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Abstract

Twelve Hector events, a storm developing in the northern Australia, are analyzed to
the aim of identifying the main meteorological parameters involved in the convective
development. Based on Crook’s ideal study (Crook, 2001) wind speed and direction,
wind shear, water vapor, Convective Available Potential Energy and type of convection5

are the parameters used for this analysis. Both European Centre for Medium-Range
Weather Forecasts (ECMWF) analysis and high resolution simulations from the Fifth-
Generation Mesoscale Model (MM5) are used. The MM5 simulations are used to con-
nect the mean vertical velocity to the total condensate at the maximum stage and to
study the dynamics of the storms. The ECMWF analysis are used to evaluate the ini-10

tial conditions and the environmental fields contributing to Hector development. The
analysis suggests that the strength of convection is largely contributing to the vertical
distribution of hydrometeors. The role of total condensate and mean lifting vs. low level
moisture, Convective Available Potential Energy, surface wind and direction is analyzed
for shear and no-shear conditions to evaluate the differences between type A and B for15

real events. Results confirm the tendency suggested by Crook’s analysis. On the other
hand, Crook’s hypothesis of low level moisture as the only parameter that differentiates
between type A and B can be applied only if the events develop in the same mete-
orological conditions. Crook’s tests also helped to asses how the the meteorological
parameters contribute to Hector development in terms of percentage.20

1 Introduction

Hector is a vigorous convective system that develops on the Tiwi Islands, two islands
included in the “Maritime Continent” (Ramage, 1968), an area extending across the
Indonesian archipelago, the north Australia and the New Guinea. This is one of the
primary regions of global latent heat release contributing to the forcing of the plane-25

tary scale circulations (e.g. Hadley and Walker cells). The Tiwi Islands, located in the
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northern tropical part of Australia, produce regular tropical convection during the pre-
monsoon and monsoon “breaks” seasons (from November to March) in response to
the latent heat released during the diurnal cycle (Keenan and Carbone, 1992).

This storm has been analyzed during observing campaigns like ITEX (1988), MCTEX
(1995), SCOUT-O3 (2005) and TWP-ICE (2006) whose aims were to better understand5

the triggering mechanisms and the meteorological parameters favorable to the convec-
tive development. Particularly MCTEX campaign collected many environmental factors
that are known or believed to influence the initiation, organization, propagation and in-
tensity of deep convection. In addition this dataset allowed to define two distinct forcing
regimes leading to Hector (Carbone et al., 2000):10

1. type A: resulting from the confluence and convergence of the sea breeze fronts;

2. type B: rising form the interaction among sea breeze and gust front convectively
generated by cold pools.

Type A forcing may be viewed as nature’s backup mechanism when the meteorological
conditions don’t allow the type B development.15

Following these campaigns some ideal and real numerical studies have been per-
formed to understand the forcing and the triggering mechanisms of this convective cell
(e.g., Golding, 1993; Crook, 2001; Saito et al., 2001; Ferretti and Gentile, 2009; Gentile
et al., 2014).

Golding (1993) used the U.K. Met Office’s mesoscale model at 3 km resolution ini-20

tialized by a sounding to examine two cases from ITEX. The results suggest that the
model qualitatively reproduces the diurnal evolution of Hector, showing a clear rela-
tionship between the storm development and the island topography. Saito et al. (2001)
used the Japanese Meteorological Institute’s mesoscale model at 1 km resolution to
simulate a case from MCTEX. The study highlights a good agreement between the25

simulations and observations and focuses on the five stages of the convective life cy-
cle.
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Chemel et al. (2009) simulated the 30 November 2005 Hector event using two mod-
els the Advanced Research Weather Research Weather (ARW) and the Forecasting
and the Met Office Unified Model with a resolution of 1 km. Both models reproduce the
development of Hector fairly well even though the two simulated surface heat fluxes
are very different. This would mean that the intensity of the storm is not be controlled5

only by this factor. The aim of the paper is to investigate the role of deep convection
in the vertical transport of tropospheric air into the lower stratosphere. Chemel et al.
(2009) conducted a further simulation with ARW in large eddy simulation (LES) mode,
refining the grid spacing to 250 m, and concluded that the characteristics of the Hector
storm are basically similar in time and space to those obtained in the 1 km resolution.10

Therefore a 1 km resolution is fine enough to simulate faithfully this storm.
In the study by Ferretti and Gentile (2009) two Hector events (one observed during

SCOUT-O3 and one during TWP-ICE) have been investigated analyzing the dynamics
and thermodynamics. Using MM5 mesoscale model at 1 km resolution over the Tiwi Is-
lands several numerical experiments have been performed to the aim of understanding15

the forcing and triggering conditions for the Hector development. The study demon-
strates the key role of the sea breeze, water vapor content and soil moisture content
on the Hector growth. Moreover, Gentile et al. (2014) carried out a study for highlight-
ing both the triggering factors and microphysical structure of a Hector event. The event
was analyzed using MM5 model simulations, ground-based radar and TRMM satellite20

data to the aim of understanding the mechanisms leading to the convective develop-
ment. The analysis of the horizontal and vertical structure at high temporal and spatial
resolution produced by MM5 allows to establish the mechanisms for triggering Hector:
sea breeze, gust front from previous convection and channeling effect by topography.

