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Abstract

Statistical methods are commonly employed to estimate spatial probabilities of land-
slide release at the catchment or regional scale. Travel distances and impact areas are
often computed by means of conceptual mass point models. The present work intro-
duces a fully automated procedure extending and combining both concepts to compute5

an integrated spatial landslide probability: (i) the landslide inventory is subset into re-
lease and deposition zones. (ii) We employ a simple statistical approach to estimate the
pixel-based landslide release probability. (iii) We use the cumulative probability density
function of the angle of reach of the observed landslide pixels to assign an impact
probability to each pixel. (iv) We introduce the zonal probability i.e. the spatial proba-10

bility that at least one landslide pixel occurs within a zone of defined size. We quantify
this relationship by a set of empirical curves. (v) The integrated spatial landslide prob-
ability is defined as the maximum of the release probability and the product of the
impact probability and the zonal release probability relevant for each pixel. We demon-
strate the approach with a 637 km2 study area in southern Taiwan, using an inventory15

of 1399 landslides triggered by the typhoon Morakot in 2009. We observe that (i) the
average integrated spatial landslide probability over the entire study area corresponds
reasonably well to the fraction of the observed landside area; (ii) the model performs
moderately well in predicting the observed spatial landslide distribution; (iii) the size of
the release zone (or any other zone of spatial aggregation) influences the integrated20

spatial landslide probability to a much higher degree than the pixel-based release prob-
ability; (iv) removing the largest landslides from the analysis leads to an enhanced
model performance.
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1 Introduction

Overviews of spatial landslide probability (susceptibility) at catchment or regional
scales are useful for hazard indication zoning and for prioritizing target areas for risk
mitigation. Computer models making use of geographic Information Systems (GIS) are
commonly employed to produce such overviews (Van Westen et al., 2006). Physically-5

based modelling of landslide susceptibility – also with reasonably complex modelling
tools – has become an option also for large areas from a purely technical point of view
(Mergili et al., 2014a, b). However, the parameterization of such models remains a chal-
lenge, limiting the quality of the results obtained. For this reason, statistical methods –
often coupled with stochastic concepts – are commonly employed to relate the spatial10

patterns of landslide occurrence to those of environmental variables, and to estimate
landslide susceptibility by applying these relationships (Guzzetti, 2006). A broad array
of statistical methods for landslide susceptibility analysis has been developed, docu-
mented by a large bunch of publications (e.g. Carrara et al., 1991; Baeza and Coromi-
nas, 2001; Dai et al., 2001; Lee and Min, 2001; Brenning, 2005; Saha et al., 2005;15

Guzzetti, 2006; Komac, 2006; Lee and Sambath, 2006; Lee and Pradhan, 2007; Yal-
cin, 2008; Yilmaz, 2009; Nandi and Shakoor, 2010; Yalcin et al., 2011; Petschko et al.,
2014). However, such methods only concern the release of landslides whilst they dis-
regard their propagation.

Whilst advanced physically-based models for landslide propagation (e.g. Chris-20

ten et al., 2010a, b) are usually employed for local-scale studies, conceptual ap-
proaches have been developed to analyze and to estimate travel distances and im-
pact areas at broader scales. Some build on the angle of reach or related parameters
(e.g. Scheidegger (1973) for rock avalanches; Zimmermann et al. (1997) and Ricken-
mann (1999) for debris flows; Corominas et al. (2003) for various types of landslides;25

Noetzli et al. (2006) for rock/ice avalanches), others consist in semi-deterministic mod-
els employing the concept of Voellmy (1955) (Perla et al., 1980; Gamma, 2000; Wich-
mann and Becht, 2003; Horton et al., 2013). Mergili et al. (2015) have recently pre-
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sented an automated approach to statistically derive cumulative density functions of the
angle of reach from a given landslide inventory, and to apply these functions to com-
pute a spatially distributed impact probability. Modelling approaches considering both
the release and the propagation of landslides do exist (Mergili et al. (2012) and Hor-
ton et al. (2013) for debris flows; Gruber and Mergili (2013) for various high-mountain5

processes). However, they yield deterministic results distinguishing areas with an im-
pact expected from those with no impact expected, or qualitative scores.

Integrated automated approaches to properly estimate the spatial probability of
a given area to be affected by a landslide – considering both release and propaga-
tion – are still missing. The present work attempts to fill this gap by combining the two10

newly developed open source software tools r.landslides.statistics and r.randomwalk.
We will next introduce our modelling strategy (Sect. 2) and the study area in Taiwan
(Sect. 3). After presenting (Sect. 4) and discussing (Sect. 5) the results we will conclude
with a set of key messages (Sect. 6).

Within the present article we use the term “landslide” in a broad sense, including all15

relevant types of gravitational mass movements.

2 Modelling strategy

2.1 General model layout

We propose an integrated statistical procedure (containing stochastic elements) to
compute the spatial probability of a given area (technically, a given GIS pixel) to be20

affected by a landslide either through its release or through its propagation. We first
consider release and propagation separately and finally combine the two concepts.
The entire work flow is illustrated in Fig. 1, its components are introduced in detail in
Sects. 2.2–2.6.

Two newly developed raster modules of the open source software package GRASS25

GIS 7 (Neteler and Mitasova, 2007; GRASS Development Team, 2015) are combined:
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– r.landslides.statistics allows inventory subsetting, estimation of the spatial proba-
bility of landslide release, and the generation of a zonal probability function.

