

1 **Streamflow simulation methods for ungauged and poorly**
2 **gauged watersheds**

3

4 **A. Loukas¹ and L. Vasiliades¹**

5 [1]{Department of Civil Engineering, University of Thessaly, Pedion Areos, 38334 Volos,
6 Greece}

7 Correspondence to: L. Vasiliades (lvassil@civ.uth.gr)

8

9 **Abstract**

10 Rainfall-runoff modelling procedures for ungauged and poorly gauged watersheds are
11 developed in this study. A well established hydrological model, the University of British
12 Columbia (UBC) watershed model, is selected and applied in five different river basins
13 located in Canada, Cyprus and Pakistan. Catchments from cold, temperate, continental and
14 semiarid climate zones are included to demonstrate the develop procedures. Two
15 methodologies for streamflow modelling are proposed and analysed. The first method uses
16 the UBC watershed model with a universal set of parameters for water allocation and flow
17 routing, and precipitation gradients estimated from the available annual precipitation data as
18 well as from regional information on the distribution of orographic precipitation. This method
19 is proposed for watersheds without streamflow gauge data and limited meteorological station
20 data. The second hybrid method proposes the coupling of UBC watershed model with
21 artificial neural networks (ANNs) and is intended for use in poorly gauged watersheds which
22 have limited streamflow measurements. The two proposed methods have been applied to five
23 mountainous watersheds with largely varying climatic, physiographic and hydrological
24 characteristics. The evaluation of the applied methods is based on combination of graphical
25 results, statistical evaluation metrics, and normalized goodness-of-fit statistics. The results
26 show that the first method satisfactorily simulates the observed hydrograph assuming that the
27 basins are ungauged. When limited streamflow measurements are available, the coupling of
28 ANNs with the regional non-calibrated UBC flow model components is considered a
29 successful alternative method over the conventional calibration of a hydrological model based
30 on the employed evaluation criteria for streamflow modelling and flood frequency estimation.

1 1 Introduction

2 The planning, design and management of water resources projects require good estimates of
3 streamflow and peak discharge at certain points within a basin. Observed meteorological and
4 streamflow data are used, initially, for the understanding of the hydrological processes and,
5 then, for modelling these processes in order to estimate the streamflow of a watershed. It is
6 likely that most watersheds or basins of the world are ungauged or poorly gauged. There is a
7 whole spectrum of cases, which can be collectively embraced by the term “ungauged basins”.
8 Some basins are genuinely ungauged, others are poorly gauged, or those previously gauged,
9 where measurements discontinued due to instrument failure and/or termination of a
10 measurement program. Also, the term “ungauged basin” refers to a basin where
11 meteorological data or river flow, or both, are not measured. The international community has
12 recognized this challenging problem and as a result the International Association of
13 Hydrological Sciences (IAHS) had declared the previous decade (2003-2012) the “Decade of
14 the Ungauged Basin” (Sivapalan et al., 2003). The IAHS Decade on Prediction in Ungauged
15 Basins (PUB) was a major new effort and an international research initiative to promote the
16 development of science and technology to provide hydrological data where the ground based
17 observations are needed but missing. This initiative included theoretical hydrology, remote
18 sensing techniques, in situ observations and measurements, and water quantity and quality
19 modelling (Hrachowitz et al., 2013).

20 In ungauged watersheds, where there are no data, the hydrologist has to develop and use
21 models and techniques which do not require the availability of long time series of
22 meteorological and hydrological measurements. One option is to develop models for gauged
23 watersheds and link the model parameters to physiographic characteristics and apply them to
24 ungauged watersheds, whose physiographic characteristics can be determined. Another option
25 is to establish regionally valid relationships in hydrologically similar gauged watersheds and
26 apply them to ungauged watersheds in the region. This approach holds both for hydrograph
27 and flood frequency analysis. The various methods proposed for hydrological prediction in
28 ungauged watersheds can be categorized into statistical methods, hydrological and stochastic
29 modelling methods (Blöschl et al., 2013; Hrachowitz et al., 2013; Parajka et al., 2013; Salinas
30 et al., 2013b). Regionalization techniques are usually applied for statistical methods. These
31 techniques include the regression analyses of flood statistics (statistical moments of flood
32 series) or flood quantiles of gauged watersheds within a homogenous region against

1 geographical and geomorphologic characteristics of the watersheds (Kjeldsen and Rosbjerg,
2 2002), the combination of single site and regional data, the spatial interpolation of estimated
3 flood statistics at gauged basins using geostatistics (Blöschl et al., 2013), and the Region Of
4 Influence (ROI) approach (Burn, 1990). Then, the established relationships are applied to
5 ungauged watersheds of the region.

6 In the hydrological modelling methods, hydrological models of varying degrees of complexity
7 are used to generate synthetic flows for known precipitation (Singh and Woolhiser, 2002;
8 Singh and Frevert, 2005; Singh, 2012). The complexity of the models can vary from simple
9 event-based models to continuous simulation models, lumped to distributed models, and
10 models that simulate the discharge in sub-daily, daily, or larger time steps. In this approach, a
11 hydrological model is firstly calibrated to gauged watersheds within a region and the model
12 parameters are linked through multiple regression to physiographic and/or climatic
13 characteristics of the watersheds or are spatially interpolated using geostatistics or even using
14 the average model parameter values (e.g. Micovic and Quick, 1999; Post and Jakeman, 1999;
15 Merz and Bloschl, 2004). At the ungauged watersheds of the region, the model with the
16 estimated model parameters is used for hydrological simulation (Wagener et al., 2004; Zhang
17 and Chiew, 2009; He et al., 2011; Wagener & Montanari, 2011; Bao et al., 2012; Razavi &
18 Coulibaly, 2013; Viglione et al., 2013)

19 The stochastic modelling methods employ a hydrological model, which is used to derive the
20 cumulative distribution function of the peak flows. These methods use a stochastic rainfall
21 generation model, which is linked to the hydrological model. The cumulative distribution
22 function of peak flows could be estimated analytically (Iacobellis and Fiorentino, 2000; De
23 Michele and Salvadori, 2002), in case that a simple hydrological model is used. However, the
24 simplifications and the assumptions made in the analytical derivation of the cumulative
25 distribution function of peak flows may result in poor performance. To overcome this
26 problem the peak flow frequency could be estimated numerically using either an event-based
27 model (Loukas, 2002; Svensson et al., 2013) or a continuous model (Cameron et al., 2000;
28 Engeland and Gottschalk, 2002).

29 There are difficulties in universally applying the above methods for hydrograph simulation
30 and peak flow estimation of ungauged watersheds. These difficulties arise from the definition
31 of the homogenous regions, the number and the areas of the gauged watersheds, and the
32 different runoff generation processes. The definition, or delineation, of homogeneous

1 hydrologic regions has been a subject of research for many years and it is necessary for the
2 application of regionalization techniques. The definition of homogeneous regions enables
3 uncorrelated data to be pooled from similar watersheds. A hydrological homogeneous region
4 can be defined by geography, by stream flow characteristics, and by the physical and climatic
5 characteristics of the watersheds. However, problems may arise when an ungauged watershed
6 is to be assigned to a region. The assignment of the watershed to a region is unambiguous,
7 when the geographical classification is used and the regions are delineated clearly. On the
8 other hand, the hydrological response of the ungauged watershed may be similar to the
9 response of watersheds belonging in more than one region. This is particularly true for
10 watersheds that are close to region boundaries. In the case of a classification based on stream
11 flow and watershed characteristics, the regions commonly overlap each other. For a
12 classification of regions based on the physical and climatic characteristics of the watersheds,
13 the ungauged watershed could be erroneously assigned to a region. Furthermore, even if a
14 homogenous region is correctly defined and an ungauged watershed is assigned in that region
15 there should be enough watersheds with extended length of meteorological and streamflow
16 records in order to develop statistically significant regional relationships. However, this is not
17 the case in many parts of the world, where data are very limited, both spatially and
18 temporally. Additionally, the physiographic characteristics, such as slopes, vegetation
19 coverage, soils, etc., and the runoff generation processes (rainfall runoff, snowmelt runoff,
20 glacier runoff, etc.) are changing as the size of the watershed is increasing even in the same
21 region.

22 The streamflow of a watershed is often measured for a limited period and these streamflow
23 data are inefficient for hydrological model calibration and statistical analysis. In this paper, a
24 technique that couples a hydrological model with Artificial Neural Networks (ANNs) is
25 proposed to improve the streamflow simulation and estimation of peak flows for watersheds
26 with limited streamflow data. In recent years, ANNs have become extremely popular for
27 prediction and forecasting of climatic, hydrologic, and water resources variables (Govindaraju
28 and Rao, 2000; Abrahart et al., 2004) and are extensively reviewed for their effectiveness in
29 estimation of water quantitative and qualitative variables (Maier and Dandy, 2000; Maier et
30 al., 2010) and in hydrological modelling and forecasting applications (ASCE, 2000; Dawson
31 and Wilby, 2001; Abrahart et al., 2010; Abrahart et al., 2012). In the context of hydrological
32 modelling, ANNs have mainly been used as rainfall-runoff models for the prediction and
33 forecasting of streamflow in various time steps (Coulibaly et al., 1999; ASCE, 2000; Dawson

1 and Wilby, 2001; Jain et al., 2009; Abrahart et al., 2010). Abrahart et al. (2012) present recent
2 ANN applications and procedures in streamflow modelling and forecasting which include
3 modular design concepts, ensemble experiments, and hybridization of ANNs with typical
4 hydrological models. Furthermore, ANNs have been used for combining the outputs of
5 different rainfall-runoff models in order to improve the prediction and modelling of
6 streamflow (Shamseldin et al., 1997; Chen and Adams, 2006; Kim et al., 2006; Nilsson et al.,
7 2006; Cerda-Villafana et al., 2008; Liu et al., 2013) and the river flow forecasting (Brath et
8 al., 2002; Shamseldin et al., 2002; Anctil et al., 2004a; Srinivasulu and Jain, 2009; Elshorbagy
9 et al., 2010; Mount et al., 2013).

10 The objectives of the study are therefore to develop rainfall-runoff modelling procedures for
11 ungauged and poorly gauged watersheds located in different climatic regions. A well
12 established RR model (Singh, 2012), the University of British Columbia (UBC) watershed
13 model, is selected and applied in five different river basins located in Canada, Cyprus and
14 Pakistan. Catchments from cold, temperate, continental and semiarid climate zones are
15 included to demonstrate the develop procedures. In the present study, the term “ungauged”
16 watershed refers to a watershed, where river flow is not measured and the term “poorly
17 gauged” watershed indicates a watershed, where continuous streamflow measurements are
18 available for three hydrological years. Two streamflow modelling methods are presented.
19 The first method is proposed for application at ungauged watersheds, using a conceptual
20 hydrological model, the UBC watershed model. In this method, most of the parameters of the
21 UBC watershed model are taking constant values and the precipitation gradients are estimated
22 by analysis of available meteorological data and/or results of earlier regional studies. A
23 second modelling procedure that couples the UBC watershed model with ANNs is employed
24 for the estimation of streamflow of poorly gauged watersheds with limited meteorological
25 data. The coupling procedure of UBC ungauged application with ANNs is an effort to
26 combine the flexibility and capability of ANNs in nonlinear modelling with the physical
27 modelling of the rainfall-runoff process acquired by a hydrological model.

28

29 **2 Study basins and data base**

30 For the assessment of the developed methodologies preferably a large number of undisturbed
31 data-intensive catchments located in different climate zones should be studied. However, data
32 for these catchments are very difficult to obtain, which is why the study is limited to five river

1 basins located in different continents. The main selection criteria were accessible
2 hydrometeorological data of good quality, and that the studied watersheds represent various
3 climatic types with diverse runoff generation mechanisms. Hence, the developed
4 methodologies are applied to five watersheds located in various geographical regions of the
5 world and having varying physiographic, climatic, and hydrological characteristics, and
6 quality and volume of meteorological data. The runoff of all study watersheds contributes to
7 the inflow of local reservoirs.

8 Two watersheds are forested watersheds located in British Columbia, Canada. The first
9 watershed, the Upper Campbell watershed, is located on the east side of the Vancouver Island
10 Mountains and drains to the north and east into the Strait of Georgia. The 1194 km² basin is
11 very rugged with peaks rising to 2235 m and with mean basin elevation of 950 m (Table 1).
12 The climate of the area is characterized as a maritime climate with wet and mild winters and
13 dry and warm summers. Most of precipitation is generated by cyclonic frontal systems that
14 develop over the North Pacific Ocean and move eastwards. Average annual precipitation is
15 about 2000 mm and 60% of this amount is falling in the form of rainfall. Significant but
16 transient snowpacks are accumulated, especially in the higher elevations. Runoff and the
17 majority of peak flows are generated mainly by rainfall, snowmelt and winter rain-on-snow
18 events (Loukas et al., 2000). The runoff from the Upper Campbell watershed is the inflow to
19 the Upper Campbell Lake and Buttle Lake reservoirs. Daily maximum and minimum
20 temperature were available at two meteorological stations one at 370 m, and the other at 1470
21 m and daily precipitation at the lower elevation station. In total, seven years of daily
22 meteorological and streamflow data (October 1983 – September 1990) were available from
23 the Upper Campbell watershed.

24 The second study watershed is the Illecillewaet watershed, which is located on the west slopes
25 of the Selkirk Mountains in southeastern British Columbia, 500 km inland from the Coast
26 Mountains. The size of the watershed is 1150 km² and its elevation ranges from 400 m to
27 2480 m (Table 1). Illecillewaet River is a tributary of the Columbia River and contributes to
28 the Arrow Lakes reservoir. The climate of the area is continental with cold winters and warm
29 summers with frequent hot days and is influenced by the maritime Pacific Ocean air masses
30 and by weather systems moving eastwards. Average annual precipitation ranges from 950 mm
31 at the mouth of the watershed to 2160 mm at the higher elevations. Substantial snowpacks
32 develop during winter at all elevations of the watershed. The snowpack at the valley bottom is

1 usually depleted by the end of April, but permanent snowpacks and a glacier with an area of
2 76 km² exist at the highest elevations. Streamflow is mainly generated during spring, by rain
3 and snowmelt, and summers, from snowmelt and the contribution of glacier melt (Loukas et
4 al., 2000). Good quality daily precipitation and maximum and minimum temperature data are
5 measured at three meteorological stations at 443 m, 1323 m, and 1875 m of elevation,
6 respectively. Twenty years of meteorological and streamflow data (October 1970 – September
7 1990) were used to assess the simulated runoff from the watershed.

8 The third study basin is the Yermasoyia watershed, which is located in the southern side of
9 mountain Troodos of Cyprus, roughly 5 km north of Limassol city. The watershed area is 157
10 km² and its elevation ranges from 70 m up to 1400 m (Table 1). Most of the area is covered
11 by typical Mediterranean type forest and sparse vegetation. A reservoir with storage capacity
12 of 13.6 million m³ was constructed downstream the mouth of the watershed in 1969, for
13 irrigation and municipal water supply purposes (Hrissanthou, 2006). The climate of the area is
14 of Mediterranean maritime climate with mild winters and hot and dry summers. Precipitation
15 is usually generated by frontal weather systems moving eastwards. Average basin wide
16 annual precipitation is 640 mm, ranging from 450 mm at the low elevations up to 850 mm at
17 the upper parts of the watershed. Mean annual runoff of Yermasoyia river is about 150 mm,
18 and 65% of it is generated by rainfall during winter months. The river is usually dry during
19 summer months. The peak flows are observed in winter months and produced by rainfall
20 events. Good quality daily precipitation from three meteorological stations located at 70 m,
21 100 m, and 995m of elevation were used. Data of maximum and minimum temperature
22 measured at the low elevation station (70 m) were used in this study. In total, eleven years of
23 meteorological and streamflow data (October 1986 – September 1997) were available for
24 Yermasoyia watershed.

25 The fourth and fifth study watersheds, the Astor and the Hunza watersheds, are located within
26 the Upper Indus River basin in northern Pakistan. The Astor watershed spans elevations from
27 2130 to 7250 m and covers an area of 3955 km², only 5% of which is covered with forest and
28 10% is covered with glaciers (Table 1). Precipitation is usually generated by westerly
29 depressions, but occasionally monsoon storms produce heavy precipitation. Average basin
30 annual precipitation is about 700 mm and more than 90% of this amount is snow (Ahmad et
31 al., 2012). Runoff and the peak streamflows are mainly generated by snowmelt and glacier
32 melt (Loukas et al., 2002; Archer, 2003). Mean annual streamflow is about 120 m³/s, which

1 amounts 5% of the inflow to the downstream Tarbela reservoir. Daily precipitation and
2 maximum and minimum temperature data are measured at one meteorological station located
3 at the elevation of 2630 m. In total, nine years of meteorological and streamflow data
4 (October 1979 – September 1988) were available from the Astor watershed. The Hunza
5 watershed lies within the Karakoram Mountain Range. Hunza River flows southwest from its
6 headwaters near the China/Pakistan border, through the Karakoram to join the Gilgit River
7 near the town of Gilgit. The Hunza watershed has a total drainage area of 13100 km² (Table
8 1) and the entire area is a maze of towering peaks, massive glaciers and steep sided gorges.
9 The highest mountain peaks within the Hunza basin area are Batura (7785 m), Rakaposki
10 (7788 m) and Disteghil Sur (7885 m). The elevation of Hunza basin ranges from 1460 to 7885
11 m. Twenty three percent of the watershed area is covered by glaciers including the large
12 Baltura and Hispar glaciers (Bocchiola et al., 2011; Ahmad et al., 2012). The Hunza basin is
13 arid and annually receives less than 150 mm of precipitation, mainly in the form of snow,
14 from westerly weather systems. More than 90% of the annual runoff and peak streamflows
15 are generated by glacier melt (Loukas et al., 2002; Archer, 2003). Mean annual streamflow is
16 about 360 m³/s, which amounts more than 13% of the inflow to the downstream Tarbela
17 reservoir. Daily precipitation data measured at two meteorological stations located at 1460 m
18 and 2405 m of elevation were used. Data of maximum and minimum temperature measured at
19 the low elevation station (1460 m) were used in this study. Four years of meteorological and
20 streamflow data (October 1981 – September 1985) were available from the Hunza basin.

