemann et al. 2005); (D) development of low angle back-thrusts at the toe of
768 a DSGSD; (E) development of low angle back-thrusts and other contractional deformations in
769 different parts of a DSGSD due to spatial changing in friction (D and E modified after
770 Braathen et al. 2004).

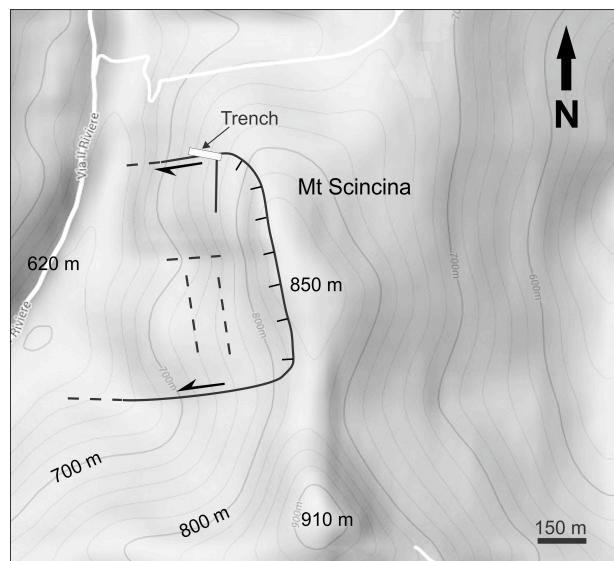

771

772 Figure 10. Section views across different models of DSGSDs. (A) Development of
773 extensional structures at a sackung-type of DSGSD; (B) inversion kinematics at a sackung-
774 type of DSGSD; (C) translational type with inversion kinematics due to locking of the toe
775 block; (D) well-developed translational type, or block slide type, with antithetic slip planes;
776 (E) same as D with reverse movements along an uphill-dipping slip plane; (F) development of
777 reverse slip planes above a basal shear with a complex geometry of the "ramp and flat" type
778 (F modified after McClay and Ellis 1987).