Zhu et al. (2013) simulated four cases of Hector storm by running the ARW model25

with a maximum horizontal resolution of 1 km incorporating and not incorporating the
observations collected during the ACTIVE campaign. Only one (30 November 2005)
of the four cases was well simulated by the run without the ingestion of observations.
Three events (16 November 2006, 6 and 10 February 2006) can be simulated only if
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the model was run incorporating observations. The major deficiency deduced by (Zhu
et al., 2013) in the simulations of Hector is the smaller size and the weaker intensity in
comparison with the observations.

Simulations were performed for a Hector event observed on 30 November 2005 by
Dauhut et al. (2014) using the Meso-NH model performed with a grid spacing of 1600,5

800, 400, 200 and 100 m. The updraft generally decreases with reduced resolution due
to the reduced entrainment into the base of the updrafts. Indeed, the strong updrafts in
the boundary layer obtained by the three finest simulations reinforce the updrafts in the
upper troposphere.

Crook (2001) performed an ideal study using both a linear and non linear flow mod-10

els for assessing Hector convective system most important parameters. The low level
moisture is found to be an important parameter for differentiating between type A and B.
High values of low level moisture correspond to earlier convection, then the associated
evaporational cooling produces cold pools that retard the further inland progress of the
sea breezes. Hence, Hector type B develops because of the convergence of one of the15

sea breeze and the gust front related to previous convection. Hector type A, which is
associated to low values of low level moisture, develops when the generation of pre-
cipitating cold pools is delayed so that the sea breeze fronts have time to converge.
Moreover, Crook (2001) performed sensitivity tests to surface heating, wind speed and
direction. The results show a strong link between convective available potential energy20

(CAPE), wind speed and direction and total condensate (sum of all hydrometeors) of
Hector cells. The relationship between couple of meteorological parameters was in-
vestigated using diagrams that allowed to assess that the convective strength, in terms
of vertical velocity, increases as the wind speed decreases and as the wind direction
turns toward the major axis of the Tiwi Islands (Crook, 2001).25

In this study, twelve Hector events (from November 1995 to November 2008) are
used to investigate the portability to real events of the conclusions of Crook’s study. To
this aim the relationship between the same meteorological parameters, used by Crook,
are investigated for the real Hectors, each one characterized by its own boundary and
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initial conditions. The case studies are simulated using the MM5 mesoscale model
as described in Ferretti and Gentile (2009) and Gentile et al. (2014) and the results
are investigated to establish the contribution of water vapor, surface wind speed and
direction to the convective strength. These previous works (Ferretti and Gentile, 2009;
Gentile et al., 2014) allow to assess the model ability in reproducing the dynamics5

and in correctly detecting the triggering factors leading to the Hector development by
performing a detailed comparison with observations. However a temporal and spatial
shift is found for MM5; that is a common issue found also for WRF by Chemel et al.
(2009) and Zhu et al. (2013). The main focus of this study, as already pointed out, is
to investigate the role of a few key meteorological parameters for Hector development10

by using the Crook’s diagrams which are independent from time. Therefore, possible
temporal or spatial shift in the MM5 simulations of Hector do not affect the results.

The study is organized as follow. A meteorological analysis of the events as a func-
tion of wind speed, wind direction and shear, CAPE and water vapor, convection modes
A or B with a brief description of the model configuration is presented in Sect. 2. The15

comparison in terms of cloud total condensate and vertical velocity profiles among the
twelve events is shown in the Sect. 3. The fourth paragraph describes the Crook’s test
and outlines the main features in terms of percentage involved in the Hector develop-
ment. Conclusions are drawn in Sect. 5.

2 Meteorological characteristics of the Hector events20

The convective strength of the tropical storm Hector is evaluated using the meteoro-
logical variables suggested by Crook (2001). In this study twelve real events (eight
single cell and two double cell) are selected: some of them (20 and 23 November
1995; double cells 27 November 1995; 1 and 4 December 1995) were observed dur-
ing the Maritime Continent Thunderstorm Experiment (MCTEX), a campaign held in25

late 1995 on the Tiwi Islands with the goal of monitoring the convective life cycle of
the mesoscale convective system (Keenan and Carbone, 1992; Carbone et al., 2000).

3626
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Four of the remaining events (the double cell 30 November 2005, 6 February 2006 and
29 November 2007) are already analyzed respectively by Ferretti and Gentile (2009)
and Gentile et al. (2014). In what follows the events are named with the acronyms:

1. 20 November 1995: N20;

2. 23 November 1995: N23;5

3. 27 November 1995: N27 (double cell);

4. 1 December 1995: D1;

5. 4 December 1995: D4;

6. 30 November 2005: N30 (double cell);

7. 6 February 2006: F6;10

8. 29 November 2007: N29;

9. 11 November 2007: N11;

10. 17 November 2008: N17.