21

22 **3 Method of Analysis**

23 Two methodologies are proposed in this paper for the simulation of daily streamflow of the
24 five study watersheds. The first methodology uses the UBC watershed model with estimated
25 universal model parameters and estimates of precipitation distribution, and it is proposed for
26 use in ungauged watersheds. The second methodology proposes the coupling of UBC
27 watershed model with ANNs, and is intended for use in watersheds where limited streamflow
28 data are available. The UBC watershed model and the two methodologies are presented in the
29 next paragraphs.

1 **3.1 The UBC watershed model**

2 The UBC watershed model was first presented 35 years ago (Quick and Pipes, 1977), and has
3 been updated continuously to its present form. The UBC is a continuous conceptual
4 hydrologic model and calculates daily or hourly streamflow using as input data precipitation,
5 maximum and minimum temperature data. The model was primarily designed for the
6 simulation of streamflow from mountainous watersheds, where the runoff from snowmelt and
7 glacier melt may be important, apart from the rainfall runoff. However, the UBC watershed
8 model has been applied to variety climatic regions, ranging from coastal to inland mountain
9 regions of British Columbia including the Rocky Mountains, and the subarctic region of
10 Canada (Hudson and Quick, 1997; Quick et al., 1998; Micovic and Quick, 1999; Loukas et
11 al., 2000; Druce, 2001; Morrison et al., 2002; Whitfield et al., 2002; Merritt et al., 2006;
12 Assaf, 2007). The model has also been applied to the Himalayas and Karakoram Mountain
13 Ranges in India and Pakistan, the Southern Alps in New Zealand and the Snowy Mountains in
14 Australia (Singh and Kumar, 1997; Singh and Singh, 2001; Quick, 2012; Naeem et al., 2013).
15 This ensures that the model is capable of simulating runoff under a large variety of conditions.
16 The model conceptualizes the watersheds as a number of elevation zones, since the
17 meteorological and hydrological processes are functions of elevation in mountainous
18 watersheds. In this sense, the orographic gradients of precipitation and temperature are major
19 determinants of the hydrologic behavior in mountainous watersheds. These gradients are
20 assumed to behave similarly for each storm event. Furthermore, the physiographic parameters
21 of a watershed, such as impermeable area, forested areas, vegetation density, open areas,
22 aspect, and glaciated areas are described for each elevation zone and can be estimated from
23 analog and digital maps and/or remotely sensed data. Hence, it is assumed that the elevation
24 zones are homogeneous with respect of the above physiographic parameters. In a recent
25 study, the UBC watershed model was integrated into a geographical information system that
26 automatically identifies and estimates the physiographic parameters of each elevation zone of
27 a watershed from digital maps and remotely sensed data (Fotakis et al., 2014). A certain
28 watershed can be divided in up to 12 homogeneous elevation zones. The UBC watershed
29 model provides information on snow-covered area, snowpack water equivalent, potential and
30 actual evapotranspiration, soil moisture interception losses, groundwater storage, surface and
31 subsurface runoff for each elevation zone separately and for the whole watershed. Fig. 1
32 presents the flow diagram of the UBC watershed model.

1 The model is made up of several sub-routines: the sub-routine for the distribution of the
 2 meteorological data, the soil moisture accounting sub-routine, and the flow routing sub-
 3 routine. The meteorological distribution sub-routine distinguishes between total precipitation
 4 in the form of snow and rain using the temperature data. If the mean temperature is below 0°C
 5 or above 2°C, then all precipitation is in the form of snow or rain, respectively. When the
 6 mean temperature is between 0°C and 2°C, then the percentage of total precipitation, which is
 7 rain, is estimated by,

$$8 \%RAIN = \frac{Temperature}{2} \times 100 \quad (1)$$

9 and, the remaining percentage of precipitation is snow. Snow is stored until melts, whereas
 10 rain is immediately processed by the soil moisture routine accounting to a sub-routine. Each
 11 meteorological station has two representation factors, one for snow, P0SREP, and one for
 12 rain, P0RREP. These factors are introduced because precipitation data from a meteorological
 13 station are point data and they may not be representative for a larger area or zone. If the data
 14 are representative, then, these parameters are equal to zero.

15 The point station data of precipitation are distributed over the watershed using the equation,

$$16 PR_{i,j,l+1} = PR_{i,j,l} \cdot (1 + P0GRAD)^{\frac{\Delta elev}{100}} \quad (2)$$

17 where $PR_{i,j,l}$ is the precipitation from meteorological station i for day j and elevation zone l,
 18 P0GRAD is the percentage precipitation gradient, and $\Delta elev$ is the elevation difference
 19 between the meteorological station and the elevation zone.

20 The UBC model, then, adjusts the precipitation gradient according to the temperature,

$$21 GRADRAIN = GRADSNOW - ST(T) \quad (3)$$

22 where $ST(T)$ is a parameter, which is affected by the stability of the air mass. The $ST(T)$
 23 parameter can be shown (Quick et al., 1995) that it is related to the square of the ratio of the

24 saturated and dry adiabatic lapse rates, L_S and L_D , respectively i.e. $\left(\frac{L_S}{L_D}\right)^2$. A plot of

25 $\left(\frac{L_S}{L_D}\right)^2$ versus temperature reveals an almost linear variation between -30°C and +20°C. The

26 gradient of this linear approximation is 0.01, so that $ST(T)$ can be estimated as,

1 $ST(T) = 0.01 \cdot T_{mean}$ (4)

2 where T_{mean} is the mean daily temperature.

3 The UBC watershed model has the capability of using three different precipitation gradients
 4 in a single watershed, namely P0GRADL, P0GRADM, P0GRADU. The low elevation
 5 gradient, P0GRADL, applies to elevations lower than the elevation E0LMID, whereas the
 6 upper elevation gradient, P0GRADU, applies above the elevation E0LHI and the mid-
 7 elevation gradient, P0GRADM, applies to elevations between E0LMID and E0LHI.

8 The temperature in the UBC watershed model is distributed over the elevation range of a
 9 watershed according to the temperature lapse rates. Two temperature lapse rates are specified
 10 in the UBC watershed model, one for the maximum temperature and one for the minimum
 11 temperature. Furthermore, the model recognizes two conditions, namely the rainy condition,
 12 and the clear sky and dry weather condition. Under the rainy condition, the lapse rate tends to
 13 be the saturated adiabatic rate. Under dry weather condition and during the warm part of the
 14 day, the lapse rate tends to be the dry adiabatic rate, whereas the lapse rate tends to be quite
 15 low and occasionally zero lapse rates may occur during dry weather and night. The lapse rate
 16 is calculated for each day using the daily temperature range (temperature diurnal range) as an
 17 index. A simplified energy budget approach, which is based on limited data of maximum and
 18 minimum temperature and can account for forested and open areas, and aspect and latitude, is
 19 used for the estimation of the snowmelt and glacier melt (Quick et al., 1995).

20 The soil moisture accounting sub-routine represents the non-linear behaviour of a watershed.
 21 All the non-linearity of the watershed behavior is concentrated into the soil moisture
 22 accounting sub-routine which allocates the water from rainfall, snowmelt and glacier melt
 23 into four runoff components, namely, the fast or surface runoff, the medium or interflow
 24 runoff, the slow or upper zone groundwater runoff and the very slow or deep zone
 25 groundwater runoff. The impermeable area, which represents the rock outcrops, the water
 26 surfaces and the variable source saturated areas adjacent to stream channels, divides the water
 27 that reaches the soil surface after interception and sublimation into fast surface runoff and
 28 infiltrated water. The total impermeable area at each time step varies with soil moisture,
 29 mainly due to the expansion or shrinkage of the variable source riparian areas. The percentage
 30 of the impermeable areas of each elevation zone varies according the Equation (5):

31 $PMXIMP = C0IMPA \cdot 10^{-\frac{S0SOIL}{P0AGEN}}$ (5)

1 where, C0IMPA is the maximum percentage of impermeable areas when the soil is fully
 2 saturated, S0SOIL is the soil moisture deficit in the elevation zone, and P0AGEN is a
 3 parameter which shows the sensitivity of the impermeable areas to changes in soil moisture.
 4 The water infiltrated into the soil must first satisfy the soil moisture deficit and the
 5 evapotranspiration and then continues to infiltrate into the groundwater or runs off as
 6 interflow. This process is controlled by the “groundwater percolation” parameter (P0PERC).
 7 The groundwater is further divided into an upper and deep groundwater zones by the “deep
 8 zone share” parameter (P0DZSH). This water allocation by the soil moisture accounting sub-
 9 routine is applied to all watershed elevation zones. Each runoff component is then routed to
 10 the watershed outlet, which is achieved in the flow routing sub-routine. However, a different
 11 mechanism is employed in the case of high intensity rainfall events, which can produce flash
 12 flood runoff. The runoff from these events is controlled by the soil infiltration rate. For these
 13 high intensity rainfall events, some of the rainfall infiltrates into the soil and is subject to the
 14 normal soil moisture budgeting procedure previously presented. The remaining amount of
 15 rainfall, which is not infiltrated into the soil, is considered to contribute to the fast runoff
 16 component, is called FLASHSHARE and is estimated by:

$$17 \quad \text{FLASHSHARE} = \text{PMXIMP} + (1 - \text{PMXIMP}) \cdot \text{FMR} \quad (6)$$

18 where, FMR is the percentage of the flash share, ranges from 0 to 1 and is estimated by :

$$19 \quad FMR = \frac{1 + \log\left(\frac{RNSM}{V0FLAS}\right)}{\log\left(\frac{V0FLAX}{V0FLAS}\right)} \quad (7)$$

20 and PMXIMP is percentage of impermeable area of the elevation zone and is estimated by
 21 Equation (5), RNSM is the summation of rainfall, snowmelt and glacial melt of the time step,
 22 V0FLAS is a parameter showing the threshold value of precipitation for flash runoff, and
 23 V0FLAX is the parameter showing the maximum value of precipitation, which limits the
 24 FMR range. The last two parameters (i.e. V0FLAS and V0FLAX) take characteristic values
 25 for a given watershed and their values depend on the geomorphology of the watershed (e.g.
 26 land slope, impermeable areas). The flow routing, employed in the UBC watershed model, is
 27 linear and thus, significantly simplifies the model structure, conserves the water mass, and
 28 provides a simple and accurate water budget balance. The flow routing parameters are: the
 29 snowmelt and rainfall fast runoff time constants, P0FSTK, and P0FRTK, respectively, the

1 snowmelt and rainfall interflow time constants, P0ISTK, and P0IRTK, respectively, the upper
2 groundwater time constant, P0UGTK, the deep zone groundwater time constant, P0DZTK,
3 and the glacier melt fast runoff time constant, P0GLTK.

4 The UBC watershed model has more than 90 parameters. However, application of the model
5 to various climatic regions and experience have shown that only the values of 17 general
6 parameters and two precipitation representation factors (e.g. P0SREP and P0RREP) for each
7 meteorological station have to be optimised and adjusted during calibration, and the majority
8 of the parameters take standard constant values. These varying model parameters can be
9 separated into three groups: the precipitation distribution parameters (namely, P0SREP(i),
10 P0RREP(i), P0GRADL, P0GRADM, P0GRADU, E0LMID and E0LHI), the water allocation
11 parameters (namely, P0AGEN, P0PERC, P0DZSH, V0FLAX and V0FLAS), and the flow
12 routing parameters (namely, P0FSTK, P0FRTK, P0ISTK, P0IRTK, P0UGTK, P0DZTK, and
13 P0GLTK). These parameters are optimized through a two-stage procedure. However, in this
14 paper, the water allocation parameters and the flow routing parameters are given constant
15 universal values, whereas the precipitation distribution parameters are estimated from the
16 meteorological data and/or using the results of earlier regional studies on precipitation
17 distribution with elevation, as will be presented below. The total number of model parameters
18 for Upper Campbell and Astor watersheds are 19, for Illecillewaet and Yermasoyia are 23 and
19 for Hunza are 21, as will be shown below.

20 **3.2 Methodology for ungauged watersheds**

21 The five study watersheds, initially, were treated as ungauged watersheds, assuming that
22 streamflow measurements were not available. On the other hand, meteorological data were
23 used from the available stations at each study watershed. The UBC watershed model was used
24 to simulate the streamflow from the five study watersheds. Twelve (12) out of the 17 general
25 varying model parameters were assigned constant universal values, which either estimated or
26 taken as default (Table 2 and Table 3). This work uses the results of a recent paper (Micovic
27 and Quick, 1999) that applied the UBC watershed model in twelve heterogeneous watersheds
28 in British Columbia, Canada with different sizes of drainage area, climate, topography, soil
29 types, vegetation coverage, geology, and hydrologic regime. Micovic and Quick (1999) found
30 that averaged constant values could be assigned to most of the model parameters. Table 2
31 shows the averaged values of the model parameters that mainly affect the time distribution of
32 the runoff.

1 Additionally, the UBC watershed model water allocation parameters P0AGEN, V0FLAX,
2 and V0FLAS were assigned the default values suggested in the manual of the model (Quick et
3 al., 1995). The flow routing parameter of glacier runoff, P0GLTK, was assigned the value of
4 rainfall fast flow routing parameter, P0FRTK, assuming that the response of the glacier runoff
5 is similar to the response of the fast component of the runoff generated by rainfall. The values
6 of these parameters are presented in Table 3. Apart from these parameters, the precipitation
7 distribution parameters were estimated from the available meteorological data, separately for
8 each watershed. This estimation procedure is described in the next paragraphs for each one of
9 the five study watersheds.

10 **3.2.1 Estimation of model precipitation distribution parameters for Upper
11 Campbell watershed**

12 Only one precipitation station was available in the Upper Campbell watershed. For this station
13 the precipitation representation parameters for rainfall and snowfall, P0RREP and P0SREP,
14 respectively, were set to zero. The results of earlier studies on the precipitation distribution
15 with elevation in the coastal region of British Columbia (Loukas and Quick, 1994; Loukas
16 and Quick, 1995) were used for assigning values of precipitation distribution model
17 parameters. In these earlier studies, it was found that the precipitation increases 1.5 times
18 from the coast up to an elevation, which equals about two-thirds of the elevation of the
19 mountain peak, and then levels off at the higher elevations. Using this information, the low
20 precipitation gradient, P0GRADL, was estimated from Equation (2), substituting as $PR_{i,j,l}$ the
21 mean annual precipitation of the lower meteorological station located at 370 m, $PR_{i,j,l+1}$ the
22 increased 1.5 times the mean annual precipitation of the lower meteorological station, and
23 $\Delta elev$ the elevation difference between the elevation of the maximum precipitation (two-
24 thirds of the maximum mountain peak, 1490 m) and the elevation of the lower meteorological
25 station (370 m) equals 1120 m. The estimated value of P0GRADL was estimated to be equal
26 to 3.7%. The elevation where the maximum precipitation occurs (1490 m) defines the value of
27 model parameter E0LMID. The middle and upper precipitation gradients (i.e. P0GRADM and
28 P0GRADU) were set to zero. In this case, there was not necessary to define the model
29 parameter E0LHI, because the precipitation was assumed constant above E0LMID elevation
30 (1490 m).

1 **3.2.2 Estimation of model precipitation distribution parameters for**
2 **Illecillewaet watershed**

3 Three precipitation stations were available at the Illecillewaet watershed located at elevations
4 of 443 m, 1323 m, and 1875 m, respectively. The model precipitation representation
5 parameters for rainfall and snowfall and for all three stations were set to zero (i.e. $P0RREP(1)$
6 = $P0SREP(1)$ = $P0RREP(2)$ = $P0SREP(2)$ = $P0RREP(3)$ = $P0SREP(3)$ = 0). The low
7 precipitation gradient, $P0GRADL$, was estimated from Equation (2) using the mean annual
8 precipitation at the low and middle elevation stations, and the elevation difference between
9 the two stations ($\Delta elev = 1323 - 443 = 880$ m). $P0GRADL$ was found equal to 6%. Similarly, the
10 middle precipitation gradient, $P0GRADM$, is estimated equal to 5.5%, considering the mean
11 annual precipitation of the middle and upper elevation station. The upper precipitation
12 gradient, $P0GRADU$, was set to zero. The parameter $E0LMID$ was set equal to the elevation
13 of the middle elevation station, which is 1323 m. The parameter $E0LHI$ was set equal to the
14 highest elevation of the watershed, 2480 m.

