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Abstract

Rainfall-runoff modelling procedures for ungaugedd apoorly gauged watersheds are
developed in this study. A well established hydgatal model, the University of British
Columbia (UBC) watershed model, is selected andiegppn five different river basins
located in Canada, Cyprus and Pakistan. Catchnfients cold, temperate, continental and
semiarid climate zones are included to demonstifie develop procedures. Two
methodologies for streamflow modelling are propoaad analysed. The first method uses
the UBC watershed model with a universal set otupaters for water allocation and flow
routing, and precipitation gradients estimated friv@ available annual precipitation data as
well as from regional information on the distritmtiof orographic precipitation. This method
is proposed for watersheds without streamflow gadega and limited meteorological station
data. The second hybrid method proposes the cauminUBC watershed model with
artificial neural networks (ANNSs) and is intendext tise in poorly gauged watersheds which
have limited streamflow measurements. The two megdanethods have been applied to five
mountainous watersheds with largely varying climatphysiographic and hydrological
characteristics. The evaluation of the applied w@shis based on combination of graphical
results, statistical evaluation metrics, and noireal goodness-of-fit statistics. The results
show that the first method satisfactorily simulates observed hydrograph assuming that the
basins are ungauged. When limited streamflow measemts are available, the coupling of
ANNs with the regional non-calibrated UBC flow mbdeomponents is considered a
successful alternative method over the conventioalitbration of a hydrological model based

on the employed evaluation criteria for streamfloadelling and flood frequency estimation.
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1 Introduction

The planning, design and management of water resswrojects require good estimates of
streamflow and peak discharge at certain pointeiwi basin. Observed meteorological and
streamflow data are used, initially, for the untemding of the hydrological processes and,
then, for modelling these processes in order tonest the streamflow of a watershed. It is
likely that most watersheds or basins of the warkel ungauged or poorly gauged. There is a
whole spectrum of cases, which can be collectieempraced by the term “ungauged basins”.
Some basins are genuinely ungauged, others aréypgmarged, or those previously gauged,
where measurements discontinued due to instrumaifird and/or termination of a
measurement program. Also, the term “ungauged bas#flers to a basin where
meteorological data or river flow, or both, are neasured. The international community has
recognized this challenging problem and as a rethdt International Association of
Hydrological Sciences (IAHS) had declared the presidecade (2003-2012) the “Decade of
the Ungauged Basin” (Sivapalan et al., 2003). g3 Decade on Prediction in Ungauged
Basins (PUB) was a major new effort and an intéonat research initiative to promote the
development of science and technology to providdrdiggical data where the ground based
observations are needed but missing. This inigathcluded theoretical hydrology, remote
sensing techniques, in situ observations and mesmnts, and water quantity and quality
modelling (Hrachowitz et al., 2013).

In ungauged watersheds, where there are no daahytirologist has to develop and use
models and techniques which do not require the labiity of long time series of
meteorological and hydrological measurements. Quiem is to develop models for gauged
watersheds and link the model parameters to phyesibge characteristics and apply them to
ungauged watersheds, whose physiographic chastatsrcan be determined. Another option
is to establish regionally valid relationships ydiologically similar gauged watersheds and
apply them to ungauged watersheds in the regiois dpproach holds both for hydrograph
and flood frequency analysis. The various methadggsed for hydrological prediction in
ungauged watersheds can be categorized into sialtistethods, hydrological and stochastic
modelling methods (Bloschl et al., 2013; Hrachowetal., 2013; Parajka et al., 2013; Salinas
et al.,, 2013b). Regionalization techniques are lisapplied for statistical methods. These
techniques include the regression analyses of fltatistics (statistical moments of flood

series) or flood quantiles of gauged watershedsiimvia homogenous region against



a b~ W N

© 00 N O

10
11
12
13
14
15
16
17
18

19
20
21
22
23
24
25
26
27
28

29
30
31
32

geographical and geomorphologic characteristichefwatersheds (Kjeldsen and Rosbjerg,
2002), the combination of single site and regiateth, the spatial interpolation of estimated
flood statistics at gauged basins using geosti¢Bloschl et al., 2013), and the Region Of
Influence (ROI) approach (Burn, 1990). Then, thtaldshed relationships are applied to

ungauged watersheds of the region.

In the hydrological modelling methods, hydrologinadels of varying degrees of complexity
are used to generate synthetic flows for known ipitation (Singh and Woolhiser, 2002;
Singh and Frevert, 2005; Singh, 2012). The compfesdi the models can vary from simple
event-based models to continuous simulation modefeped to distributed models, and
models that simulate the discharge in sub-dailiydar larger time steps. In this approach, a
hydrological model is firstly calibrated to gaugedtersheds within a region and the model
parameters are linked through multiple regression physiographic and/or climatic
characteristics of the watersheds or are spaiiatiéypolated using geostatistics or even using
the average model parameter values (e.g. MicowcCuick, 1999; Post and Jakeman, 1999;
Merz and Bloschl, 2004). At the ungauged watershefdghe region, the model with the
estimated model parameters is used for hydrologicalilation (Wagener et al., 2004; Zhang
and Chiew, 2009; He et al., 2011; Wagener & Montar2®11; Bao et al., 2012; Razavi &
Coulibaly, 2013; Viglione et al., 2013)

The stochastic modelling methods employ a hydroldgnodel, which is used to derive the
cumulative distribution function of the peak flowshese methods use a stochastic rainfall
generation model, which is linked to the hydrolagicnodel. The cumulative distribution
function of peak flows could be estimated analytycacobellis and Fiorentino, 2000; De
Michele and Salvadori, 2002), in case that a sirhgtirological model is used. However, the
simplifications and the assumptions made in thelyéinal derivation of the cumulative
distribution function of peak flows may result irogr performance. To overcome this
problem the peak flow frequency could be estimamaaherically using either an event-based
model (Loukas, 2002; Svensson et al., 2013) orrdgirmaous model (Cameron et al., 2000;
Engeland and Gottschalk, 2002).

There are difficulties in universally applying tdove methods for hydrograph simulation
and peak flow estimation of ungauged watershedssd ldifficulties arise from the definition
of the homogenous regions, the number and the afe#se gauged watersheds, and the

different runoff generation processes. The debniti or delineation, of homogeneous
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hydrologic regions has been a subject of reseancimiiny years and it is necessary for the
application of regionalization techniques. The wiébhn of homogeneous regions enables
uncorrelated data to be pooled from similar watedsh A hydrological homogeneous region
can be defined by geography, by stream flow charatics, and by the physical and climatic
characteristics of the watersheds. However, probleray arise when an ungauged watershed
is to be assigned to a region. The assignmenteoiMdtershed to a region is unambiguous,
when the geographical classification is used amdrégions are delineated clearly. On the
other hand, the hydrological response of the ungadugatershed may be similar to the
response of watersheds belonging in more than eg®m. This is particularly true for
watersheds that are close to region boundarigbeliwase of a classification based on stream
flow and watershed characteristics, the regions nconly overlap each other. For a
classification of regions based on the physical @émdatic characteristics of the watersheds,
the ungauged watershed could be erroneously assigna region. Furthermore, even if a
homogenous region is correctly defined and an upgwvatershed is assigned in that region
there should be enough watersheds with extendeghleaf meteorological and streamflow
records in order to develop statistically signifitaegional relationships. However, this is not
the case in many parts of the world, where datavamy limited, both spatially and
temporally. Additionally, the physiographic chaexcstics, such as slopes, vegetation
coverage, soils, etc., and the runoff generatimcgsses (rainfall runoff, snowmelt runoff,
glacier runoff, etc.) are changing as the sizehefwatershed is increasing even in the same

region.

The streamflow of a watershed is often measured flimited period and these streamflow
data are inefficient for hydrological model calitboa and statistical analysis. In this paper, a
technique that couples a hydrological model withifisral Neural Networks (ANNS) is
proposed to improve the streamflow simulation asithetion of peak flows for watersheds
with limited streamflow data. In recent years, ANNave become extremely popular for
prediction and forecasting of climatic, hydrologanid water resources variables (Govindaraju
and Rao, 2000; Abrahart et al., 2004) and are sitely reviewed for their effectiveness in
estimation of water quantitative and qualitativeiafales (Maier and Dandy, 2000; Maier et
al., 2010) and in hydrological modelling and forgtaag applications (ASCE, 2000; Dawson
and Wilby, 2001; Abrahart et al., 2010; Abraharakt 2012). In the context of hydrological
modelling, ANNs have mainly been used as rainiaflaff models for the prediction and

forecasting of streamflow in various time stepsyl@mly et al., 1999; ASCE, 2000; Dawson
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and Wilby, 2001; Jain et al., 2009; Abrahart et2010). Abrahart et al. (2012) present recent
ANN applications and procedures in streamflow miagland forecasting which include
modular design concepts, ensemble experiments,hghddization of ANNs with typical
hydrological models. Furthermore, ANNs have beeadufor combining the outputs of
different rainfall-runoff models in order to imprevthe prediction and modelling of
streamflow (Shamseldin et al., 1997; Chen and Ad&®86; Kim et al., 2006; Nilsson et al.,
2006; Cerda-Villafana et al., 2008; Liu et al., 3D&nd the river flow forecasting (Brath et
al., 2002; Shamseldin et al., 2002; Anctil et 2004a; Srinivasulu and Jain, 2009; Elshorbagy
et al., 2010; Mount et al., 2013).