To simulate the events the same configuration as in Ferretti and Gentile (2009) and
Gentile et al. (2014) is used. The mesoscale model MM5V3 is a non hydrostatic model15

at primitive equations fully compressible with a terrain following vertical coordinate
(Dudhia et al., 2004). Four nested domains and 58 vertical levels are used: the mother
domain has a 27 km grid, covering the tropical part of Australia. The finest domain has
a horizontal grid of 1 km and it is centered over the Tiwi Islands. The following param-
eterizations are used: the Gayno-Seaman for the planetary boundary layer; the MM520

Cloud radiation scheme for radiative transfer processes; the Kain-Fritsch cumulus con-
vection parametrization to domains 1, 2 whereas no cumulus convective parameteriza-
tion for the finest domain; the Reisner 2 parametrization as microphysical scheme. To

3627
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improve the meteorological analysis on the mesoscale grid, “direct” observations from
surface and radiosonde have been incorporated using the objective analysis based
on the Cressman scheme (Faccani et al., 2003). The simulations are initialized using
ECMWF analysis at 0.25◦ and the boundary conditions are upgraded every 6 h and
they last 24 h for all the events.5

In the following subsections the ECMWF analysis are used to analyze the main dy-
namical aspects of the Hector events. The analysis is performed evaluating the role
of the following parameters on the development of the Hector storm: the wind speed
and direction at three different levels (lower (LL, 950 hPa), medium (ML, 700 hPa) and
upper level (UL, 300 hPa)), the CAPE and the water vapor content (mixing ratio). The10

values of these parameters for the Hector events are summarized in Table 1. To better
understand the dynamical conditions for the storm development, two parameters are
added: the shear occurrence and the typology of the events (definition based on Car-
bone et al., 2000). All these quantities are derived from the ECMWF analysis at the
00:00 UTC (09:30 LST); for the second cells (tagged in the Table as 2) the meteorolog-15

ical parameters are extracted six hours later that is at the 06:00 UTC (15:30 LST).

2.1 Wind Speed

The wind speed at the surface controls the magnitude of convective instability over the
Tiwi Islands; indeed, as the wind speed decreases, the low level air mass spends more
time over the heated and moistened island increasing its instability (Crook, 2001).20

The Hector D1 and N29 present weak wind at the surface with a maximum of
2.5 ms−1 (Table 1) from south for D1 and from east for N29 (Fig. 1a–e). Also N17
and N20 are characterized by very weak wind at the lower level with a maximum speed
of 2 ms−1, respectively from south-east and north but in addition weak wind is also
found at 700 hPa (Fig. 2c–f). These conditions are favorable for increasing the insta-25

bility which allows for the vertical growth of the tropical thunderstorm. On the contrary,
N11 and F6 show at the middle level respectively a very strong south-easterly wind up
to 16–18 ms−1 and a moderate easterly wind of 8 ms−1 (Figs. 2b and 3b) allowing to

3628
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suppose more stable conditions and unfavorable environment for the vertical growth.
D4 and N23 have very similar wind structure, both events have a weak westerly flow
(less than 3 ms−1) at the lower levels (Figs. 1c and 3c) and a sharp change of wind
direction at the middle level with a speed of approximately 5 ms−1 (Figs. 1d and 3d).
Finally, the initial conditions of N27 (double cell event) show a very weak surface wind5

characterized by a speed of 1.5–2.5 ms−1 (Fig. 4e and Table 1) produced by an area
of high pressure centered on the Tiwi Islands (Fig. 4f). On the contrary, the double cell
event (N30) shows a moderate wind speed (approximately 5 ms−1) at the three lev-
els changing direction at higher altitude (Table 1, Fig. 4a and b). For these two events
the environmental conditions prior the organization and the development of the second10

convective cell are more unstable and disorganized than the single cell events, as sug-
gested by the fast low level wind (Table 1, Fig. 4c, g, d and h) produced by the gust
front of the previous cell.

2.2 Wind direction and shear

The wind direction is another meteorological parameter affecting the Hector develop-15

ment. Assuming that the Tiwi Islands have an ellipse shape, if the air mass blows along
the major axis (east-west), the low level convergence, produced by the sea breeze and
the surface wind, is maximized because of the longer time spent by the air mass over
the heated and moistened surface of Tiwi Islands. On the contrary, if the air mass is
blowing along the minor axis (north-south), the low level convergence is reduced both20

by the shorter time spent by the air mass over the heated surface and by the overlap-
ping of the surface wind in the same direction of the sea breeze, producing a much
weaker convection (Crook, 2001). In addition, the vertical wind shear (change of direc-
tion) enhances the instability allowing for the vertical growth of the cell (Crook, 2001).

The D4, F6 and N23 events show a similar flow structure characterized by a strong25

and sharp vertical wind shear (Table 1); the westerly surface wind (Figs. 1c and 3a and
c) turns of 180◦ becoming easterly at middle level (Figs. 1d and 3b and d). The Hectors
N11 and N20 show shears from a different direction: a surface flow from south-west

3629
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and from north (Fig. 2a–e respectively for N11 and N20) and a strong south-easterly
(N11, Fig. 2b) and moderate south wind (N20, Fig. 2f) at the middle level respectively.
Figures 1a–e and 2c show the lack of a change in the wind direction between the low
and the middle level which confirms the absence of the shear (Figs. 1b–f and 2d) for
D1, N29 and N17. Finally, the two double cell events: no wind shear is detected for5

N27 (Fig. 4e and f), the easterly wind is constant up to middle level; a strong vertical
wind shear is found for N30 (Fig. 4a and b), the lower level wind turns from a north-
westerly to a easterly at 700 hPa. This structure lasted till the onset of the second cell
(Fig. 4c and d). For what concern the environment in which the second convective cell
develops, it is more heterogeneous: the onset of a weak wind shear helps to develop10

the N27 second cell (Table 1, Fig. 4g and h); a strong vertical wind shear is still on for
N30 second cell (Table 1, Fig. 4c and d).