779

780

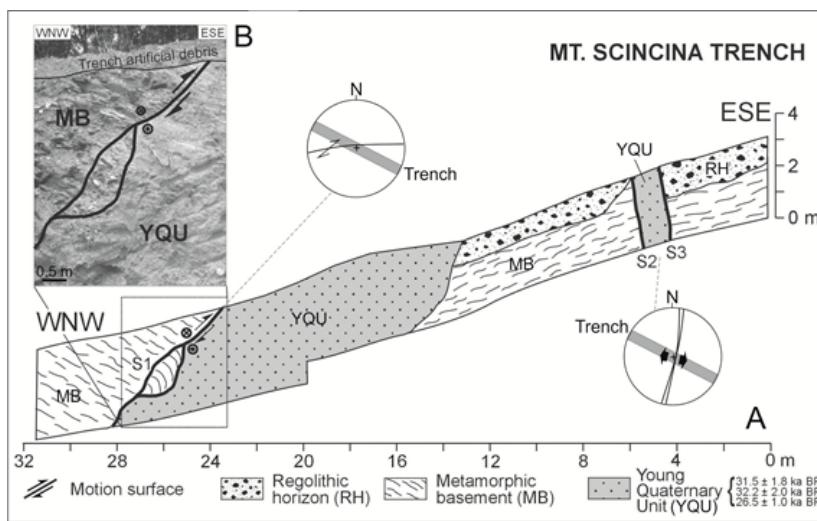
781

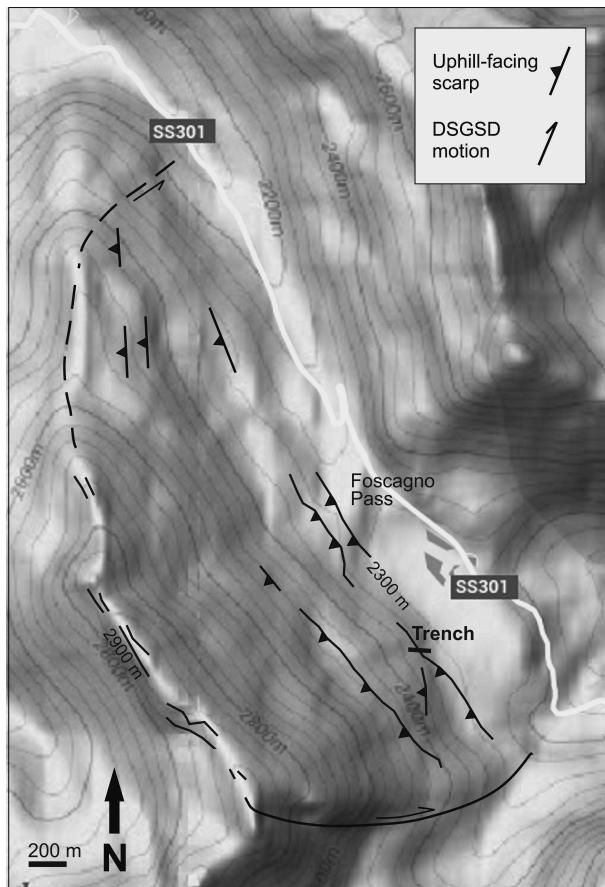


782

783

784 [Figure 1.](#)

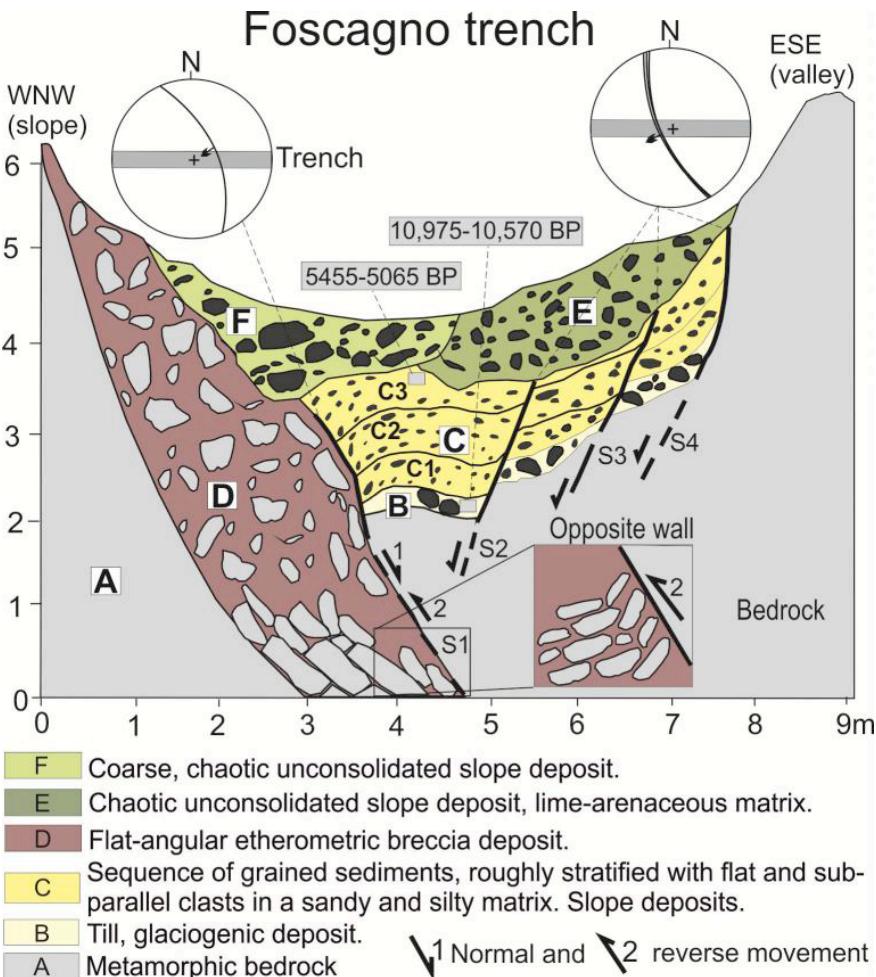

785

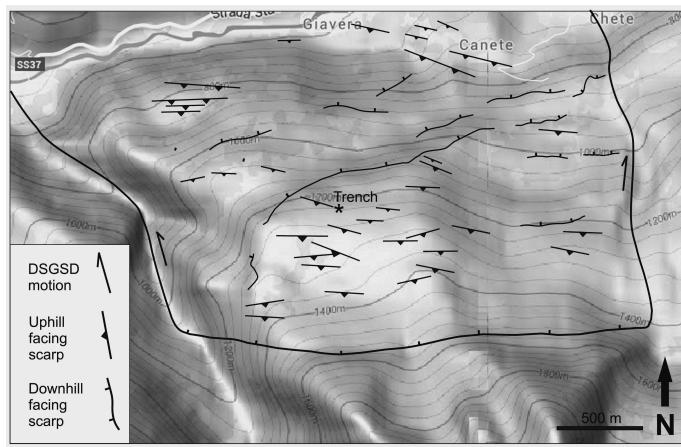


786

787

788 [Figure 2.](#)

