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Abstract: This paper aims to develop a rapid and practical procedure that can locate 

the slip surface for a slope with the minimum reliability index for limit equilibrium 

analysis at the minimum expense of time. The comparative study on the reliability 

indices from different sample numbers using the Monte Carlo Simulation Method has 

demonstrated that the results from large enough sample number are related with those 

from small sample number with high correlation indices. This observation has been 

tested for many homogeneous and heterogeneous slopes with various conditions 

under parametric studies. Based on this observation, the reliability index for a 

potential slip surface can be calculated with a small sample number, and the search for 

the minimum reliability index and the slip surface can be determined by heuristic 

optimization algorithm. Based on the comparisons between the critical deterministic 

and probabilistic slip surfaces for many different cases, the use of the proposed fast 

method in locating the critical probabilistic slip surface is found to perform well, 

which is suitable for normal routine analysis and design works. 
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Introduction 

It is widely accepted that slopes with safety factors greater than unity are not 

necessarily safe because of the underlying geotechnical variability and uncertainty, as 

well as the simplifications assumed when using in predictive methods. Hong Kong is 

well-known for slope failures with an average of approximately 300 such failures per 



year. Billions of dollars are spent on slope analysis and stabilization each year in 

Hong Kong. It has been noted by the Hong Kong Government that approximately 5% 

of the stabilized slopes in Hong Kong have eventually failed, and that many slopes 

with safety factors greater than 1.0 still ultimately fail (Hong Kong SAR Government 

2000). The assessment of slope stability and the reliability of the assessment have 

become an important topic in Hong Kong, China, Taiwan and many other developed 

cities where collapse of slopes may have disastrous effects on human lives and 

properties. 

 

Although the use of a deterministic approach for calculating the minimum safety 

factor is useful for design and stabilization purposes, the reliability of the results is 

also an important issue for many practical problems. A probabilistic or reliability 

approach that can deal with the uncertainty and variability in the problem will be 

complementary to the classical safety factor evaluation. One of the reasons that the 

reliability is not commonly determined in the past is the long computation time 

required in the analysis. 

 

The conventional deterministic approach is based on minimizing the safety factor (FS 

for “factor of safety”) over a range of potential slip surfaces, and the critical solution 

is called the critical deterministic slip surface (cdss) (Arai and Tagyo 1985; Baker 

1980; Greco 1996; Goh 1999; Cheng 2003; Bolton et al. 2003; Zolfaghari et al. 2005; 

Li et al. 2010, 2011; Cheng et al. 2007a, 2008a, 2008b). Based on the cdss, the failure 

probability and reliability index can be evaluated approximately which is a relatively 

simple operation favoured by many engineers (Liu et al. 2015). There have been many 

attempts in recent years to use a probabilistic approach for analyzing the safety of 

slopes. One common approach to determine the reliability of a slope is to assume it to 

be equal to the reliability index of the critical deterministic slip surface. Attempts to 

use this approach include Chowdhury et al. (1987), Honjo and Kuroda (1991), 

Christian et al. (1994) and many others. Another approach is to search for the slip 

surface with the minimum reliability index; this surface is known as the critical 



probabilistic slip surface (cpss) approach (e.g., Li and Lumb 1987; Hassan and Wolf 

1999; Bhattacharya et al. 2003; Xue and Gavin 2007). Several researchers have 

applied finite element methods and random field theory to the probabilistic analysis of 

slopes. These methods considered the spatial variability that is inherent even in 

‘homogeneous’ slopes (Griffiths and Feton 2004, 2009, 2011; Xu and Low 2006). As 

mentioned by Cheng et al. (2007b), the use of finite element methods is 

time-consuming in analysis with practical limitations in certain special cases. Finite 

element analysis of slope stability is therefore still not favored by engineers for 

routine design work. 

 

There are a number of approaches for probabilistic slope stability analysis that have 

differing assumptions, limitations and capabilities for handling problems with various 

levels of mathematical complexity. The approaches generally fall into one of two 

categories: approximate methods such as the first-order and second order reliability 

method (FOSM, SORM) method, the improved point estimate method and the 

surrogate model methods, and the Monte Carlo Simulation Method (MCSM). The 

former approach (approximate method) includes the works by Hasofer and Lind 

(1974); Li and Lumb (1987); Low et al. (1998, 2007); Oka and Wu (1990); 

Chowdhury and Xu (1995); Duncan (2000); El-Ramly et al. (2002); Hong and Roh 

(2008); Xue and Gavin (2007) and others. The surrogate method includes the response 

surface method and kriging model (Yi et al. 2015, Zhang et al. 2013) can also provide 

a good estimation of the system reliability at reduced computation. The latter 

approach (MCSM) includes the works by Au et al. (2001, 2003, 2007, 2010); Ching et 

al. (2009) and others. The use of the MCSM can produce good results, although it can 

be computationally intensive, especially if the probability of failure is small. The 

FOSM and SOFM methods usually require the partial derivatives of the safety factor 

to be determinate, which may be not available for some slip surfaces. The widely used 

mean value first-order second-moment method (Hassan and Wolff 1999; Xue and 

Gavin 2007) uses a finite difference technique to form the gradient of the function. 

However, as discussed by Cheng et al. (2008c), because failure to converge during 



safety factor determination is common for slope stability analysis and is equivalent to 

the presence of discontinuities in the safety factor function, both finite difference 

techniques and explicit partial derivatives in the first-order second-moment method 

encountered problems during use. Besides the above methods, there are also many 

other approximate methods to determine the system reliability of a slope (Zhang et al. 

2011). 

