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Abstract

Debris flows, avalanches, landslides, and other geophysical mass flows can contain
0(106—1010) m?> or more of material. These flows commonly consist of mixture of soil
and rocks with a significant quantity of interstitial fluid. They can be tens of meters
deep, and their runouts can extend many kilometers. The complicated rheology of
such a mixture challenges every constitutive model that can reasonably be applied;
the range of length and timescales involved in such mass flows challenges the compu-
tational capabilities of existing systems. This paper extends recent efforts to develop a
depth averaged “thin layer” model for geophysical mass flows that contain a mixture of
solid material and fluid. Concepts from the engineering community are integrated with
phenomenological findings in geo-science, resulting in a theory that accounts for the
principal solid and fluid forces as well as interactions between the phases, across a
wide range of solid volume fraction. A principal contribution here is to present drag and
phase interaction terms that comport with the literature in geo-sciences. The program
predicts the evolution of the concentration and dynamic pressure. The theory is vali-
dated with with data from one dimensional dam break solutions and it is verified with
data from artificial channel experiments.

1 Introduction

Globally there are about 50 volcanoes that erupt every year. During the past century
tens of thousands of people have been killed by volcanic flows and hundreds of thou-
sands forced from their homes (Tilling, 1996; The-Committee-on-Natural-Disasters,
1991; U.S.-Geodynamics-Committee, 1994). Two-phase mass flows containing water
and solid particles, called lahars, are common in volcanic regions. They can be initiated
by several mechanisms. A volcanic explosion can be accompanied by large plumes and
pyroclastic flows consisting of rock and gas that race along the surface of the mountain
at speeds as high as 100 m per second (Sheridan, 1979). The hot ash can melt snow,
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creating a muddy mixture that knock down trees and entrain rocks and boulders into
the flow. Cotopaxi Volcano in Ecuador is an example of a volcano that has produced
many large lahars by this process in the past (Pistolesi et al., 2013). Crater lakes on
volcanoes are another source of mud flows, a recent example being the 2007 lahar of
Ruapehu in New Zealand (Procter et al., 2010). A third mechanism for initiating lahars
is intense rainfall on hillsides that are devoid of vegetation and exposures of loose ma-
terial like clay soils or volcanic ash. An example of this type of lahar is the 1998 mudflow
at Casita Volcano in Nicaragua that occurred during Hurricane Mitch and caused hun-
dreds of deaths (Sheridan et al., 1999). Lahars can carry constituent particles that are
typically from clay to boulder size and can propagate tens of kilometers before coming
to rest (Procter et al., 2010). As solid particle sediment out of the flowing mass the
resulting deposits can be up to one hundred meters thick (Legros, 2002). However, the
typical deposits left after a debris flow passes are on the scale of meters.

In order to develop a complete mathematical model of mud and debris flows, two
principal challenges must be overcome: rheology, and scale. First, constitutive relations
must be developed to describe granular material including clays, sands, pebbles and
rocks, with interstitial water. Second, a computational method must be developed that
extends over six orders of magnitude. Neither of these challenges can be fully met at
this time. This paper tries to strike a balance between fidelity to the physics of mass
flows and computational feasibility. We describe a modeling effort that draws on the
wisdom from engineering and geo-science, to postulate constitutive theory and fluid-
solid interaction effects, and, through a depth averaging process, results in a system of
equations that is computationally tractable.

The modeling effort here has its origins the pioneering work of Savage and Hutter
(Savage and Hutter, 1989). They began with mass and momentum balance laws based
on a Coulomb constitutive description of dry granular material. By scaling and depth
averaging, they develop a “thin layer” model for granular flows down inclines. Flow
over general topography was addressed in Gray et al. (1999), Patra et al. (2005), and
Pudasaini and Hutter (2003). Comparison of thin layer model results to historic flows
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is presented in Sheridan et al. (2005). In Hutter et al. (2003), the appropriateness of
these thin layer models is considered, for several different types of geophysical flows.
Much of the modeling effort is summarized in Pudasaini and Hutter (2007).