– r.randomwalk, introduced by Mergili et al. (2015), employs sets of constrained
random walks to route hypothetic mass points down through the digital eleva-
tion model (DEM) and assigns an impact probability to each pixel. The cumula-5

tive probability density function (CDF) used is derived from the analysis of the
observed landslides. Further, r.randomwalk includes an algorithm to combine re-
lease probabilities and impact probabilities, making use of the zonal probability
function derived with r.landslides.statistics.

Both tools build on a combination of the Python and C programming languages. The10

R software environment for statistical computing and graphics (R Core Team, 2015)
is used for built-in validation and visualization functions. r.landslides.statistics and
r.randomwalk can be started in a fully non-interactive way i.e. all parameters are passed
as command line arguments. This strategy enables a straightforward combination of
multiple runs of the two models at the script level.15

An issue of central importance consists in the strict separation of the data used for
model development and the data used for model application and evaluation. In this
sense, most operations are performed either for the model development area (MDA) or
for the model evaluation area (MEA), but not for both. The only exception from this rule
applies to the initial step of inventory subsetting.20

All probabilities used in the context of the present work are summarized in Table 1.

2.2 Inventory subsetting

Landslide inventories often suffer from a missing – or unsatisfactory – subsetting into
release, transit and deposition areas. The reason for this problem, which applies also to
our case study, is not necessarily related to deficient mapping efforts, but rather to the25

impossibility to identify each zone in the field or from remotely sensed data. Appropriate
subsetting, however, is required before using the inventory for statistical analyses of
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landslide release or propagation. We therefore suggest a reproducible procedure to
deal with this problem.

We analyze the geometric properties of all landslides in a given inventory in terms of
inclination, minimum and maximum elevation, elevation range, central, maximum and
average 2-D and 3-D length and width, 2-D and 3-D areas. Lengths and widths are5

defined as Euclidean distances (the central 2-D and 3-D lengths L2-D and L3-D as well
as the elevation range H are shown in Fig. 2). On this basis we compute the height
ratio rH for each observed landslide pixel:

rH =
Hp −Hmin

Hmax −Hmin
, (1)

where Hp is the elevation at the considered pixel, Hmin is the minimum elevation of the10

landslide and Hmax is the maximum elevation of the landslide (see Fig. 2).
In the present work, we consider all observed landslide pixels with rH ≥ rR as release

pixels and all observed landslide pixels with rH ≤ rD as deposition pixels. rR and rD are
defined by the user. All other observed landslide pixels are considered as unknowns
regarding release and deposition. Following these rules, we obtain three landslide in-15

ventory maps:

1. observed release areas (ORA), where all release pixels are considered observed
positives (OP), the rest of the landslide areas are considered no data, and all
non-landslide pixels are considered observed negatives (ON);

2. observed deposition areas (ODA), where all deposition pixels are considered OP,20

the rest of the landslide areas are considered no data, and all non-landslide pixels
are considered ON;

3. observed impact areas (OIA), where all landslide pixels are considered OP, and
all non-landslide pixels are considered ON.

These definitions prevent us from including pixels in the statistical analysis and the25

validation procedure we can neither assign to the ORA nor to the ODA. To ensure
5682
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excuding all uncertain pixels we have to chose conservative values of rR and rD, re-
sulting in a decreased number of OP pixels used for the statistical analyses and their
validation.

2.3 Pixel-based release probability

Statistical analyses of landslide spatial release probability (landslide susceptibility)5

have been treated exhaustively in previous studies (see Sect. 1 for references). In
the context of the present work we are bound to a method yielding spatial probabilities
in the range 0–1. In this sense, we employ a simple approach building on the spa-
tial overlay of classified predictor maps. Considering separately each of the resulting
combinations of predictor classes, we compute the fraction fR of observed landslide10

release pixels related to all pixels. For this step we consider only the MDA. Building on
the assumption that possible future landslides in the MEA are spatially related to the
predictors in the same way as the observed landslides in the MDA, the release proba-
bility PR (see Table 1) for each pixel in the MEA is set to the value of fR associated to
the corresponding combination of predictor classes.15

The true positive (TP), true negative (TN), false positive (FP) and false negative (FN)
pixel counts are derived for selected levels of PR. An ROC Curve is produced by plotting
the true positive rate TP/OP against the false positive rate FP/ON.

2.4 Zonal release probability

It is useful for many purposes to work with pixel-based spatial release probabilities20

(PR). They can be averaged in order to characterize the spatial probability of landslides
for any type of zone (such as slope units, catchment basins, administrative entities or
larger pixels). However, the average of PR over a certain zone does not tell us how
likely it is that a landslide occurs in a zone at all. For this purpose we introduce the
zonal release probability PRZ (see Table 1) which increases with study area size. When25

considering one single pixel, PRZ = PR. For large areas (mountainous catchments or
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entire countries) PRZ = 1 as there will always be at least one landslide pixel. PRZ may
be useful for assessing how likely it is that a certain object (such as a road) is affected
by a landslide at all. It is further the appropriate parameter when validating landslide
probability at the level of slope units or other entities larger than single pixels. In the
present work it is needed primarily as a basis to compute the integrated spatial land-5

slide probability PL (see Sect. 2.6). It is further used to aggregate the model results at
the level of slope units.
PRZ cannot be computed in a fully analytic way. We suggest an empirical approach

to approximate PRZ (Fig. 3):

1. a subset of the MDA with a randomized size and randomized centre coordinates is10

selected. PRO is the observed pixel-based spatial probability of landslide release
in this subset (i.e. the fraction of ORA pixels out of all pixels);

2. within this subset, a set of sub-subsets with constant zone size Z and randomized
centre coordinates is tested for the presence of observed landslide release pixels.
The observed zonal release probability PRZO is defined as the fraction of subsets15

with at least one observed landslide release pixel (see Fig. 3a);

3. (2) is repeated for a large number of sets of sub-subsets covering a broad range
of Z .