The objectives of the study are therefore to dgvetonfall-runoff modelling procedures for
ungauged and poorly gauged watersheds located fiaregit climatic regions. A well
established RR model (Singh, 2012), the Universityritish Columbia (UBC) watershed
model, is selected and applied in five differeneribasins located in Canada, Cyprus and
Pakistan. Catchments from cold, temperate, contheand semiarid climate zones are
included to demonstrate the develop procedureshdnpresent study, the term “ungauged”
watershed refers to a watershed, where river fleswmat measured and the term “poorly
gauged” watershed indicates a watershed, wheranconis streamflow measurements are
available for three hydrological years. Two strdamfmodelling methods are presented.
The first method is proposed for application at auged watersheds, using a conceptual
hydrological model, the UBC watershed model. Is thethod, most of the parameters of the
UBC watershed model are taking constant valuedlangrecipitation gradients are estimated
by analysis of available meteorological data anaésults of earlier regional studies. A
second modelling procedure that couples the UB@nshaed model with ANNs is employed
for the estimation of streamflow of poorly gaugedtersheds with limited meteorological
data. The coupling procedure of UBC ungauged agiphic with ANNs is an effort to
combine the flexibility and capability of ANNs inonlinear modelling with the physical
modelling of the rainfall-runoff process acquirgdabhydrological model.

2 Study basins and data base

For the assessment of the developed methodologeésrably a large number of undisturbed
data-intensive catchments located in different aterzones should be studied. However, data

for these catchments are very difficult to obtavhjch is why the study is limited to five river
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basins located in different continents. The maired®n criteria were accessible
hydrometeorological data of good quality, and tiat studied watersheds represent various
climatic types with diverse runoff generation meadbms. Hence, the developed
methodologies are applied to five watersheds lacatevarious geographical regions of the
world and having varying physiographic, climati;ydahydrological characteristics, and
guality and volume of meteorological data. The ftiobd all study watersheds contributes to

the inflow of local reservoirs.

Two watersheds are forested watersheds locatedritisiB Columbia, Canada. The first
watershed, the Upper Campbell watershed, is loaatdtie east side of the Vancouver Island
Mountains and drains to the north and east int&th@ight of Georgia. The 1194 kibasin is
very rugged with peaks rising to 2235 m and withaméasin elevation of 950 m (Table 1).
The climate of the area is characterized as a ina&ritlimate with wet and mild winters and
dry and warm summers. Most of precipitation is gatezl by cyclonic frontal systems that
develop over the North Pacific Ocean and move easisv Average annual precipitation is
about 2000 mm and 60% of this amount is fallinghe form of rainfall. Significant but
transient snowpacks are accumulated, especialyhenhigher elevations. Runoff and the
majority of peak flows are generated mainly by fain snowmelt and winter rain-on-snow
events (Loukas et al., 2000). The runoff from thgper Campbell watershed is the inflow to
the Upper Campbell Lake and Buttle Lake reservodaily maximum and minimum
temperature were available at two meteorologicimis one at 370 m, and the other at 1470
m and daily precipitation at the lower elevatiomtisin. In total, seven years of daily
meteorological and streamflow data (October 1983eptember 1990) were available from
the Upper Campbell watershed.

The second study watershed is the lllecillewaetvelied, which is located on the west slopes
of the Selkirk Mountains in southeastern Britishiuabia, 500 km inland from the Coast
Mountains. The size of the watershed is 1156 kmd its elevation ranges from 400 m to
2480 m (Table 1). lllecillewaet River is a tribytaof the Columbia River and contributes to
the Arrow Lakes reservoir. The climate of the aseeontinental with cold winters and warm
summers with frequent hot days and is influencedhieymaritime Pacific Ocean air masses
and by weather systems moving eastwards. Averag@aaprecipitation ranges from 950 mm
at the mouth of the watershed to 2160 mm at thbedniglevations. Substantial snowpacks

develop during winter at all elevations of the wslted. The snowpack at the valley bottom is
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usually depleted by the end of April, but permararmawpacks and a glacier with an area of
76 knt exist at the highest elevations. Streamflow ismyagenerated during spring, by rain
and snowmelt, and summers, from snowmelt and thé&ibation of glacier melt (Loukas et
al., 2000). Good quality daily precipitation andximaum and minimum temperature data are
measured at three meteorological stations at 443383 m, and 1875 m of elevation,
respectively. Twenty years of meteorological amdastflow data (October 1970 — September
1990) were used to assess the simulated runoff fihenwvatershed.

The third study basin is the Yermasoyia waterskédch is located in the southern side of
mountain Troodos of Cyprus, roughly 5 km north ohassol city. The watershed area is 157
km? and its elevation ranges from 70 m up to 1400 abl@ 1). Most of the area is covered
by typical Mediterranean type forest and sparsestatmn. A reservoir with storage capacity
of 13.6 million n? was constructed downstream the mouth of the wadrsn 1969, for
irrigation and municipal water supply purposes ¢siainthou, 2006). The climate of the area is
of Mediterranean maritime climate with mild winteasd hot and dry summers. Precipitation
iIs usually generated by frontal weather systemsimgoeastwards. Average basin wide
annual precipitation is 640 mm, ranging from 450 iainthe low elevations up to 850 mm at
the upper parts of the watershed. Mean annual fafiofermasoyia river is about 150 mm,
and 65% of it is generated by rainfall during wimteonths. The river is usually dry during
summer months. The peak flows are observed in wmenths and produced by rainfall
events. Good quality daily precipitation from thm@eteorological stations located at 70 m,
100 m, and 995m of elevation were used. Data ofimmax and minimum temperature
measured at the low elevation station (70 m) weeglun this study. In total, eleven years of
meteorological and streamflow data (October 1986eptember 1997) were available for

Yermasoyia watershed.

The fourth and fifth study watersheds, the Astaf tie Hunza watersheds, are located within
the Upper Indus River basin in northern Pakistdre Astor watershed spans elevations from
2130 to 7250 m and covers an area of 3955 kmly 5% of which is covered with forest and

10% is covered with glaciers (Table 1). Precipitatis usually generated by westerly

depressions, but occasionally monsoon storms peotieavy precipitation. Average basin

annual precipitation is about 700 mm and more 8@ of this amount is snow (Ahmad et

al., 2012). Runoff and the peak streamflows arenipajenerated by snowmelt and glacier
melt (Loukas et al., 2002; Archer, 2003). Meanuairstreamflow is about 120°fs, which
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amounts 5% of the inflow to the downstream Tarb@servoir. Daily precipitation and
maximum and minimum temperature data are meastir@geameteorological station located
at the elevation of 2630 m. In total, nine yeafsm®teorological and streamflow data
(October 1979 — September 1988) were available ftioen Astor watershed. The Hunza
watershed lies within the Karakoram Mountain Rartfignza River flows southwest from its
headwaters near the China/Pakistan border, thrtglKarakoram to join the Gilgit River
near the town of Gilgit. The Hunza watershed héstal drainage area of 13100 kifTable

1) and the entire area is a maze of towering paakssive glaciers and steep sided gorges.
The highest mountain peaks within the Hunza basdéa are Batura (7785 m), Rakaposki
(7788 m) and Disteghil Sur (7885 m). The elevatbrlunza basin ranges from 1460 to 7885
m. Twenty three percent of the watershed area vered by glaciers including the large
Baltura and Hispar glaciers (Bocchiola et al., 208imad et al., 2012). The Hunza basin is
arid and annually receives less than 150 mm ofipitation, mainly in the form of snow,
from westerly weather systems. More than 90% ofathieual runoff and peak streamflows
are generated by glacier melt (Loukas et al., 2@02her, 2003). Mean annual streamflow is
about 360 rifs, which amounts more than 13% of the inflow te downstream Tarbela
reservoir. Daily precipitation data measured at tagteorological stations located at 1460 m
and 2405 m of elevation were used. Data of maxirmathminimum temperature measured at
the low elevation station (1460 m) were used is #tudy. Four years of meteorological and

streamflow data (October 1981 — September 19853 aeailable from the Hunza basin.