2.3 CAPE and water vapor

The CAPE is derived from the vertically integrated buoyancy of an air parcel and it is an
indicator of atmospheric instability. Results from the MCTEX campaign showed that the15

variability of CAPE is mainly due to the variability of the low level moisture. Therefore,
the two parameters are directly proportional (Crook, 2001).

Four single cell cases are characterized by high values of CAPE (greater than
1200 Jkg−1 and lower than 2500 Jkg−1): D1, D4, N23 and N29 (Table 1). All these
events show a remarkable convective activity with several cells developing before20

and/or after the main Hector cell. The double cell events present: wet conditions with
high value of CAPE (2000 Jkg−1) and relative humidity (18–19 gkg−1, Table 1) for
N30; dry environment with low CAPE (450 Jkg−1) and water vapor mixing ratio (16–
18 gkg−1, Table 1) for N27. However, the second convective cell develops in a more
unstable environment for both events: CAPE remains close to 2000 Jkg−1 for N30 and25

increased up to 1650 Jkg−1 for N27 (Table 1).
The following events were characterized by low values (between 150 and 650 Jkg−1)

of CAPE (Table 1): N11, N17, N20 and F6, inferring a weak convective activity.
3630
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2.4 Convection type A or B

Convection of type A or B is a simple way to differentiate the dynamical development of
the storm; type A convection is generated by the convergence of two sea breeze fronts
(Carbone et al., 2000); whereas type B is generated by the convergence of a single sea
breeze front and a cold pool produced by previous convection (Crook, 2001; Gentile5

et al., 2014).
For both double cell events (N27 and N30), the first convective cell develops from the

convergence of the two sea breeze fronts (type A) and the second one from the interac-
tion of the gust front of the first decaying cell (type B) with the north and the south sea
breeze front, respectively for N27 and for N30 (an exhaustive description of the mete-10

orological characteristics of N30 is given by Ferretti and Gentile, 2009). The dynamics
of the storm is very similar for both the events: the first precipitating cells develop in
north-eastern part of Melville Island at approximately 12:00 LST. In the following hours,
the convective system reaches a first maximum of reflectivity of 55–60 dBz associated
to a strong convective cell (Fig. 5b and Fig. 14b of Ferretti and Gentile, 2009), that15

reaches a height of 16 km at 13:10 LST for N27 (Fig. 5a) and 14 km at 14:30 LST for
N30 (Fig. 14b of Ferretti and Gentile, 2009). The maximum development of the second
cells is reached at 16:10 LST with a height of 16–17 km for N27 (Fig. 5c and d) and at
15:50 LST with a height of 16 km for N30 (Fig. 14c and d of Ferretti and Gentile, 2009).

For D1 the maximum development of the storm is reached at 15:10 LST with a height20

of 16 km (Fig. 5e and f) after the organization and aggregation of several convective
cells. The precipitation starts at the 13:00 LST in the northern part of the islands and
a first deep cell develops at 13:50 LST, this last one contributes to the Hector growth
(type B).

Two different Hector development are found for D4 and N23, although the rain starts25

with the front of the south sea breeze for both events (at 13:00 LST for the first and
10:30 LST for the second event). This leads to a first convective tower reaching 10–
11 km at the 13:10 LST that finally brings to the maximum development (type B) at
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16:50 LST with a height of 17 km for D4 (Fig. 5g and h), whereas for N23 the con-
vective line moves quickly to the north west of the Tiwi Islands and interacts with the
north breeze front triggering the development of the Hector cell (maximum of 15 km at
12:50 LST, Fig. 6a and b). This is why N23 can be classified as type A (Table 1).

Also N29 (a detailed description of this event can be found in Gentile et al., 2014) is5

Type B; the development of this convective event is characterized by non precipitating
and well organized cells during the first stage that ends as weak precipitation starts.
Hence, the cells merge into a convergence line, that interacting with the south sea-
breeze front, strengthened by a channeling effect, produces an intense growth of the
convection. This phase corresponds to the mature stage characterized by a cloud top10

height reaching 18 km (Fig. 13a and b of Gentile et al., 2014).
The N11 dynamical evolution is characterized by an intense convective activity lead-

ing to type B development: a first cell appears in the northern part of the islands at
15:50 LST that triggers the vigorous Hector cell. A maximum height of 19–20 km is
reached at the 17:10 LST in the middle area of the Tiwi’s (Fig. 6c and d). Similarly for15

N17 (type B): the gust front, related to a first precipitating cell developed at 15:50 LST
in the eastern part of the Tiwi Islands, interacts with the south sea breeze front leading
at 16:30 LST to a maximum height of 16–17 km (Fig. 6e and f). Also N20 is classified as
type B (Table 1): its first stage is characterized by aligned non precipitating convective
cells. These cells lead to an initial double structure that merges in a unique Hector cell20

at 17:10 LST; the maximum development shows a height of 17 km (Fig. 6g and h). Fi-
nally F6 (a detailed description of the meteorological characteristics is given in Ferretti
and Gentile, 2009) is characterized by two precipitating cells: the first one developing at
12:30 LST in the eastern part of Tiwi Islands, then decaying at 14:30 LST in the central
area; the second deep cell reaches the maximum reflectivity of 45–50 dBz at 15:30 LST25

with a maximum cloud top of 16 km (Fig. 14e and f of Ferretti and Gentile, 2009). The
interaction between the gust front of the decaying first cell with the south breeze front
is the triggering mechanism for this Hector event (type B).
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3 Cloud total condensate and vertical velocity profiles for the events