(1)–(3) are repeated for a large number of random subsets of the MDA.
This procedure results in a line cloud of PRZO plotted against Z (one line for each20

subset; Fig. 3b). A logistic regression is fitted to the average value of PRZO, µPRZO, for
each tested value of Z :

µPRZO(Z) =
(1−µPRO)

1+e−(a2+a3Z)
+µPRO, (2)

where a2 and a3 are the regression coefficients and µPRO is the fraction of the observed
landslide area within the considered zone. We will come back to the function introduced25

in Eq. (2) in Sect. 2.6.
5684
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2.5 Impact probability

The tool r.randomwalk (Mergili et al., 2015) is employed for routing mass points rep-
resenting hypothetic landslides through the DEM. The specific impact probability PIR
describes the probability of an arbitrary impact pixel to be hit by a mass point routed
from a defined release pixel through the DEM. The impact probability P ∗

I or PI results5

from the spatial overlay of all relevant values of PIR at a certain pixel (see Table 1).
We define PIR on the basis of the angle of the path ω between the release pixel and
a possible impact pixel. This approach follows the concept of the angle of reach (Heim,
1932; Fig. 4). PI is computed in three steps:

1. The CDF describing the probability that a moving mass point starting from an10

arbitrary release pixel leaves the OIA of the same landslide at or below a cer-
tain threshold of ω is derived for the MDA. This is done by back-calculating the
observed angles of reach ωOT for all observed landslides (see Fig. 4a) and ana-
lyzing the resulting probability density (see Fig. 4b).

2. The CDF is then employed to compute PIR with regard to all observed release15

pixels in the MEA and evaluated against the ODA by means of an ROC Plot (see
Sect. 2.3). For those pixels with impacts from more than one release pixel, P ∗

I
takes the maximum value out of all relevant values of PIR (see Fig. 4c).

3. The same CDF is used for computing PIR with regard to all pixels in the MEA. For
reasons to be explained in Sect. 2.6, for those pixels with impacts from more than20

one release pixel PI takes the average value of all relevant values of PIR.

2.6 Integrated spatial landslide probability

The integrated spatial landslide probability PL approximates the spatial probability that
a landslide coincides spatially with an arbitrary pixel of the MEA, either through its
release or through its impact (see Table 1). In principle, PL is computed by multiplying25
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a release probability and an impact probability. Obviously, a simple overlay of PR and
PI would be useless. Instead, we have to consider for each impact pixel with PI > 0 the
zonal release probability PRZ of the possible release zone (Fig. 5) relevant for this pixel.
Z and the associated value of µPR (see Sect. 2.4) refer to the entire set of release
pixels which may propagate all the way to the impact pixel. I.e. PRZ has to be computed5

separately for each impact pixel.
For this purpose, we come back to the function introduced in Eq. (2). Thereby we

assume that the shape of the logistic regression function is insensitive to the zonal
average of the computed values of PR, µPR, of any arbitrary subset of the study area
with zone size Z (see Fig. 3c):10

1− PRZ(Z)

1−µPRZO(Z)
∼

1−µPR

1−µPRO
. (3)

Reformulating Eq. (3), PRZ(Z) is computed as

PRZ(Z) ∼ 1− (1−µPRZO(Z))
1−µPR

1−µPRO
. (4)

For those pixels where PRZ · PI < PR, PL is set to PR. For all other pixels, PL is set to the
product of PRZ and PI:15

PL = max(PR,PRZ · PI). (5)

The resulting raster map of PL is evaluated against the OIA by means of an ROC Plot
(see Sect. 2.3).

The expected error of PRZ is explored by comparing the empirical values of PRZO
obtained for each subset and each zone size with the results of Eq. (2) (see Fig. 3d). It20

is expressed as a third-order polynomial regression function of the standard deviation
of PRZ:

σPRZ = b1 +b2log10Z +b3(log10Z)2 +b4(log10Z)3, (6)
5686
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where σPRZ is the standard deviation of PRZ and b1–b4 are the regression coefficients.
The standard deviation of PL, σPL, is derived as

σPL = σPRZ · PI. (7)

Equation (7) only applies to those pixels where PRZ · PI ≥ PR.
We note that the described procedure is supposed to yield smoothed results due5

to averaging effects: (i) Eq. (5) builds on the simplification of a uniformly distributed
release probability over the possible release zone. (ii) As highlighted in Sect. 2.5, PI
represents the average of PIR of all mass points impacting a pixel. This type of averag-
ing is necessary to ensure a consistent combination of PRZ and PI.

3 Test area and parameterization10

3.1 The Kao Ping test area

In the period from 7 to 9 August 2009, Typhoon Morakot triggered a high number
of landslides in Taiwan. According to Lin et al. (2011), more than 22 000 landslides
were recorded in Southern Taiwan. One of the hot spots was the Kao Ping Watershed
(Wu et al., 2011), where extremely heavy rainfall (more than 2000 mm in a period of15

90 h) caused an enormous amount of mass wasting and triggered a catastrophic land-
slide in the Hsiaolin Village (Kuo et al., 2013).