Iverson and his co-workers (lverson, 1997; Iverson and Denlinger, 2001) argue that
the presence of interstitial fluid fundamentally alters the behavior of geophysical flows,
and fluid effects should be included in the constitutive behavior of the flowing material.
Starting with equations of mixture theory (Bedford and Drumheller, 1983) and through
a careful examination of experiments, these papers developed a system of mass and
momentum balance laws for the mixture. Unfortunately in this development an equation
for the motion of pore fluid was not readily available. Instead, based on experimental
data, a transport equation for the fluid was postulated.

A different approach, based on a fully three-dimensional model of two phase flows,
can be found in Meruane et al. (2010) and Dartevelle (2004).

Pitman and Le (Pitman and Le, 2005) rigorously developed a two phase thin layer
model of fluid and granular material. They begin with a fully three dimensional model
of two phase flows, based on model equations in engineering (Jackson, 2000). The
model equations are scaled and depth averaged. The resulting system of equations
is not complete, and closure assumptions are required. With these assumptions, the
mathematical system is shown to be hyperbolic under common conditions, and thus
well posed (see Pelanti et al., 2008). The model of Pitman and Le (2005) includes
a drag term, which is the only term describing the interaction of the two phases; the co-
efficient of drag must be fitted to experiments. That model assumes the fluid is inviscid,
and that there is no frictional dissipation in the fluid phase at the basal surface. Both
of these features, which are reasonable in bench-scale fluidized bed experiments, are
suspect for large mass flows. This paper reconsiders the model equations of Pitman
and Le (2005) and proposes a revision that better represents two phase geophysical
flows. Related work can be found in Valentine and Wohletz (1989) and Dobran (1991).

A different approach to modeling mud flows employ a visco-plastic constitutive as-
sumptions (Mei at al, 2001; Coussot, 1997); see also Ancey (2006) and Balmforth and
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Craster (1999). In these papers, the choice of visco-plastic flow model drives the subse-
quent derivation, as well as the required parameter-fitting necessary for the constitutive
relations. The process of depth averaging a visco-plastic flow is always difficult. The in-
terface between yielding and non-yielding material is itself a free surface that must be
determined. This attribute requires the use of multiple layers in the model system, with
all the resulting complexity.

2 Model derivation

This paper uses a similar framework to that developed in Pitman and Le (2005). How-
ever, a complete set of model equations for a granular phase and for a fluid phase are
written. Phase interaction terms are modeled, and scaling of all terms suggests simpli-
fications that can be made. Depth averaging and closure assumptions completes the
derivation.

A note on sign convention: in soil mechanics it is common to consider compressive
stresses as positive; in fluid mechanics compression is negative. We caution the reader
to observe the sign convention in the equations below.

2.1 Fundamental assumptions

The fundamental theory of two phase flows can be found in Dobran (1991) and Jackson
(2000). In two space dimensions, consider a thin layer of granular material (s) and
interstitial fluid (f), each of constant specific density p°® and pf, respectively, flowing
over a smooth basal surface, b. Neglect any erosion. Along the basal surface, define
a Cartesian coordinate system Oxyz, with origin O defined so the Oxy is tangent to the
basal surface, with the x direction the downstream direction, and Oz is in the normal
direction. Write v, u for the velocities of the solid and fluid constitutients, respectively,
and ¢ for the solid volume fraction. We assume the mass is fully saturated, so the
sum of the solid and fluid volume fractions adds to one. When writing equations in
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component form, we use subscripts to denote the component, and superscripts the
phase.

Mass conservation for the two constitutent phases may be written as in Anderson
and Jackson (1967):

0,0°p +V-(0°pv;) =0 (1)
8,0 (1 - @)+ V- (p'(1 - p)u;) =0 (2)

The momentum equations are:

0:(0°pv)+ V- (0°vv)=V-T*+f°+ p°pg 3)
8:(0'(1 - @) +V-(0'(1 - @)uu = V- T + '+ p'(1 - p)g (4)