 

The classical assessment approach using a probabilistic slope analysis is usually 

computationally intensive, and there is a growing need for a more rapid assessment of 

the critical probabilistic slip surface. This requirement is particularly important for 

many highway projects in which there are hundreds of sections to be considered. It is 

generally recognized that the search for the critical probabilistic slip surface is similar 

in principle to that for the minimum FS surface in the deterministic approach. Hassan 

and Wolff (1999) have proposed a method to search for the critical slip surface 

associated with the minimum reliability index obtained by the mean-value first-order 

second-moment (MFOSM) method. To reduce the amount of computation, Cho (2009) 

has adopted the Monte Carlo simulation method with approximated limit state 

functions based on the ANN model with results are comparable to that based on 

FORM or SORM, while Kang et al. (2015) have adopted the Gaussian process 

regression with Latin hypercube sampling method. The method is developed based on 

their observation that the critical probabilistic slip surface generally coincides with 

that obtained by setting one dominant parameter (random variable) to a low value. 

When the cohesion of soil, the friction angle and the location of water table are 

important variables in the problem, this empirical approach is cumbersome and 

tedious to manipulate. This paper aims to provide a fast and simple approach to 

finding the critical probabilistic slip surface based on MCSM results. The proposed 

method only requires two calculations of the safety factors within each iterative 

search step. Although the authors cannot establish the theoretical basis for the 

proposed approach, the authors have experimented with thousands of cases and find 

that this approach can be effective and highly efficient such that risk analysis can be 



simple and practical for engineers.  

 

Limit state function 

The traditional definition of the limit state function or performance function as 

described in eq.(1) is adopted this study. 

G(X)=Fs(X)-1                                      (1) 

where the vector X=input variables for the geotechnical properties (such as unit 

weight, internal friction angle, and cohesion). For the sake of simplicity, the safety 

factor Fs is calculated using the simplified Bishop method for circular slip surfaces 

and the load factor method (using a special interslice force function f(x) that is 

commonly adopted in China, and x is a normalized horizontal distance in the range of 

0 to 1.0) for non-circular slip surfaces (Cheng and Zhu 2004). It should be noted that 

the proposed rapid assessment method is applicable to any specific stability analysis 

method.  

 

System reliability index with floating surfaces 

As mentioned above, the reliability index can be calculated by either approximate 

methods or the MCSM. Griffiths and Fenton (2004) and Griffiths et al. (2009) have 

implemented the MCSM method with a random field model for spatial distribution of 

shear strengths. The MCSM is adopted in the present study, due to its simplicity of 

use. The slope may fail along any potential slip surface; therefore, it is important to 

consider the slope stability problem in terms of a system of multiple potential slip 

surfaces. The procedure for using the MCSM to calculate the system reliability index 

(or, more directly, the probability of system failure) is straightforward. Let Z denote 

all of the uncertain variables in the slope under consideration. Without loss of 

generality, it can be assumed that all the components of Z are independent variables. 

In the case that a portion of the components of Z  are dependent variables, proper 

transformations as given by Ang and Tang (1984) can be applied to convert the 

problem into an independent input space. In this paper, Z denotes the uncertain 

variables, while z denotes either the sample values or a certain fixed value of Z . The 



MCSM includes the following steps: 

1. A counter denoted by Js is initially set to zero. 

2. Generate Z  samples (zi; i=1, . . . ,Ns) from the assumed probability density 

function (PDF). For a probabilistic slope analysis, normal distribution and lognormal 

distributions are commonly assumed for the input variables in slope stability analysis, 

and Ns=total number of samples. 

3. For each sample zi, conduct a deterministic slope stability analysis to find the 

most critical slip surface among all the trial surfaces. If the safety factor for the most 

critical slip surface is less than 1, the entire slope is considered to fail for that zi 

sample, and Js= Js +1. 

4. Repeat Step 3 for i=1, . . . , Ns.  

A simple estimate of the system failure probability of the slope can be defined as the 

ratio of Js to Ns, and the relation between the failure probability and the reliability 

index is given by Duncan (2000). The MCSM procedure can be summarized 

mathematically by eq.(2): 

 
1

1
min 1

Ns
MCSM

f i f
i

P I Fs z P
Ns 



                          (2) 

where fP =failure probability of the slope as a system; =trial surface; Fs =safety 

factor for that trial slip surface;  min iFs z
=the safety factor for the critical slip 

surface; and  I =indicator function. If  min iFs z
<1,  min 1iI Fs z

   =1; 

otherwise, it is equal to zero. The reliability index β of a slope may be determined 

based on the assumed distribution function of the safety factor. The floating surfaces 

imply that the slip surfaces used to assess the performance of the slope for each 

sample zi are not identical, meaning that the reliability index β is not available for a 

specific slip surface but belongs to the whole slope. However, based on the critical 

slip surface from a classical deterministic slope analysis, the reliability index for a 

given slip surface, as described below, may be applicable. 

 

Reliability index for specific slip surfaces 



Calculating the reliability index for a given slip surface by the MCSM may follow the 

following three steps: 

1. Generate a trial slip surface (Cheng 2003, Cheng and Li 2007a, Cheng et al. 

2007c, Cheng et al. 2008a, Cheng et al. 2008b) that can be either circular or 

non-circular. Generate Z samples (zi ; i=1, . . . ,Ns) from the assumed probability 

density function (PDF) where Ns=total number of samples. For a probabilistic 

analysis of slope, a normal distribution or a lognormal distribution are often assumed 

for the input variables.   