We consider a 637 km2 subset of the Kao Ping Watershed for computing the in-
tegrated spatial landslide probability PL (Fig. 6). 1399 landslides triggered by the Ty-
phoon Morakot are mapped in the shale, sandstone and colluvium slopes of the area.20

A stereo-photogrammetrically generated 10 m DEM is used along with a landslide in-
ventory derived from FORMOSAT-2 scenes recorded before and after the event. The
landslide inventory delineates the OIA without differentiating between ORA and ODA,
and without providing direct information on landslide volumes. Overlapping landslide
polygons are aggregated to one polygon for the purpose of the statistical analyses.25
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3.2 Model parameterization

The model tests are summarized in Table 2. The Kao Ping study area is divided into
four subsets (A–D in Fig. 6) to separate between MDA and MEA. In each of the tests,
three subsets are used as MDA and one subset is used as MEA. The division lines
between the subsets follow catchment boundaries in order to ensure that all landslides5

are clearly assigned to one of the four subsets and no landslide may impact more than
one subset. All tests are run at a pixel size of 20 m.

We use values of rR = 0.75 and rD = 0.25 (see Sect. 2.2). Preliminary tests have
shown that the following two parameters are suitable as predictors for computing PR:
(i) local slope (five classes); and (ii) aspect (2 classes). For reasons of the regional10

geology, NE–E–SE–S–SW exposed slopes are more affected by landslides than W–
NW–N exposed slopes. Both predictors are derived from a modified version of the
DEM: noise reduction is applied to the DEM through a low pass filter building on the
mean of all values within in a radius of 50 m.

For back-calculating ωOT and for evaluating P ∗
I we start a set of 103 random walks15

from each pixel in the ORA of the MDA and the MEA, respectively. For computing PL

we start a set of 102 random walks from each pixel in the MEA. We use Gaussian
distributions to generate the CDFs. The input parameters governing the routing pro-
cedure in r.randomwalk are chosen in accordance with the suggestions provided by
Mergili et al. (2015).20

Preliminary tests have further indicated that the largest, deep-seated landslides in
the test area are poorly predicted by the statistical model applied. We hypothesize that
landsides of this type are governed by other factors than those which can be derived
directly from the DEM or other surface data. The analyses are therefore repeated ex-
cluding all landslides with a total size of the OIA≥ 1 km2. All pixels within the OIA of25

those landslides are set to no data (Tests 2A–D in Table 2).
We further run the model with a spatially constant value of PR (identical to the ob-

served density of ORA in the MDA) in order to quantify the component of PL (and of the
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model performance) associated to the zone size used for computing PRZ (see Sect. 2.6;
Tests 3A–D in Table 2).

The model results are evaluated against the observed landslides at two spatial levels
using ROC Plots:

– The pixel level. PR is evaluated against the ORA, P ∗
I is evaluated against the ODA,5

and PL is evaluated against the OIA.

– The level of slope units. The slope units are derived using the GRASS GIS module
r.watershed (parameter half_basin), with a minimum area of one slope unit of
104 m2. Each slope unit with at least one OP pixel is considered OP. The average
and zonal values of PR and PL as well as the slope unit size are tested against the10

corresponding aggregated inventories.

4 Results

4.1 Spatial patterns of landslide probability

Figure 7 illustrates the result maps for test 1C. For reasons of clarity, we show only
a subset of the test area (see Fig. 6). However, the general patterns of the results are15

well represented in this area and are also valid for the other tests. Figure 7a shows
the result of the inventory subsetting, the spatial variation of PR is displayed in Fig. 7b.
Whilst the patterns of P ∗

I related to the observed landslide release pixels (see Fig. 7c)
clearly reflect the decreasing probabilities in downslope direction, the values of PI re-
lated to all possible release pixels (see Fig. 7c) are high where large contiguous steep20

slopes are present i.e. where the average slope angles are high. The probability den-
sity function and the CDF of ωOT computed for the relevant MDA (including the zones
A, B and D; see Fig. 6) are shown in Fig. 8a. According to the Figs. 4 and 8a, P ∗

I = 1 for
those areas where ω ≥ the maximum of ωOT. For PI, this is only true where PIR = 1 for
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all mass points possibly impacting the considered pixel as PI represents the average of
all relevant values of PIR (see Fig. 5)

The largest values of Z are displayed in those areas with large catchments i.e. in the
valleys (see Fig. 7e). Whilst the maxima exceed 10 km2 in zone C, the median of Z for
all pixels in zone C is 0.043 km2. The zonal release probability (see Fig. 7f) strongly5

reflects the patterns of Z , clearly dominating over the influence of PR (see Figs. 3 and
7b). This phenomenon is explained by the limited spatial variation of PR (see Fig. 7b)
and the resulting dominance of the zone size reflected in PRZ. Figure 9a illustrates the
dependency of the observed zonal release probability PRZO from the zone size (see
Fig. 3).10

Note that high values of PRZ are not associated to those areas with high release
probabilities, but to the source areas of the random walks determining PI of the cor-
responding pixel (see Fig. 5). However, PI is usually low in those areas with very high
values of PRZ as they are located in the valleys at some distance from the steep slopes.
Therefore, the integrated spatial landslide probability PL reaches its maxima on the15

lower slopes and in narrow gorges, where both PRZ and PI are relatively high (see
Fig. 7g). The standard deviation shown in Fig. 7h is derived from the standard devia-
tion function of Fig. 9b (see Eqs. 6 and 7). σPRZ remains at a moderate level and is
highest in those areas where also PRZ is high.

Figure 10 shows the distribution of PL for the entire test area. The maps for the tests20

1A–1D – each of them covering the corresponding MEA – are combined into one map.