In order to better understand the mechanisms leading to different convective structure
for these Hector events, the vertical structures of the storms is analyzed in terms of total
condensate (Crook, 2001). To this aim MM5 simulations are used to extract the mean
vertical profile of the cloud total condensate (sum of all hydrometeors) and the vertical5

velocity for each event at the maximum stage (Fig. 7). The maximum stage is selected
based on the time of the storm maximum height. The profiles are spatially averaged
for each layer within the volume encapsulating Hector at a specific time. The maximum
of the mean vertical velocity profile is approximately 0.9 ms−1 for N11 (Fig. 7d) and
the largest vertical velocity is 35 ms−1 for the same event. Also D1, D4, N29, N1710

and the first and the second cell, respectively, for N27 and N30, have a maximum
updraft value exceeding 20 ms−1; if spatially averaged it does not exceed 0.6 ms−1.
The values of the maximum vertical velocity for N30 are very close to those obtained
with the LES simulations by Dauhut et al. (2014); the maximum updraft obtained by
MM5 is approximately 22 ms−1 sustained for a height up to 8 until 16 km (not shown),15

structure very close to the one simulated by Meso-NH using a horizontal resolutions of
400, 200 and 100 m (Fig. 3a in Dauhut et al., 2014).

The absolute maximum of the total condensate matter is approximately 1.5 gm−3

for the first cell of N27 (Fig. 7e), but the largest vertical velocity is not reached by this
event.20

The vertical velocity profiles (Fig. 7b, d and f) present common features for most of
the events: at the lower level a weak downdraft related to the precipitating hydrometeors
prevails, and at the upper level, a very strong updraft can be detected associated to
the latent heat release due to the condensation process. In addition, a downdraft peak
in the vertical velocity profile is found at the same level of a relative maximum in the25

total condensate profile for: N11 at 2 km (Fig. 7c and d); the second cell of N30 at 3 km
(Fig. 7e and f); the first cell of N27 at 3–4 km (Fig. 7e and f). These would suggest that
the downdraft is related to the sinking due to the melting or evaporation cooling, and the
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corresponding total condensate maximum to the production of rain or melted graupel.
Moreover, the total condensate maxima are at higher altitude than the updraft peaks
as for N29, N20 and N11 (Fig. 7b and d): these events have the maximum updraft at
approximately 12 km and show a relatively large amount of total condensate up to 14–
16 km (Fig. 7a–c). On the other hand, if the maximum vertical velocity is positioned at5

lower levels, the most part of the hydrometeors distribution is at lower level too. A clear
example is the first cell of the N27 (Fig. 7e and f): the maximum updraft is located at
approximately 4 km and the largest part of hydrometeors is below 10–12 km.

The maximum total condensate and its vertical distribution, may be related to the
strength of convection which is generally stronger if generated by the convergence of10

downdraft of previous cells and the sea breeze front (type B) than the one generated by
the convergence of the two sea breeze fronts (type A) (Crook, 2001). Therefore, larger
vertical velocities are expected for type B events; indeed, the largest vertical velocity
is found for N11, which is Type B. The previous analysis suggests that the strength
of convection is largely contributing to the vertical distribution of the total condensate.15

Therefore, the structure of these Hector events agree with the Crook (2001) hypothesis
and allows for establishing that the strength of the event is proportional to the total
condensate. However, the large variability of the total condensate vertical distribution
among type A’s and B’s suggests that other parameters are playing an important role
beside the strength of convection.20

4 Crook’s test to detect triggering factors

In this section the analysis of the real events is carried out using the Crook’s diagrams
as “benchmark”.

Based on ideal studies of Hector, Crook (2001) suggested that the amount of total
condensate is strongly related to the low level moisture, in term of CAPE, as well as25

to the surface wind velocity and direction. Therefore, a model aided analysis of the
total condensate and of a few meteorological parameters (wind speed and direction,
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and CAPE), as used by Crook (2001), may help to highlight the most important factors
for the previously Hector events. To this aim the same analysis performed by Crook
(2001) is applied to the real Hector events analyzed in this study but some differences
are obviously present. The possibility of changing the meteorological parameters as for
example keeping constant one field as is done by Crook (2001) is not applied because5

it has already been verified its disruptive effect on Hector. Indeed, for real events the
variation of a parameter cause the lack of the Hector development, for example in the
work of Ferretti and Gentile (2009) the halving and the increasing of the initial water
vapor content disabled the Hector development.

The following MM5 meteorological parameters are used for the analysis: low level10

moisture, in term of CAPE, surface wind speed and direction. Following Crook (2001),
the variables are analyzed at the model start time, that is several hours before the
Hector development. For the single events and for the first cell of double events the
analysis is performed at 08:30 LST; whereas for the second cell of double events, the
ending time of the first cell is taken as reference: 15:10 LST for N30 and 15:30 LST for15

N27.
All the meteorological parameters are analyzed vs. total condensate and mean lift-

ing (vertical velocity at 500 m) as in Crook (2001). The vertical velocity is extracted
three hours before the maximum development of Hector and is averaged all over the
island surface; the total condensate, instead, is averaged within the volume encapsu-20

lating Hector at the maximum stage. Also CAPE, surface wind speed and direction are
averaged all over the surface of the Tiwi Islands. To the aim of understanding the con-
vective response to the flow direction either along the major (90◦) or minor axes (0◦) of
the islands, the wind direction is projected in the first quarter of the wind rose.

