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Abstract

This study uses landslide inventory of a single typhoon event and Weight of Evidence
(WOE) analysis to establish landslide susceptibility map of the Laonung River in south-
ern Taiwan. Eight factors including lithology, elevation, slope, slope aspect, landform,
Normalized Difference Vegetation Index (NDVI), distance to geological structure, and5

distance to stream are used to evaluate the susceptibility of landslide. Effect analysis
and the assessment of grouped factors showed that lithology, slope, elevation, and
NDVI are the dominant factors of landslides in the study area. Landslide susceptibility
analysis with these four factors achieves over 90 % of the AUC (area under curve) of the
success rate curve of all eight factors. Four landslide susceptibility models for four ty-10

phoons from 2007 to 2009 are established, and each model is cross validated. Results
indicate that the best model should be constructed by using landslide inventory close
to the landslide occurrence threshold and should reflect the most common spatial rain-
fall pattern in the study region for ideal simulation and validation results. The prediction
accuracy of the best model in this study reached 90.2 %. The two highest susceptibility15

categories (very high and high levels) cover around 80 % of the total landslides in the
study area.

1 Introduction

Landslides are a natural process that plays a key role in landscape evolution of moun-
tainous and hilly environments. They also represent a serious hazard in many areas of20

the world (Brabb and Harrod, 1989; Cendrero and Dramis, 1996; Glade et al., 2005). In
mountainous areas of Taiwan, where is located at convergent pale boundary and the
annual rainfall is over 2500 mm, landslides and debris flows are major natural hazards
that threaten human lives (Lin et al., 2013; Tseng et al., 2013). For example, Typhoon
Morakot in August of 2009, with a maximum precipitation of over 2884 mm in 5 days, in-25

duced over 22 705 landslides, covering a total area of 274 km2 in mountainous regions
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throughout southern Taiwan, with some landslides covering areas of over 60 ha (Lin
et al., 2011). One deep-seated landslide, the Hsiaolin landslide, covering an area of
about 250 ha, buried the entire village of Hsiaolin in Kaohsiung County, resulting in 397
casualties, 53 people missing, and the destruction of over 100 houses (Lin et al., 2011;
Tsou et al., 2011). To prevent such disasters, it is essential to map the areas that are5

susceptible to landslide for sustainable land-use management.
Landslide susceptibility can be defined as the probability of the occurrence of a land-

slide based on the relationship between the occurrence distribution and a set of pre-
disposing factors, i.e. geo-environmental thematic variables in the area (Brabb, 1984;
Guzzetti et al., 2005). Landslide susceptibility mapping involves handling, processing10

and interpreting a large amount of geographical data. Many studies have addressed
landslide susceptibility mapping by various methods. Apart from the subjectivity of a di-
rect (heuristic) approach completely based on field observations and an expert’s priori
knowledge, the remaining methods developed to detect the areas prone to landslide
can be divided mainly into two categories: deterministic approach and statistical ap-15

proach. The deterministic approach is based on the physical laws driving landslides
and generally more applicable when the underground conditions are relatively homo-
geneous. The statistical approach is based on the relationships between the affecting
factors and past and present landslide distribution (Van Westen et al., 2008). Statis-
tical methods analyze the relation between all the factors affecting the landslide and20

are mainly focused on numerical methods such as linear or logistic regression (LR),
artificial neural networks (ANN), frequency ratio (FR), and weight of evidence (WOE).
In addition, landslide susceptibility assessment also involves the comparison of differ-
ent statistical models (e.g., Lee and Pradhan, 2007, 2011; Akgun et al., 2008; Yilmaz,
2009, 2010a, b; Poudyal et al., 2010; Akgun, 2011; Pradhan and Lee, 2010a, c; Yalcin25

et al., 2011; Bui et al., 2012; Mohammady et al., 2012; Schicker and Moon, 2012; Xu
et al., 2012; Ozdemir and Altural, 2013; Althuwaynee et al., 2014; Shahabi et al., 2014).
To map the susceptibility to landslides, the WOE method calculates the weight for each
factor affecting the landslide based on the presence or absence of landslides within
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the study area (Van Westen et al., 2003; Lee and Choi, 2004; Kanungo et al., 2006;
Mathew et al., 2007; Neuhäuser and Terhorst, 2007; Dahal et al., 2008a, b; Barbieri
and Cambuli, 2009; Nandi and Shakoor, 2009; Regmi et al., 2010; Ozdemir, 2011;
Mohammady et al., 2012; Schicker and Moon, 2012; Ozdemir and Altural, 2013). Con-
ditional probability analysis is also a valuable tool in hazard zonation (Carrara et al.,5

1995), particularly when a few but relevant factors are available (Neuhäuser and Ter-
horst, 2007).

In the past, because of difficulties in obtaining detailed landslide data for each rain-
fall event, statistics-based landslide susceptibility evaluation models were based mainly
on a long-term historical inventory of landslides induced by various rainfall events or10

earthquakes. Now, with highly developed remote sensing technology, multi-temporal
satellite or aerial images have become an efficient way to map landslides after each
event. Event-based multi-temporal landslide inventories are helpful for the understand-
ing of recurrent landslide sites, and landslide occurrence criteria reflect the rainfall
scale of storms and typhoons. Thus, the adoption of an event-based landslide inven-15

tory is beneficial in establishing an optimal landslide susceptibility evaluation model. To
date, there is no comprehensive study involving the application of event-based multi-
temporal landslide inventories to establish and validate a landslide susceptibility model.
Lee et al. (2008) used an event-based landslide inventory to evaluate landslide sus-
ceptibility; however, only one typhoon event was used to establish the susceptibility20

model, and the suitability of the scale of the typhoon event adopted to establish the
susceptibility model was not demonstrated. The present study evaluates susceptibility
to landslides through a new landslide inventory based on typhoon events using Bayes’
theorem based on the WOE method. We apply multi-temporal FORMOSAT-2 images
to map four different rainfall scales of typhoon event-based new landslide inventories.25

To establish an optimal model we perform cross testing of four event-based landslide
inventories, i.e. one model is calibrated based on one typhoon landslide inventory and
validated by the other three typhoon landslide inventories. The area under curve (AUC)
of the success rate curve (training sets) and the prediction rate curve (validation sets),
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respectively, are applied to demonstrate the training and predictive performance of the
susceptibility values obtained by the application of WOE (Van Westen et al., 2003; Poli
and Sterlacchini, 2007). The dominant combination of factors related to landslide oc-
currence, and the most suitable typhoon scale to establish an optimal model are also
discussed.5

2 Study area

The Laonung River watershed of southern Taiwan with a total area of 1367 km2 was
selected as our study area (Fig. 1). The physiography of the study area is composed
mainly of a series of approximately N–S to NE–SW trending mountain ranges. The
elevation of the study area decreases westward and southward, from an elevation of10

3941 ma.s.l. at the crest of Jade Mountain to 55 ma.s.l. at the foot of the mountain.
The main river, the Lao-Nong River, flows SW and is one of the main tributaries of the
Kaoping River.