Here T°, 7' are the stress tensors for the solid and fluid, and 7°, f' the interaction force
between the phases. We must postulate constitutive relations and an equation for the
interphase force, to close the system. Jackson (2000) presents an argument for sepa-
rating buoyancy from other interphase force terms (such as drag or virtual mass), and
for properly accounting for buoyancy in a field with fluid pressure variations. Similar
modeling can be found in Neri et al. (2003), Neri et al. (2007), Dobran (2001), Dobran
et al. (1993) and Valentine and Wohletz (1989). Neglecting capillarity, virtual mass and
lift, we postulate

f$= VT +D(v - u) (5)
ff = _fS

Here the total fluid stress is 7' = —P' + 'rf, where P' is the fluid pressure and 7' is the

viscous contribution to the fluid stress. The drag term exchanges momentum between

the phases, with a coefficient D that is phenomenological; Wallis (1969), Ergun (1952),

Gidaspow (1994), Fan and Zhu (1998), Dobran (2001), Panneerselvan et al. (2007),

and Mazzei and Lettieri (2007) among other sources, suggest values. As ¢ — 1 the
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effect of fluid forces becomes less important, relative to frictional forces. When ¢ — 0,
the drag vanishes. Following Mazzei and Lettieri (2007), we set

f
V-u
P o |(1_

3
D ==
204 d

@)~ (6)

where d is the mean particle diameter, a is a constant related to the constant n in
Ricardson—Zaki equation (Khan and Richardson, 1989). According to Mazzei and Let-
tieri (2007), this constant equals 2.80 either when Rep —0or Rep — 00, thus we use
a =2.80 in Eq. (6). Finally, he drag coeficient is assumed to be constant Cy = 1.

2.2 Scaling

The characteristic thickness of the flowing granular material is H and the character-
istic length L. Scale x and y by L, and z by H, time by the free fall time \/L /g, and

the x, y and z velocities by \/Lg and % Lg, respectively. All stresses are scaled by

0°gH. After scaling the mass balance equations are unchanged. Several terms in the
momentum equations contain the factor e = H/L which is small; € ~ 0.01 - 0.001 is
not uncommon (lverson and Denlinger, 2001). Writing x, y, z for x4, X5, X3, the solid
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momentum balance equations become

a1‘(q0Vx) + ax(qm/)('/)() + ay(QDVyVX) + az(CDVzV)()

f

0
=0Ty, +0,6T5, +0,T5, - equaxT;X

f f
P P D
— €E§05y7-)f(y — quazT)f(z + E(VX - UX) + (pgx
5 at((pvy) + a)(((p‘/)(|/y) + ay((pVyVy) + az((szVy)
f
P
= 0,€Ty, +0,€T;, +0,T;, - eE(paxT;y
f f
1% 14 D
- equayTyfy - quazr;z + E(Vy -u,) + g,
e(at((pvz) + ax((pvxvz) + ay((pVsz) + az((pvzvz))
f
P

= 0,€eT;, +0,€T;, +0,T, - equaxT,f(z

f f
1% P D
10 - GECDQVT;Z - ECDaszfz + €E(Vz - uz) + @9,

Note that components of gravity have been scaled by the magnitude |g|, so (g9, 9, 9)

is a unit vector.
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With the same scaling, the fluid momentum become
0:((1 = @)uy) + 0, (1 = @)uyuy) + 8, (1 - @)uyu,) +8,((1 - P)u,u1,)
= 0,6(1-@)T!, +0,6(1 - @)T!, +0,(1 - QT - %(vx —u)+(1- @)g, (10)
0:((1 - @)uy) +8,((1 - @)uyu,) + 8, (1 - @)uyuy) + 8,((1 - @)u,uy)
= 0,e(1- @)y, +0,6(1- )T}, +8,(1 - @)T,, - %(vy —u,)+(1-9)g, (11)
e(0,((1 = @)u,) + 0, (1 = P)uu,) + 8, (1 = Q)u ) + 8,((1 - Q)u,u,))
= 0,6(1-@)T!, +8,e(1 - )T}, +6,(1- @)T?, - eg(vz —u)+(1-0)g, (12)

In summary, then, the proposed equation system consists of the solid volume fraction
@, the three solid velocities v, and three fluid velocities u. These variables evolve ac-
cording to the six momentum balance laws for the species, and the mass conservation
relations for each species.