Crook (2001) analyzed the vertical velocity wind respect to the surface wind velocity25

and direction (Fig. 7b and c in Crook, 2001) related to shear and no-shear conditions.
Hence, Fig. 8 shows the results by Crook and the Hector events, respectively gray lines
and twelve symbols representing the Hector events. A few events closely follow the
shear (F6, N20 and the second cell of N27 and N30) and no-shear (D1 and N29) lines
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(Fig. 8a) or they belong to the right zone (i.e. no shear zone for the first cell of N27),
confirming for the shear events the correlation between the decrease of the vertical
velocity and the surface wind increase. A few cases do no show any specific signal,
probably because the real atmosphere is more complex than the ideal one and more
than one parameter is contributing to the vertical lifting as for example the topography5

or the convergence line. Therefore, the ideal response can be used to sort the events:
more the position of the event in the diagram is close to the “ideal” one and more the
meteorological parameter contribute to the convective strength.

The second cells of both the double structure events show a stronger surface wind
speed than the corresponding first cell; this is due to the gust front associated to the10

downdraft of the previous convective cell. This is why the double cell events are not
aligned with the others.

A similar analysis is performed for the vertical velocity as function of the surface wind
direction. The results clearly show (Fig. 8b) that most of the events are located in the
right position except for four events: D1, N17, N29 and N23, suggesting difficulties in the15

real atmosphere to completely separate the two regimes. However, it confirms roughly
the increase of the vertical velocity when the flow is eastward (90◦). This supports the
hypothesis of greatest lifting when the flow is along the major axis of the island as
assessed by Carbone et al. (2000) and Crook (2001). It is useful to highlight that the
wind direction related to the second cells of the double events does not show a clear20

signal because at this time the sea breeze regime is either well developed or destroyed,
and “leftover” from the first cell is affecting the environment. Therefore, their positions
in the graph have an uncertainty larger than one for the single cell events.

The analysis of the total condensate vs. wind speed (Fig. 9a) shows that most of the
Hector events are aligned along a line having a slope close to that of Crook one but25

a smaller intercept (gray dotted line in Fig. 9a) suggesting a sort of “bias” between the
Crook’s ideal and the real atmosphere. This disagreement can be explained by specu-
lating that the “real” events need weaker surface wind than the “ideal” one to produce
the same total condensate. Based on this hypothesis a new reference line can be as-
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sumed, then only two events are out of the distribution: the second events of the double
Hector N27 and N30 (Fig. 9a, white square and white star respectively). Both events
have larger wind speed than the expected one on equal terms of normalized total con-
densate. The absolute maximum of total condensate is reached by the first cell of N27,
whereas the second cell shows approximately a 65 % of the first cell total condensate.5

On the contrary, for N30 the second cell is stronger than the first one, in terms of cloud
total condensate. This is partly due to the leftover of the previous cell because of the
very short time interval (1 h and 20 min) occurred between the two maxima. Whereas
for N27 the second cell develops 3 h later than the first one making the two cells more
independent than the previous event. Hence, the hypothesis of increasing of the total10

condensate as the surface wind speed decreases (Fig. 9a) is still confirmed, but below
4 ms−1 for all single cell events and for the first cell of double ones. Based on the results
of the dry linear and non-linear models, Crook (2001) assessed that the relationship
between convective strength and low level convergence (i.e. surface wind speed) is
not strictly monotonic because the convective strength did not continue to increase as15

the flow decrease below 4 ms−1. The twelve Hector events reproduce a monotonic re-
lationship also below 4 ms−1 (Fig. 9a). This discrepancy between the simulations of
the real events and the Crook experiments is not surprising and it may be due to the
differences between the models assumptions and the use of an idealized sounding in
the Crook study.20

All Hector events, except the second cell of N27 and N17, confirm the increase of
the total condensate if the low level flow is along the major axes as showed by the plot
of the total condensate vs. the wind direction (Fig. 9b), but a spread along the Crook
“theoretical” line is found for the real events. As for the mean lifting vs. wind direction
(Fig. 8b) the major difference between the Crook ideal behavior and real one is found for25

the surface wind whose direction is close to the minor axes. But the Crook’s hypothesis
of maximizing the low level convergence if the flow is aligned along the major axis of
the Tiwi Islands is confirmed.

3637

http://www.nat-hazards-earth-syst-sci-discuss.net
http://www.nat-hazards-earth-syst-sci-discuss.net/3/3621/2015/nhessd-3-3621-2015-print.pdf
http://www.nat-hazards-earth-syst-sci-discuss.net/3/3621/2015/nhessd-3-3621-2015-discussion.html
http://creativecommons.org/licenses/by/3.0/


NHESSD
3, 3621–3653, 2015

Seeking for key
meteorological

parameters to better
understand Hector

S. Gentile and R. Ferretti

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

Finally, similarly to what was done by Crook (2001), the total condensate vs. the low
level moisture, express in term of CAPE is analyzed. The Hector events do not show
a clear signal, but a slight increase of the total condensate as the CAPE increase is
found, except for the first cell of N27. This is completely out of the Crook’s line (Fig. 9c
gray square). Moreover, on the contrary to what found by Crook (Fig. 13a in Crook,5

2001), no maximum is found for the total condensate vs. CAPE because of the lack of
Hector’s values around the theoretical maximum; hence it is not possible to assess its
occurrence.