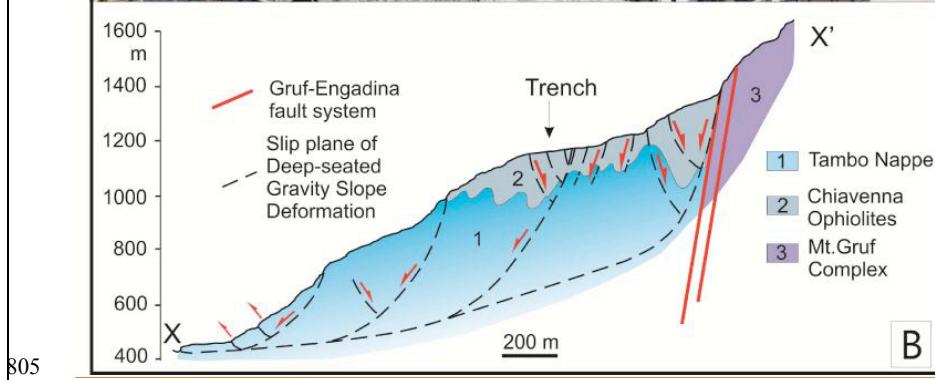
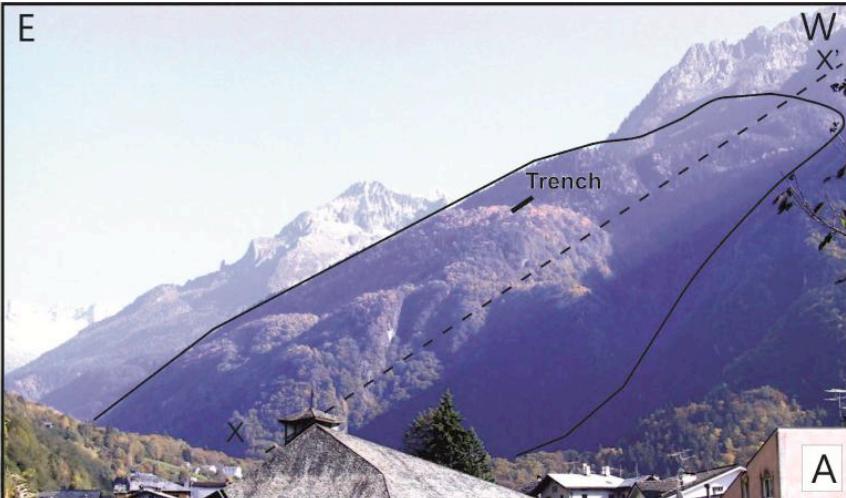