3 Method of Analysis

Two methodologies are proposed in this paper fersimulation of daily streamflow of the
five study watersheds. The first methodology ubesUBC watershed model with estimated
universal model parameters and estimates of ptatigm distribution, and it is proposed for
use in ungauged watersheds. The second methodg@aomposes the coupling of UBC
watershed model with ANNSs, and is intended for inseatersheds where limited streamflow
data are available. The UBC watershed model antimbenethodologies are presented in the

next paragraphs.
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3.1 The UBC watershed model

The UBC watershed model was first presented 35sy&go (Quick and Pipes, 1977), and has
been updated continuously to its present form. TH&C is a continuous conceptual
hydrologic model and calculates daily or hourlyeatnflow using as input data precipitation,
maximum and minimum temperature data. The model p@awmarily designed for the
simulation of streamflow from mountainous waterd)adhere the runoff from snowmelt and
glacier melt may be important, apart from the rinfunoff. However, the UBC watershed
model has been applied to variety climatic regioaaging from coastal to inland mountain
regions of British Columbia including the Rocky Muains, and the subarctic region of
Canada (Hudson and Quick, 1997; Quick et al., 1988pvic and Quick, 1999; Loukas et
al., 2000; Druce, 2001; Morrison et al., 2002; Weid et al., 2002; Merritt et al., 2006;
Assaf, 2007). The model has also been appliedddHiimalayas and Karakoram Mountain
Ranges in India and Pakistan, the Southern Alpéew Zealand and the Snowy Mountains in
Australia (Singh and Kumar, 1997; Singh and Sirg§l)1; Quick, 2012; Naeem et al., 2013).
This ensures that the model is capable of simgatinoff under a large variety of conditions.

The model conceptualizes the watersheds as a nuwiba@levation zones, since the
meteorological and hydrological processes are fonst of elevation in mountainous
watersheds. In this sense, the orographic gradamnisecipitation and temperature are major
determinants of the hydrologic behavior in mourdgas watersheds. These gradients are
assumed to behave similarly for each storm evamthEBrmore, the physiographic parameters
of a watershed, such as impermeable area, forestshs, vegetation density, open areas,
aspect, and glaciated areas are described foredachation zone and can be estimated from
analog and digital maps and/or remotely sensed #Higace, it is assumed that the elevation
zones are homogeneous with respect of the abovsiqgmgphic parameters. In a recent
study, the UBC watershed model was integrated ange@ographical information system that
automatically identifies and estimates the physipgic parameters of each elevation zone of
a watershed from digital maps and remotely sensgd (Fotakis et al., 2014). A certain
watershed can be divided in up to 12 homogeneasaibdn zones. The UBC watershed
model provides information on snow-covered areaygack water equivalent, potential and
actual evapotranspiration, soil moisture intera@ptiosses, groundwater storage, surface and
subsurface runoff for each elevation zone separatet for the whole watershed. Fig. 1

presents the flow diagram of the UBC watershed ode
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The model is made up of several sub-routines: thergutine for the distribution of the
meteorological data, the soil moisture accountinh-utine, and the flow routing sub-
routine. The meteorological distribution sub-roatitistinguishes between total precipitation
in the form of snow and rain using the temperatia&. If the mean temperature is beld@ 0
or above 2C, then all precipitation is in the form of snow min, respectively. When the
mean temperature is betwediCtnd 2C, then the percentage of total precipitation, Whe
rain, is estimated by,

Temperature y

%RAIN = 100 (1)

and, the remaining percentage of precipitationn®s Snow is stored until melts, whereas
rain is immediately processed by the soil moistorgine accounting to a sub-routine. Each
meteorological station has two representation factone for snow, POSREP, and one for
rain, PORREP. These factors are introduced beganesgitation data from a meteorological

station are point data and they may not be reptases for a larger area or zone. If the data
are representative, then, these parameters areteqeao.

The point station data of precipitation are disttdnl over the watershed using the equation,

ietey
PR j1+1= PR j [+ POGRAD) 100 (2)

where PR is the precipitation from meteorological statiofof day j and elevation zone |,
POGRAD is the percentage precipitation gradieng Aelev is the elevation difference
between the meteorological station and the elevaome.

The UBC model, then, adjusts the precipitation gmatdaccording to the temperature,

GRADRAIN = GRADSNOW - ST(T) (3)

where ST(T) is a parameter, which is affected lyy dtability of the air mass. The ST(T)
parameter can be shown (Quick et al., 1995) thatriélated to the square of the ratio of the

2
saturated and dry adiabatic lapse rates,ahd Ly, respectively i.e.(lL‘—SJ . A plot of
D

2
L . .
(L—SJ versus temperature reveals an almost linear vanidietween -3t and +260C. The

D

gradient of this linear approximation is 0.01, lsattST(T) can be estimated as,

10
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ST(T) = 001Tean (4)

where TheanlS the mean daily temperature.

The UBC watershed model has the capability of usimge different precipitation gradients
in a single watershed, namely POGRADL, POGRADM, RA&GU. The low elevation
gradient, POGRADL, applies to elevations lower tlihe elevation EOLMID, whereas the
upper elevation gradient, POGRADU, applies abowe é¢fevation EOLHI and the mid-
elevation gradient, POGRADM, applies to elevatibasveen EOLMID and EOLHI.

The temperature in the UBC watershed model isidiged over the elevation range of a
watershed according to the temperature lapse raeastemperature lapse rates are specified
in the UBC watershed model, one for the maximumpinature and one for the minimum
temperature. Furthermore, the model recognizesctwulitions, namely the rainy condition,
and the clear sky and dry weather condition. Urtderrainy condition, the lapse rate tends to
be the saturated adiabatic rate. Under dry weaibidition and during the warm part of the
day, the lapse rate tends to be the dry adiabatts; whereas the lapse rate tends to be quite
low and occasionally zero lapse rates may occungulry weather and night. The lapse rate
is calculated for each day using the daily tempeeatange (temperature diurnal range) as an
index. A simplified energy budget approach, whiglbased on limited data of maximum and
minimum temperature and can account for forestelddogen areas, and aspect and latitude, is
used for the estimation of the snowmelt and glacielt (Quick et al., 1995).

The soil moisture accounting sub-routine represtr@aon-linear behaviour of a watershed.
All the non-linearity of the watershed behavior dencentrated into the soil moisture
accounting sub-routine which allocates the watemfrrainfall, snowmelt and glacier melt
into four runoff components, namely, the fast orfaze runoff, the medium or interflow
runoff, the slow or upper zone groundwater runofid athe very slow or deep zone
groundwater runoff. The impermeable area, whichresgnts the rock outcrops, the water
surfaces and the variable source saturated argaseatto stream channels, divides the water
that reaches the soil surface after intercepticsh sublimation into fast surface runoff and
infiltrated water. The total impermeable area atheime step varies with soil moisture,
mainly due to the expansion or shrinkage of théabé source riparian areas. The percentage

of the impermeable areas of each elevation zonessaccording the Equation (5):

_ S0SOIL
PMXIMP = COIMPA10 POAGEN (5)

11
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where, COIMPA is the maximum percentage of impebteareas when the soil is fully
saturated, SOSOIL is the soil moisture deficit Ire televation zone, and POAGEN is a

parameter which shows the sensitivity of the impeabie areas to changes in soil moisture.

The water infiltrated into the soil must first sfyi the soil moisture deficit and the

evapotranspiration and then continues to infiltrateo the groundwater or runs off as

interflow. This process is controlled by the “growater percolation” parameter (POPERC).
The groundwater is further divided into an upped deep groundwater zones by the “deep
zone share” parameter (PODZSH). This water allonaby the soil moisture accounting sub-
routine is applied to all watershed elevation zoesch runoff component is then routed to
the watershed outlet, which is achieved in the flowting sub-routine. However, a different

mechanism is employed in the case of high intensityfall events, which can produce flash
flood runoff. The runoff from these events is colied by the solil infiltration rate. For these

high intensity rainfall events, some of the raihfafiltrates into the soil and is subject to the

normal soil moisture budgeting procedure previoysigsented. The remaining amount of
rainfall, which is not infiltrated into the soils iconsidered to contribute to the fast runoff
component, is called FLASHSHARE and is estimated by

FLASHSHARE = PMXIMP + (1- PMXIMP) [FMR (6)

where, FMR is the percentage of the flash shangesfrom 0 to 1 and is estimated by :

RNSM
1+log j
VOFLAS

FMR= O(VOFLAX) (7)

VOFLAS

and PMXIMP is percentage of impermeable area efellevation zone and is estimated by
Equation (5), RNSM is the summation of rainfallpgmelt and glacial melt of the time step,
VOFLAS is a parameter showing the threshold valti@recipitation for flash runoff, and
VOFLAX is the parameter showing the maximum valdepiecipitation, which limits the
FMR range. The last two parameters (i.e. VOFLAS Y0O&LAX) take characteristic values
for a given watershed and their values depend ergdomorphology of the watershed (e.g.
land slope, impermeable areas). The flow routimgpleyed in the UBC watershed model, is
linear and thus, significantly simplifies the mod#tucture, conserves the water mass, and
provides a simple and accurate water budget baldree flow routing parameters are: the

snowmelt and rainfall fast runoff time constant§FBTK, and POFRTK, respectively, the
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snowmelt and rainfall interflow time constants, FOK, and POIRTK, respectively, the upper
groundwater time constant, POUGTK, the deep zooergiwater time constant, PODZTK,
and the glacier melt fast runoff time constant, POK.

