
 1 

A Dynamic Landslide Hazard Assessment System for 1 

Central America and Hispaniola 2 

 3 

D. B Kirschbaum1, T. Stanley,1,2, J. Simmons3 4 

[1]{Hydrological Sciences Laboratory, Goddard Space Flight Center, Greenbelt, Maryland} 5 

[2]{Universities Space Research Association, Columbia, Maryland} 6 

[3]{Columbia University, New York, New York} 7 

Correspondence to: D. B. Kirschbaum (dalia.b.kirschbaum@nasa.gov) 8 

 9 

Abstract 10 

Landslides pose a serious threat to life and property in Central America and the Caribbean 11 

Islands. In order to allow regionally coordinated situational awareness and disaster response, 12 

an online decision support system was created. At its core is a new flexible framework for 13 

evaluating potential landslide activity in near real-time: Landslide Hazard Assessment for 14 

Situational Awareness. This framework was implemented in Central America and the 15 

Caribbean by integrating a regional susceptibility map and satellite-based rainfall estimates 16 

into a binary decision tree, considering both daily and antecedent rainfall. Using a regionally 17 

distributed, percentile-based threshold approach, the model outputs a pixel-by-pixel nowcast 18 

in near real-time at a resolution of 30 arcsecondsarc-seconds to identify areas of moderate and 19 

high landslide hazard. The daily and antecedent rainfall thresholds in the model are calibrated 20 

using a subset of the Global Landslide Catalog in Central America available for 2007-2013. 21 

The model was then evaluated with data for 2014. Results suggest reasonable model skill over 22 

Central America and poorer performance over Hispaniola, due primarily to the limited 23 

availability of calibration and validation data. The landslide model framework presented here 24 

demonstrates the capability to utilize globally available satellite products for regional 25 

landslide hazard assessment. It also provides a flexible framework to interchange the indiviual 26 

model components and adjust or calibrate thresholds based on access to new data and 27 

calibration sources. The availability of free, satellite-based near real-time rainfall data allows 28 

the creation of similar models for any study area with a spatiotemporal record of landslide 29 



 2 

events. This method may also incorporate other hydrological or atmospheric variables such as 1 

numerical weather forecasts or satellite-based soil moisture estimates within this decision tree 2 

approach for improved hazard analysis. 3 

 4 

1 Introduction 5 

The ability to estimate or forecast landslide hazard activity is largely dependent on the scale at 6 

which the analysis is undertaken as well as the availability of geomorphologic, atmospheric, 7 

and landslide data accessible for the study region. Physically based models focusing on the 8 

local hillslope scale require a broad range of geotechnical and hydromechanical in situ 9 

variables for accurate modelling of individual slope failures (Baum et al., 2010; Liao et al., 10 

2012; Montgomery and Dietrich, 1994; Montrasio et al., 2011). Empirical studies can focus 11 

on local to regional scales but are constrained by the availability of landslide information and 12 

surface products that can be used to create a homogenous picture of landslide hazard over the 13 

region. The timing of rainfall-triggered landslides is challenging to predict due to the scarcity 14 

of real-time precipitation measurements, in situ landslide inventories and information about 15 

local ground conditions. Satellite rainfall products provide the opportunity to approximate the 16 

conditions that lead to rainfall-triggered landslides over regional scales, especially where rain 17 

gauge networks are sparse. The Tropical Rainfall Measuring Mission (TRMM) and its 18 

successor, the Global Precipitation Measurement (GPM) mission, provide a multi-decadal 19 

record of precipitation estimates that can be used to systematically evaluate rainfall and 20 

estimate landslide triggering relationships over multiple spatial and temporal scales 21 

(Kirschbaum et al., 2012a; Ray and Jacobs, 2007; Rossi et al., 2012).  22 

Previous work has used rainfall intensity-duration (I-D) thresholds to estimate the landslide 23 

hazard over time at a variety of spatial scales (Berti et al., 2012; Caine, 1980; Godt et al., 24 

2006; Guzzetti et al., 2008; Li et al., 2011; Mathew et al., 2014; Saito et al., 2010; Terlien, 25 

1998). Landslide susceptibility zonation studies have examined the components of landslide 26 

hazard using a range of heuristic (Farahmand and AghaKouchak, 2013; Hong et al., 2007; 27 

Mora and Vahrson, 1994; Nadim et al., 2006) and statistical (Eeckhaut et al., 2009; Lee and 28 

Pradhan, 2007; Pradhan and Lee, 2010) models at diverse spatial scales. Recent work has also 29 

combined both rainfall accumulation thresholds and susceptibility information to provide 30 

early warning for landslides at a sub-national level (Lagomarsino et al., 2013; Martelloni et 31 

al., 2012; Segoni et al., 2014).  Kirschbaum et al. (2012b) adapted a prototype global system 32 
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developed by Hong et al. (2006) into a dynamic landslide model at the regional scale that 1 

applied a single I-D threshold to TRMM Multi-satellite Precipitation Analysis (TMPA; 2 

Huffman et al., (2007, 2010) precipitation data and a susceptibility map for four countries in 3 

Central America: Honduras, Nicaragua, El Salvador and Guatemala. The Landslide Hazard 4 

Assessment for Situational Awareness (LHASA) model presented here builds upon the this 5 

previous work to develop a dynamic regional framework that provides estimations of regional 6 

landslide hazard in near real-time across multiple countries in Central America. The model 7 

incorporates a new landslide susceptibility map developed for Central America and the 8 

Caribbean region (Kirschbaum et al., 2015a) with local percentile-based rainfall and 9 

antecedent rainfall thresholds. LHASA has been incorporated into a prototype regional natural 10 

hazard website: http://ojo-streamer.herokuapp.com/meso. The public is now able to view a 11 

daily map identifying moderate and high landslide hazard areas, static landslide susceptibility, 12 

precipitation and antecedent rainfall over the study domain and download the model’s major 13 

data inputs. 14 

This study proposes one method for approxestimating addresses the challenge of providing a 15 

near real-time estimation of potential landslide activity across broad regions using when there 16 

arewith sparse in situ landslide inventories and other in situ information. Ideally, an empirical 17 

relationship between precipitation and landslide occurrence would be based on a long 18 

historical landslide record with many events and corresponding gauge-based rainfall at the 19 

local scale (Frattini et al., 2009; Guzzetti et al., 2007). However, due to the dearth of both 20 

landslide information and rainfall gauges over this region, extracting local I-D thresholds was 21 

not possible. The approach presented here leverages the long-term TMPA precipitation record 22 

to relate landslide events from the Global Landslide Catalog (GLC) to a statistical distribution 23 

of rainfall from 20010-2013. While intense rainstorms are the most important trigger of 24 

landslides in the Caribbean region (Larsen and Simon, 1993), landslides are often exacerbated 25 

by prior soil moisture conditions (Nadim et al., 2009). Using antecedent daily rainfall has 26 

been shown to help predict landslides, especially those cases where the triggering 27 

precipitation event is small (Cepeda et al., 2009). The LHASA model incorporates an 28 

antecedent rainfall index (ARI) to represent the conditions prior to the day of the triggering 29 

event. Since the relationship between rainfall, antecedent rainfall, susceptibility and landslide 30 

triggering is not linear, we employ a binary decision tree approach to test the feasibility of the 31 

model to accurately resolve landslide nowcasts while minimizing the overall number of alerts 32 

issued. This paper first presents an overview of the regional application of the model and data 33 
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used for this study. Next the LHASA threshold-based decision tree model framework is 1 

presented and calibration and validation procedures for parameterizing the model over Central 2 