2. For each sample zi, a safety factor Fsi is obtained. 

3. Repeat Step 2 for i=1, . . . , Ns.  

Thus, Ns safety factors Fsi (i=1,2…,Ns) are obtained together with Ns performance 

function values G1,G2,…,GNs. The failure probability of this given trial slip surface 

and its corresponding reliability index β can be calculated by eq.(3), (4) and (5). 
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(5) 

where  and  are mean and standard deviation. It should be noted that even though 

the soil parameters may be governed by the normal or lognormal distribution, the 

factor of safety may not be truly governed by the normal or lognormal distribution. 

Nevertheless, based on thousand of tests in homogeneous and nonhomogeneous 

slopes, the distribution of the factor of safety is found to be nicely described by the 

normal or lognormal distribution in most of the test cases. There are three main 



considerations in the application of the MCSM. The first consideration is to generate 

samples of the soil parameters that coincide with the assumed PDF which may either 

be normal or lognormal distributed. Monte Carlo sampling approach (or random 

sampling) is the common sampling approach, and uniformly distributed random 

variables are first generated and later transformed to a normal distribution or 

lognormal distribution (Chen 2003), where the transformations are given in eq.(8) and 

eq.(10), respectively).  

 

The second consideration is the determination of the value of Ns. It is widely accepted 

that the output of the MCSM is sensitive to the number of samples Ns. When Ns is 

large, the random samples generated for each input variable are also large, and the 

match between the CDF (Cumulative density function) created by sampling and the 

original input CDF is better. Hence, the level of noise in the simulation diminishes 

and the output becomes more stable at the price of increasing computational time. The 

optimum number of iterations depends on the sizes of the uncertainties in the input 

parameters (case dependent problem) and the correlations between the input variables 

and the output parameter being estimated. A practical way to optimize the simulation 

process is to repeat the simulation using the same seed value with an increasing 

number of iterations. A plot of the number of iterations m against the probability of 

unsatisfactory performance can indicate the minimum number of iterations at which 

the probability value will stabilize. 

 

The third consideration is the equivalent computational effort for the following two 

approaches. Assume Nm total trial slip surfaces for the deterministic critical search 

(Nm safety factors or Nm equivalent trial slip surfaces). In one approach, NmNs 

safety factors are required to determine the system reliability index. In the other 

approach, for one trial slip surface, Ns safety factors are calculated to determine one 

reliability index, and Nm trial slip surfaces are required to find the critical 

probabilistic slip surface. The computation times required for the two approaches are 

thus approximately identical, and it appears that either approach can be accepted for 



the analysis. 
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Fig.1 Typical relation between failure intensity and number of simulations in typical 

Monte Carlo Simulation Modelling 

 

It is noted that the evaluation of the system reliability index can be notably 

time-consuming because NmNs evaluations are required, and both Nm and Ns are 

generally large numbers (in the order of thousands), if a high level of accuracy is 

required. A typical representation of the failure intensity against the number of 

simulations during the Monte Carlo simulation is shown in Fig.1. It is noticed unless 

the number of trials is large enough (which is actually case dependent), the failure 

intensity will be a fluctuating function depending on the number of trials. In the initial 

study of the present problem, a computational time of two to several days was 

commonly required for a complete analysis using a fast computer (Intel i5 as the 

CPU); such computational time is excessive for routine engineering design work. 

Furthermore, for many highway projects, there may be hundreds of slopes to be 

considered. There is thus a need to develop a rapid search method for the critical 

probabilistic slip surface similar to the critical deterministic slip surface. 

 

Search for the critical probabilistic slip surface 



The critical deterministic slip surface for a slope is located by systematically 

generating a series of trial surfaces and analyzing each slip surface with a set of soil 

parameters (Cheng 2003, Cheng and Li 2007a, Cheng et al. 2007c, Cheng et al. 2008a, 

Cheng et al. 2008b). In most of these algorithms, the location of the critical 

deterministic surface associated with the minimum safety factor, FSmin, is formulated 

as an optimization problem, as follows: 

 min min ,Fs Fs p xy               (6) 

where p=the set of input geotechnical parameters (c’,’….etc.); xy=set of co-ordinates 

defining the shape and location of the slip surface. The search for the critical 

probabilistic surface is similar to the determination of the critical deterministic surface. 

(Li and Lumb 1987). The critical probabilistic surface associated with the minimum 

reliability index min is given by 

 min min ,p xy               (7) 

where  is the reliability index for a given set of geotechnical parameters (including 

the statistical properties) and a given geometry of the slip surface as defined by the 

coordinate parameters. An approach based on the MCSM is used to calculate the 

reliability index for trial slip surfaces in the critical probabilistic search. It has been 

noticed that the minimum reliability index min may not necessarily coincide with the 

critical deterministic slip surface, as will be demonstrated below. It has been assumed 

by many geotechnical engineers that locating the critical probabilistic slip surface may 

require considerable computational effort; this is true if a classical method is used to 

carry out the critical probabilistic search. Since the difference between fs (the 

reliability index of the critical deterministic slip surface) and min may be substantial, 

we generally cannot assume the critical deterministic slip surface to be the critical 

probabilistic slip surface. In view of this problem, the authors have carried out many 

studies with the MCSM, and based on many observations on the results, a fast 

approach is proposed for the evaluation of the reliability index. For normal problems, 

the fast approach has notably short computation times, and the accuracy of the result 

is sufficient for normal engineering use. In the case of very critical section, the 



classical time-consuming approach is recommended because it will provide better 

accuracy albeit at the expense of time.  

 

The actual procedures to search for the critical probabilistic slip surface using 

harmony search method (other methods are also possible) are the following: 

1. Generate a potential slip surface using the procedures given by Cheng (2003), 

Cheng and Li (2007a), Cheng et al. (2007c).  