For the convenience of discussion, the exposed rocks in the study area are roughly
grouped according to their age and mechanical behavior into five stratigraphic units:15

slate, sandstone-shale, meta-sandstone, conglomerate and gravel, and sand (Fig. 1).
The slope-angle distribution of the study area, calculated from a 5 m grid digital eleva-
tion model (DEM) falls in the range of 20–50◦ (78 % of the study area). The climate is
a typical sub-tropical climate with a mean annual rainfall of about 2500 mm. Precipita-
tion occurs mainly from May to September.20

3 Materials and method

3.1 Event-based landslide inventories

Four typhoons (Table 1) that occurred in 2007–2009 and induced landslides were con-
sidered in the present study to construct the landslide susceptibility map. Landslides
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of each typhoon in the study area were mapped from multi-spectral FORMOSAT-2
satellite images with 8 m pixel resolution taken before and after each typhoon event
(Table 1). FORMOSAT-2 satellite images have been widely applied in identification of
natural disasters (e.g., Lin et al., 2004, 2006, 2011; Liu et al., 2007). Mapping of the
various types of landslides induced by each typhoon included landslides that are an5

extension of pre-existing landslides, as well as newly formed landslides.
On a FORMOSAT-2 multi-spectral image, shallow debris slides are the easiest type

of slides to reliably detect because they strip off the vegetation cover and are thus read-
ily discernable (Lin et al., 2011). Therefore, in this study we used mainly shallow debris
slides. A landslide classification program based on Normalized Difference Vegetation10

Index (NDVI) distribution was used to identify bare land in images of the study area.
Bare land in flat areas such as river beds was ruled out automatically by using a filter
that deletes areas with a slope gradient less than 10◦. Bare land caused by agriculture
or urban development was excluded manually, leaving the landslide-induced bare land
for the analysis. To prevent misinterpretation, only landslides with a projected area over15

nine pixels (representing areas larger than 576 m2) were recognized. However, cases
where the vegetation was stripped off due to deep-seated slides, such as the Hsiaolin
landslide, and lateral erosion along the gully bed caused by debris flows were also in-
cluded. All the mapped landslides in each typhoon event were transformed from vector
format to raster format with 8 m pixel resolution. The mapped landslide inventories of20

four typhoons are shown in Fig. 2 and the landslide areas are summarized in Table 2,
in which the landslide ratio is calculated as the total area of landslides per square km
of the study area. The averaged cumulative rainfall brought by each typhoon listed in
Table 2 was obtained from the Quantitative Precipitation Estimation and Segregation
Using Multiple Sensors (QPESUMS) precipitation products of the Central Weather Bu-25

reau in Taiwan.
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3.2 Affecting factors related to landslides

The geo-environmental features of an area affect the occurrence of landslides in differ-
ent ways, and can be applied as affecting factors in the prediction of future landslides
(Van Westen et al., 2008). The selection of affecting factors depends on the scale
of the analysis, the characteristics of the study area, the landslide type, etc. (Glade5

et al., 2005). Nevertheless, there are no general guidelines for selecting these factors
(Ayalew et al., 2005; Yalcin, 2008). In the present study, the affecting factors were se-
lected among those most commonly used in the literature to evaluate landslide suscep-
tibility; in particular, the results of field surveys and remote-sensing image interpretation
suggest that the following eight parameters: geology (lithology), geomorphology (ele-10

vation, slope, aspect and landform), vegetation index, distance to geological structure,
and distance to stream. To construct the landslide susceptibility model, the geomorphic
parameters were directly extracted from a digital elevation model (DEM) with a resolu-
tion of 5 m pixel size created by the Ministry of Interior of Taiwan. These affecting factors
are assumed constant over time except the vegetation index, which is extracted from15

the FORMOSAT-2 image taken before each typhoon event. Figure 3 shows the rele-
vant factors like slope and aspect of the study area. The relation between the affecting
factors and the landslides induced by the four typhoons is shown in Fig. 4, in which the
landslide ratio was calculated as a ratio in percentage between the landslide area and
the total area in each affecting factor class. The distribution of landslide ratios shows20

the relative importance of the different classes of affecting parameters to the landslide.
Any area with a slope smaller than 5◦ and located in the main channel is treated as
a stable area of the landslide and these cells are excluded in the categorization of the
affecting factors.

Lithology is considered one of the main factors affecting landslide occurrence. By25

integrating the 1 : 50 000 geological map published by the Central Geology Survey of
Taiwan, the variability of the lithologies in the study area is classified into five litho-
logical groups: slate, sand-shale, meta-sandstone, conglomerate and gravel, and sand
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(Fig. 1). The relation between the lithology and landslide inventories of the four ty-
phoons shows that landslides occurred mainly in sandstone-shale and slate.

Elevation is a factor frequently utilized in landslide susceptibility assessment. The
elevation in the study area varies from 55 to 3941 m; it was divided into thirteen heights
at intervals of 250 m (Yalcin, 2008; Regmi et al., 2010; Tang et al., 2011). The rela-5

tion between landslide distribution and elevation (Fig. 4) shows a significant variation
among the four typhoons. In Typhoons Mitag, Sinlaku and Morakot, the elevation fac-
tor generally varies inversely to the landslide ratio while Typhoon Kalmagei shows an
opposite trend. This is most likely due to the spatial variation of the wind and rainfall
direction caused by the different tracks of the typhoons.10

In previous studies of landslide susceptibility, slope was also considered as a ma-
jor factor affecting slope stability (Anbalagan, 1992; Pachauri et al., 1998; Saha
et al., 2002; Yalcin, 2008) because the driving force of mass movement increases with
increasing slope (Guillard and Zezere, 2012). The slopes in the study area were di-
vided into seven categories based on an interval of 10◦ (Van Westen et al., 2003; Dahal15

et al., 2008a, b, Regmi et al., 2010). The relation between landslides and slope angle
(Fig. 4) shows that most of the landslides were observed for slopes> 30◦. In Typhoon
Morakot, many landslides occurred at slopes of 21–30◦ (nearly 6.7 % of the landslide
ratio).

The aspect of the slope plays a role in controlling some microclimatic factors such as20

exposure to sunlight and windward (wet) or leeward (dry) conditions, rainfall intensity,
soil moisture, and weathering, all of which control the material properties of the slope
deposits (Dai et al., 2001; Cevik and Topal, 2003). The aspect of the study area was
classified into eight classes (N, NE, E, SE, S, SW, W, and NW) with the addition of flat
areas. Apart from the flat area, south-facing and SW-facing aspects dominate the as-25

pect classes of the study area. The relation between aspect and landslide occurrences
(Fig. 4) shows a similar trend for Typhoons Mitag, Sinlaku, and Morakot, where most of
the landslides were observed in areas with south-facing slopes (SW, S, SE). However,
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for Typhoon Kalmagei areas with north-facing slopes were dominant, probably due to
the typhoon path that induced spatial variation in the rainfall.