American and the Caribbean are outlined. Lastly, the paper concludes with a discussion 3 

outlining the applicability of this model framework across a range of spatiotemporal scales 4 

and the possibility of using different hydrometeorological and in situ data products. 5 

 6 

2 Data 7 

2.1 Regional Setting 8 

The LHASA model provides a flexible architecture that can be applied over a variety of 9 

spatiotemporal scales by leveraging regional environmental, climatic and landslide data. The 10 

model was initially developed to serve two regions: Central America and Hispaniola. The 11 

Central America study area ranges from 93 to 76⁰ west longitude and from 6 to 19⁰ north 12 

latitude. In addition to the nations of Central America, the analysis includes Jamaica and 13 

small portions of Mexico and Colombia. Central America has a tropical climate and a wide 14 

range of terrain dominated by the Central American Volcanic Arc along the western coast and 15 

active geologic faults throughout the region. The region experiences intermittent spring rains 16 

and a long rainy season from July through November, marked by landfalling tropical cyclones 17 

from the Caribbean Sea and eastern Pacific Ocean. These heavy rains combine with tectonic 18 

activity to make Central America a hotspot for landslide activity (Nadim et al., 2006). The 19 

Hispaniola study area encompasses Haiti, the Dominican Republic and Puerto Rico. The 20 

timing and intensity of the rainy season varies across Hispaniola due to five major mountain 21 

ranges across the island, with elevations varying from 3,000 meters to below sea level. Due to 22 

the associated rain shadow, annual precipitation varies from over 2,500 mm in the elevated 23 

northern regions to as little as 500 mm in the semi-arid southern regions (Alpert, 1941). In 24 

Haiti, the impact of earthquakes and tropical cyclones on deforested slopes with poorly 25 

constructed dwellings makes this area exceptionally vulnerable to landslides (Mora, 1995). 26 

All of the countries in this region have experienced significant losses from landslides as a 27 

result of previous disasters such as Hurricane Mitch in 1998 and the 2010 Haiti earthquake, 28 

among others (Guha-Sapir et al., 2014). This region is also very likely to suffer significant 29 

losses from landslides as a result of changing precipitation and tropical cyclone patterns in a 30 

changing climate (IPCC, 2007).  31 
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2.2 Landslide Catalogs 1 

consistently There are several different landslide inventories available within Central America 2 

that have varying geographic extents, compilation methodologies, temporal information and 3 

accuracies. We used four landslide inventories to develop and test the regional landslide 4 

susceptibility map, which are outlined in (Kirschbaum et al., 2015a). These inventories 5 

include: 1) landslides triggered by Hurricane Mitch in 1998, compiled by USGS and others 6 

(Bucknam et al., 2001; Cannon et al., 2001; Crone et al., 2001; Harp et al., 2004); 2) a 7 

historical Nicaragua database compiled by (Devoli et al., 2006, 2007); 3) a historical landslide 8 

database from El Salvador (Gerencia de Geología, 2012); and 4) the Global Landslide 9 

Catalog. While each of these inventories were useful in various ways to compute the regional 10 

static susceptibility map, the GLC had the most relevant spatial and temporal information for 11 

calibrating and evaluating the LHASA model. As a result, In order to understand the 12 

conditions under which landslides occur and evaluate model performance, a record of 13 

historical landslides was selected from the GLC (Kirschbaum et al., 2010). We also selected 14 

24 landslides from the El Salvador inventory compiled by the Ministry of the Environment 15 

and Natural Resources (MARN) (Gerencia de Geología, 2012). No times of occurrence were 16 

available for these points, nor were spatial accuracies defined. The combined landslide data 17 

covered the years 2007-2013. 18 

Despite its limitations of this catalog, the GLC is a key resource in systematically evaluating 19 

landslide patterns and represents the only event-based landslide database available across all 20 

countries in Central America and the Caribbean Region. The GLC is populated primarily 21 

from media reports, but it also incorporates online disaster databases, and personal 22 

communication in some instances. Due to the compilation methodology of the GLC, there are 23 

several types of biases error that impact the accuracy of the catalog, including regional 24 

reporting biases, variations in cataloging methodology, and report accuracy. Kirschbaum et al. 25 

(2015b) outlines these biases in more detail. Another uncertainty stems from the landslide 26 

typologies presented in this catalog. The GLC includes all mass movements that are reported 27 

to have been triggered directly by rainfall (including debris flows, mudslides, rock falls, etc.), 28 

all of which we herein refer to all as landslides. While it is often impossible to differentiate 29 

between landslide types from only a media report unless detailed descriptions or a photo is 30 

included, we believe that the majority of landslides that are used to calibrate and evaluate the 31 

LHASA model are rapid, shallow in nature with compositionsmovements of soil, rock, and 32 
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other debris that occur rapidly (opposed to creeping events). The size of each landslide is 1 

often even more difficult to determine in most cases, but based on reporting many of the 2 

reported landslides often occur above roads and tend to be narrow, long runout debris flows. 3 

These assertions are based on review of GLC event entries as well as previous work in this 4 

region (Bucknam et al., 2001; Cepeda et al., 2010a; Devoli et al., 2006, 2008). Despite the 5 

limitations, this database is a key resource in systematically evaluating landslide patterns and 6 

represents the only event-based landslide database available across all countries in Central 7 

America and the Caribbean Region. In many cases, there is uncertainty on exactly where and 8 

when the landslide took place due to limited information. As a resultTo limit the effects of 9 

this problem, only rain-triggered landslides with a spatial accuracy of 25 kilometres or better 10 

and a known date of occurrence were chosen. From this selection, 99 landslides from Central 11 

America and 24 landslide events from Hispaniola were used for this study (Figure 1). The 12 

exact time of occurrence was only known for 17 of these reports. Because the landslides 13 

occurred in multiple time zones, it was necessary to correct a few dates. However, no time 14 

zone correction could be made for the vast majority of events; thus, in addition to any errors 15 

present in the original report, it is likely that some landslides may have actually occurred on a 16 

different UTC date than the date of record. In addition to the GLC, 24 landslides were 17 

selected from a catalog compiled by El Salvador’s Ministry of the Environment and Natural 18 

Resources (MARN) (Gerencia de Geología, 2012). No times of occurrence were available for 19 

these points, nor were spatial accuracies defined. The combined catalog covered the years 20 

2007-2013.  21 

In 2014, 877 new landslides were added to the GLC. These were not available during the 22 

development of the dynamic landslide model and represent an independent dataset of the 23 

same type as the 2007-2013 catalog. 79 landslides were located within the study areas 24 

described above, accounting for 49 deaths and 30 injuries. Of these, 56 were known to be 25 

triggered by rain and had a spatial accuracy better than 25 kilometres. Due to the submission 26 

of a single detailed report, the exact location of 14 landslides was known. However, these 27 

points represent a single cluster of landslides occurring on June 23rd, 2014 near El Ayote, 28 

Nicaragua (INETER, 2014). In order to reduce the weight placed on this cluster, 6 closely 29 

spaced landslides were pruned from the GLC. The resulting 2014 catalog used in the analysis 30 

includes 42 landslides that occurred in Central America, 1 in Jamaica, and 7 that occurred in 31 

the Hispaniola study area.  32 
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2.3 Susceptibility Map 1 