2. Calculate the reliability index for the potential slip surface by eqs. (4) or (5). 

3. Repeat steps 1 and 2 until several potential slip surfaces (M in this study) are 

obtained, and these M potential slip surfaces are placed into harmony memory in 

the harmony search algorithm. 

4. Initiate the parameters in harmony search algorithm such as HR (harmony memory 

consideration rate), PR (pitch adjusting rate), and the maximum iteration number 

Nt as the parameters for the harmony search algorithm. 

5. Sort the M potential slip surfaces in harmony memory by descending order of 

reliability index. 

6. Generate a new potential slip surface using Hr and Pr, calculate its reliability 

index, and compare it with that from the prior position in the harmony memory. If 

this surface is better than that from the prior position, replace the prior slip surface 

with the new potential slip surface, and the iteration number is increased by one. 

7. Repeat step 5 and 6 until the maximum iteration number Nt is reached. 

8. Output the first order potential slip surface in the harmony memory as the 

optimum slip surface together with its reliability index as the minimum reliability 

index of the slope 

Geem (2001) and Lee and Geem (2005) developed a harmony search meta-heuristic 

algorithm that was conceptualized using the musical process of searching for a perfect 

state of harmony. Musical performances seek to find pleasing harmony (a perfect state) 

as determined by an aesthetic standard, just as the optimization process seeks to find a 

global solution determined by an objective function. The harmony in music is 

analogous to the optimization solution vector, and the musician’s improvisations are 



analogous to local and global search schemes in the optimization process. The SHM 

uses a stochastic random search that is based on the harmony memory considering 

rate HR and the pitch adjusting rate PR, and it is a population based search method. 

This method is chosen by the authors, as Cheng et al. (2007c, 2008a) have 

demonstrated that this method is highly efficient for continuous global optimization 

problems, and have implemented this procedure into commercial slope stability 

programs.  

Procedure for the MCSM 

The Monte Carlo Sampling technique includes the following steps (Ang and Tang 

1984): 

1. For each random variable, generate Ns random numbers Ns ,...,, 21 varying 

uniformly from 0 to 1. For each pair of random numbers i and i+1 from the list of 

random variables Ns ,...,, 21 , use eq.(8) (Ang and Tang 1984 and Chen 2003) to 

transform the random numbers 1 and 2 to normal distributed random numbers i and 

i+1.  

2. Next, generate random numbers i and i+1 with normal distribution and 

independency using eq.(9). Nsii ,...2,1,  . 
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where i =standard deviation of the random variable and i =mean value of the 

random variable.  

3. The procedures will then continue from i=1 to Ns, and the original random 

number list Ns ,...,, 21  will be transformed to a list of normal distributed random 

variables Nsii ,...2,1,   for which each variable is independent of the other variable. 

The random variables i as given by eq.(9) will be independent of each other and 

will follow the normal distribution, even though the original variable i is randomly 



generated.  

4. For variables i following a lognormal distribution, let y be the variables 

following a normal distribution, then yi=ln (i ) or i =e y . The mean value y and 

the standard deviation y of variable y are then given by eq.(10) as:  

2

2

ln(1 )

ln      where   
(1 )

y

y

V
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      (10) 

i can then be transformed to a normal distribution through variable y, and eqs.(8) 

and (9) can be applied thereafter.  

5.  Take the unit weight  for example,    ii ,     11 ii , 

i=1,2,…Ns-1. For each random variable, the procedures described above can be 

adopted, and the Ns sampling values for each random variable can be obtained as 

shown in Table 1. 

 

Table 1 Sampling details for example 1 

Sampling No.  (kN/m3) c (kPa)  (°) ur  

1   1  cc  1  
  1  

uu rr  1  

2   2  cc  2  
  2  

uu rr  2  

3   3  cc  3  
  3  

uu rr  3  

4   4  cc  4  
  4  

uu rr  4  

5   5  cc  5  
  

5
 

uu rr  5  

i-1   1i  cci  1  
  

1i
 

uu rri  1  

i   i  cci    
  

i
 

uu rri    

… … … … … 

Ns   Ns  ccNs    
  

Ns
 

uu rrNs    

where Nsii ,...2,1,  , Nsii ,...2,1,  , Nsii ,...2,1,   and Nsii ,...2,1,  are generated by 



eq.(8). Considering the two random variables  and c (variables 1 and 2 in Fig.2), the 

sampling values using the Monte Carlo sampling technique are illustrated in Fig.2. 
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Fig.2 Sampling values of two independent variables with normal distribution 

 

Observations on the MCSM for two cases 

The authors have carried out many internal studies and have observed some 

interesting features which form the basis for the proposed rapid procedure. Before the 

discussion of the proposed rapid procedures, the observations will be illustrated by 

two examples. Based on the observations from these examples and many other 

examples not shown in the paper, it can be observed that a full MCSM may not be 

necessary for normal cases. 

Example 1 

The first problem example uses the work by Bhattacharya et al. (2003). The 

cross-section of the slope is shown in Fig.3, and the statistical geotechnical 

parameters are given in Table 2. In this example, four random variables are considered: 

the unit weight of soil (, kN/m3), the internal friction angle ( ,°), the cohesion (c, 

kPa) and the pore-water pressure coefficient ru, which is defined as the ratio of pore 

water pressure to the unit weight per length. The independent random variables are 

assumed to be either normally distributed or log-normally distributed. 