15 **3.2.3 Estimation of model precipitation distribution parameters for**
16 **Yermasoyia watershed**

17 Precipitation data from three meteorological stations located at 70 m, 100 m, and 995m of
18 elevation were available at Yermasoyia watershed. The precipitation representation
19 parameters for snowfall and for all three stations were set equal to zero, because snowfall is
20 rarely observed (i.e. $P0SREP(1)$ = $P0SREP(2)$ = $P0SREP(3)$ = 0). The annual precipitation
21 data of the three stations were compared with the annual precipitation of other stations in the
22 greater area of the watershed. This comparison showed that the three meteorological stations
23 record 30% more annual rainfall than other stations located at similar elevations. For this
24 reason the rainfall representation parameters for all three stations were set equal to -30% (i.e.
25 $P0RREP(1)$ = $P0RREP(2)$ = $P0RREP(3)$ = -30%). The low precipitation gradient, $P0GRADL$,
26 was estimated using Equation (2) and the mean annual precipitation of the lower elevation
27 station and the mean annual precipitation at the upper elevation station. The precipitation
28 gradient between the two lower elevation stations is essentially zero, because of the small
29 elevation difference. The lower precipitation gradient parameter, $P0GRADL$, was estimated
30 equal to 4.9%. The parameter $E0LMID$ was set equal to the elevation of the upper elevation
31 station, which is 995 m. The middle and the upper precipitation gradients, $P0GRADM$ and

1 P0GRADU, respectively, were set equal to zero. This means that the simulation was
2 performed with one precipitation gradient. In this case, there was not necessary to define the
3 model parameter E0LHI.

4 **3.2.4 Estimation of model precipitation distribution parameters for Astor
5 watershed**

6 In the Astor watershed, only the precipitation data of one meteorological station located at
7 2630 m were available. For this reason and because there was not any information on the
8 distribution of precipitation with elevation, all the model precipitation representation and
9 distribution parameters, i.e. P0RREP, P0SREP, P0GRADL, P0GRADM, and P0GRADU,
10 were set equal to zero. In this case, there was not necessary to define the model parameters
11 E0LMID and E0LHI, which were set equal to zero.

12 **3.2.5 Estimation of model precipitation distribution parameters for
13 Hunza watershed**

14 Daily precipitation data from two meteorological stations located at 1460 and 2405 m of
15 elevation were available at Hunza basin. The mean annual precipitation at the two stations
16 was estimated and indicated that the precipitation gradient between the two stations was
17 essentially zero. For this reason and because there was not any information on the distribution
18 of precipitation with elevation, all the model precipitation representation and distribution
19 parameters were set equal to zero (i.e. P0RREP(1) = P0SREP(1) = P0RREP(2) = P0SREP(2)
20 = P0GRADL = P0GRADM = P0GRADU = E0LMID = E0LHI = 0).

21 **3.3 Methodology for poorly gauged watersheds**

22 The streamflow is frequently measured for a limited period of time. These streamflow data are
23 inadequate for peak flow analysis and validation of the simulated streamflow. Unfortunately,
24 there are no specific guidelines about the precise calibration length of streamflow data needed
25 for optimal hydrological model performance in poorly gauged watersheds (Seibert and Beven,
26 2009). Several studies in gauged watersheds showed that for an acceptable rainfall-runoff
27 model calibration a large calibration record which includes wet and dry years with at least
28 eight years is needed for complex hydrologic models and the minimum requirements are one
29 hydrological year (Sorooshian et al., 1983; Yapo et al., 1996; Duan et al., 2003). For example,
30 Yapo et al. (1996) stated that for a reliable and acceptable model performance a calibration

1 period with at least eight years of data should be used for NWSRFS-SMA hydrologic model
2 with 13 free parameters. Harlin (1991) suggests that from two up to six years of streamflow
3 data are needed for optimal calibration of the HBV model with 12 free parameters. Xia et al.
4 (2004) suggest that at least three years of streamflow data are required for successful
5 application of their model (with seven parameters) at a case study in Russia. To this direction
6 few studies investigate the use of limited number of observations for calibration periods
7 shorter than one year. Brath et al., (2004) for flood peaks modelling using a continuous
8 distributed rainfall-runoff model suggest that three months are minimum requirements for
9 flood peak estimation. However, their best results are acquired with the use of one year
10 continuous runoff data. Perrin et al. (2007) found that calibration of a simple runoff model
11 (the GR4J model with four free parameters) is possible using about 100–350 observation days
12 spread randomly over a longer time period including dry and wet conditions. These results
13 were also verified by Seibert and Beven (2009) which showed that a few runoff
14 measurements (larger than 64 values) can contain much of the information content of
15 continuous streamflow time series. The problem of limited streamflow data might be tackled
16 if the data are selected in an intelligent way (e.g. Duan et al., 2003; Wagener et al., 2003;
17 Juston et al., 2009) or using information from other variables such as data from groundwater
18 and snow measurements in a multiobjective context (e.g. Efstratiadis and Koutsoyiannis,
19 2010; Konz and Seibert, 2010; Schaeefli and Huss, 2011). The above studies give an indication
20 of the potential value of limited observation data for constraining model prediction
21 uncertainties even for ungauged basins. However, these studies indicated that the results
22 diverse significantly between the watersheds, depend on the days chosen for taking the
23 measurements, and misleading results could be obtained with the use of few streamflow data
24 (Seibert and Beven, 2009). Furthermore, the employed conceptual hydrological models are
25 simple and with small number of free parameters and more research is needed for complicate
26 hydrological structures with larger than 10 parameters such as the UBC watershed model. In a
27 recent study, the impact of calibration length in streamflow forecasting using an artificial
28 neural network (ANN) and a conceptual hydrologic model the GR4J was assessed (Anctil et
29 al., 2004b). The results showed that the hydrological model is more capable than ANNs for 1-
30 day-ahead flow forecasting using calibration periods less than one hydrological year due to its
31 internal structure and similar results are obtained for calibration periods from one to five
32 years. However, the ANN model outperformed the GR4J model for calibration periods larger
33 than five years as a result of their flexibility (Anctil et al., 2004b).

1 Based on the above studies and discussion, it is difficult to define the minimum requirements
2 for model (conceptual or black-box) calibration for poorly gauged watersheds. Furthermore,
3 model accuracy may also depend on the climatic zone, an aspect that is rarely explicitly
4 analysed. Therefore, we developed a methodology that can make use of limited streamflow
5 information with the internal memory of a non-calibrated semi-distributed rainfall-runoff
6 model and the predictive capabilities of ANNs for poorly gauged watersheds as defined in this
7 study.

8 **3.3.1 UBC coupling with ANNs**

9 The coupling of the UBC watershed model with ANNs is described in this section. Artificial
10 Neural Networks distribute computations to processing units called neurons or nodes, which
11 are grouped in layers and are densely interconnected. Three different layer types can be
12 distinguished: an input layer, connecting the input information to the network and not
13 carrying any computation, one or more hidden layer, acting as intermediate computational
14 layers, and an output layer, producing the final output. In each computational node or neuron,
15 each one of the entering values (x_i) is multiplied by a connection weight, (w_{ji}). Such products
16 are then all summed with a neuron specific parameter, called bias (b_{j0}), used to scale the sum
17 of products (s_j) into a useful range:

$$18 \quad s_j = b_{j0} + \sum_{i=1}^n w_{ji} \cdot x_i \quad (8)$$

19 A non linear activation function (sometimes called also transfer function) to the above sum is
20 applied to each computational node producing the node output. Weights and biases are
21 determined by means of a non-linear optimization procedure, called training that aims at
22 minimizing an error function expressing the agreement between observations and ANN
23 outputs. The mean squared error is usually employed as the learning function. A set of
24 observed input and output (target) data pairs, the training data set, is processed repeatedly,
25 changing the parameters of ANN until they converge to values such that each input vector
26 produces outputs as close as possible to the observed output data vector.

27 In this study, the following neural network characteristics were chosen for all ANN
28 applications:

1 1) Structure of ANNs: Feedforward ANNs were used, which means that information passes
2 only in one direction, from the input layer through the hidden layers up to the output layer,
3 allowing only feedforward connections to adjacent layers.

4 2) Training algorithm: Back-propagation algorithm (Rumelhart et al., 1986) was employed
5 for ANNs training. In this training algorithm, each input pattern of the training data set is
6 passed through the network from the input layer to the output layer. The network output
7 is compared with the desired target output, and the error according to the error function, E,
8 is computed. This error is propagated backward through the network to each node, and
9 correspondingly the connection weights are adjusted based on the Equation:

$$10 \quad \Delta w_{ji}(n) = -\varepsilon \cdot \frac{\partial E}{\partial w_{ji}} + \alpha \cdot \Delta w_{ji}(n-1) \quad (9)$$

11 where $\Delta w_{ji}(n)$ and $\Delta w_{ji}(n-1)$ are the weight increments between the node j and i during the nth
12 and (n-1)th pass or epoch. A similar equation is employed for correction of bias values. In
13 Equation (9) the parameters ε and α are called learning rate and momentum, respectively. The
14 learning rate is used to increase the chance of avoiding the training process being trapped in a
15 local minimum instead of global minima, and the momentum factor can speed up the training
16 in very flat regions of the error surface and help prevent oscillations in the weights.

17 3) Activation function: The sigmoid function is used:

$$18 \quad f(s_j) = \frac{1}{1 + e^{-s_j}} \quad (10)$$

19 The sigmoid function is bounded between 0 and 1, is monotonic and nondecreasing function
20 that provides a graded, nonlinear response.

21 The UBC watershed model, as it has been previously discussed, distributes the rainfall and
22 snowmelt runoff into four components, i.e. rainfall fastflow, snowmelt fastflow, rainfall
23 interflow, snowmelt interflow, upper zone groundwater, deep zone groundwater and glacial
24 melt runoff. These runoff components due to errors in measurements and inefficiently defined
25 model parameters may not be accurately distributed affecting the overall performance of the
26 hydrologic simulation. The UBC watershed model was using the parameters with values
27 described in the previous subsection of the paper. In order to take advantage of the limited
28 streamflow data and achieve a better simulation of the observed discharge, the runoff
29 components of the UBC watershed model are introduced as input neurons into ANNs. During

1 the training period of ANNs the simulated total discharge of the watershed is compared with
2 the observed discharge to identify the simulation error.

3 The geometry or architecture of ANNs, which determines the number of connection weights
4 and how these are arranged, depends on the number of hidden layers and the number of
5 hidden nodes in these layers. In the developed ANNs, one hidden layer was used to keep the
6 ANNs architecture simple (three-layer ANNs), and the number of the hidden nodes was
7 optimized by trial and error. In this sense, the input layer of ANNs consists of four to seven
8 input neurons, depending on the runoff generation mechanisms of the basin, one hidden layer
9 with varying number of neurons, and one output layer with one neuron, which is the total
10 discharge of the watershed (Fig. 2). Since, the various input data sets span different ranges
11 and to ensure that all data sets or variables receive equal attention during training, the input
12 data sets were scaled or standardized in the range of 0 and 1. In addition, the output variables
13 were standardized in such a way as to be commensurate with the limits of the activation
14 function used in the output layer. In this study, the sigmoid function (Eq. 10) was used as the
15 activation or transfer function, the output data sets (watershed streamflow) were scaled in the
16 range 0.1-0.9. The advantage of using this scaling range is that extreme high and low flow
17 events, occurring outside the range of the training data, may be accommodated (Dawson and
18 Wilby, 2001).

19 However, the final network architecture and geometry were tested to avoid over-fitting and
20 ensure generalization as suggested by Maier and Dandy (1998). For example, the total
21 number of weights was always kept less than the number of the training samples and only the
22 connections that had statistically significant weights were kept in the ANNs. The developed
23 ANNs were operated in batch mode, which means that the training sample presented to the
24 network between the weight updates was equal to the training set size. This operation forces
25 the search to move in the direction of the true gradient at each weight update, although
26 requires large storage. The mean squared error was used as the minimized error function
27 during the training. The initial values of weights for each node were set to a value, $a = \frac{1}{\sqrt{f_i}}$,
28 where f_i is the number of inputs for the node. The learning rate (ϵ in Eq. 9) was set fixed to a
29 value of 0.005, whereas the momentum (α in Eq. 9) was set equal to 0.8 as suggested by Dai
30 and Macbeth (1997).

3.3.2 Evaluation of the method

For the four study watersheds, namely, Upper Campbell, Illecillewaet, Yermasoyia, and Astor watersheds, the first three years of streamflow record were assumed to be available for training of ANNs. In this sense, the observed streamflow used as target output of ANNs was the daily measured streamflow for the hydrological years 1983-84 to 1985-86 for Upper Campbell watershed, the streamflow data for the hydrological years 1970-71 to 1972-73 were considered for the Illecillewaet watershed, the data for the hydrological years 1986-87 to 1988-89 were used for the Yermasoyia watershed and the streamflow for the hydrological years 1979-80 to 1981-82 were used for the Astor watershed. For the fifth catchment, the Hunza watershed, streamflow data for two hydrological years (1981-1982 and 1982-1983) were used for ANN training. The daily streamflow measurements for the remaining years of record were used for the validation of the methodology in each study watershed. The modelling procedure with this configuration is termed UBCANN or method with limited data. It should be noted that the early stopping technique was applied to UBCANN to prevent overfitting and to improve the generalization ability of the developed UBCANNs. The last year in each watershed of the training period was used as an indication of the error when ANN training should stop (test set).

For comparison purposes, the UBCANN method was compared with the ungauged application of the UBC model which is termed UBCREG and with the classical calibration of the UBC model in poorly gauged watersheds using the same calibration period for each watershed as defined previously. The latter method is termed UBCCLA and is used for evaluation of the proposed coupling method UBCANN for poorly gauged watersheds. The UBC free parameters are optimized through a two stage procedure. At the first stage, a sensitivity analysis of each parameter is performed to estimate the range of parameter values for which the simulation results are the most sensitive. At the second stage, a Monte Carlo simulation is performed for each parameter of each group by keeping all other parameters constant. The parameter values are sampled from the respective parameter range defined in the first stage of the procedure (sensitivity analysis). The parameter value that maximizes the objective function is put in the parameter file and the procedure is repeated for the next parameter of the group and then for the parameters of the next group. The procedure starts with the optimization of the precipitation distribution parameters and ends with the

1 optimization the flow routing parameters. The objective function of the above calibration
 2 procedure is defined as:

$$3 \quad EOPT = NSE - \left| 1 - \frac{V_{sim}}{V_{obs}} \right| \quad (11)$$

4 where V_{sim} and V_{obs} are the simulated and the observed flow volumes, respectively and NSE is
 5 the Nash-Sutcliffe Efficiency (Nash and Sutcliffe, 1970) defined as:

$$6 \quad NSE = 1 - \frac{\sum_{i=1}^n (Q_{obs_i} - Q_{sim_i})^2}{\sum_{i=1}^n (Q_{obs_i} - \overline{Q_{obs}})^2} \quad (12)$$

7 where, Q_{obs_i} is the observed flow on day i , Q_{sim_i} is the simulated flow on day i , $\overline{Q_{obs}}$ is the
 8 average observed flow and n is the number of days for the simulation period. The evaluation
 9 of all the applied methods is based on combination of graphical results, statistical evaluation
 10 metrics, and normalized goodness-of-fit statistics. Furthermore, a comprehensive procedure
 11 proposed by Ritter and Muñoz-Carpena (2013) for evaluating model performance is tested to
 12 all applied methods. Approximated probability distributions for NSE and Root Mean Square
 13 Error are derived with bootstrapping followed by bias corrected and enhanced calculation of
 14 confidence intervals. The statistical hypothesis testing of the indicators is done using
 15 threshold values to compare model performance. More details on the evaluation protocol
 16 could be found in Ritter and Muñoz-Carpena (2013).

17 Finally, the streamflow simulation results of the applied methods for ungauged and poorly-
 18 gauged watersheds were used for frequency analysis of the annual maximum peak flows. This
 19 analysis was performed only for the watersheds which have streamflow data for at least six
 20 (6) consecutive years. Based on these criteria, Hunza watershed is excluded for this
 21 comparison. The estimated peak flows were compared with the observed peak flows of the
 22 four study watersheds (Upper Campbell, Illecillewaet, Yermasoyia and Astor). Furthermore,
 23 the results of frequency analysis of the estimated peak flow by the two methodologies were
 24 compared to the results of frequency analysis of the observed peak flows. The frequency
 25 analysis was performed using the Extreme Value Type I theoretical distribution (EVI) due to
 26 the small sample of the streamflow observations, and due to its simple two-parameter
 27 estimation procedure. This distribution is a special case of the Generalized Extreme Value
 28 (GEV) distribution and the GEV distribution is considered in a recent study as a potential

1 pan-European flood frequency distribution (Salinas et al., 2013a). Furthermore the EVI has
2 proven to give satisfactory and acceptable results for return periods less than 50 yr and 100
3 years, respectively, in estimating hydrometeorological extremes (Koutsoyiannis, 2004).

4

5 **4 Application and results**

6 The daily streamflow of the five study watersheds was simulated using the two proposed
7 methodologies for ungauged watersheds and poorly gauged watersheds. The simulated and
8 observed hydrographs compared graphically and statistically. Five statistical indices were
9 used to assess the accuracy and performance of the two simulation methods, namely, the *NSE*,
10 the percent runoff volume error $\%DV = \frac{V_{sim} - V_{obs}}{V_{obs}} \times 100$, the correlation coefficient (*CORR*)
11 between the simulated and the observed flows, the root mean square error (*RMSE*, in m^3/s)
12 between the simulated and the observed flows:

$$13 RMSE = \sqrt{\frac{\sum_{i=1}^n (Q_{obs_i} - Q_{sim_i})^2}{n}} \quad (13)$$

14 and the average percent error of the maximum annual flows:

$$15 \%AMAFE = \frac{1}{k} \cdot \sum_{j=1}^k \left(\frac{MaxQ_{sim_j} - MaxQ_{obs_j}}{MaxQ_{obs_j}} \times 100 \right) \quad (14)$$

16 where, $MaxQ_{sim_j}$ is the simulated maximum annual flow of year j , $MaxQ_{obs_j}$ is the observed
17 maximum annual flow of year j , and k is the number of hydrological years of the simulation
18 period.