A susceptibility map was created for all of Central America and the Caribbean Islands at a 2 

resolution of 30 arc-seconds with the goal of discriminating susceptible from non-susceptible 3 

regions (Figure 1) (Kirschbaum et al., 2015a). In order to achieve a consistent output across 4 

the region, one regional dataset (faults) and three global datasets (slope, soils, and roads) 5 

geographic datasets were combined (Table 1). These datasets variables were selected from a 6 

modified sensitivity analysis conducted over parts of the regionon the basis of geographic 7 

extent, consistency, expert opinion, and empirical relevance. Several differentother surface 8 

variables, such as percent forest cover and geology, were also tested within the susceptibility 9 

model framework, but did not enhance predictions. In some cases, variables that were largely 10 

redundant (e.g. cation exchange capacity) were .eliminated, despite good validation results.  11 

The distance to the nearest major fault was derived from a geologic map of the Caribbean 12 

(French and Schenk, 2004). The United States Geological Survey (USGS) produced a global 13 

product highlighting statistical properties of slope and elevation (e.g., median, maximum, 70th 14 

percentile, etc.) where Shuttle Radar Topography Mission (SRTM) data was aggregated from 15 

the nominal resolution (3 arc-seconds) to 30 arc-seconds (Verdin et al., 2007). The 70th 16 

quantile percentile slope gradient was considered for this evaluation because the slope 17 

distribution most closely correlated to the 3 arc-second SRTM data for reported landslide 18 

locations. The distribution of major soil types was obtained in raster format from the 19 

Harmonized World Soil Database (FAO/IIASA/ISRIC/ISSCAS/JRC, 2012). The variable 20 

“percent clay” was selected to represent the regional soil properties. Road locations were 21 

obtained from the Global Roads Open Access Data Set, Version 1 (CIESIN and ITOS 2013).  22 

These 4 layers were overlaid in ArcGIS through the use of fuzzy operators. First, each 23 

variable was transformed into a “possibility” between 0 (representing low landslide hazard) 24 

and 1 (representing high hazard) through the use of a fuzzy membership function. Next, the 25 

non-topographic variables were combined with a “fuzzy gamma” function, in which gamma 26 

was set to 0.4. Finally, the output was overlaid with the transformed slope values with the 27 

“fuzzy product” operator, a simple function chosen to prevent the identification of flat ground 28 

as hazardous.  29 

Using the standard deviation classification scheme, the susceptibility map was divided into 5 30 

categories that represented relative hazardsusceptibility: very low, low, medium, high, and 31 

very high. Four historical landslide catalogs—varying greatly in temporal and, spatial scale, 32 
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size, and completeness—were used to evaluate the susceptibility map. Figure 2 compares the 1 

distribution of the 5 susceptibility categories at recorded landslides to the distribution over the 2 

total study area. Few landslides occurred in locations rated as having “very low” landslide 3 

susceptibility (SI = 1), despite the fact that this is the largest category by area. These locations 4 

were not considered susceptible to landslides for the purposes of the binary decision tree 5 

model.  6 

2.4 Rainfall Estimates 7 

Satellite precipitation estimates from the Tropical Rainfall Measuring Mission (TRMM) Real-8 

Time Multi-Satellite Precipitation Analysis (TMPA-RT) are available at a resolution of 0.25 x 9 

0.25 degrees (Huffman et al., 2007, 2010). This product provides a snapshot of precipitation 10 

rates utilizing TRMM and other satellites to provide a precipitation map every 3 hours from 11 

50⁰N-S. TMPA-RT data is available from March 2000 to the present. For this analysis, the 3-12 

hourly files were merged to compute daily rainfall totals were usedfor this region. The Global 13 

Precipitation Measurement (GPM) mission was launched in February, 2014 and is a global 14 

successor to TRMM. GPM’s multi-satellite product called IMERG (Integrated Multi-Satellite 15 

Retrievals for GPM) is already providing data, although TMPA-RT will continue to be 16 

processed into the near future.  17 

 18 

3 Methods 19 

The model inputs to LHASA required several processing and calibration steps before they 20 

could be directly applied. Unless otherwise noted, all calculations were performed in the 21 

statistical programming language, R v3.1.2 (R Core Team 2013). Raster operations were 22 

performed with the “raster”, a third-party package for R (Hijmans and van Etten, 2014). All 23 

raster files were resampled to a resolution of 30 arc-seconds, the same as the susceptibility 24 

map, using the nearest neighbour method, and clipped to the two study areas. Thus, each pixel 25 

represents a data point of approximately 1 square kilometre (30 arcsecondsarc-seconds) and 26 

the model is run every 24 hours. Where possible, the dates of landslides were adjusted to 27 

match the time zone of the daily rainfall data. The landslide catalog was converted from a 28 

shapefile to a series of daily presence/absence landslide rasters over the same extent as the 29 

rainfall files. This format enabled landslide events to be directly compared to the daily maps 30 
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of landslide hazard outputs of the LHASA model. Most raster operations were performed in 1 

parallel on a Linux server.  2 

3.1 Landslide Catalog 3 

The landslide catalogs used to calibrate this model are known to contain both spatial and 4 

temporal errors (Kirschbaum et al., 2015b). The spatial accuracy of each landslide point was 5 

estimated at the time of recording. Although the least accurate reports were not used in this 6 

study, some landslides may have occurred as much as 25 kilometres from their reported 7 

locations. In these cases, as well as with more accurate reports, the terrain and rainfall where 8 

the landslide occurred may differ from the conditions at the reported coordinates. In addition, 9 

the exact date and time of an event is often unknown. To evaluate the extent to which 10 

landslide reports were incorrectly evaluated as false negatives due to spatiotemporal 11 

uncertainty, landslide points were spatially and temporally buffered. Temporal uncertainties 12 

were accounted for by considering 1, 3 and 7-day windows surrounding the reported landslide 13 

date. Spatial uncertainties were evaluated by considering the exact location of the reported 14 

landslide, 1 and 5 km circular buffers surrounding the location, as well as a variable buffer 15 

based on the spatial accuracy denoted in each landslide entry. For this analysis, if a nowcast 16 

was generated anywhere within the buffer spatiotemporal window, we considered this 17 

nowcast to be a success (true positive). There are challenges inherent with this assumption, 18 

which are outlined in the Discussion section. True Positive positive Rates rates were 19 

calculated for each combination of windows. 20 

3.2 Daily Rainfall 21 

Owing to the diverse topography, coastal zones and prevailing wind patterns, rainfall is 22 

unevenly distributed over the Central America and Hispaniola study regions. There have been 23 

many different approaches to representing the intensity-duration rainfall triggering 24 

relationships at various scales including critical rainfall (Aleotti, 2004; Li et al., 2011; Saito et 25 

al., 2010; Tiranti and Rabuffetti, 2010), normalized rainfall or return periodsusing mean 26 

annual precipitation (Dahal and Hasegawa, 2008; Hromadka II et al., 2010; Terlien, 1998), 27 

return period (Hromadka II et al., 2010) and the combination of multiple thresholds (Brunetti 28 

et al., 2010; Cepeda et al., 2010b; Chleborad et al., 2006), among others. Many of these 29 

approaches are summarized in Guzzetti et al. (2008). One of the challenges with approaching 30 

rainfall-triggering relationships at a regional scale is that the prevailing precipitation regimes 31 
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are regionally heterogeneous. As a result, developing a single regional intensity-duration 1 

threshold to represent the landslide triggering relationships across this region was not optimal. 2 