The UBC watershed model has more than 90 paramétevgever, application of the model
to various climatic regions and experience havewshthat only the values of 17 general
parameters and two precipitation representatiotofade.g. POSREP and PORREP) for each
meteorological station have to be optimised andstadg during calibration, and the majority
of the parameters take standard constant valuesseTharying model parameters can be
separated into three groups: the precipitationridigion parameters (namely, POSREP(i),
PORREP(i), POGRADL, POGRADM, POGRADU, EOLMID an@LEH]I), the water allocation
parameters (namely, POAGEN, POPERC, PODZSH, VOFlahd VOFLAS), and the flow
routing parameters (namely, POFSTK, POFRTK, POISHBIRTK, POUGTK, PODZTK, and
POGLTK). These parameters are optimized throughicastage procedure. However, in this
paper, the water allocation parameters and the flmwing parameters are given constant
universal values, whereas the precipitation distidm parameters are estimated from the
meteorological data and/or using the results ofiexaregional studies on precipitation
distribution with elevation, as will be presentegldw. The total number of model parameters
for Upper Campbell and Astor watersheds are 19l)l&willewaet and Yermasoyia are 23 and

for Hunza are 21, as will be shown below.

3.2 Methodology for ungauged watersheds

The five study watersheds, initially, were treatsl ungauged watersheds, assuming that
streamflow measurements were not available. Orother hand, meteorological data were
used from the available stations at each studyralage. The UBC watershed model was used
to simulate the streamflow from the five study wslteds. Twelve (12) out of the 17 general
varying model parameters were assigned constaménsal values, which either estimated or
taken as default (Table 2 and Table 3). This wadsuhe results of a recent paper (Micovic
and Quick, 1999) that applied the UBC watershedehodtwelve heterogeneous watersheds
in British Columbia, Canada with different sizesdsiinage area, climate, topography, soil
types, vegetation coverage, geology, and hydrolagone. Micovic and Quick (1999) found
that averaged constant values could be assignaedosbt of the model parameters. Table 2
shows the averaged values of the model paraméiarsniainly affect the time distribution of

the runoff.
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Additionally, the UBC watershed model water allomatparameters POAGEN, VOFLAX,
and VOFLAS were assigned the default values sugdestthe manual of the model (Quick et
al., 1995). The flow routing parameter of glacienoff, POGLTK, was assigned the value of
rainfall fast flow routing parameter, POFRTK, assugrthat the response of the glacier runoff
is similar to the response of the fast componemhefunoff generated by rainfall. The values
of these parameters are presented in Table 3. Apant these parameters, the precipitation
distribution parameters were estimated from thela@va meteorological data, separately for
each watershed. This estimation procedure is destin the next paragraphs for each one of

the five study watersheds.

3.2.1 Estimation of model precipitation distribution parameters for Upper

Campbell watershed

Only one precipitation station was available in thgper Campbell watershed. For this station
the precipitation representation parameters farfalliand snowfall, PORREP and POSREP,
respectively, were set to zero. The results ofierastudies on the precipitation distribution
with elevation in the coastal region of British Gamibia (Loukas and Quick, 1994; Loukas
and Quick, 1995) were used for assigning valuespm&cipitation distribution model
parameters. In these earlier studies, it was faiadl the precipitation increases 1.5 times
from the coast up to an elevation, which equalsualtewo-thirds of the elevation of the
mountain peak, and then levels off at the highevations. Using this information, the low
precipitation gradient, POGRADL, was estimated frequation (2), substituting as BRthe
mean annual precipitation of the lower meteorolaggtation located at 370 m, RR; the
increased 1.5 times the mean annual precipitatfotived lower meteorological station, and
Aelev the elevation difference between the elevatibthe maximum precipitation (two-
thirds of the maximum mountain peak, 1490 m) ardetlevation of the lower meteorological
station (370 m) equals 1120 m. The estimated valtROGRADL was estimated to be equal
to 3.7%. The elevation where the maximum precipitabccurs (1490 m) defines the value of
model parameter EOLMID. The middle and upper piigaipn gradients (i.e. POGRADM and
POGRADU) were set to zero. In this case, there matsnecessary to define the model
parameter EOLHI, because the precipitation wasnasduconstant above EOLMID elevation
(1490 m).
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3.2.2 Estimation of model precipitation distribution parameters for

Illecillewaet watershed

Three precipitation stations were available atltleeillewaet watershed located at elevations
of 443 m, 1323 m, and 1875 m, respectively. The ehqurecipitation representation
parameters for rainfall and snowfall and for atleh stations were set to zero (i.e. PORREP(1)
= POSREP(1) = PORREP(2) = POSREP(2) = PORREP(3PSREP(3) = 0). The low
precipitation gradient, POGRADL, was estimated fraguation (2) using the mean annual
precipitation at the low and middle elevation stasi, and the elevation difference between
the two stationsAelev=1323-443=880 m). POGRADL was found equal to &itmilarly, the
middle precipitation gradient, POGRADM, is estintaegual to 5.5%, considering the mean
annual precipitation of the middle and upper elevatstation. The upper precipitation
gradient, POGRADU, was set to zero. The paramdleiVED was set equal to the elevation
of the middle elevation station, which is 1323 rheTparameter EOLHI was set equal to the

highest elevation of the watershed, 2480 m.

3.2.3 Estimation of model precipitation distribution parameters for

Yermasoyia watershed

Precipitation data from three meteorological stagidocated at 70 m, 100 m, and 995m of
elevation were available at Yermasoyia watershetie Tprecipitation representation
parameters for snowfall and for all three statiorese set equal to zero, because snowfall is
rarely observed (i.e. POSREP(1) = POSREP(2) = BE®S® = 0). The annual precipitation
data of the three stations were compared with timei@ precipitation of other stations in the
greater area of the watershed. This comparison ethdiat the three meteorological stations
record 30% more annual rainfall than other statimtated at similar elevations. For this
reason the rainfall representation parameterslféohr@e stations were set equal to -30% (i.e.
PORREP(1) = PORREP(2) = PORREP(3) = -30%). Thegmeipitation gradient, POGRADL,
was estimated using Equation (2) and the mean ammeaipitation of the lower elevation
station and the mean annual precipitation at theeulevation station. The precipitation
gradient between the two lower elevation statiangdsentially zero, because of the small
elevation difference. The lower precipitation geadi parameter, POGRADL, was estimated
equal to 4.9%. The parameter EOLMID was set etjutiie elevation of the upper elevation

station, which is 995 m. The middle and the uppecipitation gradients, POGRADM and
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POGRADU, respectively, were set equal to zero. Timeans that the simulation was
performed with one precipitation gradient. In tbése, there was not necessary to define the
model parameter EOLHI.

3.2.4 Estimation of model precipitation distribution parameters for Astor

watershed

In the Astor watershed, only the precipitation dataone meteorological station located at
2630 m were available. For this reason and becthese was not any information on the
distribution of precipitation with elevation, alhé model precipitation representation and
distribution parameters, i.e. PORREP, POSREP, P@HRA0GRADM, and POGRADU,
were set equal to zero. In this case, there washeotssary to define the model parameters

EOLMID and EOLHI, which were set equal to zero.

3.2.5 Estimation of model precipitation distribution parameters for
Hunza watershed

Daily precipitation data from two meteorologicaatstns located at 1460 and 2405 m of
elevation were available at Hunza basin. The mesmual precipitation at the two stations
was estimated and indicated that the precipitagoadient between the two stations was
essentially zero. For this reason and because wWeasaot any information on the distribution
of precipitation with elevation, all the model ppatation representation and distribution
parameters were set equal to zero (i.e. PORREPPDSREP(1) = PORREP(2) = POSREP(2)
= POGRADL = POGRADM = POGRADU = EOLMID = EOLHI =0)

3.3 Methodology for poorly gauged watersheds

The streamflow is frequently measured for a limpediod of time. These streamflow data are
inadequate for peak flow analysis and validationthef simulated streamflow. Unfortunately,

there are no specific guidelines about the prezasibration length of streamflow data needed
for optimal hydrological model performance in pgogauged watersheds (Seibert and Beven,
2009). Several studies in gauged watersheds shtetdfor an acceptable rainfall-runoff

model calibration a large calibration record whiobludes wet and dry years with at least
eight years is needed for complex hydrologic models the minimum requirements are one
hydrological year (Sorooshian et al., 1983; Yapalgt1996; Duan et al., 2003). For example,