 

Table 2 Mean values and standard deviations for soil property parameters 



layer 
 (kN/m3) c (kPa)  (°) ur  

    
c c   ur

  
ur



1 18.0 0.9 18.0 3.6 30.0 0.3 0.2 0.02 

In Table 1,  =the mean value of the unit weight,   =standard deviation of the unit 

weight, c =mean value of the cohesion, c =standard deviation of the cohesion, 

 =mean value of the internal friction angle,  =standard deviation of the internal 

friction angle, 
ur

 =mean value of the pore-water pressure coefficient, 
ur

 =standard 

deviation of the pore-water pressure coefficient 
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Fig. 3 Cross-section of the homogeneous slope in Example 1  

 

Malkawi et al. (2000) noted that random seeds do not affect MCSM results and that 

sample sizes over 700 are sufficient for the MCSM to converge to the reliability index. 

Sample size of 700 may be adequate for some cases (case dependent), but this size is 

questionable for general conditions. It is more rational to expect that the value of the 

sample size (Ns in this paper) should depend on the reliability index of the trial slip 

surface or the system reliability index for the whole slope (Chen 2003). Parametric 

studies are conducted for the problem in Fig.3 to study the variation of results from 

the MCSM with various values of Ns, where the safety factor for each sampling trial 

is obtained by the Simplified Bishop Method. A series of values of Ns are assumed for 

this trial slip surface, and the results are given in Fig.4 which are in consistent with 



the general trend for normal MCSM. It is noticed from Fig.4 that there are fluctuation 

in the results with the change in Ns. When the value of Ns increases to 20000, the 

reliability index tends to converge to a stable value of 2.02. Using a sample size of 

700 slightly over-estimates the reliability index in this case. 
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Fig.4 Numerical convergence of reliability index with different values of Ns 

 

The extensive computational effort required to apply the MCSM to the determination 

of a critical probabilistic slip surface is a primary reason that this approach has not 

been adopted by geotechnical engineers for routine analysis and design; this effort is 

also a reason why reliability assessment is not commonly performed in engineering 

practice. Most of the routine designs in Hong Kong require fast analysis not 

exceeding one to two hours because there are too many sections to be considered. To 

overcome this limitation, decreasing the value of Ns would be an apparently simple 

solution. However, as shown in Fig.4, the reliability index can be far from the stable 

value (2.02) if the value Ns is too small.  
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Fig.5 100 centers of random generated trial slip surfaces 

 

For the problem shown in Fig.3, 100 trial circular slip surfaces are randomly 

generated in the analysis, and the x-and y-coordinates of the centers of the trial slip 

surfaces are shown in Fig.5. If we assume Ns to be either 50000 or 2, the reliability 

index calculated when Ns=50000 can be taken as the ‘true’ value, while the result 

calculated when Ns=2 is regarded as the ‘pseudo’ reliability index. The ‘true’ and 

‘pseudo’ reliability indices of the 100 randomly generated trial slip surfaces are 

calculated using the MCSM, and the scatter plots are shown in Fig.6 and Fig.7 (in 

which y relates to the ‘pseudo’ reliability indices, x relates to the ‘true’ reliability 

indices and r is the correlation coefficient). It is noted from Fig.7 that even though the 

‘pseudo’ reliability indices are much larger than the ‘true’ reliability indices, the true 

and pseudo reliability indices are highly correlated with a correlation coefficient of 

0.9969 for normal distribution assumption and 0.9980 for log-normal distribution 

assumption. Similar results also apply to the more complicated load factor method (a 

China based slope stability method which is popular in Asia, see Cheng and Lau 2014) 

for both circular and non-circular slip surfaces with the correlation coefficients lying 

between 0.98 to nearly 1.0, as are shown in Table 3. The authors have tested several 

thousand cases, and virtually all the test cases have high correlation coefficients, 

except for several cases where the geometry is highly irregular with highly contrasting 

soil parameters that are typically not observed in real cases. The load factor method is 

considered in this paper, as this is a very popular method in Asia, and many slopes are 



designed according to this method. The method proposed in this paper is developed 

for fast practical application, and there are many actual applications of the present 

method in Asia. 
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Fig.6 Relations between pseudo-reliability indices and true reliability indices of 

100 trial circular slip surfaces (normal distribution +Bishop method) 
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Fig.7 Relations between pseudo-reliability indices and true reliability indices of 

100 trial circular slip surfaces (lognormal distribution +Bishop method) 

 

Table 3 Relations between pseudo-reliability indices and true reliability indices 

 Relation between x 

and y 

correlation coefficient r

100 trial circular, normal 

distribution, Bishop method 

y=2.8041x1.6123 0.9969 



100 trial circular, lognormal 

distribution, Bishop method 

y=3.0141x1.4649 0.9980 

100 trial circular, normal 

distribution, Load distribution 

method 

y=3.1066x1.53 

y=11.164x-17.492 

0.9966 

0.9915 

100 trial circular, lognormal 

distribution, Load distribution 

method 

y=3.3492x1.3967 

y=10.811x-20.784 

0.9967 

0.9947 

100 trial non-circular, normal 

distribution, Load distribution 

method 

y=2.6768x0.866 

y=2.6575x-0.1962 

0.986 

0.982 

100 trial non-circular, lognormal 

distribution, Load distribution 

method 

y=2.5819x1.016 

y=2.827x-1.2396 

0.9945 

0.9911 

 

Example 2 

The observations as discussed above are subsequently tested for the case of 

heterogeneous slopes. Consider a second example that consists of a stratified clay 

slope bounded by a hard stratum below and parallel to the ground surface (shown in 

Fig.8). The statistical geotechnical properties of the soils are given in Table 4. One 

hundred non-circular slip surfaces are randomly generated, with 14 slip surfaces being 

kinematically unacceptable; therefore, 86 total trial slip surfaces are adopted in this 

example.  
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Fig. 8 Cross-section of the heterogeneous slope in example 2  