To address this problem, we considered the statistical distribution of daily rainfall over a 13-3 

year record, using percentiles to create a precipitation metric that could be compared across 4 

morphologies and landslides events. A daily precipitation time series from January 1st, 2001 5 

to December 31st 2013 was prepared for each pixel over the study region and days with no 6 

rainfall were removed from the calculations. Then, every 5th percentile was calculated from 7 

the distribution of non-zero values using the “quantile” function’s default method. The 8 

resulting series of raster files identify the local precipitation distribution at each pixel and 9 

provide a more localized way to address regional landslide triggering (Figure 3). The rainfall 10 

thresholds were then calibrated with the landslide data to assign a separate rainfall threshold 11 

for each 0.25-degree pixel. The calibration procedure is described below.  12 

3.3 Antecedent Rainfall 13 

Real-time measurements of subsurface pore pressure are not available at most locations 14 

within the study area. Satellite-based soil moisture retrievals are often biased or limited over 15 

complex terrain, particularly with dense vegetation (Jackson and Schmugge, 1991; Njoku et 16 

al., 2003). Therefore, remotely sensed rainfall was chosen as a proxy for this variable. Time is 17 

required for rain to infiltrate soil and rock and generate higher pore pressures that lead to 18 

slope instabilities, as well as for pore pressure to dissipate. High levels of precipitation often 19 

trigger landslides, but the amount required to do so is usually dependent upon the volume of 20 

prior rain and the permeability of the soils and rocks. To describe this phenomenon, an 21 

antecedent rainfall index (ARI) was created from the TMPA-RT daily rainfall estimates using 22 

a time-weighted average of the previous 60 days: 23 

∑
∑

=

=
∗

60

1

60

1

t t

t tt

w

pw            (1) 24 

Where t = the number of days before the present, pt = the precipitation at time t, and wt =t -0.5. 25 

This closely resembles the antecedent precipitation index introduced by Kohler and Linsley 26 

(1951). The decay exponent and the 60-day window were chosen by calibrating a preliminary 27 

decision tree model using landslide reports and 500 randomly selected locations.  28 

No rainfall or ARI threshold can serve as a perfect classifier to differentiate landslide and 29 

non-landslide rainfall events because the distributions of these two datasets overlap (Figure 30 
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4). However, Figure 5 shows that the relative frequency of landslides increases at higher 1 

precipitation levels, allowing thresholds for current and antecedent rainfall to be combined in 2 

such a way that the resulting classification is reasonably effective.  3 

3.4 Decision Tree Framework 4 

At the most simplistic level, higher soil moisture values prior to a landslide occurrence can be 5 

a key predisposing factor in future landslide triggering (Wieczorek, 1987). Past dPrevious 6 

decision tree models considering precipitation and antecedent values have been derived at 7 

mostly the city level and apply the trade-off between rainfall and past rainfall infiltration to 8 

create an alert framework (Aleotti, 2004; Godt et al., 2006) or at a regional (sub-national) 9 

scale considering accumulated precipitation and specifying a critical rainfall threshold 10 

(Lagomarsino et al., 2013; Martelloni et al., 2012; Segoni et al., 2014). In this study, 11 

antecedent rainfall was incorporated into a 3-level binary decision tree structure (Figure 6). At 12 

the first level, those pixels believed to have “very low” susceptibility to landslides 13 

(Susceptibility Index of 1 or 0) are excluded from further analysis. All other pixels are 14 

considered as having a non-negligible chance of slope failure. An SI ≥ 2 (low) was chosen to 15 

exclude a large portion of Central America without losing the ability to predict most landslide 16 

events. We selected this binary threshold due to the XXXX. This categorization means that 17 

over XXless than 60% of the study area is considered to be susceptible within the model, 18 

which we feel is reasonable because XXX. , while over 90% of the landslides occurred in 19 

susceptible pixels. easysusceptibility , 20 

At the second level of analysis, the antecedent rainfall value for each pixel is compared to the 21 

50th percentile value. This antecedent rainfall threshold roughly corresponds to the division 22 

between the Central American wet season, during which most landslides occur, and the dry 23 

season (Figure 7b).  At the third level of the decision tree, the current daily rainfall 24 

accumulation is compared to the daily rainfall threshold and a moderate or high landslide 25 

hazard nowcast is issued. If the 50th percentile rainfall is exceeded and the soils are 26 

considered to be wet (ARI > 50th percentile), a moderate hazard level is assigned. If the 27 

rainfall exceeds the 95th percentile, a high hazard is assigned. In dry conditions (ARI < 50th 28 

percentile), a moderate hazard level is assigned if the daily rainfall exceeds the 90th percentile 29 

and a high hazard nowcast is generated if rainfall exceeds the 95th percentile. The “high 30 

hazard” nowcast is designated to represent the extreme triggering conditions under which 31 

landslides have a higher possrobaibility of occurrence; whereas the “moderate hazard” 32 
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nowcasts represent a lower possirobability of potential landslide activity but still represent the 1 

possibility of landslides occurring in the designated areas. With additional data, future work 2 

will seek to assign more probabilistic values onarrowly quantify the probability of landslides 3 

potential tofor each of these hazard classes. 4 

The moderate hazard nowcast thresholds were determinedwas calibrated by comparing 5 

varying the ARI and daily rainfall thresholds, then determining the model’s success for the 6 

123 events from the Central American catalog and optimizing the predominant thresholds for 7 

these instances.  Due to the computational burden, Thethe calibration process involved did not 8 

include every possible set of thresholds due to the compute time, but provided a 9 

representative sample of the percentiles thresholds between the 50th and 95th percentiles for 10 

both ARI and daily rainfall records, not every possible set of thresholds. The model was not 11 

calibrated for the 24 landslides that occurred in Hispaniola because preliminary analysis of 12 

the reported landslide locations indicated that no combination of rainfall thresholds would 13 

provide a good fit to the landslide observations. The high- landslide hazard classification 14 

nowcast was determined based on the desirecreated to provide a representation of extreme 15 

rainfall at any time over the study region. The 95th percentile was chosen based on past 16 

research and qualitative analysis of the rainfall distributions over this area (Kirschbaum et al., 17 

2015b). Further discussion of this topic can be found in the Results section.  18 

Given the triggering variables, surface information and landslide catalogs considered within 19 

LHASA, we posit that the LHASA model is more successful in resolving the potential 20 

conditions for landslides with a mix of soil, rock and other debris, ranging from moderate to 21 

shallow depths and occurring at moderate to high velocities. This assertion is mostly due to 22 

the main types of landslides observed within the study area as well as from the fact that 23 

currently we do not consider other triggering variables such as earthquake occurrence, 24 

anthropogenic triggers (mining, construction, etc.), etc.  25 

3.5 Evaluation 26 

The predictive success of the dynamic landslide model was evaluated with the “distance to 27 

perfect classification” metric, rj (Cepeda et al., 2010a), which combines the true positive rate 28 

(TPR) with the false positive rate (FPR): 29 

))1(( 22 TPRFPRrj −+=          ( 2 ) 30 
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Where TPR = true positives / (true positives + false negatives) and FPR = false positives / 1 