Landform plays an important role in contributing to terrain instability, and can usually
be analyzed by combing different types of curvatures such as plan curvature and profile
curvature. The term curvature is theoretically defined as the rate of change of the5

slope gradient or aspect, usually in a particular direction (Wilson and Gallant, 2000).
The curvature value can be evaluated by calculating the reciprocal value of the radius
of the curvature in a particular direction and obtained directly from the derivatives of
the topographical surface (Wilson and Gallant, 2000). The landform of the study area
was classified into nine categories based on the method proposed by Dikau (1989).10

The relation between the landslide occurrence and landform (Fig. 4) shows that more
landslides appeared in the concave valley landforms.

The vegetation index is also considered an influencing factor in landslide suscepti-
bility assessment studies (Althuwaynee et al., 2012). NDVI was used in this study to
reflect the vegetation density. In general, the value of NDVI ranged from −1 to 1; the15

higher the value of NDVI the denser of vegetation cover. The NDVI value was calcu-
lated by using the multi-spectrum information from the FORMOSAT-2 image based on
the following formula.

NDVI =
NIR−R
NIR+R

(1)

where NIR is the reflectance in the near-infrared wave band and R is the reflectance in20

the red wave band. The NDVI value in our study area was less than 0.8; therefore the
NDVI was classified into four levels between 0–0.8 with a 0.2 interval, and a fifth level
which included NDVI values less than 0. The relation between landslide occurrence and
NDVI (Fig. 4) shows that most of the landslides were in areas with low NDVI values,
especially NDVI< 0.25

Geological structures such as faults, folds, and fractures usually play an important
role in landslide formation. High susceptibility to landslides has been widely recorded
at sites close to geological structure which not only affects the surface landform but
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also contributes to soil permeability causing slope failure. The distance between the
landslide and the geological structure in the study area was classified into ten lengths
from 200 to 2000 m, at 200 m steps, with an additional eleventh category for distances
greater than 2000 m (Lee and Choi, 2004; Vijith and Madhu, 2008). The relation be-
tween landslide occurrences and distance to geological structure (Fig. 4) shows that5

a large number of the landslides were observed in the area with a distance to geological
structure ranging from 1400–2000 m.

The network of rivers and streams is another controlling parameter of landslide oc-
currence, as stream erosion may undercut the foot of the slopes as well as saturate
their lower part (Dai et al., 2001; Saha et al., 2002; Cevik and Topal, 2003; Yalcin,10

2008). The stream network was extracted by using the HYDRO tools of the ArcGIS
software from the 5 m resolution DEM. The distance to the stream was then classified
into nine lengths from 50 to 450 m, at 50 m steps with an additional tenth category
for distances greater than 450 m. The “distance to stream” factor shows a significant
inverse relation with landslide occurrences, the closer the site was to the stream, the15

more landslides were observed.

3.3 Weight of evidence

Weight-of-evidence (WOE) is one of the bivariate methods first applied to mineral ex-
ploration (Bonham-Carter et al., 1988). Subsequently, Van Westen et al. (2003) utilized
the method for landslide susceptibility assessment. The theoretical background and its20

application in landslide susceptibility assessment are presented in many studies (see
Introduction). The model is based on a log-linear form of Bayes’ theorem, which calcu-
lates the weight for each affecting factor based on the combinational probabilities of its
presence or absence with the presence or absence of a landslide within each map unit
area (Bonham-Carter, 2002). The WOE method was documented mathematically by25

Van Westen et al. (2003) and Regmi et al. (2010) in detail. We calculated the weighted
values for the classes of affecting factors related to landslides by using the following
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equations (Regmi et al., 2010):

W + = ln




A1
A1+A2

A3
A3+A4


 (2)

W − = ln




A2
A1+A2

A4
A3+A4


 (3)

where A1 is the number of landslide meshes present in a given factor class, A2 is the
number of landslide meshes not present in the given factor class, A3 is the number of5

meshes in the given factor class in which no landslide meshes are present, and A4 is
the number of the meshes in which neither landslides nor the given factor are present.
A positive weight (W +) indicates the presence of the affecting factor in the landslide,
and the magnitude of this weight is an indication of the positive correlation between
the presence of the affecting factor and landslides. A negative weight (W −) indicates10

an absence of the affecting factor, and its magnitude indicates negative correlation
(Regmi et al., 2010). The difference between Eqs. (2) and (3) is defined as the weight
contrast, C (C =W +−W −). A weight value of C = 0 indicates that the considered class
of the affecting factor is not significant for the analysis. Positive or negative contrast
indicates a positive or negative spatial correlation, respectively (Piacentini et al., 2012).15

The final landslide susceptibility index LSI is calculated by combining the probabilities
associated with the different components of the model (Barbieri and Cambuli, 2009):

LSI = exp
(∑

W + + ln(Of)
)

(4)

where Of = Pf/(1− Pf) is the prior odds of a landslide in the study area, and Pf = Af/At
where Af is the portion of the study area affected by landslides and At is the total study20

area (Shicker and Moon, 2012).
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4 Results and discussion

4.1 Testing for the predominant factors of landslides

The factors related to the occurrence of landslides are usually selected in the landslide
susceptibility analysis. It is, however, worth discussing whether all the selected factors
are required in the analysis. Previous studies have used effect analysis to identify fac-5

tors or groups of factors that significantly influence landslide prediction (Van Westen
et al., 2003; Dahal et al., 2008a, b). To do so, the factors are grouped directly, or in
some cases certain factors are excluded before the weights are added. The predicted
result is then compared to that obtained using all of the factors. Any obvious changes
observed in the comparison would indicate the excluded or selected factors’ significant10

impact on the prediction of landslides (Lee and Talib, 2005). In previous studies, effect
analysis was mostly conducted by eliminating some of the factors or selecting certain
factor combinations in order to observe the unselected factors and their effects on the
results (Van Westen et al., 2003; Lee and Talib, 2005; Dahal et al., 2008a, b).

This study adopts an unconventional approach for the analysis. First, we select lithol-15

ogy and slope, the two most frequently used factors in previous studies, to be the pri-
mary factor combination for testing and analysis. Then, we enter additional factors and
observe after each addition the changes to the AUC of the success rate curve. The
process repeats itself and the factors are gradually accumulated until no more obvious
changes in the AUC can be observed. The final test combination consists of eight fac-20

tors. These factors were identified as the predominant factors of the landslides, having
significant influences on the AUC of the success rate curve. Table 3 shows the test
results for the predominant factor combinations of the typhoon events in the study. As
the number of factors tested increases, the AUC also shows an increase. This high-
lights the increasing explanatory power of the factors. Using only four to five of the total25

eight factors for training, each typhoon event produces an AUC result similar to that of
all eight factors, with a difference of less than 0.03. For example, the factor combina-
tion of lithology, slope, and NDVI reaches 90 % of the AUC of all the factors combined
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for Typhoons Sinlaku, Mitag, and Kalmaegi; the combination of lithology, slope, and
elevation reaches 90 % of the AUC for Typhoon Morakot. Therefore, lithology, slope,
elevation, and ground vegetation are the predominant factors affecting a large number
of landslides in the whole area. As for the other factors, aspect is affected by the spatial
variation of the rainfall and wind during the typhoon or monsoon (i.e. whether the slope5

is facing windward or leeward).
From the perspective of statistics, effect analysis can indeed simplify the factor se-

lection in the susceptibility analysis. In previous studies, effect analysis was conducted
primarily in two ways: (1) a factor is excluded and the influence of the excluded factor
on the result is assessed (Lee and Talib, 2005) and (2) factors are divided into cate-10

gories of lithology, topography, and human cause; then, the categories are analyzed to
assess the selected factors’ influences on the results (Van Westen et al., 2003; Dahal
et al., 2008a, b). The first method can identify the level of influence each factor has
on the results, but it is only of statistical significance. Evaluating a factor as having
a low level of influence does not mean it is not important in the susceptibility analysis15