19 The model efficiency (*NSE*) is widely used in hydrological simulation studies. It compares the
20 scale and the shape of the simulated and the observed hydrographs and its optimal value is 1.
21 The percent runoff volume ($\%DV$) is a scale parameter and measures the percent error in
22 volume under the observed and the simulated hydrographs for the period of simulation.
23 Positive values of $\%DV$ indicate overestimation of the observed runoff volume, negative
24 values of $\%DV$ indicate underestimation of the observed runoff volume, and $\%DV$ equal to
25 zero indicate perfect agreement between simulated and observed runoff volumes. The
26 correlation coefficient (*CORR*) is a shape statistical parameter that measures the linear

1 correlation between the observed and simulated flows with optimal value of 1. The root mean
2 square error (*RMSE*) measures the residual or error variance between the simulated and the
3 observed flows and its optimal value is 0. The average percent error of the maximum annual
4 flows (%*AMAFE*) estimates the average percent error in the simulation of the maximum
5 annual peak flows for the simulation period. Positive values of %*AMAFE* show, an average
6 overestimation of the maximum annual flow, whereas negative values indicate, on average,
7 underestimation of the maximum annual flow. Its optimal value is 0.

8 The five study watersheds, firstly, were treated as ungauged and the UBCREG methodology
9 for ungauged watersheds was applied. The daily streamflows of the study watersheds were
10 simulated using the uncalibrated UBC watershed model with the estimated values of model
11 parameters presented previously. The results of these simulations are shown in Fig. 3 and
12 Table 4. The simulation was performed for the whole period of available data in each study
13 watershed since the UBC watershed model was uncalibrated and thus, the whole simulation
14 period is a validation period for the performance of the method. However, the training and
15 validation periods indicated in Fig. 3 and Table 4 are indicated for comparison with the results
16 of the second methodology intended for use in poorly gauged watersheds with limited
17 streamflow measurements.

18 The graphical and the statistical comparison of the simulated hydrographs with the observed
19 hydrographs (Fig. 3 and Table 4) show that, in general, the ungauged UBCREG method
20 estimates with reasonable accuracy the observed hydrograph. For Upper Campbell watershed,
21 the value of CORR (CORR = 0.84) indicates that the method reproduced the shape of the
22 observed hydrograph reasonably well but the annual peak streamflows were severely
23 underestimated (%*AMAFE* = -32.06% in Table 4). The method performed better in the
24 Illecillewaet watershed, for which there was a significant improvement in the simulation of
25 hydrograph (NSE = 0.84 and CORR = 0.96 in Table 4). However, in the Illecillewaet, the
26 method overestimated the total runoff volume and the maximum annual peak flows (%DV =
27 14.63% and %*AMAFE* = 11.26% in Table 4). The simulation results for the Yermasoyia
28 watershed indicate that the method reproduced reasonably well the shape and scale of the
29 hydrograph (NSE = 0.73 and CORR = 0.87 in Table 4), but overestimates the runoff volume
30 and the annual peak discharge (%DV = 11.45% and %*AMAFE* = 9.85% in Table 4). The
31 overall worst simulation results were acquired in the Astor watershed, although the annual
32 peak flows were, on average, overestimated (%*AMAFE* = 6.3%), the runoff volume was

1 underestimated ($\%DV = -7.68\%$), leading to small but acceptable value of model efficiency
2 (NSE = 0.68) (Table 4). On the other hand, the best simulation results were found for the
3 Hunza watershed. The statistical indices (Table 4) and the graphical comparison of the
4 simulated and the observed hydrographs (Fig. 3) indicate that the shape and scale of the
5 observed hydrograph were reasonably reproduced.

6 The above results indicate that the simulation accuracy heavily depends on the quality and
7 availability of meteorological data. This is obvious from the simulation results for
8 Illecillewaet watershed (Fig. 3b and Table 4). This watershed has three high quality
9 meteorological stations and the hydrograph shape was simulated with improved accuracy,
10 although the runoff volume and the annual peak flows were overestimated (Table 4). The
11 performance of the method, also, seems to be dependant on the runoff generation
12 mechanisms. Comparatively, better simulation results have acquired for watersheds that the
13 runoff is mainly generated by snowmelt and glacier melt than for watersheds where rainfall
14 runoff is the dominant runoff generation mechanism. For example, the runoff simulation
15 statistics for the Yermasoyia watershed is similar to the simulation statistics for the Upper
16 Campbell watershed, although data from three precipitation stations were used for streamflow
17 simulation of the small Yermasoyia watershed (157 km^2) and only one precipitation station
18 was used in Upper Campbell watershed, which is larger in area (1194 km^2). Furthermore, the
19 best simulation results have been achieved for the Hunza and Illecillewaet watersheds (13100 km^2
20 and 1150 km^2 in area, respectively). The runoff in Yermasoyia watershed is generated by
21 rainfall, whereas snowmelt is a significant percentage of total runoff in Upper Campbell. On
22 the other hand, more than 90% of the runoff in Hunza basin is generated by glacier melting,
23 whereas snowmelt and glacier melt produces the majority of runoff in Illecillewaet watershed.
24 The spatial variability of rainfall is much larger than the variability of snowfall. Also, the
25 precipitation gradients are steeper and more consistent for snowfall than rainfall (Loukas and
26 Quick, 1994; 1995). Hence, larger number of precipitation stations is necessary in watersheds,
27 where rainfall-runoff is the dominant runoff generation mechanism, in order to capture the
28 spatial variability of rainfall and better simulate the streamflow (Brath et al., 2004). However,
29 keeping in mind the very limited number of meteorological stations and data used, the overall
30 results of the UBCREG methodology are judged satisfactory and show that the UBC
31 watershed model can simulate reasonably well the watershed streamflow in various climatic
32 and hydrological regions with a universal set of model parameters and making assumptions of
33 precipitation stations representativeness and precipitation distribution.

1 The second proposed UBCANN methodology for poorly gauged watersheds was applied to
2 the five study watersheds, assuming that only two or three years of daily streamflow data
3 were available. The UBC watershed model was, firstly, run as in the first methodology for the
4 years that streamflow data were assumed to be available and the calculated runoff components
5 were used as input to ANNs. The ANNs were optimized and trained for this initial period and
6 then, the UBC watershed model coupled with the trained ANNs was run and validated for the
7 remaining period for validation. The final geometry or architecture of the optimized ANNs for
8 the five study watersheds is presented in Table 5. Fig. 3 and Table 6 present the simulation
9 results for the training and validation periods of the UBCANN methodology at the five study
10 watersheds. Comparison of the graphical (Fig. 3) and statistical results (Tables 4 and 6)
11 indicate that the coupling of UBC watershed model with ANNs greatly improves the
12 simulation of hydrographs and maximum annual streamflow in all five watersheds over the
13 first methodology. The discussion will be focused on comparison of the validation periods of
14 UBCANN application since the ANNs of this methodology were optimized during the
15 training period and an improvement in the simulation results is expected. Furthermore, to
16 investigate the suitability of the UBCANN method for poorly gauged watersheds the classical
17 calibration method of the hydrological model is applied and compared. Table 7 presents the
18 results of the UBCCLA method as benchmark model for watersheds with limited information.
19 The simulation results of the UBCANN method for Upper Campbell watershed indicate that
20 although there is significant improvement in the prediction of runoff volume and maximum
21 annual peak flows (Table 6), the model efficiency ($NSE=0.68$) has the same value with the
22 first method (Table 4). On the other hand, the runoff simulation is greatly improved in the
23 other four study watersheds. All statistical indices of the hydrological simulation have been
24 improved in Illecillewaet, Yermasoya, and Astor watersheds (Table 6). Only, the percent
25 runoff volume error ($\%DV=-11.26\%$ in Table 6) is not improved over the results of the
26 UBCREG method ($\%DV=0.25\%$ in Table 4) for Hunza watershed. The improvement of the
27 hydrograph simulation leads to better estimation of runoff volume and peak streamflow. The
28 improvement of runoff simulation with the second methodology depends upon the volume
29 and the range of the available streamflow data, since ANNs are a data intensive technique.
30 When the available data cover a large range of streamflows, then the trained ANNs can
31 accurately and efficiently simulated the unknown streamflows.

1 Application of the UBCCLA method shows that UBC is a reliable hydrological model in
2 streamflow modelling at diverse climatic environments since the statistics are improved using
3 streamflow data for calibration (Table 7). However, from Tables 6 and 7 it is difficult to
4 assess the superiority of the UBCANN method with the UBCCLA method. For example, the
5 validation *NSE* values show that the UBCANN method in Yermasoyia and Astor watersheds
6 greatly outperforms the UBCCLA method, in Upper Campbell and Illecillewaet is marginally
7 inferior than the UBCCLA method and in Hunza watershed both methods perform similarly
8 (Tables 6 and 7). These contradictory results are also in agreement with the study of Anctil et
9 al. (2004b) which showed that similar results are obtained using a simple hydrological model
10 and an ANN rainfall-runoff model for calibration periods from one to five years. For this
11 reason the evaluation tool developed by Ritter and Muñoz-Carpena (2013) was used to assess
12 the two methods for poorly gauged watersheds. Figs. 4-8 present the comprehensive
13 validation results of the UBCANN and UBCCLA methods for the study watersheds. These
14 figures show the scatterplots of observed and simulated values with the 1:1 line, the values of
15 *NSE* and *RMSE* and their corresponding confidence intervals (CI) at 95%, the qualitative
16 goodness-of-fit interpretation of *NSE* based on the established classes; and the verification of
17 the presence of bias or the possible presence of outliers. Approximated probability
18 distributions of *NSE* and *RMSE* were obtained by block blockstrapping with the bias corrected
19 and accelerated method, which adjusts for both bias and skewness in the bootstrap
20 distribution. The calculation procedure of these figures is described analytically in Ritter and
21 Muñoz-Carpena (2013). Careful examination of scatterplots, *NSE* classes and 95% CI of the
22 selected evaluation metrics *NSE* and *RMSE* showed that the UBCANN method is less
23 effective in streamflow modelling than the UBCCLA in two watersheds (Fig. 4 and Fig. 5)
24 whereas in the other three watersheds is superior than the UBCCLA method (Figs. 6-8). For
25 these watersheds no prior information was used for the distribution of precipitation
26 distribution and ANNs with input the UBC flow components showed great skills in
27 reproducing the daily streamflow patterns. However, in cases where prior hydrological
28 knowledge was incorporated in the UBC model such as in the two Canadian watersheds
29 ANNs showed similar capabilities with UBCCLA approach due to expert knowledge
30 “optimization” of the ungauged UBC flow components.

31 The second step of the analysis was to compare the simulated and observed maximum annual
32 peak flows and to perform a simple frequency analysis using the EVI theoretical distribution.
33 It should be noted that the EVI distribution was selected to demonstrate the employed

1 methods for ungauged and poorly gauged watersheds and other candidate distributions could
2 be used. This analysis was performed only for the four study watersheds (Upper Campbell,
3 Illecillewaet, Yermasoyia and Astor) which have streamflow data for at least six (6)
4 consecutive years. Application of the non-parametric Kolmogorov-Smirnov test for checking
5 the adequacy of the selected distribution with the observed and simulated values showed that
6 the EVI distribution is acceptable at 5% significance level for all observed and simulated
7 streamflow values at the study watersheds. Fig. 9 shows the comparison of the fitted EVI
8 distributions using the three methodologies (UBCREG, UBCANN and UBCCLA) with the
9 observed data and the fitted observed EVI for the four study watersheds. For Upper Campbell
10 watershed these results indicate that the methodology for ungauged watersheds
11 underestimates the observed maximum annual peak flows. Comparison of the UBCANN and
12 UBCCLA methods for flood frequency estimation in poorly gauged basins showed that high
13 peak flows are more accurately represented by the UBCANN method (Table 8 and Fig. 9a).
14 Peak flow frequency analysis for Illecillewaet watershed indicates that the UBCREG
15 methodology overestimate the observed peak flows. The best flood frequency curves for this
16 watershed is acquired with the use UBCANN method whereas the UBCCLA method
17 underestimates the peak flows for all examined return periods (1-100 years) (Table 8 and Fig.
18 9b). Peak flow frequency analysis, for the poorly gauged Yermasoyia watershed, shows again
19 the superiority of the UBCANN method against the UBCCLA method. Flood frequency
20 analysis of the UBCREG method suggests that caution is required for flood modelling since
21 the method significantly underestimates the observed peak flows (Table 8 and Fig. 9c).
22 Finally, in Astor watershed, all applied methods perform similarly and the flood frequency
23 estimation using simulated values underestimates the observed flows at larger return periods
24 (Table 8 and Fig. 9c). However, the simulated peak flows using the methodology for
25 ungauged watershed underestimates the observed peak flows except for the maximum annual
26 peak of the last hydrological year of record 1996-97 (Fig. 3). For this particular year, the
27 method severely overestimates the maximum annual peak flow. The result is that the
28 estimated peak flows with return periods of 25-, 50-, and 100-years are quite similar with the
29 applied methods for poorly gauged watersheds (Table 8). Overall the coupling of ANNs with
30 the ungauged UBC flow model components is considered an improvement and an alternative
31 method over the conventional calibration of a hydrological model with limited streamflow
32 information based on the evaluation criteria employed for streamflow modelling and flood
33 frequency estimation.

1

2 **5 Conclusions**

3 Rainfall-runoff modelling procedures for ungauged and poorly gauged watersheds are
4 developed in this study. A well established hydrological model (Singh, 2012), the UBC
5 watershed model, is selected and applied in five different river basins located in Canada,
6 Cyprus and Pakistan. Catchments from cold, temperate, continental and semiarid climate
7 zones are included to demonstrate the developed procedures. Two methodologies for the
8 modelling of streamflow are proposed and analysed. The first methodology, proposed for
9 ungauged watersheds, uses the UBC watershed model with a set of universal constant values
10 of model parameters and making assumptions and estimates about the representativeness of
11 precipitation stations and precipitation distribution. This methodology requires good
12 description of the watershed (area, elevation bands, vegetation coverage, soils, etc) and
13 limited meteorological stations and data to estimate the distribution of precipitation over the
14 elevation range of the watershed or even regional information about the orographic
15 precipitation gradients of a watershed. The second methodology is an extension of the first
16 method and couples the UBC watershed model with ANNs. This method is proposed for
17 poorly gauged watersheds. The limited streamflow data are intended for training of ANNs.
18 For comparison purposes, this method is compared with the classical calibration of the UBC
19 model in poorly gauged watersheds. The evaluation of all the applied methods is based on
20 combination of graphical results, statistical evaluation metrics, and normalized goodness-of-
21 fit statistics.

22 Application of the employed methods to five watersheds having areas ranging from 157 to
23 13100 km^2 , different runoff generation mechanisms, and located in various climatic regions of
24 the world, resulted in reasonable results for the estimation of streamflow hydrograph and peak
25 flows. The first methodology for ungauged watersheds performed quite well, despite the very
26 limited available meteorological data. The second hybrid method is a significant improvement
27 of the first methodology because it takes advantage of the even limited streamflow
28 information. The coupling of the UBC regional model with ANNs provides a good alternative
29 to the classical application (UBC calibration and validation), without the need of optimizing
30 UBC model parameters. The ANNs coupled to the UBC watershed model improve the
31 streamflow modelling at poorly gauged basins. Furthermore, using the non-calibrated UBC
32 flow components as input to ANNs in a coupling or hybrid procedure combines the flexibility

1 and capability of ANNs in nonlinear modelling with the conceptual representation of the
2 rainfall-runoff process acquired by a hydrological model. Hence, the black-box constraints in
3 ANN modelling of the rainfall-runoff are minimised. Overall the coupling of ANNs with the
4 regional UBC flow model components is considered as a successful alternative method over
5 the conventional calibration of a hydrological model with limited streamflow information
6 based on the employed evaluation criteria for streamflow modelling and flood frequency
7 estimation. In the future the two methodologies should be compared with other regional
8 techniques or hydrologic models and could be applied in other regions to generalise the
9 results. Also, a step further could be a more rigorous estimation of flood frequency
10 incorporating also the uncertainty of the state variables.

11

12 *Acknowledgements.* This research was conducted within the EU COST Action ES0901:
13 European procedures for flood frequency estimation (FloodFreq) and is based on ideas
14 presented in the mid-term conference, entitled “*Advanced methods for flood estimation in a
15 variable and changing environment*”. FLOODFREQ is supported by the European
16 Cooperation in Science and Technology. The authors would like to thank the Guest Editor
17 Dr. Thomas Kjeldsen and the two anonymous reviewers for their constructive and useful
18 comments.

19

20 **References**

21 Abrahart, R.J., Anctil, F., Coulibaly, P., Dawson, C.W., Mount, N.J., See, L.M., Shamseldin,
22 A.Y., Solomatine, D.P., Toth, E., Wilby, R.L.: 2012. Two decades of anarchy? Emerging
23 themes and outstanding challenges for neural network river forecasting, *Prog. Phys. Geog.*,
24 36(4), 480-513, 2012.

25 Abrahart, R. J., See, L. M., Dawson, C. W., Shamseldin, A. Y., and Wilby, R. L.: Nearly two
26 decades of neural network hydrologic modeling, in: *Advances in Data-Based Approaches for
27 Hydrologic Modeling and Forecasting*, edited by: Sivakumar, B., and Berndtsson, R., World
28 Scientific Publishing, Hackensack, NJ, 267–346, 2010.