(false positives + true negatives). These metrics are often used to compare binary classifiers 2 

(Fawcett, 2006). In this case, the true positives are pixels where a landslide occurred on the 3 

same date that the model issued a nowcast, the false negatives are pixels where a landslide 4 

occurred on the same date that the model failed to identify the potential for slope failure, the 5 

false positives are pixels where a landslide did not occur on the same date that the model 6 

identified the potential for slope failure, and the true negatives are pixels where the model did 7 

not identify the potential for slope failure and no landslide was reported. The confusion 8 

matrix was calculated for each day in the study period, and then results were summed before 9 

calculating the FPR and TPR. This process was repeated each time the model ran during 10 

calibration. For the 2007-2013 dataset, the TPR varied more rapidly with threshold changes 11 

than the FPR, so changes in rj largely reflected changes in the model’s ability to predict the 12 

occurrence of a relatively small number of landslides (Figure 8). To quantify how the 13 

predictions respond to different levels of accuracy ofin the GLC, we varied the spatial area 14 

from 0 to 25+ km around each of the landslide points as well asand varied the temporal 15 

window considered around each landslide reported date/time by 1, 3 and 7 days. This 16 

provided a way to better quantifycalculate the probability of detection more realistically since 17 

the uncertainty in both the location and the date of the validation landslides was variable.The 18 

predictions were also evaluated across a variety of modest spatial and temporal windows. 19 

After calibration, the same metrics were calculated for an independent 2014 dataset. 20 

Thresholds ranging from XXX – XXX were tested and results with rj statistics and FPR 21 

values are shown in Table 3. 22 

 23 

4 Results 24 

The LHASA model was evaluated over Central America and Hispaniola for 2007-2013 and 25 

then compared with an independent validation dataset for 2014. The best performance, an rj of 26 

0.38, was observed with an antecedent rainfall threshold of the 50th percentile and current 27 

daily rainfall thresholds of the 50th and 90th percentiles. The high hazard threshold (95th 28 

percentile) was not calibrated with the available landslide data. The model results are 29 

summarized in Table 2 and Table 3. The TPR varied depending on the spatiotemporal 30 

window considered for identifying the landslide. As introduced above, we accounted for the 31 

uncertainty in the reported date and location of the landslide by applying spatial and temporal 32 
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buffers around the reported latitude and longitude and date of the event. We considered TPR 1 

results for 1, 3, and 7-day windows surrounding the date of the landslide and 0, 1 and 5 km 2 

buffers, as well as another buffer field that directly appliesequal to the qualitative location 3 

accuracy value reported for the event (ranging from a 0 to 25 km radius surrounding the 4 

landslide location). For each of these buffered windows, if a nowcast were issued anywhere 5 

within the bufferarea considered, we considered it to be a successful prediction. The same 6 

approach was taken for both moderate and high hazard categories.  7 

4.1 Central America (2007-2013) 8 

Results for all regions and time spans considered indicate that generally as the buffer temporal 9 

and spatial window increase, the TPR increases as well. This result is not surprising as it 10 

provides more opportunities for a nowcast to be successful. The temporal window (or spatial 11 

buffer) has more variability in the TPR values at the most conservative tolerances assigned, 12 

ranging from 64% to 83% for the temporal windows and from 64% to 81% for the spatial 13 

windows over Central America. For the high hazard nowcasts, results are considerably lower, 14 

with only a TPR of 26 to 40% based on the spatial buffers and 26 to 47% TPR when a 1, 3 15 

and 7-day window was considered. The FPR for Central America was 11% for the moderate 16 

hazard nowcasts and 1% for the high hazard nowcasts. Table 2 also shows the percentage of 17 

landslides that fall above the threshold (SI ≥ 2) specified in the decision tree structure 18 

according to the spatial buffer considered (maximum susceptibility value was considered 19 

within each buffered area). For Central America, 12 (10%) landslides are located within the 20 

lowest hazard zone of the susceptible pixels. This may be due to the map’s 1-km resolution, 21 

where generally “safe” pixels may contain small areas that are prone to landslides, or due to 22 

the location of the reported landslide (e.g., the landslide was reported in the landslide runout 23 

zone where slopes are very gradual vs. higher up on the slope where the initiation likely 24 

occurred). Implications for this spatiotemporal buffering are presented below.  25 

Even with the largest spatiotemporal buffers applied to the reports, not every landslide was 26 

predicted. For example, one group of landslides was reported in western Costa Rica along the 27 

highway between Balsa de Atenas and Orotina (Figure 89). This report represents at least 5 28 

different rockfalls that occurred over this section of the road, denoted in the figure as a single 29 

point. As the specific location was unknown, a spatial accuracy of 10 kilometres was 30 

assigned. The date of the event was reported as April 14th, 2010, but the exact time is 31 

unknown. The model issued a moderate hazard nowcast for the area east of the reported 32 
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landslide on both the 14th and 15th of April, 2010, but not to the west where the rockfalls 1 

occurred (Figure 8a9a). Because the exact timing of these events was unknown, there was a 2 

possible temporal error of 1 day for this event. A second event occurred in the same area on 3 

May 22nd and a high hazard nowcast was issued in the area of the reported rockfall event 4 

(Figure 8b9b). Figure 7 plots the rainfall and antecedent rainfall for the same area shown in 5 

Figure 89, where four landslides occurred in 2010: April 14th, May 22nd, July 30th, and 6 

November 5th. As described above, a nowcast was not issued for the April 14th event because 7 

it occurred before antecedent rainfall exceeded the 50th percentile, despite the daily rainfall  8 

exceeding the 50th percentile (Figure 8a9a). This specific incident might also be attributed to 9 

slope destabilization associated with recent highway construction because relatively little rain 10 

was required to move these steep slopes out of equilibrium. The May 22nd event generated a 11 

high hazard nowcast (Figure 8b9b). Rainfall totals for July 30th were not substantial enough 12 

to trigger a nowcast. Lastly, a moderate landslide hazard nowcast was issued for the 13 

November 5th event, which occurred the day after a very intense precipitation event.  14 

4.2 Hispaniola (2007-2013) 15 

Because of the limited number of data points in Hispaniola, no calibration was performed in 16 

this study area. Instead, the thresholds calibrated from the Central American catalog were 17 

applied to the rainfall distributions over these islands. A FPR of 9% was observed for the 18 

moderate hazard threshold and 1% for the high hazard threshold. The TPR for the exact 19 

location and date of the reported landslide was 21% (i.e. the model predicted 5 of the 24 20 

landslide events). The high hazard model performed poorly, with a TPR of 17-21% for the 21 

spatial buffers on the day of the landslide. The highest TPR value at the most liberal spatial 22 

and temporal window was 54%. This rate is largely due to the fact that half of the landslide 23 

events are recorded in locations not considered to be susceptible to landslides, as shown in the 24 

far right column of Table 2. The low susceptibility values corresponding to the locations of 25 

the reported events may be due to spatial errors in the GLC, since only 13 of the 24 reports 26 

were assigned an accuracy better than 5 kilometres. As the buffer size increases, the TPR 27 

significantly improves. In addition, 11 of the 24 landslides reportedly occurred on days 28 

without any rainfall. It is likely that some degree of temporal error in the catalog explains this 29 

issuefact. The limited data inventory for Hispaniola may also affect the susceptibility map 30 

calculations over this area. 31 
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4.3 Global Landslide Catalog (2014) 1 