(Lee and Talib, 2005) need more explanation. In addition, this method cannot find the
optimum factor combination. The second method grouped factors based on lithology;
however, the method cannot simplify factors effectively as it may overlook important
ones in different categories. In our analysis we first select the fundamental factors of
landslide according to the lithology of the study region. Then, we gradually increase the20

number of factors in the process of effect analysis. Our results show that although this
method is more time-consuming compared to the previous two methods, it effectively
simplifies the landslide factors without overlooking the important ones in the analysis
process.

4.2 Landslide susceptibility mapping and validation25

In this study, each of the four landslide susceptibility models is created based on an
event-based landslide inventory of a single typhoon. The landslide inventories of three
other typhoon events are used to validate the landslide susceptibility prediction. Table 4
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shows the cross validation results of the events. Among the four typhoon events, Sin-
laku exhibits the most favorable performance in establishing a susceptibility model, with
the success rate of the curve’s AUC reaching 0.933, followed by Mitag and Kalmaegi,
with AUCs of 0.888 and 0.824, respectively. All three events show AUCs of over 80 %.
The AUC of Morakot is 0.657, showing a less satisfactory performance. Table 4 shows5

a positive correlation between the validation result and the performance in establish-
ing a susceptibility model. A higher AUC indicates a more favorable validation result.
Generally among the four typhoons, the performance in establishing a susceptibility
model and the validation result are directly proportional to the scale of the landsides
caused by the typhoons. Better prediction results can be obtained by using the land-10

slide susceptibility model created based on landslide inventories with lower landslide
ratios (e.g. Mitag and Sinlaku). The susceptibility model established with the Typhoon
Sinlaku event, for example, rendered satisfactory validation results in both Mitag and
Kalmaegi. Mitag, in particular, showed the most favorable result, in which the AUC of
the prediction rate curve reached 0.902. The model created based on Mitag also ren-15

dered an AUC of 0.889 in Sinlaku. The validation result of the model established based
on Kalmaegi (with a new landslide rate of 1.021 %), on the other hand, only worked fa-
vorably for Mitag (0.712). As for Morakot, the performances for both the model and the
validation were unsatisfactory. Thus, small-scale landslides tend to render better model
performances because the relative weight between the landslide factors and landslide20

occurrence obtained using WOE often better reflects the critical threshold for the land-
slides. Morakot, the largest of the four typhoons, is the most severe typhoon that hit
Taiwan in the past fifty years. The QPESUM data show a mean accumulated rainfall of
2323 mm in the study area (see Table 2). Rainfall of such scale far exceeds the critical
rainfall threshold required for landslides to occur. As such, excessive landslides hap-25

pened in the study area. In other words, when the landslide inventory of such a large-
scale event is used to establish a model, the weight distribution among the landslide
factors and landslide occurrence does not effectively distinguish areas that are sus-
ceptible to landslides from those that are not. Therefore, an inventory of a large-scale
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landslide fails to accomplish the optimal performance in establishing a susceptibility
model. By the same token, Morakot does not help identify the threshold of landslide
occurrence because of the extensive landslide area. As a result, the validation result
for Morakot is unfavorable.

Mitag and Kalmaegi show similar performances in establishing the susceptibility5

models; however, Mitag’s validation result is clearly better than that of Kalmaegi. This
is most likely caused by the slope aspect factor. The distribution of landslide ratios on
the respective aspects for Kalmaegi is different from those of the other three typhoons
(Fig. 4). Landslides that occurred during Mitag, Sinlaku, and Morakot show an obvi-
ous distribution on the south-facing aspects (SW, S, SE), while landslides caused by10

Kalmaegi concentrate around the north-facing aspects (NW, N, NE). As such, the dis-
tribution of weight contrast for Kalmaegi in terms of the aspects is opposite to those
of the other three typhoons during the model training (Fig. 5). The northeast side of
the study region is of a higher topography that gradually descends toward the south-
west. Typhoons that rotate counterclockwise cause a greater number of landslides on15

the southern slope because it is the windward slope where rainfall is heavier, and this
is true for Mitag, Sinlaku, and Morakot (Fig. 4). Despite the satisfactory training result
of Kalmaegi, the validation result is unfavorable when we use different aspect factors
from other events, as they affect the weights differently. Based on the above, we see
that when a landslide susceptibility model is established based on a new landslide in-20

ventory of a single event, the selected inventory should be of a scale that is close to
the landslide occurrence threshold and should reflect the most common spatial rainfall
pattern in the study area for relatively ideal training and validation results.

Finally, based on the landslide inventory of Typhoon Sinlaku, which shows the best
training and validation results, we created the landslide susceptibility map shown in25

Fig. 6. The susceptibility scale is based on the values of the horizontal axes of the
prediction rate curves, with 0–0.1= very high, 0.1–0.3=high, 0.3–0.5 = moderate, 0.5–
0.7= low, and 0.7–1= very low (Dahal et al., 2008a). The landslide ratios for each of the
typhoons in the five susceptibility levels are listed in Table 5. Excluding Sinlaku, which
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was used to establish the susceptibility model and the extreme event of Morakot, over
80 % of the actual landslide area of the other two typhoon events is covered by areas of
very high and high susceptibility levels. For Mitag, 92.45 % of landslides occurred within
the predicted landslide area, while 83.15 % of the Kalmaegi landslides were within the
predicted range, indicating favorable prediction results of the landslide susceptibility5

map based on the landslide inventory of Typhoon Sinlaku.
Previous studies that used WOE to evaluate landslide susceptibility, for example, the

study of an area of 500 km2 in southwest Germany by Neuhäuser and Terhorst (2007),
show prediction accuracy of 95 % for a single type of landslide. The study of newly
formed debris flow in an area of 18.9 km2 in the Lesser Himalayas of Nepal by Dahal10

et al. (2008a) achieved a prediction accuracy of 85.5 %. Dahal et al. (2008b) consid-
ered translational and flow slides in Moriyuki and Monnyu – two watershed areas in
Japan, less than 4 km2, to obtain a prediction accuracy of 80.7 and 77.6 %, respectively.
A study of debris flows, debris slides, rock slides, and soil slides spanning 815 km2 in
Western Colorado, USA shows a prediction accuracy of 78 % (Regmi et al., 2010).15