29 Abrahart, R.J., Kneale, P.E., and See, L.M. (eds.): *Neural Networks for Hydrological
30 Modelling*, Taylor and Francis Group plc, London, UK, 2004.

1 Ahmad, Z., Hafeez, M., and Ahmad, I.: Hydrology of mountainous areas in the upper Indus
2 Basin, Northern Pakistan with the perspective of climate change, *Environ. Monit. Assess.*,
3 184(9), 5255-5274, 2012.

4 Anctil, F., Michel, C., Perrin, C., and Adreassian, V.: A soil moisture index as an auxiliary
5 ANN input for stream flow forecasting, *J. Hydrol.*, 286, 155-167, 2004a.

6 Anctil, F., Perrin, C., and Andréassian, V.: Impact of the length of observed records on the
7 performance of ANN and of conceptual parsimonious rainfall-runoff forecasting models,
8 *Environ. Modell. Softw.*, 19(4), 357-368, 2004b.

9 Archer, D.: Contrasting hydrological regimes in the upper Indus Basin, *J. Hydrol.*, 274(1-4),
10 198-210, 2003.

11 ASCE Task Committee on Application of Artificial Neural Networks in Hydrology: Artificial
12 neural networks in hydrology. II: Hydrologic applications, *J. Hydrol. Eng.*, 5(2), 124-137,
13 2000.

14 Assaf, H.: Development of an energy-budget snowmelt updating model for incorporating
15 feedback from snow course survey measurements, *J. Eng. Comput. Architect.*, 1, 1-25, 2007.

16 Bao, Z., Zhang, J., Liu, J., Fu, G., Wang, G., He, R., Yan, X., Jin, J., and Liu, H.: Comparison
17 of regionalization approaches based on regression and similarity for predictions in ungauged
18 catchments under multiple hydro-climatic conditions, *J. Hydrol.*, 466-467, 37-46, 2012.

19 Blöschl, G., Sivapalan, M., Wagener, T., Viglione, A., and Savenije, H.H.G. (eds.): *Runoff
20 Prediction in Ungauged Basins: Synthesis across Processes, Places and Scales*. Cambridge
21 University Press, 2013.

22 Bocchiola, D., Diolaiuti, G., Soncini, A., Mihalcea, C., D'Agata, C., Mayer, C., Lambrecht,
23 A., Rosso, R., and Smiraglia, C.: Prediction of future hydrological regimes in poorly gauged
24 high altitude basins: the case study of the upper Indus, Pakistan, *Hydrol. Earth Syst. Sci.*, 15,
25 2059-2075, 2011.

26 Brath, A., Montanari, A., and Toth, E.: Neural networks and non-parametric methods for
27 improving real-time flood forecasting through conceptual hydrological models, *Hydrol. Earth
28 Syst. Sci.*, 6(4), 627-640, 2002.

1 Brath, A., Montanari, A., and Toth, E.: Analysis of the effects of different scenarios of
2 historical data availability on the calibration of a spatially-distributed hydrological model, *J.*
3 *Hydrol.*, 291, 232-253, 2004.

4 Burn, D.H.: Evaluation of regional flood frequency analysis with a region of influence
5 approach, *Water Resour. Res.*, 26(10), 2257-2265, 1990.

6 Cameron, D., Beven, K., Tawn, J., and Naden, P.: Flood frequency estimation by continuous
7 simulation (with likelihood based uncertainty estimation), *Hydrol. Earth Syst. Sci.*, 4(1), 23-
8 34, 2000.

9 Cerdà-Villafana, G., Ledesma-Orozco, S.E., and Gonzalez-Ramirez, E.: Tank model coupled
10 with an artificial neural network, *Lect. Notes Comput. Sci.*, 5317 LNAI, 343-350, 2008.

11 Chen, J., and Adams, B.J.: Integration of artificial neural networks with conceptual models in
12 rainfall-runoff modelling, *J. Hydrol.*, 318(1-4), 232-249, 2006.

13 Coulibaly, P., Anctil, F., and Bobee, B.: Hydrological forecasting using artificial neural
14 networks: The state of the art, *Can. J. Civ. Eng.*, 26, 293-304, 1999.

15 Dai, H.C., and Macbeth, C.: Effects of learning parameters on learning procedure and
16 performance of a BPNN, *Neural Netw.*, 10(8), 1505-1521, 1997.

17 Dawson, C.W., and Wilby, R.L.: Hydrological modeling using artificial neural networks,
18 *Prog. Phys. Geog.*, 25(1), 80-108, 2001.

19 De Michele, C., and Salvadori, G.: On the derived flood frequency distribution: analytical
20 formulation and the influence of antecedent soil moisture condition, *J. Hydrol.*, 262(1-4), 245-
21 258, 2002.

22 Druce, D.J.: Insights from a history of seasonal inflow forecasting with a conceptual
23 hydrologic model, *J. Hydrol.*, 249, 102-112, 2001.

24 Duan, Q., Gupta, H.V., Sorooshian, S., Rousseau, A.N., and Turcotte, R. (eds): *Calibration of*
25 *Watershed Models*, American Geophysical Union, Water Science and Application, Vol. 6,
26 Washington, DC, USA, 2003.

27 Efstratiadis, A. and Koutsoyiannis, D.: One decade of multi-objective calibration approaches
28 in hydrological modelling: a review, *Hydrolog. Sci. J.*, 55(1), 58-78, 2010.

1 Elshorbagy, A., Corzo, G., Srinivasulu, S., and Solomatine, D.P.: Experimental investigation
2 of the predictive capabilities of data driven modeling techniques in hydrology - Part 2:
3 Application, *Hydrol. Earth Syst. Sci.*, 14, 1943-1961, 2010.

4 Engelund, K., and Gottschalk, L.: Bayesian estimation of parameters in a regional
5 hydrological model, *Hydrol. Earth Syst. Sci.*, 6(5), 883-898, 2002.

6 Fotakis, D., Sidiropoulos, E., and Loukas, A.: Integration of a hydrological model within a
7 geographical information system: application to a forest watershed, *Water*, 6(3), 500-516,
8 2014.

9 Govindaraju, R.S., and Rao, A.R. (eds.): *Artificial Neural Networks in Hydrology*, Kluwer
10 Academic Publishers, The Netherlands, 2000.

11 Harlin, J.: Development of a process oriented calibration scheme for the HBV hydrological
12 model, *Nordic Hydrol.*, 22(1), 15-36, 1991.

13 He, Y., Bárdossy, A., and Zehe, E.: A review of regionalisation for continuous streamflow
14 simulation, *Hydrol. Earth Syst. Sci.*, 15, 3539-3553, 2011.

15 Hrachowitz, M., Savenije, H.H.G., Blöschl, G., McDonnell, J.J., Sivapalan, M., Pomeroy,
16 J.W., Arheimer, B., Blume, T., Clark, M.P., Ehret, U., Fenicia, F., Freer, J.E., Gelfan, A.,
17 Gupta, H.V., Hughes, D.A., Hut, R.W., Montanari, A., Pande, S., Tetzlaff, D., Troch, P.A.,
18 Uhlenbrook, S., Wagener, T., Winsemius, H.C., Woods, R.A., Zehe, E., Cudennec, C.: A
19 decade of Predictions in Ungauged Basins (PUB) - a review, *Hydrolog. Sci. J.* 58(6), 1198-
20 1255, 2013.

21 Hrissanthou, V.: Comparative application of two mathematical models to predict
22 sedimentation in Yermasoyia reservoir, Cyprus, *Hydrol. Process.*, 20(18), 3939-3952, 2006.

23 Hudson, R.O., and Quick, M.C.: Component based water chemistry simulator for small
24 subalpine watersheds, *Can. Water Resour. J.*, 22(3), 299-325, 1997.

25 Iacobellis, V., and Fiorentino, M.: Derived distribution of floods based on the concept of
26 partial area coverage with a climatic appeal, *Water Resour. Res.*, 36(2), 469-482, 2000.

27 Jain, A., Maier, H.R., Dandy, G.C., and Sudheer, K.P.: Rainfall runoff modelling using neural
28 networks: State of-the-art and future research needs, *Indian Soc. Hydraul. J. Hydraul. Eng.*,
29 15, 52-74, 2009.

1 Juston, J., Seibert, J., and Johansson, P.-O.: Temporal sampling strategies and uncertainty in
2 calibrating a conceptual hydrological model for a small boreal catchment, *Hydrol. Process.*,
3 23, 3093-3109, 2009.

4 Kim, Y.-O., Jeong, D., and Ko, I.H.: Combining rainfall-runoff model outputs for improving
5 ensemble streamflow prediction, *J. Hydrol. Eng.*, 11(6), 578-588, 2006.

6 Kjeldsen, T.R., and Rosbjerg, D.: Comparison of regional index flood estimation procedures
7 based on the extreme value type I distribution, *Stoch. Environ. Res. Risk Assess.*, 16, 358-
8 373, 2002.

9 Konz, M., and Seibert, J.: On the value of glacier mass balances for hydrological model
10 calibration, *J. Hydrol.*, 385, 238-246, 2010.

11 Koutsoyiannis, D.: Statistics of extremes and estimation of extreme rainfall: 2. Empirical
12 investigation of long rainfall records, *Hydrolog. Sci. J.*, 49, 591-610, 2004.

13 Liu, S., Xu, J.W., Zhao, J.F., and Li, Y.: A novel integrated rainfall-runoff model based on
14 TOPMODEL and artificial neural network, *Applied Mechanics and Materials*, 423-426, 1405-
15 1408, 2013.

16 Loukas, A., and Quick, M.C.: Precipitation distribution in coastal British Columbia. *Water
17 Resour. Bull.*, 30(4), 705-727, 1994.

18 Loukas, A., and Quick, M.C.: Spatial and temporal distribution of storm precipitation in
19 southwestern British Columbia, *J. Hydrol.*, 174, 37-56, 1995.

20 Loukas, A., Khan, M.I., and Quick, M.C.: Aspects of hydrological modelling in the Punjab
21 Himalayan and Karakoram Ranges, Pakistan. *Geophysical Research Abstracts* 4, XXVII
22 General Assembly of the European Geophysical Society, Nice, France, 2002.

23 Loukas, A., Vasiliades, L., and Dalezios, N.R.: Flood producing mechanisms identification in
24 southern British Columbia, *J. Hydrol.*, 227(1-4), 218-235, 2000.

25 Loukas, A.: Flood frequency estimation by a derived distribution procedure, *J. Hydrol.*,
26 255(1-4), 69-89, 2002.

27 Maier, H.R., and Dandy, G.C.: The effect of internal parameters and geometry on the
28 performance of back-propagation neural networks: an empirical study, *Environ. Modell.
29 Softw.*, 13(2), 193-209, 1998.

1 Maier, H.R., and Dandy, G.C.: Neural networks for the prediction and forecasting of water
2 resources variables: a review of modelling issues and applications, *Environ. Modell. Softw.*,
3 15(1), 101-124, 2000.

4 Maier, H.R., Jain, A., Dandy, G.C., and Sudheer, K.P.: Methods used for the development of
5 neural networks for the prediction of water resources variables: Current status and future
6 directions, *Environ. Modell. Softw.*, 25, 891-909, 2010.

7 Merritt, W.S., Alila, Y., Barton, M., Taylor, B., Cohen, S., and Neilsen, D.: Hydrologic
8 response to scenarios of climate change in sub watersheds of the Okanagan basin, British
9 Columbia, *J. Hydrol.*, 326, 79-108, 2006.

10 Merz, R., and Blöschl, G.: Regionalisation of catchment model parameters, *J. Hydrol.*, 287(1-
11 4), 95-123, 2004.

12 Micovic, Z., and Quick, M.C.: A rainfall and snowmelt runoff modelling approach to flow
13 estimation at ungauged sites in British Columbia, *J. Hydrol.*, 226, 101-120, 1999.

14 Morrison, J., Quick, M.C., and Foreman, G.G.: Climate change in the Fraser River watershed:
15 Flow and temperature projections, *J. Hydrol.*, 263(1-4), 230-244, 2002.

16 Mount, N.J., Dawson, C.W., and Abrahart, R.J.: Legitimising data-driven models:
17 exemplification of a new data-driven mechanistic modelling framework, *Hydrol. Earth Syst.
18 Sci.*, 17, 2827-2843, 2013.

19 Naeem, U.A., Hashmi, H.N., Habib-ur-Rehman, and Shakir, A.S.: Flow trends in river Chitral
20 due to different scenarios of glaciated extent, *KSCE J. Civ. Eng.*, 17(1), 244-251, 2013.

21 Nash, J.E., and Sutcliffe, J.V.: River flow forecasting through conceptual models. Part-1 A
22 discussion of principles, *J. Hydrol.*, 10(3), 282-290, 1970.

23 Nilsson, P., Uvo, C.B., and Berndtsson, R.: Monthly runoff simulation: Comparing and
24 combining conceptual and neural network models, *J. Hydrol.*, 321, 344-363, 2006.

25 Parajka, J., Viglione, A., Rogger, M., Salinas, J.L., Sivapalan, M., and Blöschl, G.:
26 Comparative assessment of predictions in ungauged basins - Part 1: Runoff-hydrograph
27 studies, *Hydrol. Earth Syst. Sci.*, 17, 1783-1795, 2013.

28 Perrin, C., Oudin, L., Andreassian, V., Rojas-Serna, C., Michel, C., and Mathevet, T.: Impact
29 of limited streamflow data on the efficiency and the parameters of rainfall-runoff models,
30 *Hydrolog. Sci. J.*, 52, 131-151, 2007.

1 Post, D.A., and Jakeman, A.J.: Predicting the daily streamflow of ungauged catchments in
2 S.E. Australia by regionalising the parameters of a lumped conceptual rainfall-runoff model,
3 Ecol. Model., 123, 91-104, 1999.

4 Quick, M.C., and Pipes, A.: A combined snowmelt and rainfall-runoff model, Can. J. Civil
5 Eng. 3(2), 449-460, 1976.

6 Quick, M.C., Loukas, A., and Yu, E.: Calculating the runoff response of the Wolf Creek
7 watershed, Proceedings of the Workshop “Wolf Creek Research Basin: Hydrology, Ecology,
8 Environment”, Whitehorse, Yukon, Canada, pp. 91-92, 1998.

9 Quick, M.C., Pipes, A., Nixon, D., Yu, E., Loukas, A., Millar, R., Assaf, H., and Start, B.:
10 U.B.C. Watershed Model manual, Version 4.0, Mountain Hydrology Group, Department of
11 Civil Engineering, University of British Columbia, Vancouver, BC, 1995.

12 Quick, M.C.: The UBC Watershed Model, In Singh, V.P., (ed.) Computer Models of
13 Watershed Hydrology, Water Resources Publications, Littleton, Colorado, 2012.

14 Razavi T., and Coulibaly P.: Streamflow prediction in ungauged basins: review of
15 regionalization methods, J. Hydrol. Eng., 18(8), 958-975, 2013.

16 Ritter, A., Muñoz-Carpena, R.: Performance evaluation of hydrological models: Statistical
17 significance for reducing subjectivity in goodness-of-fit assessments, J. Hydrol., 480, 33-45,
18 2013.

19 Rumelhart, D.E., Hinton, G.E., and Williams, R.J.: Learning internal representations by error
20 propagation, Parallel Distrib. Process., 1, 318-362, 1986.

21 Salinas, J.L., Castellarin, A., Kohnová, S., and Kjeldsen, T.R.: On the quest for a pan-
22 European flood frequency distribution: effect of scale and climate, Hydrol. Earth Syst. Sci.
23 Discuss., 10, 6321-6358, doi:10.5194/hessd-10-6321-2013, 2013a.

24 Salinas, J.L., Laaha, G., Rogger, M., Parajka, J., Viglione, A., Sivapalan, M., and Blöschl, G.:
25 Comparative assessment of predictions in ungauged basins - Part 2: Flood and low flow
26 studies, Hydrol. Earth Syst. Sci., 17, 2637-2652, 2013b.

27 Schaeefli, B., and Huss, M.: Integrating point glacier mass balance observations into
28 hydrologic model identification, Hydrol. Earth Syst. Sci., 15, 1227-1241, 2011.

29 Seibert, J., and Beven, K.J.: Gauging the ungauged basin: how many discharge measurements
30 are needed?, Hydrol. Earth Syst. Sci., 13, 883-892, 2009.

1 Shamseldin, A.Y., Nasr, A.E., and O'Connor, K.M.: Comparison of different forms of Multi-
2 layer Feed-Forward Neural Network method used for river flow forecasting, *Hydrol. Earth*
3 *Syst. Sci.*, 6(4), 671-684, 2002.

4 Shamseldin, A.Y., O'Connor, K.M., and Liang, G.C.: Methods for combining the outputs of
5 different rainfall - runoff models, *J. Hydrol.*, 197, 203-229, 1997.

6 Singh, P. and Singh, V.P.: *Snow and Glacier Hydrology*, Kluwer Academic Publishers,
7 Dordrecht, The Netherlands, 2001.

8 Singh, P., and Kumar, N.: Impact assessment of climate change on the hydrological response
9 of a snow and glacier melt runoff dominated Himalayan river, *J. Hydrol.*, 193, 316-350, 1997.

10 Singh, V.P., and Woolhiser, D.A.: Mathematical modeling of watershed hydrology, *J. Hydrol.*
11 *Eng.*, 7(4), 270-292, 2002.