Yapo et al.(1996) stated that for a reliable and acceptabldenperformance a calibration
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period with at least eight years of data shouldibed for NWSRFS-SMA hydrologic model
with 13 free parameters. Harlin (1991) suggests ftloan two up to six years of streamflow
data are needed for optimal calibration of the HBYdel with 12 free parameters. Xia et al.
(2004) suggest that at least three years of stieamdlata are required for successful
application of their model (with seven parametetsa case study in Russia. To this direction
few studies investigate the use of limited numbkmwloservations for calibration periods
shorter than one year. Brath et al., (2004) foodigeaks modelling using a continuous
distributed rainfall-runoff model suggest that #anmonths are minimum requirements for
flood peak estimation. However, their best resalts acquired with the use of one year
continuous runoff data. Perrin et al. (2007) fouhdt calibration of a simple runoff model
(the GR4J model with four free parameters) is godesising about 100-350 observation days
spread randomly over a longer time period including and wet conditions. These results
were also verified by Seibert and Beven (2009) whshowed that a few runoff
measurements (larger that 64 values) can contaiohnai the information content of
continuous streamflow time series. The problemioitéd streamflow data might be tackled
if the data are selected in an intelligent way .(®gan et al., 2003; Wagener et al., 2003;
Juston et al., 2009) or using information from othariables such as data from groundwater
and snow measurements in a multiobjective contexd. (Efstratiadis and Koutsoyiannis,
2010; Konz and Seibert, 2010; Schaefli and Hus$1R0rhe above studies give an indication
of the potential value of limited observation ddta constraining model prediction
uncertainties even for ungauged basins. Howevesetlstudies indicated that the results
diverse significantly between the watersheds, deépam the days chosen for taking the
measurements, and misleading results could bendatavith the use of few streamflow data
(Seibert and Beven, 2009). Furthermore, the emplaymceptual hydrological models are
simple and with small number of free parametersrance research is needed for complicate
hydrological structures with larger than 10 pararsesuch as the UBC watershed model. In a
recent study, the impact of calibration length treamflow forecasting using an artificial
neural network (ANN) and a conceptual hydrologicdelathe GR4J was assessed (Anctil et
al., 2004b). The results showed that the hydro&dgimodel is more capable than ANNSs for 1-
day-ahead flow forecasting using calibration pesitass than one hydrological year due to its
internal structure and similar results are obtaif@dcalibration periods from one to five
years. However, the ANN model outperformed the GRédlel for calibration periods larger

than five years as a result of their flexibilityr{étil et al., 2004b).
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Based on the above studies and discussion, iffisulli to define the minimum requirements
for model (conceptual or black-box) calibration fayorly gauged watersheds. Furthermore,
model accuracy may also depend on the climatic ,zaneaspect that is rarely explicitly
analysed. Therefore, we developed a methodologyctra make use of limited streamflow
information with the internal memory of a non-cadited semi-distributed rainfall-runoff
model and the predictive capabilities of ANNs foody gauged watersheds as defined in this

study.

3.3.1 UBC coupling with ANNs

The coupling of the UBC watershed model with ANNslescribed in this section. Artificial
Neural Networks distribute computations to proaggsinits called neurons or nodes, which
are grouped in layers and are densely intercontedibree different layer types can be
distinguished: an input layer, connecting the inpformation to the network and not
carrying any computation, one or more hidden lageting as intermediate computational
layers, and an output layer, producing the findpati In each computational node or neuron,
each one of the entering valueg {8 multiplied by a connection weight, j)» Such products
are then all summed with a neuron specific parameédied bias (g), used to scale the sum

of products (3 into a useful range:
n

5j =bjo + 2 Wji B 8)
i=1

A non linear activation function (sometimes calédso transfer function) to the above sum is
applied to each computational node producing thédenoutput. Weights and biases are
determined by means of a non-linear optimizatioacedure, called training that aims at
minimizing an error function expressing the agreetimigetween observations and ANN
outputs. The mean squared error is usually empl@asgedhe learning function. A set of
observed input and output (target) data pairs,tihi@aing data set, is processed repeatedly,
changing the parameters of ANN until they convei@ealues such that each input vector

produces outputs as close as possible to the @zkentput data vector.

In this study, the following neural network chamaddtics were chosen for all ANN

applications:
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1) Structure of ANNs: Feedforward ANNs were used, Whteans that information passes
only in one direction, from the input layer throutdpe hidden layers up to the output layer,
allowing only feedforward connections to adjaceyers.

2) Training algorithm: Back-propagation algorithm (Reihart et al., 1986) was employed
for ANNSs training. In this training algorithm, damput pattern of the training data set is
passed through the network from the input layah&output layer. The network output
is compared with the desired target output, andth& according to the error function, E,
is computed. This error is propagated backwardutjimothe network to each node, and
correspondingly the connection weights are adjusteg:d on the Equation:

iji(n)z—gEl(:N—E”+amwji(n—1) (9)

ji

whereAw;(n) andAw;i(n-1) are the weight increments between the naohelji during the nth

and (n-1)th pass or epoch. A similar equation ipleged for correction of bias values. In

Equation (9) the parametesanda are called learning rate and momentum, respegtidie

learning rate is used to increase the chance oflingpthe training process being trapped in a

local minimum instead of global minima, and the neotam factor can speed up the training

in very flat regions of the error surface and h@ivent oscillations in the weights.
3) Activation function: The sigmoid function is used:

1

f(sj)= -
1+e ™!

(10)

The sigmoid function is bounded between 0 and lasotonic and nondecreasing function

that provides a graded, nonlinear response.

The UBC watershed model, as it has been previalislyussed, distributes the rainfall and
snowmelt runoff into four components, i.e. rainfédistflow, snowmelt fastflow, rainfall

interflow, snowmelt interflow, upper zone grounderatdeep zone groundwater and glacial
melt runoff. These runoff components due to ermommeasurements and inefficiently defined
model parameters may not be accurately distribatetting the overall performance of the
hydrologic simulation. The UBC watershed model wasing the parameters with values
described in the previous subsection of the papeorder to take advantage of the limited
streamflow data and achieve a better simulationthef observed discharge, the runoff

components of the UBC watershed model are intradiasenput neurons into ANNs. During
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the training period of ANNs the simulated totalatiarge of the watershed is compared with

the observed discharge to identify the simulatioore

The geometry or architecture of ANNs, which detersithe number of connection weights
and how these are arranged, depends on the nurhifedden layers and the number of
hidden nodes in these layers. In the developed AMN8 hidden layer was used to keep the
ANNSs architecture simple (three-layer ANNSs), an@ thumber of the hidden nodes was
optimized by trial and error. In this sense, theuinlayer of ANNs consists of four to seven
input neurons, depending on the runoff generatieslranisms of the basin, one hidden layer
with varying number of neurons, and one output Haygh one neuron, which is the total
discharge of the watershed (Fig. 2). Since, théwuarinput data sets span different ranges
and to ensure that all data sets or variablesweaqual attention during training, the input
data sets were scaled or standardized in the @in@and 1. In addition, the output variables
were standardized in such a way as to be commdaswith the limits of the activation
function used in the output layer. In this studhe sigmoid function (Eq. 10) was used as the
activation or transfer function, the output dates fevatershed streamflow) were scaled in the
range 0.1-0.9. The advantage of using this scaknge is that extreme high and low flow
events, occurring outside the range of the traimiata, may be accommodated (Dawson and
Wilby, 2001).

However, the final network architecture and geoynetere tested to avoid over-fitting and
ensure generalization as suggested by Maier andlyD&tO98). For example, the total
number of weights was always kept less than thebeurof the training samples and only the
connections that had statistically significant vieggwere kept in the ANNs. The developed
ANNSs were operated in batch mode, which meanstti@atraining sample presented to the
network between the weight updates was equal toréiir@ing set size. This operation forces
the search to move in the direction of the truedigmrat at each weight update, although

requires large storage. The mean squared erroruged as the minimized error function

during the training. The initial values of weiglits each node were set to a valt::ter,i

Vi
wheref; is the number of inputs for the node. The learmatg € in Eq. 9) was set fixed to a

value of 0.005, whereas the momentumn( Eq. 9) was set equal to 0.8 as suggested by Dai
and Macbeth (1997).
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3.3.2 Evaluation of the method

For the four study watersheds, namely, Upper Cafthplecillewaet, Yermasoyia, and Astor

watersheds, the first three years of streamflowonccavere assumed to be available for
training of ANNS. In this sense, the observed stift@av used as target output of ANNs was
the daily measured streamflow for the hydrologigahrs 1983-84 to 1985-86 for Upper
Campbell watershed, the streamflow data for thedigdical years 1970-71 to 1972-73 were
considered for the lllecillewaet watershed, theadfatr the hydrological years 1986-87 to
1988-89 were used for the Yermasoyia watershedtlamdstreamflow for the hydrological

years 1979-80 to 1981-82 were used for the Astdenshed. For the fifth catchment, the
Hunza watershed, streamflow data for two hydrolalgiyears (1981-1982 and 1982-1983)
were used for ANN training. The daily streamflowaserements for the remaining years of
record were used for the validation of the methogplin each study watershed. The
modelling procedure with this configuration is teanUBCANN or method with limited data.

It should be noted that the early stopping techmiguas applied to UBCANN to prevent

overfitting and to improve the generalization dbilof the developed UBCANNS. The last
year in each watershed of the training period weeduas an indication of the error when

ANN training should stop (test set).