4.2 Pixel-based evaluation against observed landslides

Considering all observed landslides (tests 1A–D), 7.5 % of the entire test area are clas-
sified as OIA (i.e. the observed integrated spatial landslide probability). The average
value of PL = 9.3 %, meaning that we arrive at a reasonable estimate of the integrated25

spatial landslide probability, even though we overestimate PL. The same is true for the
landslide release areas, where 1.4 % of the test area are classified as ORA, with a simi-
lar average value of PR. Whilst the excellent correspondence of observed and modelled
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release probabilities is forced by the type of statistical approach employed, the still rea-
sonable correspondence with regard to PR indicates a certain validity of the suggested
workflow. The key parameters characterizing the outcomes of each test (see Table 2)
are summarized in Table 3. Observed and computed percentages are lower for the
tests 2A–D as some landslide areas are removed from the analysis.5

The ROC Plots for model evaluation are compiled in Fig. 11. PR is evaluated against
the ORA, PI is evaluated against the ODA and PL is evaluated against the OIA. Only
the MEA is taken into account. Considering the tests 1A–D, the predictors slope and
aspect only explain part of the spatial variation of PR, indicated by moderate levels of
AUCROC (0.569–0.661). The prediction level of test 1D even indicates model failure10

(see Fig. 11a). In contrast, the spatial variation of the observed deposition areas is
comparatively well predicted by the modelled values of P ∗

I (0.724 ≤ AUCROC ≤ 0.913;
see Fig. 11b). This observation is not surprising as the possible path of movement
is usually reasonably well constrained, and most mass points necessarily touch the
observed impact areas whilst those pixels on slopes without observed landslides yield15

a large amount of “cheap” TN pixels (see Fig. 7c). Whilst PI derived by the routing of all
possible release pixels (see Fig. 7d) is of theoretical nature and would be less useful
to evaluate, PL again displays a moderate prediction level (0.605 ≤ AUCROC ≤ 0.685;
see Fig. 11b) which is, however, better than PR. Considering the ROC Plots for PR
and P ∗

I indicates that the false predictions are a consequence of the uncertain release20

probability rather than of deficiencies in the routing procedure.
Removing the largest landslides (OIA≥ 1 km2) from the data (Tests 2A–D) does not

significantly change the general prediction quality with regard to PR (see Fig. 11d).
However, in the test 2D AUCROC increases from 0.569 to a (still very low) value of
0.598, indicating that the large Hsiaolin Landslide located in zone D (see Fig. 6) is very25

poorly explained by the predictors used. The influence of removing large landslides
(all of which are located in the zones C and D) on the model performance in terms of
P ∗

I is more obvious than in the case of PR (see Fig. 11e). The tests 2C and 2D display
a significantly enhanced performance, compared to the tests 1C and 1D (0.784 to 0.863
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and 0.724 to 0.900, respectively). This phenomenon is again a consequence of the
particular settings associated to the large landslides (especially the Hsiaolin Landslide,
the deposition area of which is very poorly predicted) yielding a large number of false
negative pixels in the observed deposit. Coming back to Fig. 8b, the tests 1A–D yield
lower peaks of the probability density and a shift of the curves towards lower values5

of ωOT, compared to the tests 2A–D (see Table 3). Those lower values of ωOT are
associated to the large landslides excluded in the tests 2A–D. Consequently, ωT is
underestimated – and therefore, the impact area is overestimated – for the majority of
the observed landslides in the tests 1A–D. However, the shift in the model performance
is related to the poor prediction of the large deposit of the Hsiaolin Landslide rather10

than to the changes in the CDF.
In accordance with the patterns observed with regard to PI, AUCROC increases for

the tests 2C and D, compared to 1C and D (see Fig. 11f). In contrast, AUCROC for PL
derived with the tests 2A and B decreases slightly, compared to the values obtained
with the results for 1A and B. Figure 11g illustrates the ROC Curves yielded for PL,15

assuming a constant spatial pattern of PR (i.e. the fraction of observed landslide pixels
in the MEA for each test 3A–D). The values of AUCROC are almost similar to those
yielded with the tests 1A–D (see Fig. 11c). This observation indicates that the spatial
differentiation of PR is almost completely covered by the patterns of PI and Z (see
Fig. 7).20

4.3 Evaluation against observed landslides on the basis of slope units

The ROC Plots shown in the Fig. 11h–l relate the modelled distribution of PR and PL
to the distribution of OP and ON slope units of the entire test area (in each case, the
combination of the results of the tests A–D). All slope units with at least one OP pixel
are considered OP, the ROC Curves are weighted for the slope unit size. The AUCROC25

values derived for the average values of PR for each slope unit evaluated against the
aggregated ORA are significantly higher than the AUCROC values derived at the pixel
level (0.695 for the tests 1A–D and 0.723 for the tests 2A–D; see Fig. 11h and j).
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AUCROC further increases to 0.787 and 0.766, respectively, when the zonal values of
PR for the slope units are considered. This would be the correct way. However, these
zonal probabilities are extremely strongly correlated to the size of the associated slope
unit (this phenomenon is already indicated by Fig. 9), so that validating the zone size
against the ORA results in ROC Curves almost identical with those derived for the5

zonal probabilities. This means that, despite the high values of AUCROC, the zonal
values of PR for the slope units have no predictive power in terms of differentiating
between areas of varying environmental or topographic conditions. The high prediction
quality just relies on the fact that larger slope units are more likely to contain OP pixels
(see Sect. 2.4). This phenomenon was already indirectly shown by the comparison of10

the Fig. 11c and g.
Slope units are not the suitable level to spatially aggregate PL (see Fig. 11i, k and l).