2.3 Constitutive assumptions and boundary conditions

The upper surface of the flowing mass at F,(x,y,t) =0 is assumed to be a material
surface and stress free. At the base of the mass, material is assumed to flow tangent
to the basal surface F, = 0, and to satisfy a sliding friction law. For the solid constituent,
this friction relation specifies that the shear traction and the normal stress are pro-
portional: .S|Fb = —sgn(v)N|Fb tan(@peq), Where @4 is the basal friction angle and the
—sgn(v) specifies that the shear traction opposes motion. For the fluid, the basal stress
condition will be addressed below.

We now discuss constitutive relations. A Coulomb constitutive relation is postu-
lated for the material. The Coulomb law is a nonlinear relation among the compo-
nents of T°, and stipulated that material deforms when the total stress reaches yield,
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||dev(T®)|| = « tr(T®), where dev(T®) = T°- 1tr(T®)l is the stress deviator, tr(T®) is the trace
of the stress (the sum of the diagonal components), | is the identity tensor, and « is
a material parameter, and that as deformation occurs, the stress and strain-rate ten-
sors are aligned. That is, the alignment condition specifies dev(T®) = A dev(V), where
the strain-rate V = —%(Vv + VVT) and t denotes the transpose. To avoid a switching
between plastic and non-plastic behavior, we assume the solid material is everywhere
in plastic yield.

The full Coulomb relations are too complex to be used here. Two simplifications are
proposed. First, at the basal surface the boundary condition ensures proportionality
and alignment of the tangential and normal forces; we assume the same proportion-
ality and alignment holds throughout the thin flowing layer of material. Written in com-
ponents this implies T,,° = v,,T,,°, Where the proportionality constant v is a function of
Ppeq- Second, following Rankine (1957) and Terzaghi (1936), an earth pressure rela-
tion is assumed for the diagonal stress components, T,,° = k,,T,,°, where

1
_ 101 - 008 (@)l +tan"(Prea)?
P cos?(Piny)
Here ¢, is the internal friction angle and the choice of the plus or minus sign depends
on whether flow is locally expanding (the active state, with V-v > 0, and the - sign) or
contracting (the passive state, with V-v < 0, and the + sign).

3 Depth averaging

The final step in the derivation is a depth averaging of the mass and momentum bal-
ance equations. That is, for some function f, we compute
h(x.y.t)

1 -
_ f(x,y,z,t)dz ="*.
= b] / or.2.0

b(x.y)
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Repeated use of the Leibnitz rule is made to interchange integration and differentiation,
and boundary conditions are employed to evaluate terms at b and A. In addition, several
approximations must be made during the depth averaging process. In what follows, we
only briefly sketch the depth averaging process, noting as appropriate those places
where approximations are made. Pitman and Le (2005) provides an estimation of the
errors typically made by these assumptions.

The terms of order € are assumed small and we hope to drop all such terms from
the model. However Savage and Hutter (1989) argues that diagonal contributions to the
solid stress must be retained. Because there is no preferential downslope direction in
our applications, and the flow direction may change during a flow, we retain the stress
terms in both the x and y directions, dropping only O(¢) terms in the z direction; see
the discussion in Iverson and Denlinger (2001). Other O(€) terms are dropped.

Mass balance equation

Vi(pv+(1-@)u)=0.

says that the volume-weighted mixture flow is divergence free. That the mixture is
isochoric allows us to depth average:
h

/V-(qov +(1-¢@)u)dz =0.

b

(13)

Use the Leibniz rule to interchange differentiation and integration. The upper free sur-
face F, = 0 is a material surface for the mixture, so at z = h(x,y,t)

0(oh+(1 - @)h) + (v, + (1 - @)u,)oh (14)
+(pv, +(1-@)u,))0,h—(pv,+(1-@)u,) = 0.
Likewise, at the basal surface F, = 0 flow is tangent to the fixed bed so

(qDVx +(1- CD)ux)axb + (QDVy +(1- QD)Uy)ayb - (CDVZ +(1- (P)Uz) =0.
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15

In arriving at these equations, we have ignored sedimentation, entrainment, and infil-
tration of fluid into the bed.