4.1 Main features of the Hector events

Based on the previous analysis and on the brief summary of the main characteristics of10

these Hector events given in Table 1 some important highlights can be inferred using
the surface wind speed, surface wind direction and CAPE. Each event seems to be
driven by particular meteorological conditions, whose contributions to the convective
strength have been estimated and summarized in the Table 2. This computation is
performed by evaluating the distance between the “real” point and its corresponding15

“ideal” one. Once obtained the percentages from surface wind speed, surface wind
direction and CAPE, the total contribution from the three parameters is normalized to
100. Therefore, the percentage of influence for each parameter is calculated and the
following conclusions can be drawn:

1. D1 and N29 events, both type B, produce large amount of total condensate (re-20

spectively 75 and 82 % of the maximum) suggesting a strong convective strength.
A similar contribution (≈ 33 %) to the Hector development is found for the three
meteorological parameters, with a prevalence of favorable surface flow direction
for the first event and slow surface wind velocity for the second one (Table 2).

2. D4, F6, N17, N23 and the first cell of N27 have a total condensate ranging be-25

tween 55 and 65 % of the maximum (except for the first cell of N27 that is the
maximum). The convective development is due mainly (percentage of its influence
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from 47 to 62 %) to just one meteorological parameter: surface flow direction for
D4, F6 and N24; slow wind speed for N17 and N27. Another important contribu-
tion for three of these events is also found: the surface wind speed for F6, the low
level moisture for N23 and the wind direction for the first cell of N27.

3. The development of N11 and both cells of N30 is sustained by the “right” CAPE5

value (Crook, 2001) and by the wind direction. Indeed, the flow is blowing along
the major axis of the Tiwi Islands maximizing the low level convergence. The
N30 (type B) produces a larger amount of total condensate (58 % for the second
cell vs. 35 % of the first one) than the type A suggesting a stronger convective
strength; the most important parameter to justify it is the low level wind shear.10

Indeed, the Crook’s analysis allows for highlighting the change in the regime from
no-weak shear for the first cell to strong shear for this second cell, whereas the
other meteorological parameters are similar for both. The N30 (type A) produces
the smallest amount of total condensate suggesting a weak convective strength;
several meteorological parameters justify it. The large surface velocity, the wind15

direction and a weak shear are not sustaining Hector, whereas CAPE is the only
acting positively.

4. N20 and the second cell of N27 are characterized by a total condensate around
50–60 % of the maximum content but the events present a strong mean lifting.
The convective strength for both events mostly depends on two parameters with20

different weights: the main contribution (approximately 42 %, see Table 2) is com-
ing from the slow wind speed for N27 and CAPE for N20. Moreover, slow wind
speed and CAPE contribute for 35 % respectively to N20 and N27 development.

In summary, the previous analysis highlights the role of the meteorological parameters
in defining the Hector convective strength, but it does not allow to highlight a specific25

parameter as Crook assessed for the low level moisture to establish the Hector typol-
ogy. Moreover, the relationship between both the total condensate and mean lifting and
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several meteorological parameters for the Hector events is confirming what found by
Crook (2001) within this sensitivity analysis.

5 Conclusions

In this study twelve Hector events are analyzed using MM5 model simulations to the
aim of highlighting the main meteorological parameters and their role in triggering con-5

vection. A brief meteorological analysis of the events is performed using CAPE, water
vapor, wind speed and direction and typology of convection. Moreover, a comparison in
terms of mean total condensate vertical profiles and mean vertical velocity at the max-
imum development is carried out. The applicability of the Crook’s hypothesis to real
cases is explored verifying the linear relationship between both the convective strength10

and the total condensate vs. the low level moisture, expressed in terms of CAPE, sur-
face wind speed and direction. The Crook’s tests allow for concluding the following:

1. The strength of convection, in terms of mean lifting and total condensate, in-
creases if the wind direction tends to be parallel to the major axes of the Tiwi
Islands and if the wind speed surface decreases.15

2. It is not confirmed the Crook’s assumption on the low level moisture as the pa-
rameter differentiating between the type A and B modes of convection.

3. The previous hypothesis is verified for the two N30 Hector cells, where the sec-
ond cell (type B) has a low level moisture and a convective strength larger than
the first cell (type A). This would suggest the applicability of a type A or B clas-20

sification based on the low level moisture for the events developing in the same
meteorological conditions only. That means it cannot be generalized to all real
cases.
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4. The meteorological parameters contributing to the Hector development are: only
one by 47 % for five events; two by 32 % and less than 27 % for five events; all the
paramereters by 31 to 37 % for only two cases.

Thanks to their simple orography and shape Tiwi Islands can be used as a laboratory to
study the triggering factors contributing to convection. Hence, in this context this study5

will allow for better understanding different meteorological parameters concurring to
the onset of convection even in complex orography regions.
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Table 1. Meteorological characteristics of the Hector events extracted from ECMWF analysis
at 00:00 UTC (09:30 LST) for all the single and first cell of the double structure events (tagged
in the Table as 1) and at 06:00 UTC (15:30 LST) for the second cell (tagged in the Table as 2).
In the heading LL stays for low level (950 hPa), ML for medium level (700 hPa), UL for upper
level (300 hPa); wind shear is “yes” if there is a change of wind direction between LL and ML.