Mohammady et al. (2012) considered rotational slides in a study area of 12 050 km2

in Golestan Province, Iran and reached a prediction accuracy of 69 %. A study that
used shallow landslides in an area of around 7500 km2 in the south-eastern Alps, Italy
obtained a prediction accuracy of 75 % (Piacentini et al., 2012). Ozdemir and Altural
(2013), in a study region of 373 km2 in the Sultan Mountain, SW Turkey, obtain 73.6 %20

predication accuracy. These studies indicate that the prediction accuracy is in a slightly
negative correlation with the area of the study region. The larger the area, the greater
the spatial difference among the topographic factors. This has an effect on the various
types of landslides that occur. As a result, the training and validation results of land-
slide susceptibility models covering larger areas show unsatisfactory performances.25

Our study area spanned 1367 km2, which is large compared with those in other rele-
vant studies. The prediction accuracy of the landslide susceptibility map in this study
reached 90.2 % in the best scenario. This supports the advantage of using a landslide
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inventory of a single event to establish the landslide susceptibility model to predict
landslide occurrence.

5 Conclusions

This study establishes single event-based landslide inventories for four different ty-
phoons (i.e. Sinlaku, Mitag, Kalmaegi and Morakot) by using the multi-temporal5

Formosat-2 satellite imagery for the period 2007–2009. Using the weight of evidence
(WOE) method, the inventories are adopted to analyze the relative weight between
the landslide factors and landslide occurrences in the watershed of the Laonung River
in southern Taiwan. Based on the results, a landslide susceptibility map is produced
which can serve as a reference for planning and decision making regarding the use of10

the land. This study adopts eight factors for the landslide susceptibility analysis: lithol-
ogy, elevation, slope, aspect, landform, NDVI, distance to lineation, and distance to
stream. These factors are mapped in the study area based on a 5 m resolution DEM
and satellite image data. We perform effect analysis as part of the assessment of the
grouped factors to identify the dominant factors of landslide occurrence. Lithology and15

slope are selected as the primary factor combination for testing and analysis. The other
factors are added one by one until the AUC of the success rate curve does not show
any further obvious changes. The test results indicate that lithology, slope, elevation,
and ground vegetation are the dominant factors affecting most landslide incidents in
the study area. These four factors can help achieve 90 % of the AUC of the all-factor20

success rate curve. As the number of selected factors increases in the process, the
success rate curve gradually converges to a point where the result generally resem-
bles that of the all-factor analysis. This means that there is no need for a large number
of factors to achieve a reliable landslide susceptibility analysis. Fewer factors can pro-
vide results similar to those utilizing a large number of factors.25

This study uses a new landslide inventory of a single event to establish a landslide
susceptibility model. Each model uses three other inventories to validate the prediction
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of landslide susceptibility. Cross validation results show that the performance of the
susceptibility model and the validation result are directly proportional to the scale of the
landsides caused by the typhoons. Using inventories with lower landslide ratios to build
the landslide susceptibility models leads to more favorable landslide prediction results.
For example, the AUCs of the success rate curves for Sinlaku and Mitag were 0.9335

and 0.888, respectively. The model established based on Sinlaku shows satisfactory
validation results in Mitag and Kalmaegi. Mitag has the best result, with the AUC of the
prediction rate curve reaching 0.902. The model established using Mitag, on the other
hand, also provides an AUC of 0.889 in Sinlaku. Mitag’s performance in establishing
a susceptibility model is similar to that of Kalmaegi, although Mitag’s validation result10

is clearly better than the result of Kalmaegi. This difference is caused by the slope
aspect factor. Landslides caused by Mitag, Sinlaku, and Morakot concentrated on the
south-facing aspects (SW, S, SE), while those caused by Kalmaegi occurred around
the north-facing aspects (NW, N, NE). Therefore, the distribution of weight contrast for
Kalmaegi in terms of individual aspects is opposite to those of the other three typhoons.15

Landslides of a smaller scale tend to show a better performance in establishing
a susceptibility model. This is because the relative weight between the landslide factors
and landslide occurrences in the WOE analysis can often better reflect the threshold
for landslides to occur. The extensive, heavy rainfall brought by Morakot far exceeded
the critical threshold required for landslides to occur. When a model is created with20

such a large-scale event, the relative weights between the individual landslide factors
and landslide occurrences fail to distinguish areas susceptible to landslides from those
that are not. The performances are thus unsatisfactory in establishing a susceptibility
model and validating the events.

Last but not least, Typhoon Sinlaku, which demonstrated the best training and val-25

idation results in the study, was selected to produce the landslide susceptibility map.
Excluding the extreme event of Morakot, more than 80 % of the actual landslide area
resulting from Typhoons Mitag and Kalmaegi is covered in our susceptibility map by
areas denoted as having very high and high susceptibility to landslides. This indicates
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that using the landslide inventory based on the single event of Sinlaku to create the
map renders good prediction results on landslide occurrence. Previous studies that use
WOE for landslide susceptibility analysis suggest that the prediction accuracy and the
area of the study region are inversely related. The larger the study area, the greater
the spatial differences among topographic factors such as lithology, elevation, slope,5

aspect, and landform. The types of landslides that occur are thus more diverse and
complex. As a result, the landslide susceptibility model is less effective. Our study area
is considered large compared to those in previous studies. The prediction accuracy
of the landslide susceptibility map created by this study reached 90.2 %, validating the
advantage of a landslide susceptibility model established by using a landslide inventory10

based on a single event. According to the results of this study, when a new landslide
inventory of a single event is used to create a landslide susceptibility model, the inven-
tory selected should be of a scale that is close to the landslide occurrence threshold,
and is able to reflect the most common spatial rainfall pattern in the study area for best
prediction results.15

References

Akgun, A.: A comparison of landslide susceptibility maps produced by logistic regression, multi-
criteria decision, and likelihood ratio methods: a case study at İzmir, Turkey, Landslides, 9,
93–106, 2011.

Akgun, A., Dag, S., and Bulut, F.: Landslide susceptibility mapping for a landslideprone area20

(Findikli, NE of Turkey) by likelihood frequency ratio and weighted linear combination models,
Environ. Geol., 54, 1127–1143, 2008.

Althuwaynee, O. F., Pradhan, B., and Lee, S.: Application of an evidential belief function model
in landslide susceptibility mapping, Comput. Geosci., 44, 120–135, 2012.

Althuwaynee, O. F., Pradhan, B., Park, H. J., and Lee, J. H.: A novel ensemble bivariate statis-25

tical evidential belief function with knowledge-based analytical hierarchy process and multi-
variate statistical logistic regression for landslide susceptibility mapping, Catena, 114, 21–36,
2014.

1155

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

Anbalagan, D.: Landslide hazard evaluation and zonation mapping in mountainous terrain, Eng.
Geol., 32, 269–277, 1992.