Using these formulae and algebraic manipulation,the depth averaged equation for
the total mass of the solid and fluid can be written

0:h + 0, (A(@vy + (1 - @)uy)) + 0, (h(@v, + (1 - @)u,)) = 0. (16)

In writing this equation, the depth averaged velocities are Av, = [va dz, with a similar

expression for the volume fraction @ and the other velocity components, where A =
h-b.

Z momentum

Observe that, upon setting € — 0 in the fluid z momentum equation, we find the fluid
to be hydrostatic:

aszfz =9
Integrating and imposing boundary conditions, we find

Ti,(x,y,2) = -g,[h-2], (17)

and the average

—f

1 .
T,,(x,y) = —Egzh. (18)

In the same manner, for the solid z momentum we find equation for an effective
stress:

f
0
aszSz + quazrzfz = @g;.
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Substituting,

f f
P o
027'232 = <1 - E) gz(p = <1 - E) (pazrzzf .

Thus the normal solid stress in the z direction at any height is equal to the (buoyancy)
reduced weight of the solid material overburden.

In scaling these equations, the z velocities have been dropped. Of course neglecting
motion in the z direction is a central component of a thin layer theory. Furthermore,
any contribution to the z momentum from fluid shearing — terms such a T,':Z, T;Z —are
dropped due to scaling. This observation suggests that only pressure contributions to
the fluid stress are important, an assumption we will make below, albiet with a modifi-
cation at the basal surface.

X and y momentum

We now must depth average the remaining momentum equations. The nonlinearity
of these equations present difficulties in formulating a depth averaged theory. compli-
cate the derivation, and in several places, it is necessary to take the depth average of
products of terms. When necessary we approximate the required closure relation, for
example as @f ~ @f.

Consider first the equation for the motion of the solid phase. The left-hand side of
the x momentum equation (7) can be written

LHS = 8,v* + 8,v* + 0, @v*V¥ + 8,0v*v* .
Depth average and use boundary conditions to find

h h h h
/LHSdz = 6,/¢vxdz+6X/q0vX2dz+0y/q0vaydz (19)
b b

b b
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h

b

Now depth average the right hand side of (7):

h
/ RHSdz = - / (€0,T* +€8,T +0,T?)dz (20)
b

~ J
-~

(U

o h h
0 D |L
—E/eqoafo”dz+ E‘/g(vx - uy) +/qogxdz.
b

-

N b

v v

10

15

~= (i)

(i)
In order to proceed, several assumptions are made:

— This equation governs the motion of the solid phase, and we assume the upper
free surface for the mixture is a free surface for both of the individual phases.

— The drag term %(vx —u,) is highly nonlinear and a correct depth average is all
but impossible to calculate. We postulate that a experiments could fit an averaged
phenomenological drag of a similar form.

— The earth pressure relation for the solid phase is employed. That is, the basal
shear stresses are assumed to be proportional to the normal stress:

V*
TS*Z - __tan((pbed)TSZZ = O'*ZTSZZ,

vl
where = can be either x or y, and the velocity ratio enforces that friction opposes

motion inthe designated direction (Savage and Hutter, 1989; Patra et al., 2005)
The a notation will provide a convenient shorthand that we use in other places.
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10

15

Likewise the diagonal stresses are taken to be proportional to the normal solid
stress

S SZZ __ SzzZ
TS = kooT%? = @, TS .

Finally, following lverson and Denlinger (2001), xy shear stresses are determined
by a Coulomb relation

T = —sgn(8, v*) sin(@in) kapT 5 = a,, T,

where the sgn function ensures that friction opposes straining in the (x, y) plane.

For the fluid phase, the basal shear stresses are assumed to be proportinal to the
square of the depth averaged velocities (Guo, 1995; Xu, 2004):

T = pCyuu]

where C; is the friction coeficient. A physical approach for the friction coefficient
is the Colebrook—White equation (Colebrook and White, 1937), which for rough
channels can be approached as:

|
o
e

where kg is the roughness of the channel and A, is the hydraulic radii, which for
shallow water problems can be approaced as the depth of the flow.