The average of PL for each slope unit evaluated against the aggregated OIA indi-
cates random predictions for all the sets of tests (AUCROC = 0.494–0.502). As for PR,
the strong correlation between slope unit size and zonal values of PL results in high15

AUCROC values (0.771–0.779) in all tests. This implies limitations analogous to those
described for PR.

5 Discussion

We have introduced a novel methodology to compute the spatial probability of an arbi-
trary raster pixel – or any other type of unit – to be affected by a landslide. Our approch20

considers both landslide release and propagation. It further introduces the concept of
the zonal release probability for correcting (i) the release probability relevant for a cer-
tain impact pixel for the size of the possible release area, or (ii) any type of probability
for a certain level of spatial aggregation.

The model results were evaluated at the pixel and slope unit levels. Slope units25

have been used earlier for discretizing and evaluating landslide release susceptibility
maps (e.g. Rossi et al., 2010; Jia et al., 2012). Marchesini et al. (2015) have shown
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that a physically-based landslide susceptibility model performs better when evaluated
at the level of slope units instead of pixels. In the present study, this phenomenon is
confirmed for PR. It is also shown that slope units are unsuitable to discretize PL. The
ORAs and the associated areas with high PR are generally well confined to slope units
as they usually coincide with more or less steep slopes. In contrast, many OIAs touch5

more than one slope unit by crossing major drainage lines. As a consequence, almost
the entire study area is considered OP with regard to the OIA, hampering a meaningful
evaluation. In fact, it is generally questionable to evaluate average probabilities against
binary observations at the level of slope units of varying sizes. Large slope units are
much more likely to contain landslide pixels than small slope units, so that the zonal10

probabilities introduced in the present work would be the appropriate criterion for eval-
uation. However, we have shown that the zonal probabilities strongly reflect the size of
the associated slope units. Consequently, zonal probabilities are unsuitable to explain
spatial patterns at the level of slope units or other predefined entities. In contrast, PRZ
is highly useful to compute PL at the pixel level where the zone sizes are not defined15

a priori, but computed separately for each pixel. Also here, the result depends on PRZ
(indirectly, the zone size Z) and PI rather than on the pixel-based values of PR. Further,
high values of PR associated to single pixels or small groups of pixels are not reflected
in PL due to the smoothing immanent to the zonal probability concept. Averaging of PI
may induce a similar effect.20

Whilst traditional statistically-based landslide susceptibility studies (e.g. Car-
rara et al., 1991; Baeza and Corominas, 2001; Dai et al., 2001; Lee and Min, 2001;
Saha et al., 2005; Guzzetti, 2006; Komac, 2006; Lee and Sambath, 2006; Lee and
Pradhan, 2007; Yalcin, 2008; Yilmaz, 2009; Nandi and Shakoor, 2010; Yalcin et al.,
2011; Petschko et al., 2014) are useful to identify likely release areas at the pixel level,25

they appear to play a limited role when (i) considering integrated landslide probability;
or (ii) aggregating the pixel-based results to larger spatial units. However, the strong
correlation between zone size and the zonal value of PR – and, consequently, the non-
existent reflection of PR in PL – is partly related to the moderate level at which the
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predictors used explain the spatial distribution of observed landslides. This low model
performance is not surprising as we consider only one single meteorological event,
expected to produce landslides at a certain randomness. The parameters governing
landslide occurrence are partly stochastically distributed, particularly at fine scales
(e.g. Seyfried and Wilcox, 1995). Areas with high values of PR are expected to produce5

landslides during future events, even if they were not affected by the Typhoon Morakot.
In fact, those false positive pixels represent the most interesting areas in terms of future
predictions as they tell us where landslides have not occurred, but are likely to occur in
the future (Mergili et al., 2014a). This statement is equally valid in the context of PL.

The proposed approach is considered particularly useful for situations where land-10

slides are highly mobile e.g. where they convert into debris flows. It has to be used
with care where landslides are not mobile. In these cases, the CDF of the angle of
reach would reflect the length distribution of the ORAs rather than the mobility of the
landslides. In general, we note that the angles of reach used in the present study rely
on another concept than those included in published relationships (e.g. Scheidegger,15

1973; Zimmermann et al., 1997; Rickenmann, 1999; Corominas et al., 2003; Noet-
zli et al., 2006): whilst these and other authors refer to the angle between the highest
and the terminal point of the landslide, we consider the angles between any release
pixel of an observed or hypothetic landslide and its terminal point. This is necessary to
combine PI with PRZ, the latter referring to any arbitrary pixel possibly involved in a fu-20

ture landslide. Further, it is not possible to make PI dependent on landslide volumes as
it was done, e.g. by Scheidegger (1973), Rickenmann (1999) or Noetzli et al. (2006).
Such approaches are useful for single events with known volumes. However, as the
volumes of possible future landslides are not a priori known at the scale relevant for
the present study, we rely on the plain CDF.25

The exclusion of large landslides improves the model performance. Particularly the
well-investigated Hsiaolin Landslide (Kuo et al., 2013) is poorly predicted by the sug-
gested approach with the parameters applied. We hypothesize that such events are
sometimes characterized by very particular geotechnical and geological settings which
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cannot necessarily be deduced from a DEM or remotely sensed data only. Instead,
understanding, modelling and predicting those events relies on detailed on-site inves-
tigations and more advanced physically-based models.