For comparison purposes, the UBCANN method was ewmetp with the ungauged

application of the UBC model which is termed UBCRE& with the classical calibration of

the UBC model in poorly gauged watersheds usingstinmae calibration period for each

watershed as defined previously. The latter metisotermed UBCCLA and is used for

evaluation of the proposed coupling method UBCANIX foorly gauged watersheds. The
UBC free parameters are optimized through a twgestarocedure. At the first stage, a
sensitivity analysis of each parameter is perfortoedstimate the range of parameter values
for which the simulation results are the most deresi At the second stage, a Monte Carlo
simulation is performed for each parameter of egaup by keeping all other parameters
constant. The parameter values are sampled frometpective parameter range defined in
the first stage of the procedure (sensitivity agialy The parameter value that maximizes the
objective function is put in the parameter file aih@ procedure is repeated for the next
parameter of the group and then for the parametfetise next group. The procedure starts
with the optimization of the precipitation distriban parameters and ends with the
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optimization the flow routing parameters. The objex function of the above calibration

procedure is defined as:

EOPT = NSE —‘1—\&ﬂ

obs

(11)

whereVsm andVyys are the simulated and the observed flow volumepeeively andNSE is
the Nash-Sutcliffe Efficiency (Nash and Sutclifi®70) defined as:

" (Qobs ~Qsim )
NSE =1- i:rZ]L — (12)
> (Qobs - Qobs)

i=1

where, Qobs is the observed flow on day Qsimis the simulated flow on day Qobs is the

average observed flow amds the number of days for the simulation periode Bvaluation

of all the applied methods is based on combinatiographical results, statistical evaluation
metrics, and normalized goodness-of-fit statististthermore, a comprehensive procedure
proposed by Ritter and Mufoz-Carpena (2013) foluateng model performance is tested to
all applied methods. Approximated probability disitions for NSE and Root Mean Square
Error are derived with bootstrapping followed bwydbicorrected and enhanced calculation of
confidence intervals. The statistical hypothesisting of the indicators is done using
threshold values to compare model performance. Mietails on the evaluation protocol
could be found in Ritter and Mufioz-Carpena (2013).

Finally, the streamflow simulation results of thepked methods for ungauged and poorly-
gauged watersheds were used for frequency analfyie annual maximum peak flows. This
analysis was performed only for the watersheds hwhizve streamflow data for at least six
(6) consecutive years. Based on these criteria,zbluwatershed is excluded for this
comparison. The estimated peak flows were compartdthe observed peak flows of the
four study watersheds (Upper Campbell, lllecilletyd@rmasoyia and Astor). Furthermore,
the results of frequency analysis of the estimgteak flow by the two methodologies were
compared to the results of frequency analysis efdhserved peak flows. The frequency
analysis was performed using the Extreme Value Typeoretical distribution (EVI) due to

the small sample of the streamflow observations] doe to its simple two-parameter
estimation procedure. This distribution is a spleceése of the Generalized Extreme Value
(GEV) distribution and the GEV distribution is cahesred in a recent study as a potential
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pan-European flood frequency distribution (Salieasl., 2013a). Furthermore the EVI has
proven to give satisfactory and acceptable resaitseturn periods less than 50 yr and 100

years, respectively, in estimating hydrometeoraalgextremes (Koutsoyiannis, 2004).

4 Application and results

The daily streamflow of the five study watershedssveimulated using the two proposed
methodologies for ungauged watersheds and pootgeghwatersheds. The simulated and
observed hydrographs compared graphically andsstatily. Five statistical indices were
used to assess the accuracy and performance nvdhg@mulation methods, namely, tNEE,

the percent runoff volume errégoDV =\/sur\n/;b\/otrsxloo, the correlation coefficientCORR)
obs

between the simulated and the observed flows, dbe mean square erroRYISE, in n/s)

between the simulated and the observed flows:

n
" (Qobs -Qsim )?

RMSE = |22 - (13)

and the average percent error of the maximum arfloves:

MaxQsim; — MaxQobs;
MaxQoij

k
1
%AMAFE == ] x100 14
6 > Z{ (14)

=1
where, MaxQsim; is the simulated maximum annual flow of ygaMaxQobs; is the observed

maximum annual flow of yegr andk is the number of hydrological years of the simolati
period.

The model efficiencyNSE) is widely used in hydrological simulation studiiscompares the
scale and the shape of the simulated and the adasémdrographs and its optimal value is 1.
The percent runoff volumé&eDV) is a scale parameter and measures the percemtierr
volume under the observed and the simulated hydpbgr for the period of simulation.
Positive values of4DV indicate overestimation of the observed runoffumoé, negative
values of%DV indicate underestimation of the observed runoftine, and%DV equal to
zero indicate perfect agreement between simulatetl @bserved runoff volumes. The
correlation coefficient QORR) is a shape statistical parameter that measureslirtear

23



~N o o b~ W0DN P

(o¢]

10
11
12
13
14
15
16
17

18
19
20
21
22
23
24
25
26
27
28
29
30
31
32

correlation between the observed and simulatedsfimith optimal value of 1. The root mean
square errorRMSE) measures the residual or error variance betweersimulated and the
observed flows and its optimal value is 0. The agerpercent error of the maximum annual
flows (AMAFE) estimates the average percent error in the stroolaf the maximum
annual peak flows for the simulation period. Pesitvalues oRPA6AMAFE show, an average
overestimation of the maximum annual flow, wheraagative values indicate, on average,

underestimation of the maximum annual flow. Itdémopl value is 0.

The five study watersheds, firstly, were treatedimgauged and the UBCREG methodology
for ungauged watersheds was applied. The dailarmstitews of the study watersheds were
simulated using the uncalibrated UBC watershed mwdb the estimated values of model

parameters presented previously. The results afetlsemulations are shown in Fig. 3 and
Table 4. The simulation was performed for the whmdeiod of available data in each study
watershed since the UBC watershed model was unatdib and thus, the whole simulation
period is a validation period for the performandeh® method. However, the training and
validation periods indicated in Fig. 3 and Tablard indicated for comparison with the results
of the second methodology intended for use in pogduged watersheds with limited

streamflow measurements.

The graphical and the statistical comparison ofsineulated hydrographs with the observed
hydrographs (Fig. 3 and Table 4) show that, in gdnehe ungauged UBCREG method
estimates with reasonable accuracy the observewdnabh. For Upper Campbell watershed,
the value of CORR (CORR = 0.84) indicates that rtiethod reproduced the shape of the
observed hydrograph reasonably well but the anmgk streamflows were severely
underestimated (%AMAFE = -32.06% in Table 4). Thetmod performed better in the
lllecillewaet watershed, for which there was a gigant improvement in the simulation of
hydrograph (NSE = 0.84 and CORR = 0.96 in TableH®wever, in the lllecillewaet, the
method overestimated the total runoff volume aredrttaximum annual peak flows (%DV =
14.63% and %AMAFE = 11.26% in Table 4). The simolatresults for the Yermasoyia
watershed indicate that the method reproduced mea$p well the shape and scale of the
hydrograph (NSE = 0.73 and CORR = 0.87 in Tabléd),overestimates the runoff volume
and the annual peak discharge (%DV = 11.45% and %R = 9.85% in Table 4). The
overall worst simulation results were acquired hie #Astor watershed, although the annual

peak flows were, on average, overestimated (%AMAFEB.3%), the runoff volume was
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underestimated (%DV = -7.68%), leading to small &dcteptable value of model efficiency
(NSE = 0.68) (Table 4). On the other hand, the baenulation results were found for the
Hunza watershed. The statistical indices (Tableadd the graphical comparison of the
simulated and the observed hydrographs (Fig. 3icatel that the shape and scale of the

observed hydrograph were reasonably reproduced.

The above results indicate that the simulation @muheavily depends on the quality and
availability of meteorological data. This is obv&urom the simulation results for
lllecillewaet watershed (Fig. 3b and Table 4). Thistershed has three high quality
meteorological stations and the hydrograph shape simulated with improved accuracy,
although the runoff volume and the annual peak $lovere overestimated (Table 4). The
performance of the method, also, seems to be dapéendn the runoff generation
mechanisms. Comparatively, better simulation reshidtve acquired for watersheds that the
runoff is mainly generated by snowmelt and glaomit than for watersheds where rainfall
runoff is the dominant runoff generation mechanisfar example, the runoff simulation
statistics for the Yermasoyia watershed is simitathe simulation statistics for the Upper
Campbell watershed, although data from three pitatipn stations were used for streamflow
simulation of the small Yermasoyia watershed (16¥)kand only one precipitation station
was used in Upper Campbell watershed, which ietaimgarea (1194 ki Furthermore, the
best simulation results have been achieved foHtneza and lllecillewaet watersheds (13100
km?and 1150 krhin area, respectively). The runoff in Yermasoyatevshed is generated by
rainfall, whereas snowmelt is a significant peragetof total runoff in Upper Campbell. On
the other hand, more than 90% of the runoff in Hubasin is generated by glacier melting,
whereas snowmelt and glacier melt produces themtag runoff in lllecillewaet watershed.
The spatial variability of rainfall is much largéran the variability of snowfall. Also, the
precipitation gradients are steeper and more cemsifor snowfall than rainfall (Loukas and
Quick, 1994; 1995). Hence, larger number of preéaimn stations is necessary in watersheds,
where rainfall-runoff is the dominant runoff gen@a mechanism, in order to capture the
spatial variability of rainfall and better simuldtee streamflow (Brath et al., 2004). However,
keeping in mind the very limited number of meteogital stations and data used, the overall
results of the UBCREG methodology are judged sattsfy and show that the UBC
watershed model can simulate reasonably well therglaed streamflow in various climatic
and hydrological regions with a universal set ofdelqarameters and making assumptions of