 

Table 4 Mean values and standard deviations for soil property parameters (soil 

number from top to bottom) 

layers c (kPa)  (º) 

c  c      

1 38.31 7.662 0.0 0.0 

2 23.94 4.788 12.0 1.20 

 

The load factor method is used to calculate the safety factors for the 86 non-circular 

slip surfaces, and the relations between the ‘true’ reliability indices and the ‘pseudo’ 

reliability indices are given in Fig.9 and Fig.10 for the normal and lognormal 

distributions, respectively. Though the correlation coefficient for the normal 

distribution is lower than that for the homogeneous slope, the value is still 0.948. The 

observations about the correlation coefficients are therefore similar to those for the 

homogeneous slopes. The authors have also tested many other cases, and in general, 

high correlation coefficients are obtained for many heterogeneous slopes, even though 

there is no theoretical background (at present) to model or describe this phenomenon.  
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Fig.9 Relationship between pseudo-reliability indices and true reliability indices 

of 86 noncircular trial slip surfaces (normal distribution +load factor method) 
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Fig.10 Relationship between pseudo-reliability indices and true reliability indices 

of 86 noncircular trial slip surfaces (lognormal distribution +load factor method) 

 

Proposal for rapid analysis 

Based on the above observations concerning the MCSM results for many 

homogeneous and heterogeneous slopes with different geometries, the authors 

propose a rapid analysis approach as follows that should be sufficient for rapid 

engineering use. The ‘pseudo’ reliability indices are used in the search for the critical 

probabilistic slip surface, i.e., the optimization problem can be summarized as 

 min min ,ps p xy  , where ps  represents the pseudo reliability index for the 



statistical properties of a given slip surface defined by its location parameters. The 

search for the critical probabilistic slip surface becomes as easy as that for the critical 

deterministic slip surface: The procedures are actually similar to that for the critical 

probabilistic slip by harmony search with the following revisions: 

1. Only two safety factors (or more but limited, as chosen by the users) are required 

within each iteration step, and the smaller reliability index is then computed; 

2. Instead of factor of safety, put the reliability as the objective function in the 

minimization harmony search. 

3. It should be noted that at the end of the search, the true reliability index for the 

critical slip surface should be recalculated using the larger value of Ns.  

An alternative approach is to obtain the ‘true’ reliability index by the ‘correlation 

curve equation’ if one is available. The present proposal can be viewed as another 

approximate method for the determination of the system reliability of a slope, which 

is suitable for routine design and analysis by the engineers. Even though the present 

proposal is not rigorous by nature, it is good enough for normal application and can 

perform better than using the cdss which is commonly adopted for practical problems. 

 

Illustration of the results from rapid analysis using previous examples 1 and 2 

The proposed approach is then applied to the two above-mentioned examples, and the 

results are compared with those from the literature. Consider the first example, where 

both circular and non-circular slip surfaces are considered using the Simplified Bishop 

Method and the load factor method to determine the safety factors. The results by 

Bhattacharya et al. (2003) with the critical deterministic slip surface and the critical 

probabilistic slip surface are given in Fig.11. The results from the proposed approach 

and the results by Bhattacharya et al. (2003) are given in Table 5. It can be noted from 

Table 5 that all of the reliability indices for the critical deterministic slip surface are 

greater than those for the critical probabilistic slip surface. In addition, the reliability 

indices for the two references slip surfaces by Bhattacharya et al. (2003) are 

recalculated using the MCSM, and the results are all greater than those determined by 

the present study. It is clear that the results as given by Bhattacharya et al. (2003) are 



not the minimum reliability index of the critical probabilistic surface.  

 

Table 5 Summary of reliability indices for the problem in Fig.10 

Shape of 

slip 

surface 

and 

distributio

n type 

Circular slip surface 

 

Non-circular slip surface 

(load factor method) 

cdss cpss cdss cpss Bhattachary

a (cdss) 

Bhattachary

a (cpss) load 

factor 

Bishop load 

factor 

Bishop 

Normal 

distributio

n 

2.0

0 

2.01

3 

1.98

5 

1.99

7 

1.93

2 

1.91

0 

2.033 2.051 

Lognormal 

distributio

n 

2.2

5 

2.26

1 

2.23

3 

2.24

0 

2.14

7 

2.12

0 

2.303 2.311 

 

Note: cdss=critical deterministic slip surface, cpss=critical probabilistic slip surface 
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Fig.11 Summary of critical slip surfaces for example 1 

 

The results for the second example are summarized in Table 6, as the unit weight is 

not given by Bhattacharya et al. (2003). In the present study, two combinations of unit 

weights for the two soil layers are assumed. In the first combination, a unit weight of 



18.0kN/m3 is assumed for both of the two layers of soil. For the second combination, 

a unit weight of 18.0 kN/m3 is assumed for layer 1, and a unit weight of 48.0 kN/m3 is 

assumed for layer 2. The critical deterministic slip surface and the critical 

probabilistic slip surface as given by Bhattacharya et al. (2003) are shown in Fig.12. 

The reliability indices of these two slip surfaces are recalculated using the MCSM for 

different combinations of unit weights and for different distribution types. It is noted 

that there are differences in the location of the slip surface based on the reliability 

indices. For the critical deterministic slip surface (‘cdss’), the reliability index is much 

larger than that for the ‘cpss’ with the same parameters. From this result, it is clear 

that the adoption of the critical deterministic slip surface to determine the reliability 

index may not be generally acceptable. 