12 Singh, V.P., Frevert, D.K. (eds): *Watershed Models*. CRC Press, Taylor & Francis Group,
13 UK, 2005.

14 Singh, V.P.: *Computer Models of Watershed Hydrology*, Water Resources Publications,
15 Littleton, Colorado, 2012.

16 Sivapalan, M., Takeuchi, K., Franks, S. W., Gupta, V. K., Karambiri, H., Lakshmi, V., Liang,
17 X., McDonnell, J. J., Mendiondo, E. M., O'Connell, P. E., Oki, T., Pomeroy, J. W., Schertzer,
18 D., Uhlenbrook, S., and Zehe, E.: IAHS decade on predictions in ungauged basins, *PUB*,
19 2003–2012: shaping an exciting future for the hydrological sciences, *Hydrolog. Sci. J.*, 48,
20 857–880, 2003.

21 Sorooshian, S., Gupta, V.K., and Fulton, J.L.: Evaluation of maximum likelihood parameter
22 estimation techniques for conceptual rainfall-runoff models: Influence of calibration data
23 variability and length on model credibility, *Water Resour. Res.*, 19, 251-259, 1983.

24 Srinivasulu, S., and Jain, A.: River flow prediction using an integrated approach, *J. Hydrol.*
25 *Eng.*, 14, 75-83, 2009.

26 Svensson, C., Kjeldsen, T.R., and Jones, D.A.: Flood frequency estimation using a joint
27 probability approach within a Monte Carlo framework, *Hydrolog. Sci. J.*, 58(1), 1-20, 2013.

28 Viglione, A., Parajka, J., Rogger, M., Salinas, J.L., Laaha, G., Sivapalan, M., and Blöschl, G.:
29 Comparative assessment of predictions in ungauged basins - Part 3: Runoff signatures in
30 Austria, *Hydrol. Earth Syst. Sci.*, 17, 2263-2279, 2013.

1 Wagener, T., and Montanari, A.: Convergence of approaches toward reducing uncertainty in
2 predictions in ungauged basins, *Water Resour. Res.*, 47, W06301,
3 doi:10.1029/2010WR009469, 2011.

4 Wagener, T., McIntyre, N., Lees, M.J., Wheater, H.S., and Gupta, H.V.: Towards reduced
5 uncertainty in conceptual rainfall–runoff modelling: dynamic identifiability analysis, *Hydrol.*
6 *Process.*, 17(2), 455-476, 2003.

7 Wagener, T., Wheater, H.S., and Gupta, H.V.: Rainfall - Runoff Modelling in Gauged and
8 Ungauged Catchments, doi:10.1142/9781860945397, Imp. Coll. Press, London, 2004.

9 Whitfield, P.H., Reynolds, C.J., and Cannon, A.: Modelling streamflow in present and future
10 climates: example from the Georgia basin. *British Columbia, Can. Water Resour. J.*, 27(4),
11 427-456, 2002.

12 Xia, Y.L., Yang, Z.L., Jackson, C., Stoffa, P.L., and Sen, M.K.: Impacts of data length on
13 optimal parameter and uncertainty estimation of a land surface model, *J. Geophys. Res.*
14 *Atmos.*, 109, D07101, doi:10.1029/2003JD004419, 2004.

15 Yapo, P.O., Gupta, H.V., and Sorooshian, S.: Automatic calibration of conceptual rainfall-
16 runoff models: sensitivity to calibration data, *J. Hydrol.*, 181, 23-48, 1996.

17 Zhang, Y., and Chiew, F.H.S.: Relative merits of different methods for runoff predictions in
18 ungauged catchments, *Water Resour. Res.*, 45, W07412, doi:10.1029/2008WR007504, 2009.

1 Table 1. Characteristics of the five study watersheds.

Watershed	Location/Country	Drainage Area (km ²)	Elevation Range (m)	Climate Type	Mean Annual Precipitation (mm)	Mean Annual Discharge (m ³ /s)	Main Runoff Generation Mechanisms	Meteorological Station Availability (Station Elevation, m)
Upper Campbell	Coastal British Columbia/Canada	1194	180-2235	Pacific Maritime	2000	71	Rainfall - Snowmelt	1 P.S.*(370) 2 T.S.* (370, 1470)
Illecillewaet	Southwestern British Columbia/Canada	1150	440-2480	Continental	2100	53	Snowmelt	3 P.S. (443, 1323, 1875) 3 T.S. (443, 1323, 1875)
Yermasoyia	Cyprus	157	70-1400	Mediterranean	640	0.5	Rainfall	3 P.S. (70, 100, 995) 1 T.S. (70)
Astor	Himalayan Range/Pakistan	3955	2130-7250	Himalayan Alpine	700	120	Snowmelt – Glacier melt	1 P.S. (2630) 1 T.S. (2630)
Hunza	Karakoram Range/Pakistan	13100	1460-7885	Continental Alpine	150	360	Glacier melt	2 P.S. (1460, 2405) 1 T.S. (1460)

2 *P.S. denotes Precipitation Station, T.S. denotes Temperature Station

1

2 Table 2. Averaged values for the parameters of UBC watershed model affecting the time
3 distribution of runoff (Micovic & Quick, 1999).

Model	P0PERC	P0DZSH	P0FRTK	P0FSTK	P0IRTK	P0ISTK	P0UGT	P0DZTK
Parameter	(mm/day)		(days)	(days)	(days)	(days)	K (days)	(days)
Value	25	0.30	0.6	1	3	4	20	150

4

5 Table 3. Default values for the water allocation and flow routing parameters of UBC
6 watershed model.

Model Parameter	P0AGEN (mm)	V0FLAX (mm)	V0FLAS (mm)	P0GLTK (days)
Value	100	1800	30	0.6

1 Table 4. Statistical indices of streamflow simulation with the proposed methodology for
 2 ungauged watersheds – UBCREG method.

Watershed	Hydrologic Period	NSE	%DV (%)	CORR	RMSE (m ³ /s)	%AMAFE (%)
Upper Campbell	1983-1986	0.72	-7.80	0.85	39.9	-27.6
	1986-1990	0.68	-3.93	0.83	41.9	-35.4
	1983-1990	0.70	-5.56	0.84	41.0	-32.1
Illecillewaet	1970-1973	0.89	12.03	0.96	20.9	7.3
	1973-1990	0.83	15.09	0.96	23.8	11.9
	1970-1990	0.84	14.63	0.96	23.4	11.3
Yermasoyia	1986-1989	0.78	14.94	0.88	0.85	-20.0
	1989-1997	0.68	8.91	0.86	0.60	21.1
	1986-1997	0.73	11.45	0.87	0.67	9.85
Astor	1979-1982	0.76	-6.15	0.90	63.2	-0.06
	1982-1988	0.65	-8.68	0.82	84.7	9.48
	1979-1988	0.68	-7.84	0.84	78.2	6.30
Hunza	1981-1983	0.86	5.82	0.95	172.7	9.65
	1983-1985	0.90	0.25	0.95	171.5	1.03
	1981-1985	0.88	2.80	0.94	172.1	5.34

1 Table 5. Geometry of optimized ANNs used in the methodology for poorly gauged
 2 watersheds.

Watershed	Number of neurons		
	Input Layer	Hidden Layer	Output Layer
Upper Campbell	6 (rainfall fastflow, snowmelt fastflow, rainfall interflow, snowmelt interflow, upper zone groundwater, deep zone groundwater)	4	1
Illecillewaet	7 (rainfall fastflow, snowmelt fastflow, rainfall interflow, snowmelt interflow, upper zone groundwater, deep zone groundwater, glacial melt runoff)	7	1
Yermasoyia	4 (rainfall fastflow, rainfall interflow, upper zone groundwater, deep zone groundwater)	3	1
Astor	7 (rainfall fastflow, snowmelt fastflow, rainfall interflow, snowmelt interflow, upper zone groundwater, deep zone groundwater, glacial melt runoff)	5	1
Hunza	5 (rainfall fastflow, snowmelt fastflow, upper zone groundwater, deep zone groundwater, glacial melt runoff)	5	1

1 Table 6. Statistical indices of streamflow simulation with the proposed methodology for
 2 poorly gauged watersheds – UBCANN method.

Watershed	Hydrologic Period	NSE	%DV (%)	CORR	RMSE (m ³ /s)	%AMAFE (%)
Training						
Upper Campbell	1983-1986	0.82	-0.69	0.91	31.7	-16.6
Validation						
	1986-1990	0.68	0.47	0.84	42.5	-14.9
Training						
Illecillewaet	1970-1973	0.97	-0.04	0.98	10.9	-11.2
Validation						
	1973-1990	0.90	2.11	0.96	18.2	8.98
Training						
Yermasoyia	1986-1989	0.91	2.71	0.95	0.55	-15.5
Validation						
	1989-1997	0.80	-4.15	0.90	0.48	-12.7
Training						
Astor	1979-1982	0.94	-1.40	0.97	30.7	-8.31
Validation						
	1982-1988	0.79	-3.05	0.89	64.4	15.1
Training						
Hunza	1981-1983	0.94	-0.86	0.97	113.1	-0.41
Validation						
	1983-1985	0.91	-11.26	0.96	158.9	-4.45

1 Table 7. Statistical indices of streamflow simulation with the classical methodology for
 2 poorly gauged watersheds – UBCCLLA method.

Watershed	Hydrologic Period	NSE	%DV (%)	CORR	RMSE (m ³ /s)	%AMAFE (%)
Calibration						
Upper Campbell	1983-1986	0.75	-2.36	0.87	37.4	-14.6
Validation						
	1986-1990	0.70	1.47	0.84	40.9	-24.2
Calibration						
Illecillewaet	1970-1973	0.95	-0.93	0.98	13.5	-0.22
Validation						
	1973-1990	0.92	1.38	0.96	16.7	0.91
Calibration						
Yermasoyia	1986-1989	0.83	-0.22	0.91	0.75	-16.1
Validation						
	1989-1997	0.73	-2.21	0.88	0.55	26.1
Calibration						
Astor	1979-1982	0.82	-0.08	0.91	55.1	-9.98
Validation						
	1982-1988	0.70	0.32	0.83	79.0	-0.41
Calibration						
Hunza	1981-1983	0.93	-4.43	0.96	122.4	-7.88
Validation						
	1983-1985	0.91	-2.07	0.96	165.5	-12.1

1 Table 8. Flood frequency estimation using annual maximum peak flows (m³/s).

Return Period (Years)	Fitted EVI Observed data	Fitted EVI UBCREG	Fitted EVI UBCANN	Fitted EVI UBCCLA
Upper Campbell watershed				
25	1061	713	963	926
50	1167	787	1071	1018
100	1272	859	1179	1110
Illecillewaet watershed				
25	390	436	393	352
50	421	471	421	378
100	452	506	450	404
Yermasoyia watershed				
25	33.7	26.2	35.2	29.5
50	39.6	30.3	41.6	34.4
100	45.4	34.5	47.9	39.3
Astor watershed				
25	934	800	809	793
50	1036	871	875	851
100	1137	941	940	909

1 **LIST OF FIGURE CAPTIONS**

2

3 Figure 1. Flow diagram of the UBC Watershed model.

4 Figure 2. Typical ANN geometry for combining the outputs of the UBC Watershed model in

5 the methodology for poorly gauged watersheds.

6 Figure 3. Comparison of observed and simulated hydrographs for a) Upper Campbell, b)

7 Illecillewaet, c) Yermasoyia, d) Astor and e) Hunza watersheds.

8 Figure 4. Goodness-of-fit evaluation for validation period (1986-1990) at Upper Campbell

9 watershed a) UBCANN method, b) UBCCLA method.

10 Figure 5. Goodness-of-fit evaluation for validation period (1973-1990) at Illecillewaet

11 watershed a) UBCANN method, b) UBCCLA method.

12 Figure 6. Goodness-of-fit evaluation for validation period (1989-1997) at Yermasoyia

13 watershed a) UBCANN method, b) UBCCLA method.

14 Figure 7. Goodness-of-fit evaluation for validation period (1989-1997) at Astor watershed a)

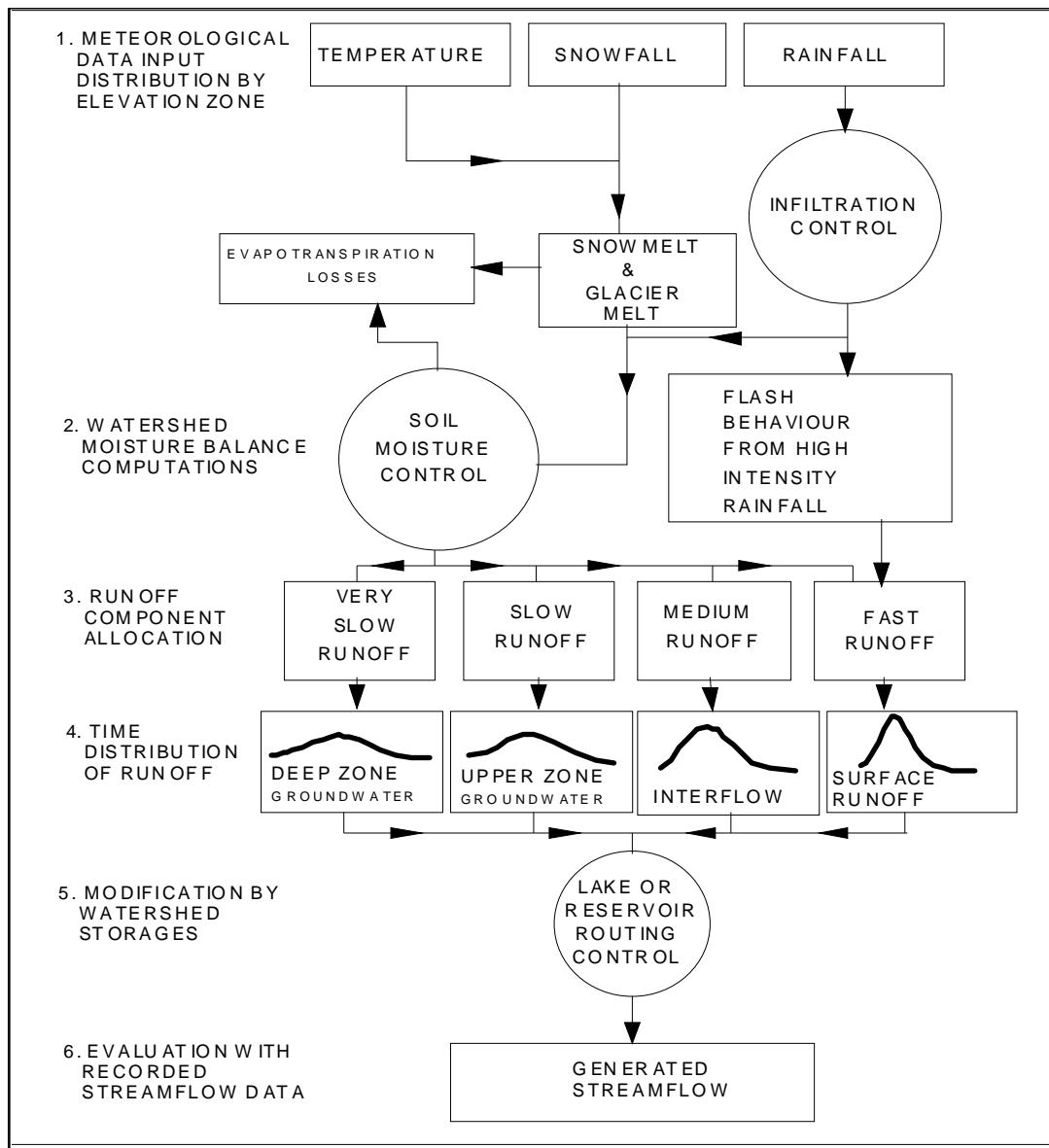
15 UBCANN method, b) UBCCLA method.