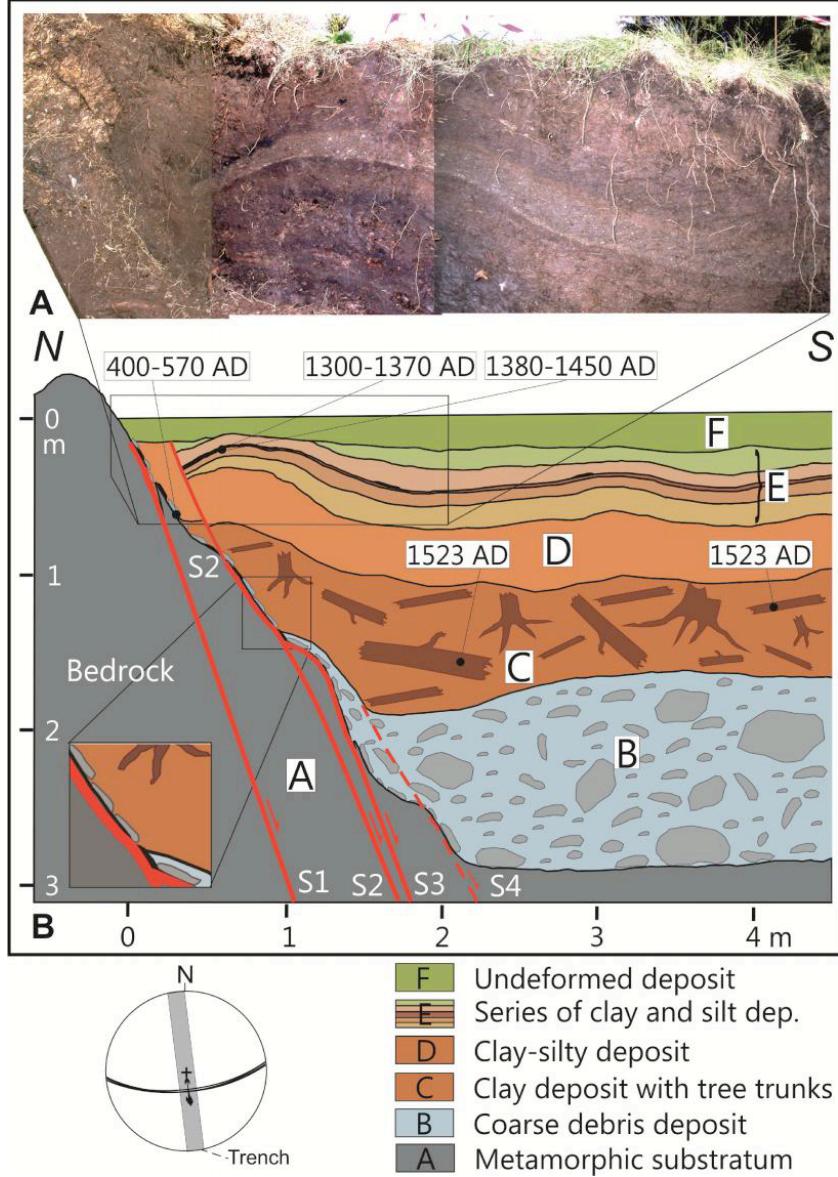

794

795

796 Figure 4.

797

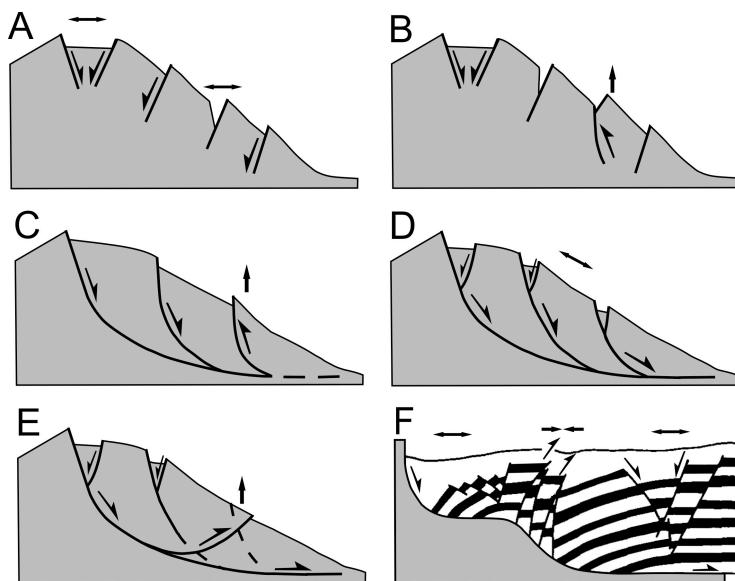
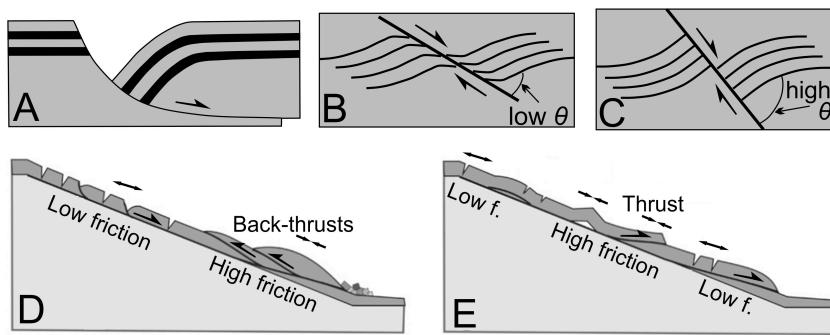





802

803 [Figure 6.](#)

804

807

808

809 [Figure 8.](#)

810

822 [Figure 10.](#)
823
824
825
826