The landslides recorded in the GLC during 2014 make up an independent dataset with which 2 

to evaluate the performance of the thresholds developed for the previous years. The 50 points 3 

in the GLC were separated by study area. The TPR for the Central American study area for 4 

the exact location and date was 58%, while the FPR was 9% for the moderate hazard 5 

nowcasts. By contrast, the TPR for the 7 landslides in the Hispaniola study area was only 6 

43%. If the spatial and temporal tolerance is increased, the TPR rates ranges from 63-91% for 7 

Central America and 57-86% for Hispaniola. Overall, these results are similar to the results 8 

for the period 2007-2013. This suggests that the model is not overfitted to a single dataset. On 9 

the other hand, the fact that the model does not perform as well in Hispaniola over both time 10 

periods suggests that the use of percentile thresholds may be limited to the geographic regions 11 

for which they were developed.  12 

The high hazard nowcasts had a FPR of 1% and consistently gave a TPR of 43% for the 1 and 13 

3-day windows irrespective of the buffer considered, while the 7-day window produced a 14 

TPR of 71%. The TPR values were consistent across all spatial buffers because this very 15 

small dataset (7 events) did not happen to contain any events in which a storm occurred 16 

nearby but not at the reported location of landslide. Three of the reported events had rainfall 17 

that exceeded the 95th percentile, while 2 of the events occurred on fairly dry days. 18 

The use of validation data with substantial spatial and temporal errors makes the evaluation of 19 

model performance difficult. One approach to this issue is to find times and locations near 20 

recorded points that may be closer to the true location of the landslides. Considering model 21 

outputs within 1 day and 1 kilometre (less than the spatial uncertainty of most reports) of 22 

reported landslides raised the TPR of the Central American catalog to 79% and the TPR of the 23 

Hispaniola catalog to 71%. The performance of the model against a perfectly complete and 24 

precise landslide catalog is, unfortunately, unknown. However, when the cluster of 14 25 

landslides with exact locations in Nicaragua was compared to the model output for June 23rd, 26 

2014, only 1 landslide was not predicted (Figure 910). This cluster only represents a single 27 

event, but supports an optimistic interpretation of the results for the larger catalogs. Another 28 

potential approach could consider dividing the study area into geomorphologically similar 29 

regions and re-calibrating the rainfall and ARI thresholds at sub-regional scales, allowing the 30 

rainfall thresholds and even susceptibility bins to be adjusted. However, this approach 31 

requires a robust landslide inventory data for calibration and would need to assume that all 32 
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areas had consistent and sufficient data points. We may consider this approach should new 1 

datasets become available or we apply this model over a different study area. 2 

 3 

5 Discussion 4 

The objectives of thise LHASA system areis to estimate potential landslide activity over a 5 

very broad area in near real-time using input data that both has very few points (relative to the 6 

area considered) as well as variable accuracy. These ambitious challengesdifficulties 7 

requirerestrict the usage of this model to be approached in the appropriate context: a 8 

situational awareness tool for further investigation ofthat flags potentially affected areas for 9 

further investigation rather than a direct tool for issuing warnings or declaring impacts. 10 

Results of the evaluation suggest that when the finest spatial buffers and temporal windows 11 

are considered for the 2014 validation dataset, the true positive rate for the moderate hazard 12 

model is between 43 and 58% for the Hispaniola and Central America datasets respectively 13 

(Table 2). However, as the search criteria are expanded, even slightly, results are more 14 

promising. The high hazard model continues to have poorer performancehas a relatively low 15 

probability of predicting landslides, which most likely results from the few nowcasts made as 16 

well as thedue to the fact that very limited number ofmany landslide reports in the GLC 17 

thatare not recorded on the same day as coincide with these extreme rainfall periodsevents. 18 

Given the limitations of the data available for evaluating this system as well as for calibration 19 

of its components, we feel that results of the LHASA model are encouraging for 20 

servingnevertheless encourage its use as a regional situational awareness tool for potential 21 

landslide activity. 22 

The LHASA model is currently implemented in a multi-hazard website servicing Central 23 

America and Hispaniola. While the model is currently parameterized for this region, it could 24 

be adapted to serve other landslide-prone locations. This flexible binary decision tree 25 

framework enables different forcing variables (precipitation, soil moistureantecedent 26 

precipitation) and susceptibility variables to be considered dynamically. The process of 27 

transferring the model to another location requires a susceptibility map and an event-based 28 

landslide catalog such as the GLC. The simplicity of the model, combined with the fact that 29 

rainfall data are made available without cost by NASA for every location between 50 degrees 30 

north to 50 degrees south latitude, means that it should be possible for web developers, 31 

students, and other programmers to implement the LHASA system rapidly.  32 



 18 

There are several limitations in this methodology owing to the landslide catalog available for 1 

both calibrating and validating the LHASA system. FA future step in this work could 2 

considerinclude calibrating the LHASA model in an area with an extensive , extended and 3 

accurate landslide inventory to fully assess the performance of this system. However, t To our 4 

knowledge, no landslide inventories of this type exist over the current study region.  and 5 

thereforeTherefore, weit would needbe necessary to parameterize the model over a new 6 

domain. This is outside the scope of the existing work but may be feasible as we continue to 7 

test this system in other regions.  8 

The thresholds chosen by calibration in this study represent a compromise between 9 

identifying landslide hazard and limiting the number of days on which an alert is issued. As a 10 

result, a large number of days are identified as having moderate hazard across the study area, 11 

especially during the rainy season. The frequency of high-hazard nowcasts is reduced when 12 

considering the high hazard category using the 95th percentile of the 13-year TRMM 13 

recordsignificantly lower.  Ultimately, optimal thresholds could be determined from 14 

information on the relative cost to model users of false positives and false negatives. 15 

Gathering this economic data is beyond the scope of this study, as it would require extensive 16 

consultation with current and potential users of the system.  17 

This model relies on TRMM’s TMPA-RT data inputs but GPM’s IMERG data will be 18 

incorporated into this system in the near future, which will extend the latitudinal boundaries 19 

of the precipitation information to 65 degrees N-S and increase the spatiotemporal resolution 20 

to 30 30-minute sampling at a 0.1 1-degree spatial resolution. If rain gauge or forecasted 21 

rainfall data is available for a region, this may also be applied to create a more accurate real-22 

time hazard assessment system. The LHASA regional system is currently run on the Heroku 23 

Cloud Application Platform (Heroku, 2015) with limited computational resources required for 24 

generating regional, daily nowcast products. The real-time IMERG product was made 25 

available in March, 2015 while TMPA-RT continues to provide data. Once the IMERG 26 

algorithm has been running routinely for a period of time, the entire TRMM archive will be 27 

reprocessed to encompass one consistent precipitation dataset for both TRMM and GPM era. 28 

We will begin testing the application of IMERG in the near future but will only be able to 29 

recompute the percentiles in the analysis and fully recalibrate the model once the reprocessing 30 

takes place (tentatively scheduled for 2017). Additional testing is required to determine the 31 

effectiveness of satellite products from the Soil Moisture Active Passive (SMAP; 32 
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http://nasa.gov/smap) or modelled soil moisture products within this area of complex terrain 1 

and dense tropical vegetation. This is a topic of future study. It may be possible to determine 2 

the relationship between the water content of surficial soils and deeper soils (Swenson et al., 3 