 

Table 6 Summary of reliability indices for the problem in Fig.11 (soil number 

from top to bottom) 

Shape of slip surface 

and distribution type 

Non-circular slip surface 

(load factor method) 

cdss cpss Bhattacharya 

(cpss) 

Bhattacharya 

(cdss) 

Both unit 

weight of 18.0 

kN/m3 

Normal 

distribution 

3.840 2.408 3.897 4.089 

Lognormal 

distribution 

4.770 3.230 5.422 5.235 

One is 18 

kN/m3 and the 

other is 48.0 

kN/m3 

Normal 

distribution 

3.707 2.393 3.897 5.639 

Lognormal 

distribution 

4.906 3.200 5.422 7.884 
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Fig.12 Summary of critical slip surfaces for example 2 

 

Illustration of the results from rapid analysis using example 3 

The third example is a three-layer slope with a cross-section, as given in Fig.13, while 

the geotechnical statistical parameters are given in Table 7.  
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Fig. 13 Cross-section of the heterogeneous slope in Example 3 

Table 7 Mean values and standard deviations for soil property parameters (soil 

number from top to bottom) 

layers  (kN/m3) c (kPa)  (º) 

c  c      

1 19.5 0.0 0.0 38.0 5.71 

2 19.5 5.3 0.7 23.0 2.86 

3 19.5 7.2 0.2 20.0 2.86 

 



The critical deterministic slip surface is given in Fig.13, while the corresponding 

safety factor is 1.392 by the Simplified Bishop method. The reliability indices for the 

critical deterministic slip surface are 3.281 and 3.802 for the normal distribution and 

lognormal distribution assumptions, respectively. The critical probabilistic slip surface 

is located only within the first layer and the minimum reliability indices are 1.918 and 

2.264, corresponding to the normal and lognormal distribution assumptions, 

respectively. The considerable difference in the location of the critical deterministic 

slip surface and the critical probabilistic slip surface, as well as the reliability indices, 

is clearly noted in this third example. Using the critical deterministic slip surface as 

the critical probabilistic slip surface may be acceptable in certain cases, but it may 

also leads to a large error in other cases, and great care should be taken concerning 

this problem. A summary of the reliability indices are given in Table 8. 

 

Table 8 Summary of reliability indices for example 3 in Fig.13 

Shape of slip surface 

and distribution type 

circular slip surface 

(Simplified Bishop Method) 

cdss cpss 

Normal distribution 3.281 1.918 

Lognormal distribution 3.802 2.264 

 

Illustration of the results from rapid analysis using example 4 

The fourth example is considered by Zolfaghari et al. (2005). The cross section of the 

slope is given in Fig.14, and the statistical parameters are given in Table 9. 
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Fig. 14 Cross-section of Zolfaghari slope in Example 4 

 

Table 9 Mean values and standard deviations for soil property parameters (soil 

number from top to bottom) 

layers  (kN/m3) c (kPa)  (º) 

  
c  c      

1 19.0 0.9 15.00 1.5 20.0 2.0 

2 19.0 0.9 17.00 3.4 21.0 1.9 

 19.0 0.9 5.00 0.5 10.0 0.6 

 19.0 0.9 35.00 7.0 28.0 2.8 

 

Table 10 Summary of reliability indices for the problem in Fig.14 

Shape of slip surface 

and distribution type 

Non-circular slip surface 

(load factor method) 

cdss cpss Zolfaghari

Normal distribution 2.46 2.41 2.79 

Lognormal distribution 2.60 2.55 3.02 

 

It can be seen from Fig. 14 that the left ends of the critical deterministic slip surface 



and the critical probabilistic slip surface are practically identical, but considerable 

differences can be found at the middle and the right exit ends of the slip surfaces. The 

results from the rapid method, as proposed in this paper, are actually better than those 

given by Zolfaghari et al. (2005), which is a further support to the application of the 

fast method for routine analysis and design.  

 

Illustration of the results from rapid analysis using example 5 

A further example in which vertical surcharge is applied is given for the problem in 

Fig.15, while the soil parameters are given in Table 11. The analyses are carried out 

for the cases of circular and non-circular slip surfaces. This case is special in that the 

soil cohesion is notably low for soil layer 2, which creates a special slip surface and 

increases the difficulty of the optimization search. From the results as shown in Table 

12, the reliability indices for cpss are always lower than those from cdss, which is 

similar to the above cases, and the differences are more pronounced for non-circular 

slip surfaces. 
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 Fig.15 A problem with three soils and vertical pressure for non-circular slip surface analysis 

Table 11 Mean values and standard deviations for soil property parameters (soil 

number from top to bottom) 

layers  (kN/m3) c (kPa)  (º) 

c  c      

1 11.0 20.0 2.0 5.0 0.0 



2 11.0 2.0 0.0 5.0 0.0 

3 11.0 25.0 0.0 5.0 0.0 

 

Table 12 Summary of reliability indices for the problem in Fig.15 

Shape of slip surface 

and distribution type 

circular slip surface 

(Simplified Bishop Method) 

cdss cpss 

Normal distribution 3.75 3.73 

Lognormal distribution 4.36 4.35 

 

 

 

Shape of slip surface 

and distribution type 

Non-circular slip surface 

(load factor Method) 

cdss cpss 

Normal distribution 3.913 3.622 

Lognormal distribution 4.514 4.092 

 

Discussion  

For such places as Hong Kong and other countries that are well-known for frequent 

slope failures, where the slopes are composed of three to four layers of soils with 

varying soil parameters, the classical approach in evaluating the critical deterministic 

slip surface and determining the reliability index based on this slip surface is 

commonly practiced. A full analysis for the true reliability index using the full Monte 

Carlo simulation method is seldom applied, due to the excessive time requirement for 

the analysis. While this approach may be acceptable in some cases, the authors, as 

well as other researchers, have commented that there are many cases where the 

critical deterministic slip surface may not provide the critical reliability index. To 



attempt to solve this problem, the authors have constructed thousands of test problems 

with arbitrary geometry and soil parameters for a reliability study of slope based on 

this study. 