Ayalew, L., Yamagishi, H., Marui, H., and Kanno, T.: Landslides in Sado Island of Japan Part II.
GIS-based susceptibility mapping with comparisons of results from two methods and verifi-
cations, Eng. Geol., 81, 432–445, 2005.5

Barbieri, G. and Cambuli, P.: The weight of evidence statistical method in landslide susceptibility
mapping of the Rio Pardu Valley (Sardinia, Italy), 18th World IMACS/MODSIM Congress,
Cairns, Australia, 13–17 July, 2009, 2658–2664, 2009.

Bonham-Carter, G. F.: Geographic information systems for geoscientists: modelling with GIS,
in: Computer Methods in the Geosciences, edited by: Merriam, D. F., 13, Pergamon/Elsevier,10

New York, 302–334, 2002.
Bonham-Carter, G. F., Agterberg, F. P., and Wright, D. F.: Weights of evidence modelling: a new

approach to mapping mineral potential, Stat. Appl. Earth Sci., 89, 171–183, 1988.
Brabb, E. E.: Innovative approaches to landslide hazard and risk mapping, Proceedings of the

Fourth International Symposium on Landslides, Canadian Geotechnical Society, Toronto,15

Canada, 16–21 September, 1984, 1, 307–324, 1984.
Brabb, E. E. and Harrod, B. L. (Eds.): Landslides: Extent and Economic Significance, Balkema

Publisher, Rotterdam, 1989.
Bui, D. T., Pradhan, B., Lofman, O., Revhaug, I., and Dick, O. B.: Landslide susceptibility as-

sessment in the Hoa Binh province of Vietnam: a comparison of the Levenberg–Marquardt20

and Bayesian regularized neural networks, Geomorphology, 171–172, 12–29, 2012.
Carrara, A., Cardinali, A., Guzzetti, F., and Reichenbach, P.: GIS based techniques for map-

ping landslide hazard, in: Geographical Information Systems in Assessing Natural Haz-
ards, edited by: Carrara, A. and Guzzetti, F., Kluwer Academic Publications, Dordrecht, The
Netherlands, 135–176, 1995.25

Cendrero, A. and Dramis, F.: The contribution of landslides to landscape evolution in Europe,
Geomorphology, 15, 191–211, 1996.

Çevik, E. and Topal, T.: GIS-based landslide susceptibility mapping for a problematic segment
of the natural gas pipeline, Hendek (Turkey), Environ. Geol., 44, 949–962, 2003.

Dahal, R. K., Hasegawa, S., Nonomura, A., Yamanaka, M., Dhakal, S., and Paudyal, P.: Pre-30

dictive modelling of rainfall-induced landslide hazard in the Lesser Himalaya of Nepal based
on weights-of-evidence, Geomorphology, 102, 496–510, 2008a.

1156



D
iscussion

P
aper

|
D

iscussion
P

a
per

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|

Dahal, R. K., Hasegawa, S., Nonomura, A., Yamanaka, M., Masuda, T., and Nishino, K.: GIS-
based weights-of-evidence modelling of rainfall-induced landslides in small catchments for
landslide susceptibility mapping, Environ. Geol., 54, 311–324, 2008b.

Dai, F. C., Lee, C. F., and Xu, Z. W.: Assessment of landslide susceptibility on the natural terrain
of Lantau Island, Hong Kong, Environ. Geol., 40, 381–391, 2001.5

Dikau, R.: The application of a digital relief model to landform analysis in geomorphology, in:
Three Dimensional Applications in Geographic Informations Systems, edited by: Raper, J.,
Taylor and Francis, London, 51–77, 1989.

Glade, T., Anderson, M., and Crozier, M. J. (Eds.): Landslide Hazard and Risk, Wiley, New York,
2005.10

Guzzetti, F., Carrara, A., Cardinali, M., and Reichenbach, P.: Landslide hazard evaluation: an
aid to a sustainable development, Geomorphology, 31, 181–216, 1999.

Guzzetti, P., Reichenbach, M., Cardinali, M., Galli, F., and Ardizzone, F.: Landslide hazard as-
sessment in the Staffora basin, northern Italian Apennines, Geomorphology, 72, 272–299,
2005.15

Guillard, C. and Zezere, J.: Landslide susceptibility assessment and validation in the framework
of municipal planning in portugal: the case of Loures Municipality, Environ. Manage., 50,
721–735, 2012.

Kanungo, D. P., Arora, M. K., Sarkar, S., and Gupta, R. P.: A comparative study of conventional,
ANN black box, fuzzy and combined neural and fuzzy weighting procedures for landslide20

susceptibility zonation in Darjeeling Himalayas, Eng. Geol., 85, 347–366, 2006.
Lee, C. T., Huang, C. C., Lee, J. F., Pan, K. L., Lin, M. L., and Dong, J. J.: Statistical approach

to storm event-induced landslides susceptibility, Nat. Hazards Earth Syst. Sci., 8, 941–960,
doi:10.5194/nhess-8-941-2008, 2008.

Lee, S. and Choi, J.: Landslide susceptibility mapping using GIS and the weight-of-evidence25

model, Int. J. Geogr. Inf. Sci., 18, 789–814, 2004.
Lee, S. and Pradhan, B.: Landslide hazard mapping at Selangor, Malaysia using frequency

ratio and logistic regression models, Landslides, 4, 33–41, 2007.
Lee, S. and Talib, J. A.: Probabilistic landslide susceptibility and factor effect analysis, Environ.

Geol., 47, 982–990, 2005.30

Lin, C. W., Shieh, C. J., Yuan, B. D., Shieh, Y. C., Huang, M. L., and Lee, S. Y.: Impact of Chi-Chi
earthquake on the occurrence of landslides and debris flows: example from the Chenyulan
River watershed, Nantou, Taiwan, Eng. Geol., 71, 49–61, 2004.

1157

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

Lin, C. W., Liu, S. H., Lee, S. Y., and Liu, C. C.: Impacts of the Chi-Chi earthquake on subse-
quent rainfall-induced landslides in central Taiwan, Eng. Geol., 86, 87–101, 2006.

Lin, C. W., Chang, W. S., Liu, S. H., Tsai, T. T., Lee, S. P., Tsang, Y. C., Shieh, C. L., and
Tseng, C. M.: Landslides triggered by the 7 August 2009 Typhoon Morakot in Southern Tai-
wan, Eng. Geol., 123, 3–12, 2011.5

Lin, C. W., Tseng, C. M., Tseng, Y. H., Fei, L. Y., Hsieh, Y. C., and Tarolli, P.: Recognition of large
scale deep-seated landslides in forest areas of Taiwan using high resolution topography, J.
Asian Earth Sci., 62, 389–400, 2013.

Liu, C. C., Liu, J. G., Lin, C. W., Wu, A. M., Liu, S. H., and Shieh, C. L.: Image processing of
FORMOSAT-2 data for monitoring South Asia tsunami, Int. J. Remote Sens., 28, 3093–3111,10

2007.
Mathew, J., Jha, V. K., and Rawat, G. S.: Application of binary logistic regression analysis and

its validation for landslide susceptibility mapping in part of Garhwal Himalaya, India, Int. J.
Remote Sens., 28, 2257–2275, 2007.