Whilst it was out of scope of the present study to extensively evaluate the sensitivity
of the model results to the various parameters used, such an evaluation has to be the5

subject of future studies, including (i) the predictors; (ii) the type of statistical method
for computing PR; (iii) the number of random walks and the parameters constraining the
random walks (see Mergili et al., 2015); (iv) the pixel size; and (v) the spatial units con-
sidered. Particularly with regard to PR, alternatives to the pixel-based approach have to
be tested not only for evaluation, but also for establishing the statistical rules. We fur-10

ther note that all inventory subsets and probabilities (ORA, ODA and PR in particular,
to a much lesser extent also the other probabilities) are influenced by the choice of rR
and rD (see Sect. 2.2). Keeping in mind all the possible influences of varying parame-
ter combinations, we have to emphasize that the probabilities computed in the present
work have to be understood as relative probabilities in the context of the particular15

settings applied to all tests.

6 Conclusions

We have presented an innovative approach for integrated statistical modelling of the
spatial probability of landslides at catchment or broader scales. For this purpose we
have combined the tools r.landslides.statistics and r.randomwalk. The release prob-20

ability was computed using a simple overlay of the landslide inventory with a set of
predictor layers whilst landslide propagation – i.e. the impact probability – was de-
duced from the cumulative probability of the angle of reach of the observed landslide
pixels. The concept of zonal release probability was introduced, allowing to correct the
release probability for the size of the release area possibly affecting a given pixel before25

combining the impact probability and the release probability.
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The result approximates the probability of a pixel to be affected by a landslide either
through its release or through its propagation. Analyzing the outcomes of the procedure
leads us to a set of key conclusions:

– The predictors used explain the observed landslide distribution only at a moderate
performance level. This observation may be related to the fact that the landslides5

are attributed to one single meteorological event (the typhoon Morakot).

– The prediction quality does not decrease when using a constant release proba-
bility over the entire area. This indicates that the size of the possible release area
is more important for the zonal release probability than the pixel-based release
probability. This conclusion is supported by the outcome of the evaluation of the10

results on the basis of slope units.

– Even though this effect may be less pronounced for areas where the distribution
of the release areas is well explained by the environmental layers, we conclude
that the outcomes of traditional statistical landslide susceptibility analyses are
less relevant for the integrated landslide probability and for higher levels of spatial15

aggregation.

– Removing the largest observed landslides from the analysis improves the predic-
tion quality. We explain this phenomenon with particular geological settings not
deducible from terrain data conditioning some of these events, and conclude that
in-detail studies and physically-based models are needed in this context.20

Confirming, refining and improving the results obtained will rely on thorough tests of
parameter sensitivity.
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Table 1. Summary of the various probabilities as defined in the context of the present work.

Variable Name Description

PR Release probability Spatial probability of a pixel to become a landslide
release pixel

PIR Specific impact probability Spatial probability of a pixel to be impacted by the
propagation of a mass point starting from one defined
pixel.

P ∗
I Impact probability related to

observed release pixels
Spatial probability of a pixel to be impacted by the
propagation of mass points starting from an arbitrary
number of observed landslide release pixels. In the case
of more than one mass point impacting a pixel, the
maximum of all values of PIR applies.

PI Impact probability related to
all pixels

Spatial probability of a pixel to be impacted by the
propagation of mass points starting from all pixels in
a given area. In the case of more than one mass point
impacting a pixel, the average of all values of PIR applies.

PRZ Zonal release probability Spatial probability that at least one landslide pixel exists
within the possible release zone relevant for the
considered pixel.

PL Integrated spatial landslide
probability

Spatial probability that a pixel is affected by a landslide
either through release or through propagation.
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Table 2. Summary of model tests. All tests build on the combination of the tools
r.landslides.statistics and r.randomwalk. Refer to Fig. 6 for the subsets A–D used to define
the MDA and the MEA.

ID Description Components MDA MEA

1A
1B
1C
1-D

All landslides,
all model
components

PR, PI,
PRZ, PL

B, C, D
A, C, D
A, B, D
A, B, C

ABCD

2A
2B
2C
2-D

Large
landslides
excluded

PR, PI,
PRZ, PL

B, C, D
A, C, D
A, B, D
A, B, C

ABCD

3A
3B
3C
3-D

All landslides,
constant PR

PI, PRZ,
PL

B, C, D
A, C, D
A, B, D
A, B, C

ABCD
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Table 3. Key figures describing the results of the twelve tests introduced in Table 2. The IDs
1–3 refer to the combined results from each set A–D. All values given in per cent are averages
over the area indicated.

ID MDA (km2) MEA (km2)
Size
(km2)

ORA
(%)

OIA
(%)

Peak of
ωOT (◦)

Size
(km2)

ORA
(%)

OIA
(%)

PR
(%)

PL
(%)

1A 492.0 1.44 7.92 28.1 145.2 1.18 6.12 1.65 10.83
1B 506.9 1.49 8.21 28.1 130.3 0.96 4.80 1.62 10.73
1C 436.3 1.25 6.79 29.0 200.9 1.67 9.08 1.37 8.96
1D 476.4 1.33 7.01 29.4 160.8 1.54 9.01 1.23 7.06

2A 492.0 1.23 6.23 29.7 145.2 1.18 6.12 1.42 9.74
2B 506.9 1.29 6.57 29.8 130.3 0.96 4.80 1.41 9.52
2C 436.3 1.12 5.73 30.2 200.9 1.43 7.24 1.25 8.15
2D 476.4 1.23 6.22 30.5 160.8 1.20 6.14 1.15 6.14