For pure fuids, the diagonal stresses and shear stress are zero.
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From Leibniz’s rule and the stress computations above, we find

f h
(i) = —e% / 00, T dz =
b

. @1)

of _ 72 A
~ 65 Plo (—(—gz)> +h(-g%)0,b].
. , : . =szZ f\ —=fzz o
Now using the fluid and solid stress relation 7 = (1 - %) T ,term (i) is approx-
imated as:
h h h
(i) = _E/axaxxrszz dz - e/c?anyTs” dz - /c’izaszSZZ dz
b b b

(22)

h h
= _e[ax/axxrszz dz - aXXTSZZ|z=haXh + axxTSZZ|z=baxb] - 9[6y/aXyTSZZ dz
b b

- axyTSZZ|z=hayh + axyTSZZ|z=bayb] - axz[Tszz|z=h - TSZle:b] .

The upper free surface is stress free, so all terms involving 7%

pression for (i) becomes

v=—e(1-2\ o (ha. 77 =P\ (b 777
(i)=-e - E x | N1Qxx P -€ - E y | 1Ay, @

f
+ <1 - %) (—€ay0xb - €0y, 0,b + A )(-9%)he .

|;=p vanish. The ex-

(23)

Note that the factor (—g®) originates in the evaluation and depth averaging of the fluid
stress; in typical flows, this factor is positive.
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Combining all terms yields a solids x momentum equation:

0, (h@v~) + 0, (hov<v¥) + o, (Apvv7) = -g (1 - gif) 0 (auPP(-g%)  (24)

f f
€ 1Y No— 19 A
- E (1 - E) ay(axyhzq)(_gz)) + <1 - E) (_eaxxaxb - 6a'xyayb + O'XZ)/?CD(—QZ)

f f Y
2—07)) — e Lo fid(-07 DN (7% + hoo”
_Eﬁqoax(h (-g%) epshgo( g?)o,b + <p8> (ux vx) + hpg*.

5 The y solid momentum equation can be derived in a similar fashion.
The equation for the fluid motion presents fewer difficulties. The depth averaged
Xx momentum equation takes the form
@@5?%@4%@%3+@@5ww) (25)

1 ] D - — —
= —Eeathqof(—gz) - <E> (uX - VX> +he'g* + @'Cru”||u]|.

10 Where a =1 - . Again, the fluid y momentum equation has a similar form. Note that

if @' — 1 Eq. (25) becomes the typical shallow water approach of hydraulics (Chow,
1969) (Kowalski, 2008 describes how debris flows exhibit a shallow flow geometry as
well).
This equation system is then solved using the finite volume method, whose solution
15 provides results of the velocity field, flow depth and the volumetric concentration of
solids at the center of the each finite volume computational grid. The bulk density can
be calculated from:

p=p@+p'(1-) (26)
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Then, we obtain the dynamic pressure p from:

L
p=gpv (27)
where v is the speed of the flow. The use of the impacting dynamic pressure information
on structures and living beings allows to estimate levels of damage, as in Valentine
(1998), Valentine et al. (2011), and Jones (2012), useful for vulnerability analysis.

The numerical solution of the above set of equations presents strong numerical sen-
sitivity to small changes and Digital Elevation Model (DEM) errors. To solve the balance
laws, we use the parallel, adaptive mesh, Godunov solver developed by Davis (1988)
already implemented in Patra et al. (2005) and Pitman and Le (2005). The adaptive
meshing is used as well, which allows to have very fine grids where indicators show
high gradients, and coarser grids where low gradients are detected. The time step is
adjusted from a Courant et al. (1928) like condition. The complexity of the equation
system results in typical time steps of the order of 107*. However, the maximum time
step allowed was reduced from 10" s used within Titan2D to 10™° s to ensure stability.
As result, Titan2F become a computationally expensive tool.