 

By nature, slope stability analysis is a nonlinear problem for the soil parameters. The 

reliability index based on cdss is hence not necessarily the true minimum reliability 

index. Based on the results from the MCSM for both homogeneous and heterogeneous 

slopes (more than thousands from internal studies but not shown in the present paper), 

an interesting phenomenon is observed, and a rapid approach in reliability analysis is 

proposed. The main advantage of the proposed fast approach is that two safety factor 

calculations (or more if needed) are required within each iteration step during the 

search for the critical probabilistic slip surface in the present paper. Though the 

reliability index for the critical probabilistic slip surface does not fully represent the 

reliability of the slope as a system, the critical probabilistic slip surface and the 

reliability index are still useful to many geotechnical engineers for the assessment. 

The proposed method is applicable to any specific stability analysis method, and the 

Bishop and load factor methods are adopted simply because of their simplicity and 

popularity in Asia. Based on the present results for several examples, as well as other 

results from internal studies, it is found that there is a high correlation between the 

pseudo-reliability indices and the true reliability indices for different conditions. 

Although the ‘pseudo’ reliability index for a given slip surface is greatly different 

from the ‘true’ reliability index, the correlation coefficient between the ‘pseudo’ and 

‘true’ series of values is greater than 0.9 (usually greater than 0.95) for all of the cases 

that have been tested by the authors, as well as many other cases not shown in this 

paper. This result is the basis for the rapid search approach proposed in this study. For 

those problems with a correlation less than 0.95 but greater than 0.9, they are usually 

problems with highly contrasting soil parameters that may not be found for real cases. 

There are only few test cases with a correlation less than 0.9 experienced by the 

authors, which supports the use of the fast method as a practical tool for engineers in 

routine analysis and design work. If the engineers intend to obtain better results, the 



improvement in the result can be achieved by using more safety factor calculations 

within each iteration step (Ns > 2) during the search for the critical probabilistic slip 

surface, and the computer code that the authors have developed have allowed for this 

requirement. For normal engineering works where very high accuracy may not be 

required, the use of two computations is however adequate in general. 

 

The authors have performed several thousands of tests in homogeneous and 

non-homogeneous slopes, and the performance of the fast method is actually good in 

nearly all cases. It is noticed that in most cases, the fast method will give similar or 

smaller reliability indices as compared with cdss with only few exceptions. In actual 

application, the fast method is applied while the reliability index for cdss is also 

suggested to be evaluated as a counter-check for routine analysis and design. 

Determination of the reliability indices from the cdss and fast method approaches are 

much fast in operation (usually within 20 minutes) as compared with the full Monte 

Carlo simulation (may require one day computation). The results from cdss or the fast 

method can be useful to the engineers in their works, particularly when there are 

significant amount of construction works undergoing in Asia. 

 

The present fast approach can be incorporated into many research and commercial 

codes easily with a minor effort, and a good approximation of the reliability index for 

a given problem can be determined within minutes which is suitable for normal 

engineering use. At present, reliability analysis is not commonly considered for 

routine slope design work because of the long computation time, and it is suggested to 

adopt the present rapid approach that can provide an acceptable solution within an 

acceptable time period suitable for routine engineering analysis and design work. In 

fact, the fast method has already been used with satisfaction by some engineers for 

normal engineering works in Hong Kong. 

 

Conclusion 

Classically, cdss is used by the engineers for simplicity, while the full MCSM analysis 



is seldom performed, due to the lengthy computation required. In this paper, cdss is 

demonstrated to be a poor assessment of the reliability index of slope for certain cases 

from five examples (many more in the internal studies). Even though the proposed 

fast method for cpss, as suggested in the present paper, is based on the observations of 

many test problems without any theoretical background, the authors have carried out 

thousands of trial tests to confirm the applicability, and the results have supported this 

method for limit equilibrium analysis. For the full MCSM results, the analysis must 

be calculated with extensive computational effort that may require one or more days 

of computations, while the fast method requires less than half an hour for the analysis. 

For highly important cases or complicated problems, the full MCSM is still 

recommended. Conversely, the rapid approach, as proposed in the present study, is 

targeted toward the majority of slopes requiring routine analysis and design, and the 

test results, as given in the present study, support the adoption of the proposed rapid 

method for normal routine engineering work with a significant saving in 

computational time.  
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List of symbols 

 

G(X) Performance function, X=input parameters vector 

Fs(X) Factor of safety function 

f(x)  Interslice force function, and x is a normalized distance from 0 to 1.0 

Z  Samples of variables 



PDF Probability density function 

Ns  Total number of samples 

Pf  Failure probability 

 Trial failure surface 

 Reliability index 

  Mean values of variables 

 Standard deviation of the variables 

Nm  Number of trials for deterministic search 

p  The set of input geotechnical parameters (c’,’….etc.) 

c’  Soil cohesive strength 

’  Soil friction angle 

 Unit weight of soil 

ru  Pore pressure ratio 

xy  coordinates of trial failure surface 

Hr  Harmony memory consideration rate 

Pr  Pitch adjusting rate 

Nt  Maximum number of iteration in harmony search 

i  random variables, which may be either normal distributed or lognormal 

distributed 

i  Normal distributed random variables for which each variable is independent 

of the others 
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