16 Figure 8. Goodness-of-fit evaluation for validation period (1989-1997) at Hunza watershed a)

17 UBCANN method, b) UBCCLA method.

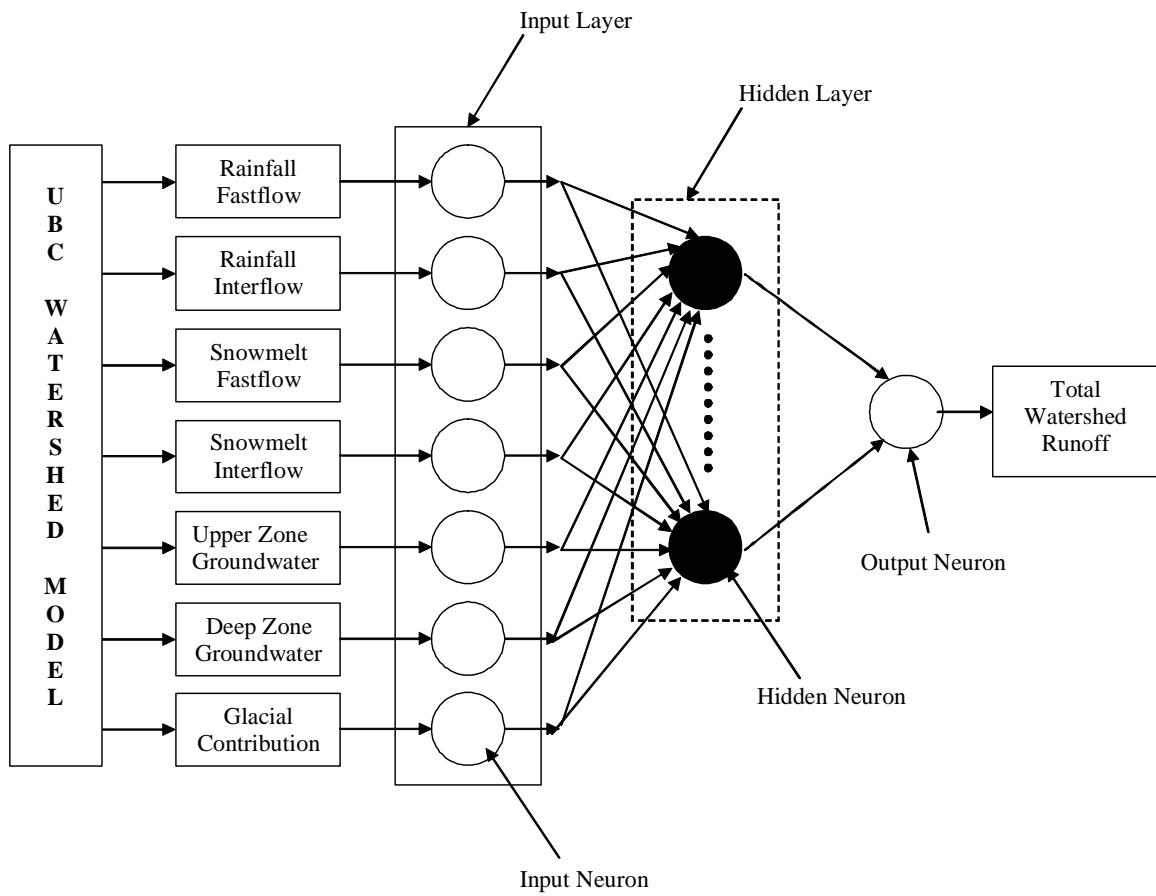
18 Figure 9. Flood frequency estimation for a) Upper Campbell, b) Illecillewaet, c) Yermasoyia,

19 and d) Astor watersheds.



1

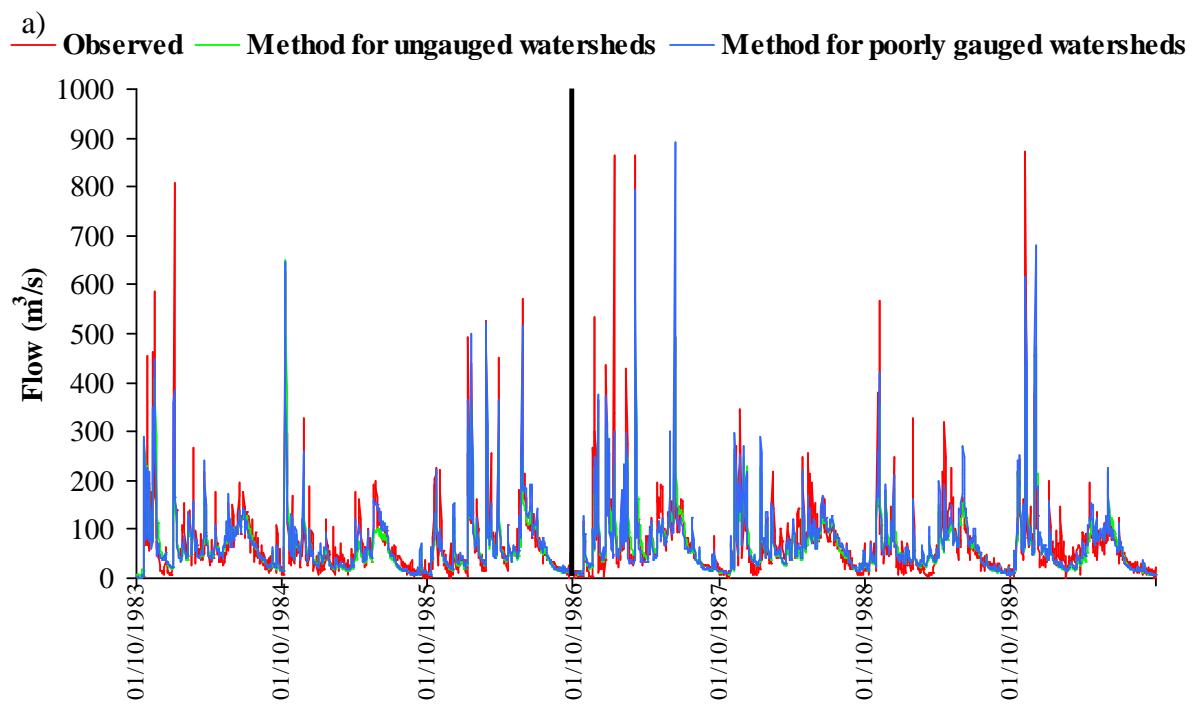
2 Figure 1. Flow diagram of the UBC Watershed model.



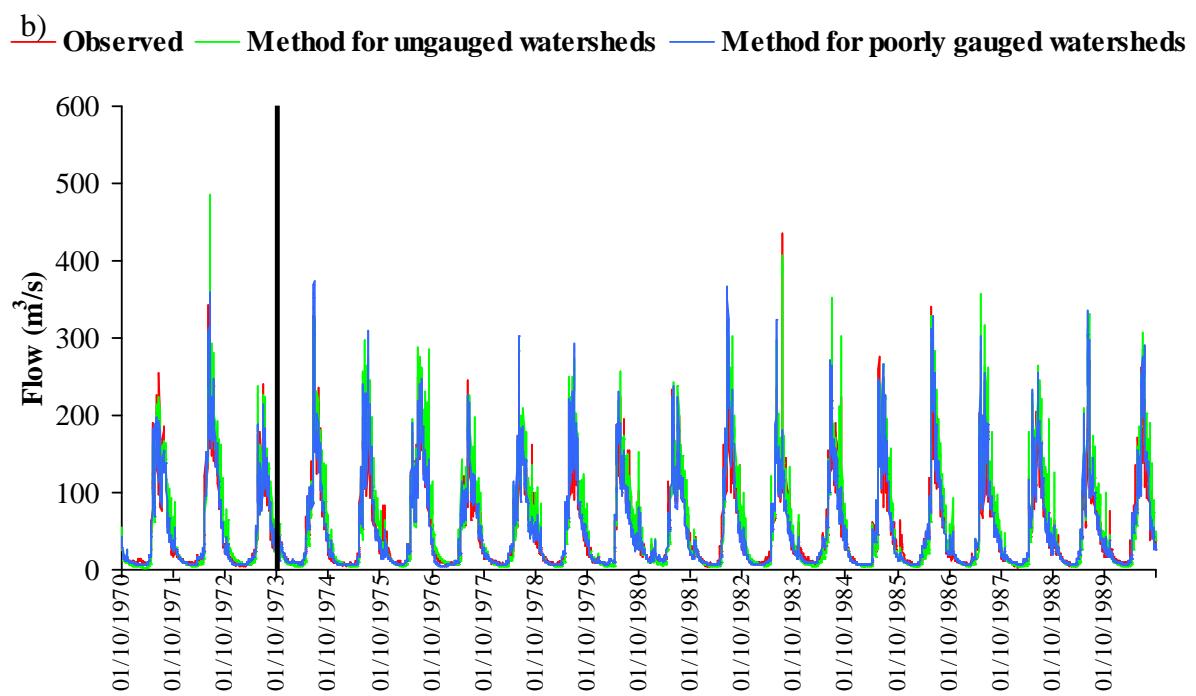
1

2

3 Figure 2. Typical ANN geometry for combining the outputs of the UBC Watershed model in
4 the methodology for poorly gauged watersheds.

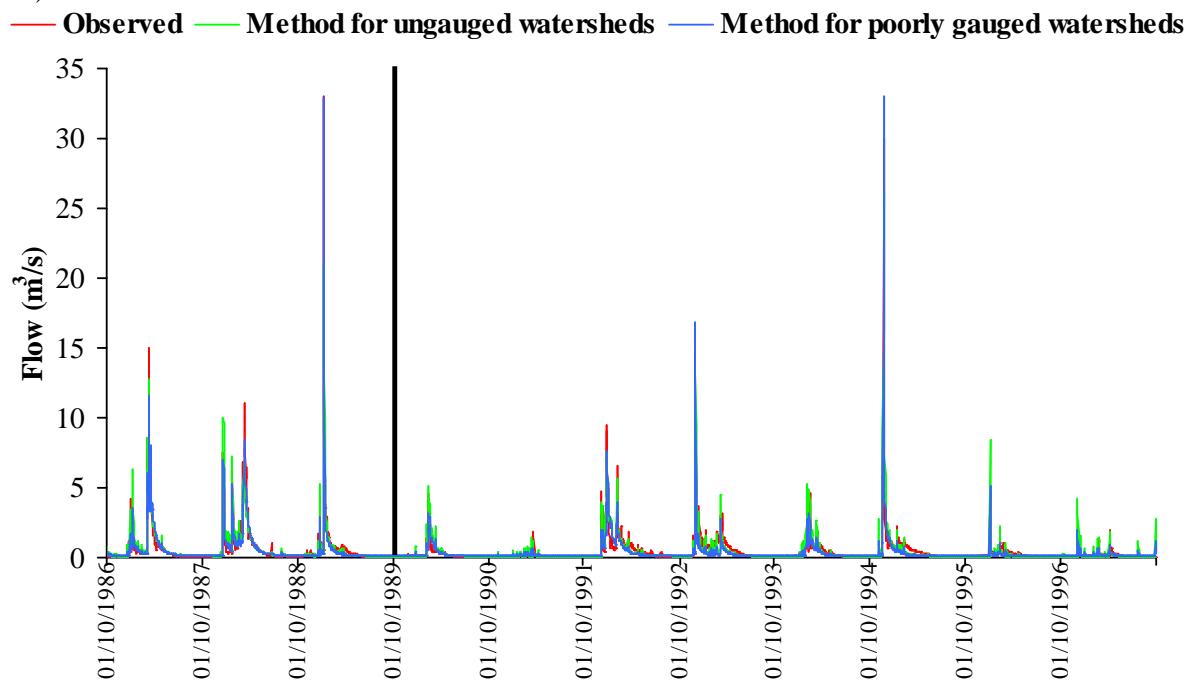


1



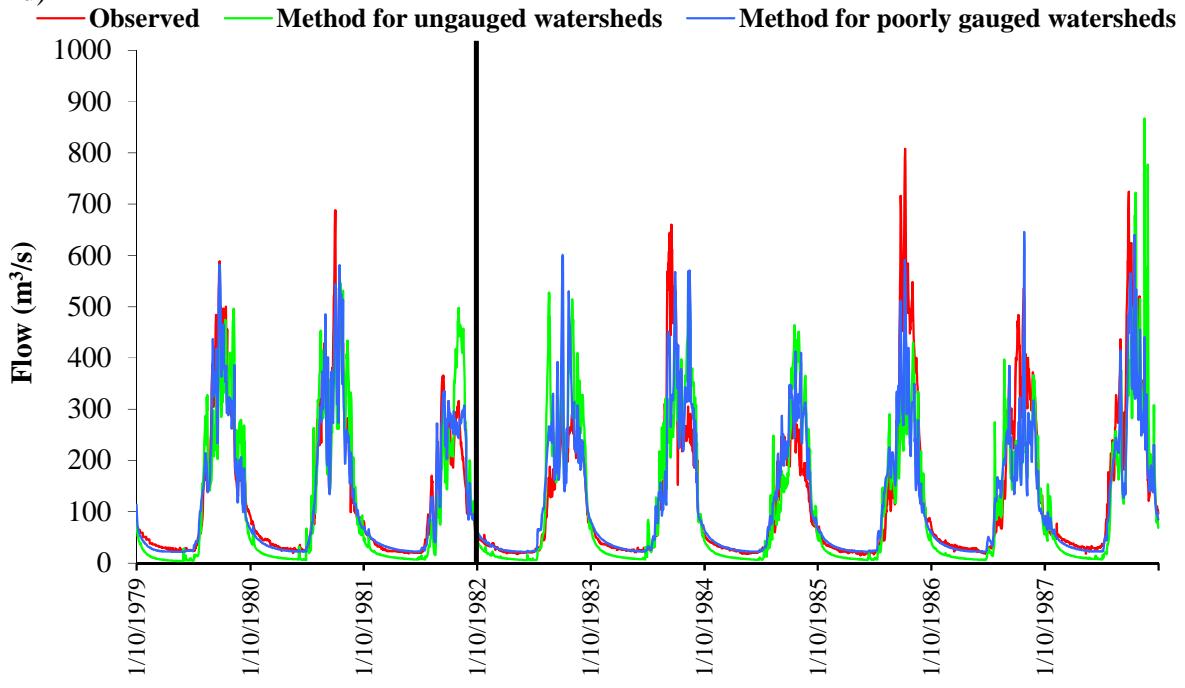
2

c)

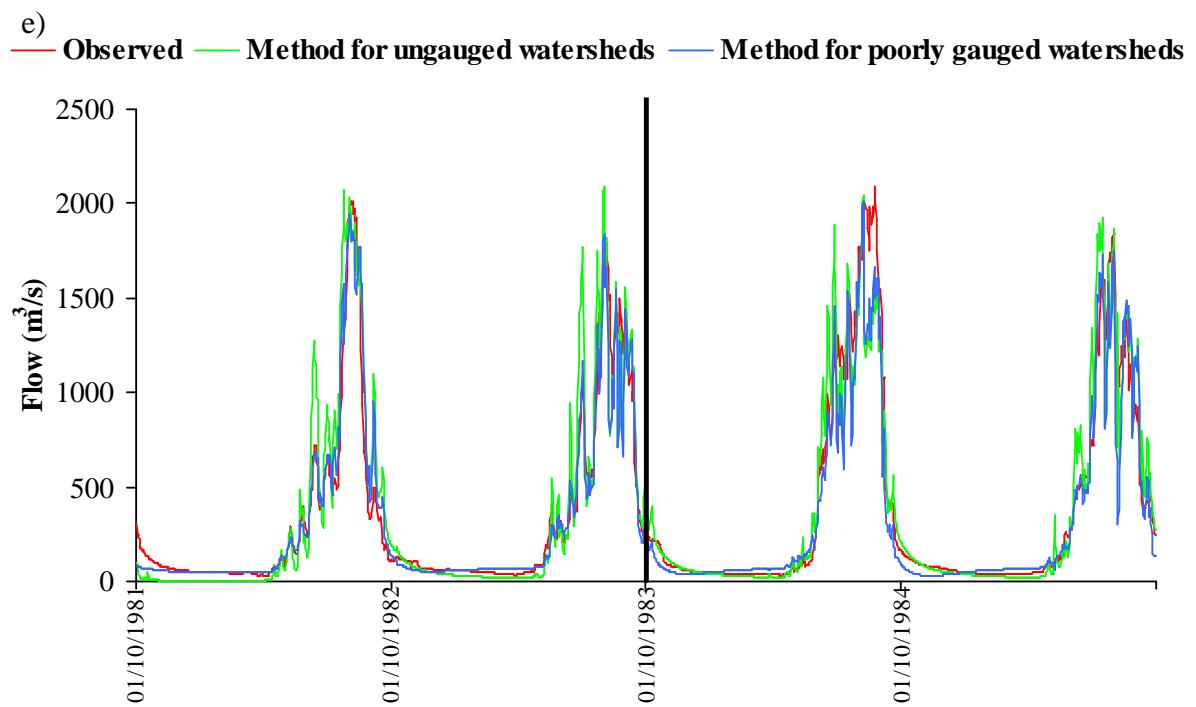


1

d)



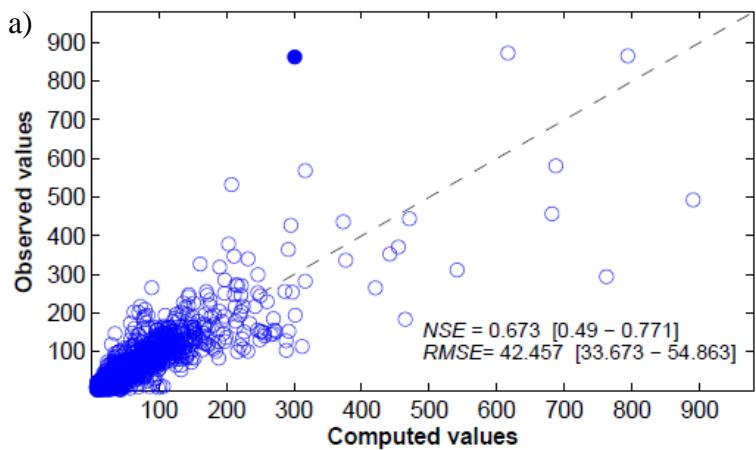
2



1

2 Figure 3. Comparison of observed and simulated hydrographs for a) Upper Campbell, b)
 3 Illecillewaet, c) Yermasoyia, d) Astor and e) Hunza watersheds.