2008), resulting in an estimate of pore pressure at critical depths below the ground surface. A 4 

different approach would be to separate the geologic and topographic properties currently 5 

embodied in the susceptibility map, then use them directly in the decision tree structure. 6 

Finally, other triggering variables such as seismicity or temperature may also be considered in 7 

a future version of this model by adding another branch to the decision tree. In some regions, 8 

temperature has been shown to drive landslide triggering during freeze/thaw episodes or 9 

spring snowmelt (do Amaral Vargas  Jr. et al., 2013; Chleborad, 1997; Li et al., 2013; Tatard 10 

et al., 2010); however, in the Central America region, this triggering variable is less relevant 11 

given the predominant tropical or subtropical temperatures.  The inclusion of other 12 

susceptibility or triggering variables within the LHASA framework is both feasible and fairly 13 

straightforward to implement.   14 

Fundamentally, the model calibration for both the susceptibility map and rainfall thresholds 15 

can be significantly improved with a more robust, event-based landslide archive. The GLC 16 

used here provides a global source for investigating rainfall-triggered landslides. However, 17 

due to topographic, linguistic and other reporting biases, there remain large gaps in the 18 

landslide inventory for many areas. An additional capability of the prototype regional natural 19 

hazard website is the ability to access, share, edit and accept volunteered geographic 20 

information on landslide events in multiple languages on landslide events. Future dynamic 21 

landslide models are likely to benefit from the improved accuracy and completeness of event-22 

based landslide catalogs compiled and edited through citizen science efforts by large numbers 23 

of local end users. 24 

 25 

6 Conclusion 26 

The LHASA model provides a simple, flexible framework that can be easily calibrated and 27 

transferred to other regions. This model is meant to provide a regional near real-time 28 

perspective of moderate to high landslide hazard potential and currently lacks the spatial 29 

resolution and accuracy to be considered over smaller (e.g. city, municipality) scales. The 30 

ultimate goal of this paper is to present the LHASA model framework with a set of calibrated 31 

thresholds for Central America and the Caribbean Region. With improved landslide inventory 32 
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information we feel that the model calibration could be significantly improved. The 1 

availability of satellite-based rainfall, susceptibility products and the GLC provide the 2 

opportunity to expand this analysis to other susceptible regions. With TRMM and GPM data 3 

it is possible to produce rainfall thresholds that incorporate the unique climate of each site, 4 

even in locations where no rain gauges exist. Susceptibility maps can benefit from the many 5 

landslide catalogs that lack date or time attributes. Thus, dynamic models that incorporate 6 

susceptibility maps derived from these long-term catalogs may estimate long-term hazard in 7 

ways that models derived solely from recent event-based catalogs cannot.  8 

Given the regional scope of this system, the LHASA model correctly identifies the potential 9 

for a majority of the landslide events recorded in the GLC. Although a large number of days 10 

without recorded landslides were identified as moderately hazardous, many of these data 11 

points may have had slope failures that went unrecorded due to lack of observations, 12 

economic impact or other factors. This dynamic landslide model made use of the best 13 

available real-time rainfall data. However, future inclusion of GPM’s IMERG will enable 14 

landslide modelling at finer spatial and temporal resolutions. In addition, improved soil 15 

moisture estimates from SMAP may help to better quantify the ground conditions prior to 16 

extreme rainfall events. Precipitation forecast data may also be considered within this 17 

framework to provide landslide forecasts, rather than near- real-time nowcasts. This is an area 18 

of active research. While more sophisticated landslide hazard assessment and prediction 19 

models are feasible when considering smaller spatial scales and more landslide information, 20 

the LHASA model serves as a template for rapid adaptation of remote sensing datasets for 21 

dynamic situational awareness of landslide hazards at the regional scale. 22 
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Table 1. Data sources used in the LHASA model. 1 

Data Type Data Set Resolution Extent  Source and Details 

Slope 
70th quantile 

percentile 
slope, USGS 

30 arc-seconds 
(~1 km) 

65 degrees 
N-S 

(Verdin et al., 2007) 
derived from 3-arc-second 

SRTM DEM 

Soils 
Harmonized 
World Soil 
Database 

30 arc-seconds, 
nominal scale 
(1:5,000,000) 

Global (FAO/IIASA/ISRIC/ISSCA
S/JRC, 2012) 

Roads 

Global Roads 
Open Access 

Data Set, 
Version 1 

Multiple 
sources 

(accuracy 
ranges from 

30m to 1265m) 

Global 

((CIESIN and ITOS Center 
for International Earth 
Science Information 

Network 
(CIESIN)/Columbia 

University and Georgia, 
2013)CIESIN and ITOS, 

2013)    

Fault 
zones 

Map Showing 
Geology, Oil 

and Gas Fields, 
and Geologic 
Provinces of 

the Caribbean 
Region 

1:2,500,000 

Central 
America 

and 
Caribbean 

(French and Schenk, 2004) 

Rainfall 

TRMM Multi-
satellite 
Precipitation 
Analysis 
Version 7, 
Real-Time 

0.25 degree, 3-
hourly 
resolution 

50 degrees 
N-S http://pmm.nasa.gov    

Landslide 
Inventory 

GLC, 322 
points in region 

Accuracy is 
defined on a 

point-by-point 
basis 

Global (Kirschbaum et al., 2010) 

MARN, 297 
points 

Various 
mapping scales 

and survey 
types 

El Salvador (Gerencia de Geología, 
2012) 

 2 

3 

http://pmm.nasa.gov/
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Table 2. True Positive Rate considered over 0, 1, 5 km buffers and a variable buffer based on 1 

the reported location accuracy. Temporal windows of 1, 3 and 7-days were also evaluated. 2 

Results are shown in percentages, with high hazard TPR percentages shown in parentheses. 3 

The susceptible pixels column (far right) shows the percentage of reported landslides that 4 

have a Susceptibility Index of 2 or greater within the spatial buffer considered, indicating the 5 

maximum TPR that could be generated based on the rainfall and antecedent thresholds of the 6 

model. 7 

 Spatial Buffer 
Distance 

1-Day 
Window 

3-Day 
Window 

7-Day 
Window 

Susceptible  
pixels  

Central 
America 

 2007-2013 

0 km 64  (26) 77  (37) 83  (47) 90 
1 km 67  (28) 81  (39) 87  (50) 92 
5 km 72  (34) 85  (48) 93  (59) 100 

Variable 81  (40) 89  (57) 94  (65) 100 
Hispaniola 
2007-2013 

0 km 21  (17) 29  (21) 46  (21) 50 
1 km 33  (21) 67  (29) 67  (29) 75 
5 km 46  (21) 71  (46) 88  (50) 100 

Variable  54  (21) 71  (50) 88  (54) 96 
Central 
America  

2014 

0 km 58  (12) 74  (33) 79  (47) 86 
1 km 63  (12) 79  (35) 84  (49) 93 
5 km 72  (14) 86  (44) 91  (56) 100 

Variable 67  (12) 84  (37) 91  (51) 91 
Hispaniola 

2014 
0 km 43  (43) 57  (43) 71  (71) 86 
1 km 57  (43) 71  (43) 86  (71) 100 
5 km 71  (43) 86  (43) 86  (71) 100 