Events Wind speed/dir Wind speed/dir Wind speed/dir Shear CAPE q Type
LL (m s−1 – deg) ML (m s−1 – deg) UL (m s−1 – deg) (J kg−1) (g kg−1)

D1 1.5–2.5 – S 8–7 – SE 0.5–1.5 – E yes 1350 17–20 B
D4 2–2.5 – W 5.5–6 – E 6.5–7.5 – W yes 1170 18–19.5 B
F6 2.5–3.5 – SW 7–8 – E 5–5.5 – E yes 175 16.5–17.5 B
N11 3–4 – SSW 16–18 – SE 7–9 – NW yes 650 17.5–21 B
N17 1–2 – SE 1.5–2 – E 8–9 – W no 450 16–18 B
N20 < 1 – N 3–4.5 – S 12–16 – WSW yes 650 16.5–17.5 B
N23 2.5–3.5 – W 4–5 – ESE 10–12 – NW yes 2500 18.5–19.5 A
N27-1 1.5–2.5 – ENE 6–7 – E 2.5–4 – W no 450 16–18 A
N27-2 2.5–3.5 – NNE 4.5–5.5 – ENE 3–5 – W yes 1650 18–20 B
N29 1–2.5 – E 15–16 – ESE 7–8.5 NE no 2000 18–19.5 A
N30-1 3.5–4 – NW 4–5 – ESE 3–5 – SW yes 2000 18–19 A
N30-2 3–5 – W 3–4 – ENE 2–5 – SW yes 1800 16–18.5 B
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Table 2. Percentage of influence for the meteorological parameters on the convective develop-
ment of the Hector events.

Events Surface wind Surface wind CAPE
speed direction

D1 33 % 35 % 32 %
D4 26 % 47.5 % 26.5 %
F6 39 % 57 % 4 %
N11 27 % 34 % 39 %
N17 62 % 18 % 20 %
N20 32 % 25.5 % 42.5 %
N23 13 % 50 % 37 %
N27-1 47 % 38.5 % 14.5 %
N27-2 42 % 20 % 38 %
N29 37 % 31 % 32 %
N30-1 17.5 % 36.5 % 46 %
N30-2 22 % 38 % 40 %
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a b

c d

e f

Figure 1. ECMWF analysis over the Tiwi Islands at 00:00 UTC for D1, D4 and N29. (a), (c) and
(e) reports surface wind and relative humidity at 950 hPa; (b), (d) and (f) sea level pressure in
filled contours and wind flow vectors at 700 hPa.
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c d

ba

fe

Figure 2. ECMWF analysis over the Tiwi Islands at 00:00 UTC for N11, N17 and N20. (a), (c)
and (e) reports surface wind and relative humidity at 950 hPa; (b), (d) and (f) sea level pressure
in filled contours and wind flow vectors at 700 hPa.
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a b

dc

Figure 3. ECMWF analysis over the Tiwi Islands at 00:00 UTC for F6 and N23. (a) and (c)
reports surface wind and relative humidity at 950 hPa; (b) and (d) sea level pressure in filled
contours and wind flow vectors at 700 hPa.
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a

dc

b

g

e

h

f

Figure 4. ECMWF analysis over the Tiwi Islands for N30 and N27 at 00:00 UTC for the first
cell and at 06:00 UTC for the second one. (a), (c), (e) and (g) reports surface wind and relative
humidity at 950 hPa; (b), (d), (f) and (h) sea level pressure in filled contours and wind flow
vectors at 700 hPa.
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N27 1310 LST - Simulated reflectivity 

a b

f

N27 1610 LST - Simulated reflectivity 

c d

D1 1510 LST - Simulated reflectivity 

e

D4 1650 LST - Simulated reflectivity 

g h

Figure 5. Sections at the maximum development of the Hector events N27 (double cell), D1
and D4. (a), (c) and (e) Simulated vertical radar reflectivity (dBZ; filled color) and vertical wind,
the section is taken along the red circle reported in the right panel. (b), (d) and (f) Horizontal
radar reflectivity (dBZ; filled color) and topography (brown).
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N23 1250 LST - Simulated reflectivity 

a b

c d

N11 1710 LST - Simulated reflectivity 

N17 1630 LST - Simulated reflectivity 

e f

N20 1710 LST - Simulated reflectivity 

g h

Figure 6. Sections at the maximum development of the Hector events N23, N11, N17 and
N20. (a), (c) and (e) Simulated vertical radar reflectivity (dBZ; filled color) and vertical wind, the
section is taken along the red circle reported in the right panel. (b), (d) and (f) Horizontal radar
reflectivity (dBZ; filled color) and topography (brown).
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Figure 7. MM5 mean vertical profiles of cloud total condensate (sum of all hydrometeors) and
vertical velocity at the maximum stage. Profiles are averaged for each layer within the volume
encapsulating Hector.
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Figure 8. Crook’s test: (a) and (b) show vertical velocity at 500 m extracted 3 h before the max-
imum development vs. surface wind speed (a) and surface wind direction (b), both extracted at
the start time. The figure reports two different regimes with a sheared (light gray, dashed line)
and unsheared flow (dark gray, solid line) as studied by Crook.
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Figure 9. Crook’s test: normalized total condensate extracted at the maximum stage and aver-
aged into the Hector volume vs. surface wind speed (a), surface wind direction (b) and CAPE
(c), extracted at the start time. The dashed gray line reports the Crook “ideal” trend, instead,
the light gray dotted line in (b) the derived “real” trend.
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