Mohammady, M., Pourghasemi, H. R., and Pradhan, B.: Landslide susceptibility mapping at15

Golestan Province, Iran: a comparison between frequency ratio, Dempster–Shafer, and
weights-of-evidence models, J. Asian Earth Sci., 61, 221–236, 2012.

Nandi, A. and Shakoor, A.: A GIS-based landslide susceptibility evaluation using bivariate and
multivariate statistical analyses, Eng. Geol., 110, 11–20, 2009.

Neuhäuser, B. and Terhorst, B.: Landslide susceptibility assessment using weights-of-evidence20

applied to a study area at the Jurassic escarpment (SW Germany), Geomorphology, 86,
12–24, 2007.

Ozdemir, A.: Landslide susceptibility mapping using Bayesian approach in the Sultan Moun-
tains (Aks_ehir, Turkey), Nat. Hazards, 59, 1573–1607, 2011.

Ozdemir, A. and Altural, T.: A comparative study of frequency ratio, weights of evidence and lo-25

gistic regression methods for landslide susceptibility mapping: Sultan Mountains, SW Turkey,
J. Asian Earth Sci., 64, 180–197, 2013.

Pachauri, A. K., Gupta, P. V., and Chander, R.: Landslide zoning in a part of the Garhwal
Himalayas, Environ. Geol., 36, 325–334, 1998.

Piacentini, D., Troiani, F., Soldati, M., Notarnicola, C., Savelli, D., Schneiderbauer, S., and30

Strada, C.: Statistical analysis for assessing shallow-landslide susceptibility in South Tyrol
(south-eastern Alps, Italy), Geomorphology, 151–152, 196–206, 2012.

1158



D
iscussion

P
aper

|
D

iscussion
P

a
per

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|

Poudyal, C. P., Chang, C., Oh, H. J., and Lee, S.: Landslide susceptibility maps comparing
frequency ratio and artificial neural networks: a case study from the Nepal Himalaya, Environ.
Earth Sci., 61, 1049–1064, 2010.

Poli, S. and Sterlacchini, S.: Landslide representation strategies in susceptibility studies using
weights-of-evidence modeling technique, Nat. Resour. Res., 16, 121–134, 2007.5

Pradhan, B.: Manifestation of an advanced fuzzy logic model coupled with geo-information
techniques to landslide susceptibility mapping and their comparison with logistic regression
modelling, Environ. Ecol. Stat., 18, 471–493, 2011.

Pradhan, B. and Lee, S.: Delineation of landslide hazard areas on Penang Island, Malaysia,
by using frequency ratio, logistic regression, and artificial neural network models, Environ.10

Earth Sci., 60, 1037–1054, 2010a.
Pradhan, B. and Lee, S.: Regional landslide susceptibility analysis using back-propagation neu-

ral network model at Cameron Highland, Malaysia, Landslides, 7, 13–30, 2010b.
Pradhan, B. and Lee, S.: Landslide susceptibility assessment and factor effect analysis: back-

propagation artificial neural networks and their comparison with frequency ratio and bivariate15

logistic regression modelling, Environ. Modell. Softw., 25, 747–759, 2010c.
Regmi, N. R., Giardino, J. R., and Vitek, J. D.: Modeling susceptibility to landslides using

the weight of evidence approach: Western Colorado, USA, Geomorphology, 115, 172–187,
2010.

Saha, A. K., Gupta, R. P., and Arora, M. K.: GIS-based landslide hazard zonation in the Bhagi-20

rathi (Ganga) valley, Himalayas, Int. J. Remote Sens., 23, 357–369, 2002.
Schicker, R. and Moon, V.: Comparison of bivariate and multivariate statistical approaches in

landslide susceptibility mapping at a regional scale, Geomorphology, 162, 40–57, 2012.
Shahabi, H., Khezri, S., Ahmad, B. B., and Hashim, M.: Landslide susceptibility mapping at

central Zab basin, Iran: a comparison between analytical hierarchy process, frequency ratio25

and logistic regression models, Catena, 115, 55–70, 2014.
Tang, C., Zhu, J., Qi, X., and Ding, J.: Landslides induced by the Wenchuan earthquake and

the subsequent strong rainfall event: a case study in the Beichuan area of China, Eng. Geol.,
122, 22–33, 2011.

Tsou, C. Y., Feng, Z. Y., and Chigira, M.: Catastrophic landslide induced by Typhoon Morakot,30

Shiaolin, Taiwan, Geomorphology, 127, 166–178, 2011.

1159

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

Tseng, C. M., Lin, C. W., Stark, C. P., Liu, J. K., Fei, L. Y., and Hsieh, Y. C.: Application of a multi-
temporal, LiDAR-derived, digital terrain model in a landslide-volume estimation, Earth Surf.
Proc. Land., 38, 1587–1601, 2013.

Van Westen, C. J., Rengers, N., and Soeters, R.: Use of geomorphological information in indi-
rect landslide assessment, Nat. Hazards, 30, 399–419, 2003.5

Van Westen, C. J., Castellanos, E., and Kuriakose, S. L.: Spatial data for landslide susceptibility,
hazard, and vulnerability assessment: an overview, Eng. Geol., 102, 112–131, 2008.

Vijith, H. and Madhu, G.: Estimating potential landslide sites of an upland sub-watershed in
Western Ghat’s of Kerala (India) through frequency ratio and GIS, Environ. Geol., 55, 1397–
1405, 2008.10

Wilson, J. P. and Gallant, J. G.: Terrain Analysis Principles and Applications, John Wiley and
Sons, Inc., New York, 2000.

Xu, C., Xu, X., Dai, F., Xiao, J., Tan, X., and Yuan, R.: Landslide hazard mapping using GIS
and weight of evidence model in Qingshui River watershed of 2008 Wenchuan earthquake
struck region, J. Earth Sci., 23, 97–120, 2012.15

Yalcin, A.: GIS-based landslide susceptibility mapping using analytical hierarchy process and
bivariate statistics in Ardesen (Turkey): comparisons of results and confirmations, Catena,
72, 1–12, 2008.

Yalcin, A., Reis, S., Aydinoglu, A. C., and Yomralioglu, T.: A GIS-based comparative study of fre-
quency ratio, analytical hierarchy process, bivariate statistics and logistics regression meth-20

ods for landslide susceptibility mapping in Trabzon, NE Turkey, Catena, 85, 274–287, 2011.
Yilmaz, I.: Landslide susceptibility mapping using frequency ratio, logistic regression, artificial

neural networks and their comparison: a case study from Kat landslides (Tokat-Turkey), Com-
put. Geosci., 35, 1125–1138, 2009.

Yilmaz, I.: Comparison of landslide susceptibility mapping methodologies for Koyulhisar,25

Turkey: conditional probability, logistic regression, artificial neural networks, and support vec-
tor machine, Environ. Earth Sci., 61, 821–836, 2010a.

Yilmaz, I.: The effect of the sampling strategies on the landslide susceptibility mapping by con-
ditional probability and artificial neural networks, Environ. Earth Sci., 60, 505–519, 2010b.