precipitation stations representativeness and fitation distribution.
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The second proposed UBCANN methodology for poodyged watersheds was applied to
the five study watersheds, assuming that only twéheee years of daily streamflow data
were available. The UBC watershed model was, yirstin as in the first methodology for the
years that streamflow data were assumed to beaé@idnd the calculated runoff components
were used as input to ANNs. The ANNs were optimiaed trained for this initial period and
then, the UBC watershed model coupled with thexé@iANNs was run and validated for the
remaining period for validation. The final geometryarchitecture of the optimized ANNs for
the five study watersheds is presented in Tableich.3 and Table 6 present the simulation
results for the training and validation periodsled UBCANN methodology at the five study
watersheds. Comparison of the graphical (Fig. 3) statistical results (Tables 4 and 6)
indicate that the coupling of UBC watershed modéthwANNs greatly improves the
simulation of hydrographs and maximum annual stfeamin all five watersheds over the
first methodology. The discussion will be focusedaomparison of the validation periods of
UBCANN application since the ANNs of this methodpjowere optimized during the
training period and an improvement in the simulatresults is expected. Furthermore, to
investigate the suitability of the UBCANN method fmorly gauged watersheds the classical
calibration method of the hydrological model is kg and compared. Table 7 presents the
results of the UBCCLA method as benchmark modelatersheds with limited information.

The simulation results of the UBCANN method for @pCampbell watershed indicate that
although there is significant improvement in thedaction of runoff volume and maximum

annual peak flows (Table 6), the model efficienbgE=0.68) has the same value with the
first method (Table 4). On the other hand, the flusmnulation is greatly improved in the

other four study watersheds. All statistical indiad the hydrological simulation have been
improved in lllecillewaet, Yermasoyia, and Astortegheds (Table 6). Only, the percent
runoff volume error (%DV=-11.26% in Table 6) is niotproved over the results of the

UBCREG method (%DV=0.25% in Table 4) for Hunza wsited. The improvement of the

hydrograph simulation leads to better estimationuobff volume and peak streamflow. The
improvement of runoff simulation with the secondthoelology depends upon the volume
and the range of the available streamflow datazeséiNNs are a data intensive technique.
When the available data cover a large range ohmsiflews, then the trained ANNs can

accurately and efficiently simulated the unknoweatflows.
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Application of the UBCCLA method shows that UBCasreliable hydrological model in
streamflow modelling at diverse climatic environrgesince the statistics are improved using
streamflow data for calibration (Table 7). HowevieEom Tables 6 and 7 it is difficult to
assess the superiority of the UBCANN method with tH BCCLA method. For example, the
validationNSE values show that the UBCANN method in Yermasoyid Astor watersheds
greatly outperforms the UBCCLA method, in Upper @aell and lllecillewaet is marginally
inferior than the UBCCLA method and in Hunza watexs both methods perform similarly
(Tables 6 and 7). These contradictory results @ ia agreement with the study of Anctil et
al. (2004b) which showed that similar results dreamed using a simple hydrological model
and an ANN rainfall-runoff model for calibration np@ds from one to five years. For this
reason the evaluation tool developed by Ritter Muéioz-Carpena (2013) was used to assess
the two methods for poorly gauged watersheds. Hg8. present the comprehensive
validation results of the UBCANN and UBCCLA methoids the study watersheds. These
figures show the scatterplots of observed and sitadlvalues with the 1:1 line, the values of
NSE and RMSE and their corresponding confidence intervals (&1)95%, the qualitative
goodness-of-fit interpretation 8§SE based on the established classes; and the védfioaf
the presence of bias or the possible presence tfersu Approximated probability
distributions ofNSE andRMSE were obtained by block blockstrapping with theslsarrected
and accelerated method, which adjusts for both laad skewness in the bootstrap
distribution. The calculation procedure of theggifes is described analytically in Ritter and
Mufoz-Carpena (2013). Careful examination of sgalités, NSE classes and 95% CI of the
selected evaluation metriddSE and RMSE showed that the UBCANN method is less
effective in streamflow modelling than the UBCCLA two watersheds (Fig. 4 and Fig. 5)
whereas in the other three watersheds is supéwor the UBCCLA method (Figs. 6-8). For
these watersheds no prior information was used tifier distribution of precipitation
distribution and ANNs with input the UBC flow compents showed great skills in
reproducing the daily streamflow patterns. Howevar,cases where prior hydrological
knowledge was incorporated in the UBC model suchnathe two Canadian watersheds
ANNs showed similar capabilities with UBCCLA appobadue to expert knowledge

“optimization” of the ungauged UBC flow components.

The second step of the analysis was to comparsitidated and observed maximum annual
peak flows and to perform a simple frequency amslysing the EVI theoretical distribution.

It should be noted that the EVI distribution wadested to demonstrate the employed
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methods for ungauged and poorly gauged watershetisther candidate distributions could
be used. This analysis was performed only for the ttudy watersheds (Upper Campbell,
lllecillewaet, Yermasoyia and Astor) which haveesinflow data for at least six (6)
consecutive years. Application of the non-pararmaéfolmogorov-Smirnov test for checking
the adequacy of the selected distribution withdhserved and simulated values showed that
the EVI distribution is acceptable at 5% significarlevel for all observed and simulated
streamflow values at the study watersheds. Figadvs the comparison of the fitted EVI
distributions using the three methodologies (UBCREXBCANN and UBCCLA) with the
observed data and the fitted observed EVI for the $tudy watersheds. For Upper Campbell
watershed these results indicate that the methggolfor ungauged watersheds
underestimates the observed maximum annual peak.flGomparison of the UBCANN and
UBCCLA methods for flood frequency estimation inopg gauged basins showed that high
peak flows are more accurately represented by 8€ANN method (Table 8 and Fig. 9a).
Peak flow frequency analysis for lllecillewaet wateed indicates that the UBCREG
methodology overestimate the observed peak flows. @est flood frequency curves for this
watershed is acquired with the use UBCANN methodenebs the UBCCLA method
underestimates the peak flows for all examinedrneperiods (1-100 years) (Table 8 and Fig.
9b). Peak flow frequency analysis, for the pogdyiged Yermasoyia watershed, shows again
the superiority of the UBCANN method against the QfB.A method. Flood frequency
analysis of the UBCREG method suggests that caugioaquired for flood modelling since
the method significantly underestimates the obskmpeak flows (Table 8 and Fig. 9c).
Finally, in Astor watershed, all applied methodsfgen similarly and the flood frequency
estimation using simulated values underestimatekbserved flows at larger return periods
(Table 8 and Fig. 9c). However, the simulated p#als using the methodology for
ungauged watershed underestimates the observedlpeakexcept for the maximum annual
peak of the last hydrological year of record 1996¢Big. 3). For this particular year, the
method severely overestimates the maximum annuak plew. The result is that the
estimated peak flows with return periods of 25-, Bd 100-years are quite similar with the
applied methods for poorly gauged watersheds (T@hl®verall the coupling of ANNs with
the ungauged UBC flow model components is consitlareimprovement and an alternative
method over the conventional calibration of a hiagecal model with limited streamflow
information based on the evaluation criteria emetbyor streamflow modelling and flood

frequency estimation.
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5 Conclusions

Rainfall-runoff modelling procedures for ungaugeddapoorly gauged watersheds are
developed in this study. A well established hydgatal model (Singh, 2012), the UBC
watershed model, is selected and applied in fifker@int river basins located in Canada,
Cyprus and Pakistan. Catchments from cold, tempexantinental and semiarid climate
zones are included to demonstrate the developeceguoes. Two methodologies for the
modelling of streamflow are proposed and analySdek first methodology, proposed for
ungauged watersheds, uses the UBC watershed mateh wet of universal constant values
of model parameters and making assumptions anchas about the representativeness of
precipitation stations and precipitation distribati This methodology requires good
description of the watershed (area, elevation hamdgetation coverage, soils, etc) and
limited meteorological stations and data to estithe distribution of precipitation over the
elevation range of the watershed or even region&rmation about the orographic
precipitation gradients of a watershed. The seaoethodology is an extension of the first
method and couples the UBC watershed model with &NThis method is proposed for
poorly gauged watersheds. The limited streamflota @aie intended for training of ANNS.
For comparison purposes, this method is comparéd tive classical calibration of the UBC
model in poorly gauged watersheds. The evaluatfoalldhe applied methods is based on
combination of graphical results, statistical eadilon metrics, and normalized goodness-of-

fit statistics.