3A 492.0 1.44 7.92 28.1 145.2 1.18 6.12 1.24 10.67
3B 506.9 1.49 8.21 28.1 130.3 0.96 4.80 1.00 10.48
3C 436.3 1.25 6.79 29.0 200.9 1.67 9.08 1.80 9.66
3D 476.4 1.33 7.01 29.4 160.8 1.54 9.01 1.66 7.18

1 637.2∗ 1.38∗ 7.51∗ 1.45∗ 9.27∗

2 637.2∗ 1.22∗ 6.20∗ 1.30∗ 8.28∗

3 637.2∗ 1.38∗ 7.51∗ 1.48∗ 9.43∗

Values marked with an asterisk represent averages for the entire test area.
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Figure 1. Simplified work flow of the integrated statistical analysis of spatial landslide probabil-
ity.
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Figure 2. Landslide geometry and inventory subsetting. ORA and ODA are defined on the basis
of rR and rD.
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Figure 3. Approximation of the zonal release probability PRZ. (a) Sampling of subsets of the
test areas in order to estimate PRZO associated to a broad range of zone size Z . (b) Line cloud
of PRZO(Z). The logistic regression is derived from the average values µPRZO of PRZO for the
sampled values of Z . (c) Approximation of PRZ(Z) for a given value of µPR, assuming that the
shape of the curve is insensitive to µPR. (d) Error of PRZ with standard deviation σPRZ derived by
the comparison of the sampled values of PRZO(Z) (see b) with the values of PRZ(Z) computed
by Eq. (4) (see c). The polynomial function relating σPRZ to Z (Eq. 6) is not shown.
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Figure 4. Work flow for estimating the impact probability PI,R with the tool r.randomwalk.
(a) Back-calculation of observed values of ωT . For clarity, only one random walk for one release
pixel is shown. In reality, sets of random walks are applied to all release pixels of all observed
landslides. (b) PDF and CDF of ωT , derived from the minima of ωT of all sets of random walks
for the entire test area. (c) Computation of PI exemplified with the same release pixels as used
in (a). The CDF derived in (b) is applied to the angle of path ω of each pixel along the path.
Also here, only one random walk for one release pixel is shown whilst in reality, r.randomwalk
starts sets of random walks from all release pixels of all observed landslides. Estimating PI for
all release pixels in the test area works in a way analogous to (c).

5708

http://www.nat-hazards-earth-syst-sci-discuss.net
http://www.nat-hazards-earth-syst-sci-discuss.net/3/5677/2015/nhessd-3-5677-2015-print.pdf
http://www.nat-hazards-earth-syst-sci-discuss.net/3/5677/2015/nhessd-3-5677-2015-discussion.html
http://creativecommons.org/licenses/by/3.0/


NHESSD
3, 5677–5715, 2015

Integrated statistical
modelling of spatial
landslide probability

M. Mergili and H.-J. Chu

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

Figure 5. Integrated spatial landslide probability PL for a given impact pixel as a function of the
release probability PR, the impact probability PI and the size of the possible release area Z . The
average of PR and the value of Z associated to each impact pixel are used along with Eq. (4) to
compute the zonal release probability PRZ (see Fig. 3c). PRZ and PI are multiplied to compute PL
(see Eq. 5). Note that (i) for readability, the values of PIR are shown for the associated release
pixels even though they apply to the impact pixel; (ii) if PR of the impact pixel > PRZ · PI, PL = PR.
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Figure 6. The test area in the Kao Ping Watershed in southern Taiwan. A–D refer to the subsets
of the test area alternatively used as MDA and MEA (see Table 2). The comparison of pre- and
post-event imagery for part of the test area illustrates the large number of landslides triggered
by the typhoon Morakot.
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Figure 7. Set of results of the test 1C. For readability, only a small subset of the test area
(see Fig. 6) is shown. (a) Subsets of the landslide inventory into ORA and ODA. (b) Release
probability PR. (c) Impact probability P ∗

I related to the observed landslides. (d) Impact probability
PI related to all possible release pixels. (e) Area of the possible release zone Z (km2) related to
each impact pixel. (f) Zonal release probability PRZ. (g) Integrated spatial landslide probability
PL. (h) Standard deviation of PL, σPL.
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Figure 8. Gaussian probability density functions and cumulative density functions (CDFs) of
the observed angle of reach ωOT (see Fig. 4). (a) Functions and histogram exemplified with
test 1A. (b) Functions for the tests 1A–2D (the functions for the tests 3A–D correspond to those
for the tests 1A–D).
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Figure 9. Zonal release probability (see Fig. 3). (a) Observed zonal release probability PRZO
derived with Test 1C. Note that the value of µPRO does not exactly correspond to the fraction of
OP pixels in the zones A, B and D (0.0125; see Table 3) due to the effects of random sampling.
(b) Error of PRZ with standard deviation function.
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Figure 10. Integrated spatial landslide probability PL for the entire test area. The results of the
tests 1A, 1B, 1C and 1D are combined into one map.
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Figure 11. ROC Plots relating the model results for the MEAs of all tests to the relevant obser-
vations. (a–c) PR, PI and PL yielded with the tests 1A–D, pixel level. (d–f) PR, PI and PL yielded
with the tests 2A–D, pixel level. (g) PL yielded with the tests 3A–D, pixel level. (h–k) PR and PL
yielded by combining the results for the sets of tests A–D, evaluated at the level of slope units.
Besides the mean value of the probability for each slope unit, also the zonal probability and the
size of the slope unit are considered.
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