1160



D
iscussion

P
aper

|
D

iscussion
P

a
per

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|

Table 1. FORMOSAT-2 images used to map the event-based landslide inventories in this study.

Typhoon event Date Date of images taken (pre//post of typhoon)

Mitag 24–27 Nov 2007 26 Oct 2007, 20 Nov 2007 // 21 Dec 2007, 17 Feb 2008
Kalmaegi 16–18 Jul 2008 21 Dec 2007, 17 Feb 2008 // 23 Jul 2008, 24 Aug 2008
Sinlaku 11–16 Sep 2008 23 Jul 2008, 24 Aug 2008 // 21 Dec 2008, 14 Jan 2009
Morakot 5–10 Aug 2009 21 Dec 2008, 14 Jan 2009 // 17 Aug 2009, 21 Aug 2009
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Table 2. Landslide data interpreted from FORMOSAT-2 images for the four typhoon events.

Typhoon
event

Averaged rainfall
accumulated (mm)

Landslide area (ha) Landslide ratio (%)

Mitag 60 440 0.322
Kalmaegi 712 1452 1.062
Sinlaku 774 593 0.434
Morakot 2323 8946 6.544
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Table 3a. Test results for various combinations of dominant factors of landslides. Typhoon Mitag
and Sinlaku.

No. Combination of factors Training AUC
Mitag Sinlaku

A1 Sa+Lc 0.561 0.606
A2 Sa+Lc+As 0.708 0.786
A3 Sa+Lc+Lf 0.567 0.618
A4 Sa+Lc+El 0.682 0.697
A5 Sa+Lc+Dl 0.596 0.633
A6 Sa+Lc+Ds 0.634 0.681
A7 Sa+Lc+Nv 0.799 0.857
A8 Sa+Lc+Nv+As 0.870 0.912
A9 Sa+Lc+Nv+Lf 0.801 0.859
A10 Sa+Lc+Nv+El 0.824 0.891
A11 Sa+Lc+Nv+Dl 0.810 0.865
A12 Sa+Lc+Nv+Ds 0.817 0.872
A13 Sa+Lc+Nv+As+Lf 0.870 0.913
A14 Sa+Lc+Nv+As+El 0.882 0.931
A15 Sa+Lc+Nv+As+Dl 0.874 0.915
A16 Sa+Lc+Nv+As+Ds 0.879 0.920
A17 Total eight factors 0.888 0.933

Sa: slope angle; Lc: lithology condition; As: aspect; Lf:
landform; El: elevation; Dl: distance to lineation; Ds: distance to
stream; Nv: NDVI.
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Table 3b. Test results for various combinations of dominant factors of landslides. Typhoon
Kalmaegi.

No. Combination of factors Training AUC
Kalmaegi

B1 Sa+Lc 0.616
B2 Sa+Lc+As 0.626
B3 Sa+Lc+Lf 0.628
B4 Sa+Lc+El 0.643
B5 Sa+Lc+Dl 0.624
B6 Sa+Lc+Ds 0.649
B7 Sa+Lc+Nv 0.820
B8 Sa+Lc+Nv+As 0.791
B9 Sa+Lc+Nv+Lf 0.823
B10 Sa+Lc+Nv+El 0.823
B11 Sa+Lc+Nv+Dl 0.821
B12 Sa+Lc+Nv+Ds 0.826
B13 Sa+Lc+Nv+Ds+As 0.815
B14 Sa+Lc+Nv+Ds+Lf 0.829
B15 Sa+Lc+Nv+Ds+El 0.831
B16 Sa+Lc+Nv+Ds+Dl 0.828
B17 Total eight factors 0.824
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Table 3c. Test results for various combinations of dominant factors of landslides. Typhoon
Morakot.

No. Combination of factors Training AUC
Morakot

C1 Sa+Lc 0.556
C2 Sa+Lc+As 0.579
C3 Sa+Lc+Lf 0.568
C4 Sa+Lc+Nv 0.576
C5 Sa+Lc+Dl 0.568
C6 Sa+Lc+Ds 0.582
C7 Sa+Lc+El 0.624
C8 Sa+Lc+El+As 0.635
C9 Sa+Lc+El+Lf 0.626
C10 Sa+Lc+El+Dl 0.626
C11 Sa+Lc+El+Ds 0.633
C12 Sa+Lc+El+Nv 0.636
C13 Sa+Lc+El+Nv+As 0.646
C14 Sa+Lc+El+Nv+Lf 0.639
C15 Sa+Lc+El+Nv+Dl 0.637
C16 Sa+Lc+El+Nv+Ds 0.642
C17 Total eight factors 0.657
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Table 4. Validation results of landslide susceptibility model established by each typhoon.

Events LR (%) AUC (Training) AUC (Validation)
Mitag Kalmaegi Sinlaku Morakot

Mitag 0.303 0.888 – 0.796 0.889 0.603
Kalmaegi 1.021 0.824 0.712 – 0.636 0.512
Sinlaku 0.482 0.933 0.902 0.844 – 0.648
Morakot 7.218 0.657 0.656 0.582 0.737 –
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Table 5. Distribution of landslides induced by the four typhoons for each susceptibility level.

Typhoon Very high High Moderate Low Very low
events (0–10 %) (10–30 %) (30–50 %) (50–70 %) (70–100 %)

Mitag 73.47 % 18.98 % 4.26 % 2.33 % 0.96 %
Kalmeagi 50.04 % 33.11 % 12.09 % 4.34 % 0.42 %
Sinlaku 80.49 % 15.61 % 3.13 % 0.57 % 0.21 %
Morakot 19.38 % 30.50 % 22.17 % 14.71 % 13.24 %
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Figure 1. Geological map of the study area. The bold black line shows the study area.
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Evidenziato
1) can you show in this map the features you have used to obtain the variable "distance from lineation"? It would be interesting to see how many they are and how they are distributed.2) the word "stratum" can be deleted3) add the rivers

Evidenziato
Which map did you coinsider in this analysis? one map or four differnt maps?

Evidenziato
Is this the map prepared with the landslide triggered by the Morakot event?



D
iscussion

P
aper

|
D

iscussion
P

a
per

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|

    
(a) Typhoon Mitag                      (b) Typhoon  Kalmaegi 

 

    
(c) Typhoon Sinlaku                      (d) Typhoon Morakot 

Figure 2. Event-based landslide inventories interpreted by multi-temporal FORMOSAT-2 satel-
lite images.
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Figure 3. Spatial distribution of factors affecting landslide susceptibility assessment: (a) slope,
(b) aspect.
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Evidenziato
1) Add the major rivers2) delete "study area"

Evidenziato
This figure is not useful.
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Figure 4. Landslide ratios for the eight landslide affecting factors of the four typhoon events.
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Figure 5. Variation of weight contrast at different slope aspect directions.
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Figure 6. Landslide susceptibility map of the study area.
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Evidenziato
In this map the classes are highly correlated and controlled by the elevation (ridge and valley) distribution. Is it realistic?