Application of the employed methods to five watexdh having areas ranging from 157 to
13100 kn3, different runoff generation mechanisms, and ledan various climatic regions of
the world, resulted in reasonable results for gteration of streamflow hydrograph and peak
flows. The first methodology for ungauged watershpdrformed quite well, despite the very
limited available meteorological data. The secoylorid method is a significant improvement
of the first methodology because it takes advantafjethe even limited streamflow
information. The coupling of the UBC regional modaith ANNs provides a good alternative
to the classical application (UBC calibration aradidation), without the need of optimizing
UBC model parameters. The ANNs coupled to the UB&evshed model improve the
streamflow modelling at poorly gauged basins. Farrtiore, using the non-calibrated UBC

flow components as input to ANNSs in a coupling gbitid procedure combines the flexibility
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and capability of ANNs in nonlinear modelling withe conceptual representation of the
rainfall-runoff process acquired by a hydrologinaddel. Hence, the black-box constraints in
ANN modelling of the rainfall-runoff are minimise@verall the coupling of ANNs with the
regional UBC flow model components is considerec asiccessful alternative method over
the conventional calibration of a hydrological mbdeéth limited streamflow information
based on the employed evaluation criteria for stfEav modelling and flood frequency
estimation. In the future the two methodologiesustidoe compared with other regional
techniques or hydrologic models and could be agpire other regions to generalise the
results. Also, a step further could be a more oger estimation of flood frequency

incorporating also the uncertainty of the statealdes.
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1 Table 1. Characteristics of the five study watedshe

Watershed | Location/Country| Drainage Elevation Climate Mean Annual| Mean Annual| Main Runoff | Meteorological Station
Area Range Type Precipitation Discharge Generation Availability
(km?) (m) (mm) (m3/s) Mechanisms| (Station Elevation, m)
Upper Coastal British 1194 180-2235 Pacific 2000 71 Rainfall - 1 P.S.*(370)
Campbell | Columbia/Canada Maritime Snowmelt 2T.S5.* (370, 1470)
lllecillewaet Southwestern 1150 440-2480, Continental 2100 53 Snowmelt 3 &3,(1323, 1875)
British 3 T.S. (443, 1323, 1875
Columbia/Canadz
Yermasoyia Cyprus 157 70-1400 Mediterranean 640 0.5 Rainfall 3 P.S. (70, 100, 995)
1T.S.(70)
Astor Himalayan 3955 2130-7250 Himalayan 700 120 Snowmelt — 1P.S. (2630)
Range/Pakistan Alpine Glacier melt 1T.S. (2630)
Hunza Karakoram 13100 1460-788% Continental 150 360 Glacier melt 2 P.S. (1460, 2405)
Range/Pakistan Alpine 1T.S. (1460)

2 *P.S. denotes Precipitation Station, T.S. denotgagerature Station
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Table 2. Averaged values for the parameters of Wiershed model affecting the time

distribution of runoff (Micovic & Quick, 1999).

Model POPERC PODZSH POFRTK POFSTK POIRTK POISTK POUGT PODZTK
Parameter (mm/day) (days) (days) (days) (days)
Value 25 0.30 1 3 150

Table 3. Default values for the water allocatiord dtow routing parameters of UBC

watershed model.

Model POAGEN VOFLAX VOFLAS POGLTK
Parameter| (mm) (mm) (mm) (days)
Value 100 1800 30 0.6
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1 Table 4. Statistical indices of streamflow simwatiwith the proposed methodology for
2 ungauged watersheds — UBCREG method.

Watershed Hydrologic  NSE %DV  CORR  RMSE %AMAFE
Period (%) (m3/s) (%)
1983-1986 0.72 -7.80 0.85 39.9 -27.6
Upper 1986-1990 0.68 -3.93 0.83 41.9 -35.4
Campbell 1983-1990 0.70 -5.56 0.84 41.0 -32.1
1970-1973 0.89 12.03 0.96 20.9 7.3
llecillewaet ~ 1973-1990 0.83 15.09 0.96 23.8 11.9
1970-1990 0.84 14.63 0.96 23.4 11.3
1986-1989 0.78 14.94 0.88 0.85 -20.0
Yermasoyia ~ 1989-1997 0.68 8.91 0.86 0.60 21.1
1986-1997 0.73 11.45 0.87 0.67 9.85
1979-1982 0.76 -6.15 0.90 63.2 -0.06
Astor 1982-1988 0.65 -8.68 0.82 84.7 9.48
1979-1988 0.68 -7.84 0.84 78.2 6.30
1981-1983 0.86 5.82 0.95 172.7 9.65
Hunza 1983-1985 0.90 0.25 0.95 171.5 1.03
1981-1985 0.88 2.80 0.94 172.1 5.34
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Table 5. Geometry of optimized ANNs used in the hudblogy for poorly gauged
waterhseds.

Watershed Number of neurons
Input Layer Hidden Layer Output Layer

Upper 6 4 1

Campbell (rainfall fastflow, snowmelt

fastflow, rainfall interflow,
snowmelt interflow, upper zone
groundwater, deep zone
groundwater)

lllecillewaet 7 7 1

(rainfall fastflow, snowmelt
fastflow, rainfall interflow,
snowmelt interflow, upper zone
groundwater, deep zone
groundwater, glacial melt
runoff)

Yermasoyia 4 3 1

(rainfall fastflow, rainfall
interflow, upper zone
groundwater, deep zone
groundwater)

Astor 7 5 1

(rainfall fastflow, snowmelt
fastflow, rainfall interflow,
snowmelt interflow, upper zone
groundwater, deep zone
groundwater, glacial melt
runoff)

Hunza 5 5 1

(rainfall fastflow, snowmelt
fastflow, upper zone
groundwater, deep zone
groundwater, glacial melt
runoff)
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1 Table 6. Statistical indices of streamflow simwatiwith the proposed methodology for

2 poorly gauged watersheds — UBCANN method.

Watershed Hydrologic NSE %DV CORR RMSE %AMAFE
Period (%) (m¥s) (%)
Training
Upper 1983-1986 0.82 -0.69 0.91 31.7 -16.6
Campbell Validation
1986-1990 0.68 0.47 0.84 42.5 -14.9
Training
lllecillewaet 1970-1973 0.97 -0.04 0.98 10.9 -11.2
Validation
1973-1990 0.90 2.11 0.96 18.2 8.98
Training
Yermasoyia 1986-1989 0.91 2.71 0.95 0.55 -15.5
Validation
1989-1997 0.80 -4.15 0.90 0.48 -12.7
Training
Astor 1979-1982 0.94 -1.40 0.97 30.7 -8.31
Validation
1982-1988 0.79 -3.05 0.89 64.4 15.1
Training
Hunza 1981-1983 0.94 -0.86 0.97 1131 -0.41
Validation
1983-1985 0.91 -11.26 0.96 158.9 -4.45
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1 Table 7. Statistical indices of streamflow simuatiwith the classical methodology for

2 poorly gauged watersheds — UBCCLA method.

Watershed Hydrologic NSE %DV CORR RMSE %AMAFE
Period (%) (mPs) (%)
Calibration
Upper 1983-1986 0.75 -2.36 0.87 37.4 -14.6
Campbell Validation
1986-1990 0.70 1.47 0.84 40.9 -24.2
Calibration
lllecillewaet 1970-1973 0.95 -0.93 0.98 13.5 -0.22
Validation
1973-1990 0.92 1.38 0.96 16.7 0.91
Calibration
Yermasoyia 1986-1989 0.83 -0.22 0.91 0.75 -16.1
Validation
1989-1997 0.73 -2.21 0.88 0.55 26.1
Calibration
Astor 1979-1982 0.82 -0.08 0.91 55.1 -9.98
Validation
1982-1988 0.70 0.32 0.83 79.0 -0.41
Calibration
Hunza 1981-1983 0.93 -4.43 0.96 122.4 -7.88
Validation
1983-1985 0.91 -2.07 0.96 165.5 -12.1
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Table 8. Flood frequency estimation using annualimam peak flows (ffls).

Return Period Fitted EVI Fitted EVI Fitted EVI Fitted EVI
(Years) Observed data UBCREG UBCANN UBCCLA
Upper Campbell watershed

25 1061 713 963 926

50 1167 787 1071 1018
100 1272 859 1179 1110
lllecillewaet watershed

25 390 436 393 352

50 421 471 421 378
100 452 506 450 404
Yermasoyia watershed

25 33.7 26.2 35.2 29.5
50 39.6 30.3 41.6 34.4
100 45.4 34.5 47.9 39.3
Astor watershed

25 934 800 809 793

50 1036 871 875 851
100 1137 941 940 909
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3 Figure 7. Goodness-of-fit evaluation for validatip@riod (1989-1997) at Astor watershed a)
4  UBCANN method, b) UBCCLA method.
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Figure 8. Goodness-of-fit evaluation for validatjperiod (1989-1997) at Hunza watershed a)
4  UBCANN method, b) UBCCLA method.
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Figure 9. Flood frequency estimation for a) Uppanipbell, b) lllecillewaet, c) Yermasoyia,

and d) Astor watersheds.
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