Another source of numerical difficulties arise from the DEMs and the quality of that
maps. The DEMS can have regions where elevations are not well defined, they can
have crossed contour levels or even infinite holes. Abrupt terrain changes, both actual
or DEM artifacts, cause computations of gradients and curvatures to become unstable.
In order to avoid such a numerical problems patching and intelligent smoothing of the
DEMs was needed.

There are four major differences between the present paper and Pitman and Le
(2005):

1. In Pitman and Le (2005), mass and momentum conservation laws are derived for
the solid material and for the phase averaged mixture of solid and fluid, whereas
here the final model presents mass and momentum equations for both individual
phases.
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2. Any two phase model system must postulate several phenomenological functions,
such as inter-phase drag coefficient. In the present derivation these functions are
better adapted to geophysical flows whose fluid phase corresponds to water and
the solid phase are rounded solid particle.

3. The volumetric particle concentration is not a fixed parameter, which in our ap-
proach is calculated for every time steep and grid point. When the particle con-
centration vanishes, the solid phase role in the equation system vanishes as well.
In that way, the equation system becomes the typical hydraulic shallow water ap-
proach.

4. The only input parameters need by the program are the location of the pile of ma-
terial, its volume and the volumetric solids concentration. The friction coefficients
are no longer needed as input as they are authomaticaly adjusted accoding to the
evolution of the volumetric fraction of solids across the grid and time. The bed and
internal friction at set in such way that when the velometric fraction of solids tends
to an assumed maximum packing concetration (¢ = 0.65), both internal and bed
frictions tends to the values used in that cases in Titan2D (0.35).

4 Validation and verification

In order to validate and verify the proposed approach, we did a series of tests using
a one dimensional approach of the proposed equation system. First we test the consis-
tency of the results verifying the expected symmetries. Then we used an exponentially
decaying topography with and without obstacles (bumps). They show expected fea-
tures like how the mathematical model can show a reflected wave when the bump was
big enough or the flow splitting in a reflected dense part and bump overpass by a very
dilute flow.

Verification of the accuracy of the code was done with analytical solutions of the
Dam Break problem and with several experiment results. Among them, we check the
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deposited pattern predicted by the program with the results shown by Liu (Liu, 1996).
The prediction of the arrival time and the flow depth profile was compared with the
experimental results shown by Iverson et al. (2010) from his recent work done on his
large channel facility.

Analytical solutions for shallow water problems are scarce. Only one dimensional
analytical approaches are available in the litereture, especially for the well known Dam
Break problem (e.g. Dressler, 1954; Mangeney et al., 2000; Fernandez-Feira, 2006;
Ancey et al., 2008; Wrachien and Mambretti, 2009). Unfortunately, analytical solutions
for geo-mass flows are almost imposible to find due to the complexity of the the non-
linear partial differential equations (Pudasaini and Hutter, 2007). Such solutions can
be obtained only in special cases like the similarity based solutions proposed by Sav-
age and Hutter (Savage and Hutter, 1989) for dry avalenches. In our test we use the
solution proposed by Fernandez-Feira (2006) for the Dam Break problem on an incline
for pure water. In our program we assume ¢° — 0. Figure 1 shows a comparison of
the Two-Phase-Titan prediction with this analytical solution. At least for the one dimen-
sional case, the program successfuly reproduces analytical solutions for different initial
conditions down to very low paricle concentrations (less than 1 %).

Liu (1996) performed several experiments for geo-mass flows in an inclined channel.
He modified the initial volume, the channel slope and the particle concentration to find
the final size of the debris flows meassured by their resulting width and length. We
reproduced experimental final width and length after the simulation reached the same
time corresponding to the duration reported by Liu. Figure 2 shows the correspondense
of the model with the experiments for (a) the width of the deposit and (b) the length.
A Pearson correlation shows that 90 % of the experimental data for the deposit lenght
can be explained with the predictions of Titan-Two-Phase, whereas 80 % of the data
for the deposit width can be explained by the predictions of the program. This ilustrates
the high accuracy of the program in predicting the deposit characteristics for different
initial volumes and high initial solid concentrations.
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The experiments performed by Iverson and co-workers (lverson et al., 2010) done
on a 95m long artificial channel was used to verify the accuracy of the predictions of
the flow front arrival time and the temporal evolution of the flow depth. These flows
were unsteady and nonuniform. Iverson et al. (2010) show time series data for several
meassured properties: flow thickness, pore pressure, basal normal stress and arrival
time of the front. Raw data sent to us by Dr. Iverson were used to test the Two-Phase-
Titan prediction concerning time evolution of the flow depth and arrival times at the
check points located at 32 and 66 m distance from the lock. As shown in Figures 3 and
4, the arrival time and the temporal evolution of the predicted depth fits very well within
the confidence interval of the experiments.