Variable 71  (43) 86  (43) 86  (71) 100 

 8 

9 
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Table 3. False Positive Rate considered over 0, 1, 5 km buffers and a variable buffer based on 1 

the reported location accuracy and Distance to Perfect Classification (rj) for both high-hazard 2 

and moderate-hazard nowcasts.. Temporal windows of 1, 3 and 7-days were also evaluated. 3 

The moderate-hazard model was calibrated for the period 2007-2013 in Central America, so it 4 

is not surprising that this location has the lowest rj value. Because the high-hazard nowcast is 5 

a heuristic intended to identify only the most dangerous extreme conditions while minimizing 6 

false alarms, rj values for this model are expected to be large.Results are shown in 7 

percentages, with high hazard FPR percentages shown in parentheses. The susceptible pixels 8 

column (far right) shows the percentage of reported landslides that have a Susceptibility Index 9 

of 2 or greater within the spatial buffer considered, indicating the maximum FPR that could 10 

be generated based on the rainfall and antecedent thresholds of the model.: 11 

 Hazard Level FPR rj 
Central 
America 

2007-2013 

Moderate 11% 0.38 

High 1% 0.74 

Hispaniola 
2007-2013 

Moderate 9% 0.80 

High 1% 0.83 

Central 
America 

2014 

Moderate 9% 0.43 

High 1% 0.88 

Hispaniola 
2014 

Moderate 7% 0.57 

High 1% 0.57 

12 
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 1 

Figure 1. Regional landslide susceptibility map created using a fuzzy overlay methodology 2 

from global slope, soil, and road databases, as well as a regional map of faults at a resolution 3 

of 30 arcsecondsarc-seconds (approximately 1-kilometre) resolution (Kirschbaum et al., 4 

2015a). Landslides recorded in the study areas are shown for the years 2007-2013 (+) and 5 

2014 (o). 166 landslide reports are from the Global Landslide Catalog and 24 landslides in El 6 

Salvador were selected from the MARN catalog. Large numbers of landslides are located near 7 

capital cities, implying some degree of reporting bias. Inset map shows landslide 8 

susceptibility map for Hispaniola with 31 reported landslides. 9 

10 
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 1 

Figure 2: Probablity distribution of susceptibility values at landslide locations reported from 2 

2007 to 2013 compared to landslide susceptibility values for all of Central America. 3 

Landslides occurred in all susceptibility categories, but few landslides (<10%) occurred in the 4 

lowest category. The LHASA model used a threshold of "low" susceptibility or greater (SI ≥ 5 

2) with rainfall and antecedent rainfall thresholds within the decision tree framework (Figure 6 

6). An SI ≥ 2 (low) was chosen to exclude a large portion of Central America without losing 7 

the ability to predict most landslide events.  8 

 9 

10 
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 1 

Figure 3. Maps showing rainfall values in mm/day for a) 50th and b) 90th percentiles 2 

calculated from TMPA daily rainfall estimates covering the years 2001-2013. These two 3 

percentile maps were used within the decision tree framework to produce moderate landslide 4 

hazard nowcasts. 5 

 6 

 7 

 8 

 9 

 10 

 11 

 12 

 13 

 14 

 15 



 34 

 1 

Figure 4. Comparison of a) daily rainfall and b) antecedent rainfall distributions (in mm) for 2 

days with and without reported landslides. Results are plotted only for locations the where 3 

landslides were historically recorded and include 123 landslides from Central America and 4 

316,697 data points from other times landslides were not reported. Due to the limitations in 5 

the GLC, it is likely that unreported landslides may have occured in the category we are 6 

classifying as "other times". The distributions substantially overlap, suggesting that daily and 7 

antecedent rainfall thresholds cannot classify the data perfectly into landslide events and non-8 

events. 9 
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 1 

Figure 5. Scatter plot showing the distribution of landslides (red) and dates without recorded 2 

landslides (blue) comparing antecedent rainfall and daily rainfall.  3 

 4 

 5 

 6 
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Figure 6. Decision tree structure highlighting the three tiers of decisions made in this model 1 

on a pixel-by-pixel basis across the study area, which is computed daily. First, if a pixel has 2 

an SI ≥ 2), the antecedent rainfall index (ARI) is considered using the 50th percentile value. If 3 

the ARI ≥ 50th percentile, a nowcast is issued if the daily rainfall exceeds the 50th percentile 4 

(moderate hazard) or 95th percentile (high hazard). If the ARI < 50th percentile, a nowcast is 5 

issued if the daily rainfall exceeds the 90th percentile (moderate hazard) or 95th percentile 6 

(high hazard). In all other cases, there is no nowcast issued (Null).  7 

 8 

 9 

 10 

Figure 7: Example time series of a) rainfall and b) antecedent rainfall for a pixel west of San 11 

Jose, Costa Rica. The time series highlight 4 landslides that were reported in this area in 2010: 12 

April 14th, May 22nd, July 30th, and November 5th (shown as red crossescircles). The first 13 

landslide (Figure 8a9a) occurred very early in the year, before the peak rainy season and a 14 

nowcast was not issued. The series indicates that a moderate hazard nowcast was triggered for 15 

the November 5th event and a high hazard nowcast was triggered for the May 22nd event 16 
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(Figure 8b9b). However, due to the antecedent rainfall for April 14th event and low rainfall 1 

totals for the July 30th event, no nowcasts were issued.  2 

 3 

 4 

Figure 8. The moderate-hazard nowcast was calibrated by calculating rj, the distance to 5 

perfect classification, for a variety of rainfall and ARI thresholds that ranged from the 50th to 6 

the 95th percentile values. The lowest (best) rj value was observed for the 50th percentile 7 

ARI, 50th percentile rainfall over moist-condition ground, and 90th percentile rainfall over 8 

moistdry-condition ground. These thresholds are represented by the second dot from the right 9 

in the red circle. Ideally, the choice of the “"best“" rainfall thresholds depends upon the 10 

intended use of the model and the economic costs of different errors. Since these details are 11 

not yet available, rj was selected to provide a balanced and easily interpreted measure of 12 

model success.  13 
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 1 

 2 

Figure 89. This shows the results of the model nowcasts for a cluster of rockfalls (denoted by 3 

a single black rockfall icon) that occurred within the same area of the highway near Caldera, 4 

Costa Rica for two dates in 2010: a) April 14th and b) May 22nd. The black circle indicates the 5 

estimated maximum spatial error of these landslide reports (10 km), suggesting that the 6 

landslides could have occurred anywhere within that area. Blue crosses indicate the locations 7 

of other landslides in the GLC from 2007-2013. The April 14th event did not generate a 8 

moderate hazard nowcast (yellow), but enough rainfall was observed to the east of the 9 

landslide location to trigger a moderate hazard nowcast. Comparatively, the May 22nd event 10 

(b) shows that many high and moderate hazard nowcasts were generated within the proximity 11 

of the reported event. 12 
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 2 

Figure 910: Landslide hazard potential for 6/23/2014. Black crosses indicate locations where 3 

a cluster of landslides occurred near El Ayote, Nicaragua. Yellow pixels (moderate hazard) 4 

and red pixels (high hazard) are shown for that day. 13 of 14 landslides were predicted by the 5 

moderate hazard category. The southernmost landslide was located in a relatively flat location 6 

that had been mapped as having “very low” landslide susceptibility, so it was not predicted, 7 

despite daily rainfall exceeding the 50th percentile threshold. 8 
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