The range of concentrations that the program cope with, are from ¢, = 1078 (almost
pure water) to @, = 0.65 (maximum packing concentration). Finally, as expected, the
program predicts high particle concentrations at the front of the flow and low particle
concentrations at the tail of the flow (at some cases, even near pure water concentra-
tions, or ¢ — 0), as can be seen in Fig. 5 where a longitudinal solids particle distribution
predicted by Titan2F is shown. The predictions fits with Iverson et al. (2010) observa-
tion that the tail of the flow remains very watery. Using predicted concentration of solids,
the density is assessed (Eqg. 26) and together with the speed of the flow, the dynamic
pressure distribution is calculated as well (Eq. 27). Figure 6 shows longitudinal and
cross distributions of the dynamic pressures after 14s simulation. As the flow veloc-
ity at lateral limits of the flow from the end of the channel are very low, the dynamic
pressure shows to be low as well. Knowledge of the dymaic pressure information is of
vital importance in risk analysis as structural damage and risk for human life can be
assessed from it.

Verification with actual mud flows has been done as well, showing very good fit with
field data. For example, Sheridan et al. (2011) shows that the Titan2F predictions are
within 10% of the data shown by Procter et al. (2010) for the highly channeled mud
flow at Ruapehu, New Zealand. In addition, the theory was tested against field data
assessed by Williams et al. (2008) for the 2006 Vazcun creek lahar at Tungurahua
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volcano, Ecuador, as shown by Cordoba et al. (2015), where Titan2F predictions about
velocity are within 10 % and within 15 % for the meassured super-elevation.

5 Conclusions

In this paper we present a new computational two phase tool for lahar hazard assess-
ment that has no constrains on initial volumentric particle concentration. The program
computes space—time evolution of the particle concentration, flow depth, velocity field
and dynamic pressure at each ponit of the computational grid.

The model is valid for two phase flows whose phases consist in solids and water.
However, the phenomenological approach used for the interphase drag model as-
sumes an average diameter of the solids, which mean individual boulders or particles
cannot be tracked. In addition, the model is depth averaged, assuming thin layer and
shadow water approaches. Thus, our model correctly predicts the dynamic of gravity
driven flows providing the depth averaged values for the particle concentration, flow
and phases velocities and flow depth in a three dimensional topography. In order to
model other kind of geophysical mass flows, adjustments to the code must be done,
for example pyroclastic flows can be modeled if the flow density of the fluid phase is
appropriately addressed (eg. thermocoupled air density using ideal gas law and an
additional equation for temperature).

The proposed mathematical approach allows to study the whole range of flow be-
haviour. Regions with almost pure fluid to regions of friction dominated flows are cor-
rectly described by the algorithm. Using this information, dynamic pressure is deduced,
which becomes a very useful tool for risk assessment.

The highly non-linear coupled equation system makes the time step very small. The
use of this neew tool on natural terrains or detailed Digital Elevetion Models (DEMs)
requires higher computational power than the one provided for home PCs. The use of
a high velocity Work Station with multiple cores is adviced.
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Important processes that are not addressed by this tool include the effect of turbu-
lence, incorporation of solid material from the bed of the channel, and incorporation
of water into the flow from existing water bodies. Nevertheless, this two-phase flow is
an important step forward in forming an aceptable computational model for simulat-
ing a hazardous natural phenomena. Currently, we are applying this tool for real lahar
hazard assessments like in Cordoba et al. (2015).

The Supplement related to this article is available online at
doi:10.5194/nhessd-3-3789-2015-supplement.
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