4



===== GOODNESS-OF-FIT EVALUATION =====

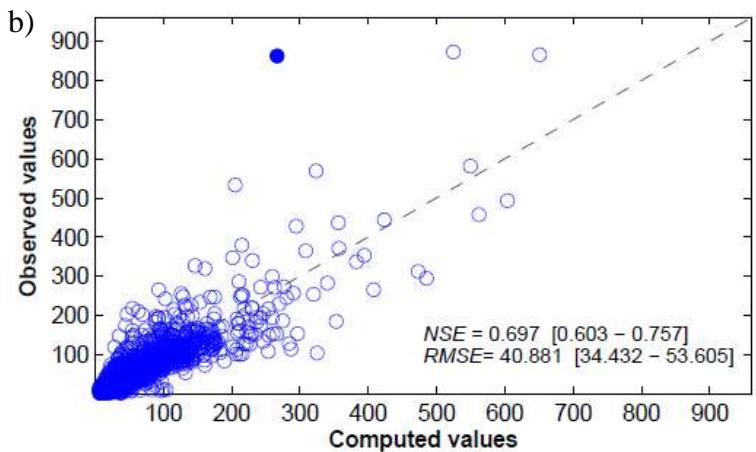
Evaluation of NSE: From UNSATISFACTORY to ACCEPTABLE

Probability of fit being:

- Very good ($NSE = 0.900 - 1.000$): 0%
- Good ($NSE = 0.800 - 0.899$): 0.6%
- Acceptable ($NSE = 0.650 - 0.799$): 64.9%
- Unsatisfactory ($NSE < 0.650$): 34.5%

Presence of outliers (Q-test): present and maybe affecting indicators
Model bias: NO

1



===== GOODNESS-OF-FIT EVALUATION =====

Evaluation of NSE: From UNSATISFACTORY to ACCEPTABLE

Probability of fit being:

- Very good ($NSE = 0.900 - 1.000$): 0%
- Good ($NSE = 0.800 - 0.899$): 0%
- Acceptable ($NSE = 0.650 - 0.799$): 86.6%
- Unsatisfactory ($NSE < 0.650$): 13.4%

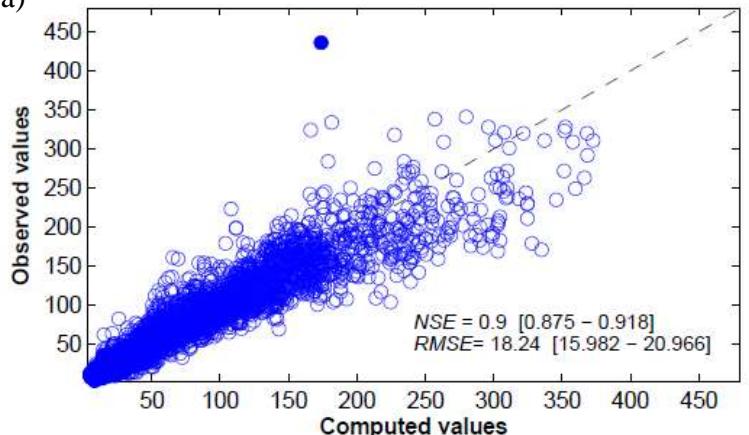
Presence of outliers (Q-test): present and maybe affecting indicators
Model bias: NO

2

3 Figure 4. Goodness-of-fit evaluation for validation period (1986-1990) at Upper Campbell
4 watershed a) UBCANN method, b) UBCCLA method.

5

a)



===== GOODNESS-OF-FIT EVALUATION =====

Evaluation of NSE: From GOOD to VERY GOOD

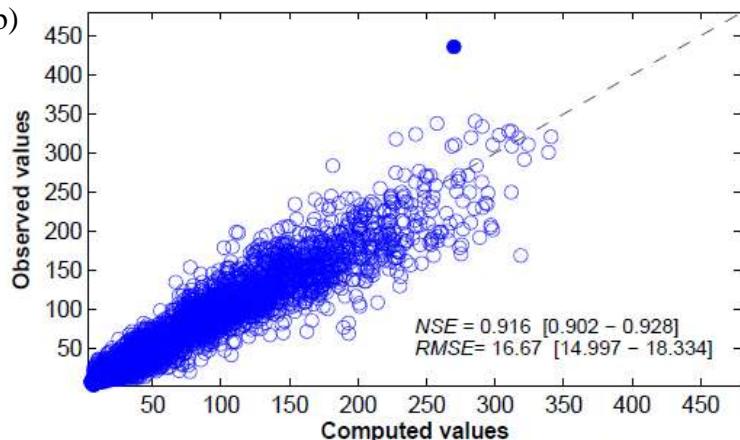
Probability of fit being:

- Very good (NSE = 0.900 – 1.000): 55.2%
- Good (NSE = 0.800 – 0.899): 44.8%
- Acceptable (NSE = 0.650 – 0.799): 0%
- Unsatisfactory (NSE < 0.650): 0%

Presence of outliers (Q-test): present and maybe affecting indicators
Model bias: NO

1

b)



===== GOODNESS-OF-FIT EVALUATION =====

Evaluation of NSE: VERY GOOD

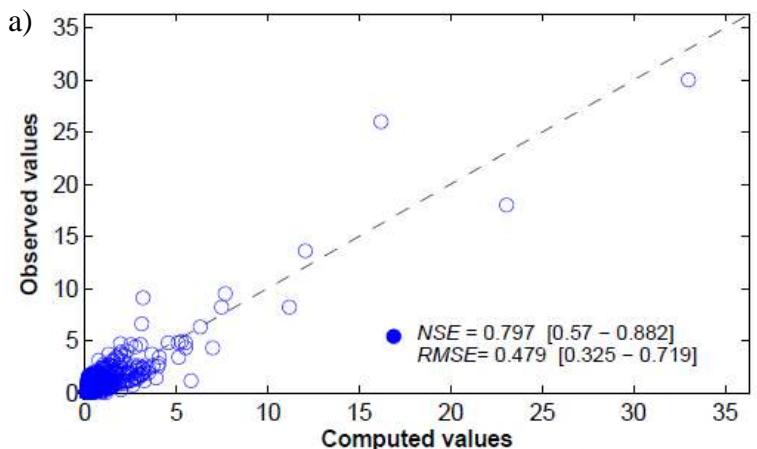
Probability of fit being:

- Very good (NSE = 0.900 – 1.000): 99.3%
- Good (NSE = 0.800 – 0.899): 0.7%
- Acceptable (NSE = 0.650 – 0.799): 0%
- Unsatisfactory (NSE < 0.650): 0%

Presence of outliers (Q-test): present and maybe affecting indicators
Model bias: NO

2

3 Figure 5. Goodness-of-fit evaluation for validation period (1973-1990) at Illecillewaet
4 watershed a) UBCANN method, b) UBCCLA method.



===== GOODNESS-OF-FIT EVALUATION =====

Evaluation of NSE : From UNSATISFACTORY to GOOD

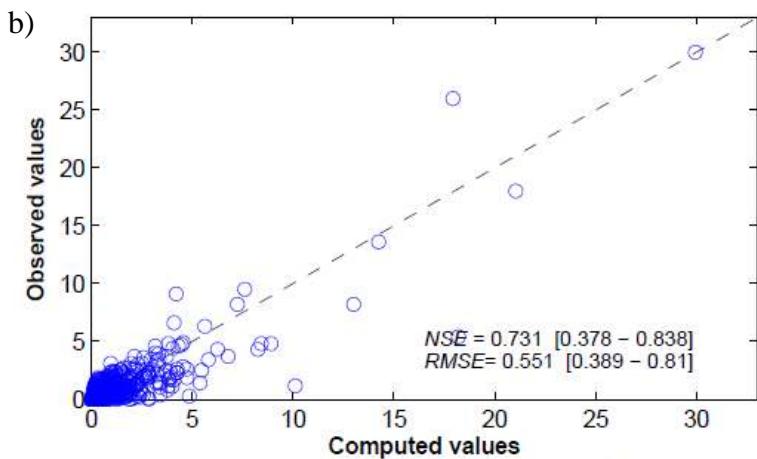
Probability of fit being:

- Very good ($NSE = 0.900 - 1.000$): 0.3%
- Good ($NSE = 0.800 - 0.899$): 46%
- Acceptable ($NSE = 0.650 - 0.799$): 36.2%
- Unsatisfactory ($NSE < 0.650$): 17.5%

Presence of outliers (Q-test): present and maybe affecting indicators

Model bias: NO

1



===== GOODNESS-OF-FIT EVALUATION =====

Evaluation of NSE : From UNSATISFACTORY to GOOD

Probability of fit being:

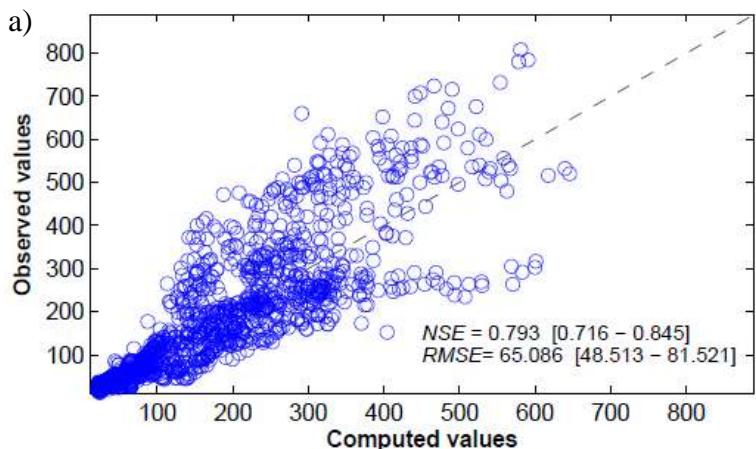
- Very good ($NSE = 0.900 - 1.000$): 0%
- Good ($NSE = 0.800 - 0.899$): 15.7%
- Acceptable ($NSE = 0.650 - 0.799$): 52.4%
- Unsatisfactory ($NSE < 0.650$): 31.9%

Presence of outliers (Q-test): NO

Model bias: NO

2

3 Figure 6. Goodness-of-fit evaluation for validation period (1989-1997) at Yermasoyia
4 watershed a) UBCANN method, b) UBCCLA method.



===== GOODNESS-OF-FIT EVALUATION =====

Evaluation of NSE: From ACCEPTABLE to GOOD

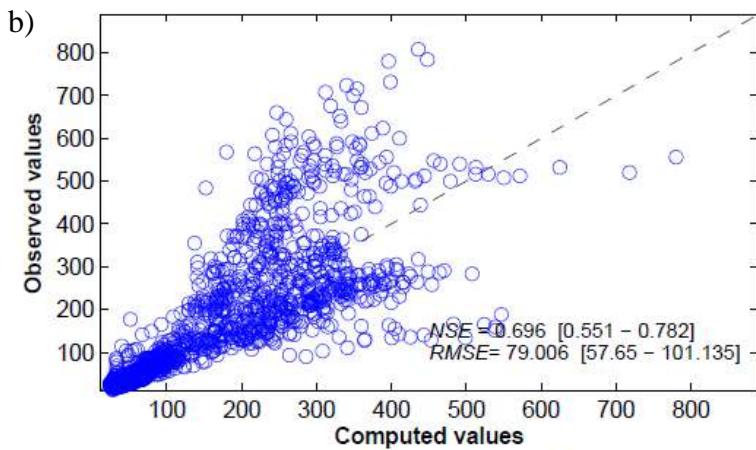
Probability of fit being:

- Very good ($NSE = 0.900 - 1.000$): 0.1%
- Good ($NSE = 0.800 - 0.899$): 44.2%
- Acceptable ($NSE = 0.650 - 0.799$): 55.6%
- Unsatisfactory ($NSE < 0.650$): 0.1%

Presence of outliers (Q-test): NO

Model bias: NO

1



===== GOODNESS-OF-FIT EVALUATION =====

Evaluation of NSE: From UNSATISFACTORY to ACCEPTABLE

Probability of fit being:

- Very good ($NSE = 0.900 - 1.000$): 0%
- Good ($NSE = 0.800 - 0.899$): 1.8%
- Acceptable ($NSE = 0.650 - 0.799$): 80%
- Unsatisfactory ($NSE < 0.650$): 18.2%

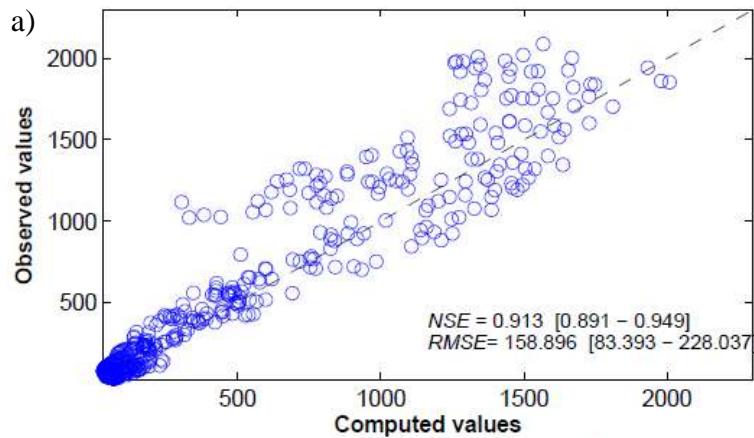
Presence of outliers (Q-test): NO

Model bias: NO

2

3 Figure 7. Goodness-of-fit evaluation for validation period (1989-1997) at Astor watershed a)

4 UBCANN method, b) UBCCLA method.



===== GOODNESS-OF-FIT EVALUATION =====

Evaluation of NSE: From GOOD to VERY GOOD

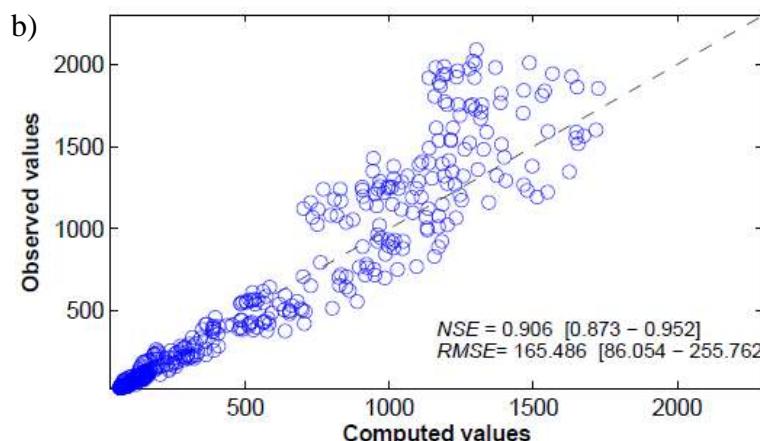
Probability of fit being:

- Very good ($NSE = 0.900 - 1.000$): 90.3%
- Good ($NSE = 0.800 - 0.899$): 9.7%
- Acceptable ($NSE = 0.650 - 0.799$): 0%
- **Unsatisfactory ($NSE < 0.650$)**: 0%

Presence of outliers (Q-test): NO

Model bias: Underprediction by -11.3% of the mean
 (NSE may be influenced by model bias)

1



===== GOODNESS-OF-FIT EVALUATION =====

Evaluation of NSE: From GOOD to VERY GOOD

Probability of fit being:

- Very good ($NSE = 0.900 - 1.000$): 67.5%
- Good ($NSE = 0.800 - 0.899$): 32.5%
- Acceptable ($NSE = 0.650 - 0.799$): 0%
- **Unsatisfactory ($NSE < 0.650$)**: 0%

Presence of outliers (Q-test): NO

Model bias: NO

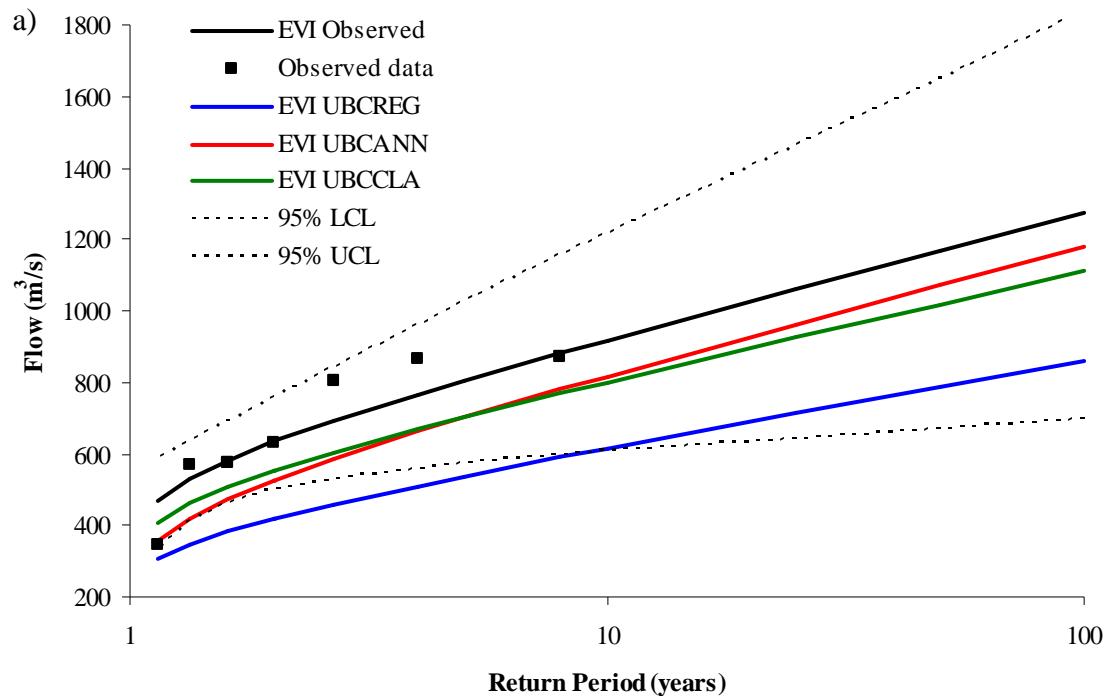
2

3 Figure 8. Goodness-of-fit evaluation for validation period (1989-1997) at Hunza watershed a)

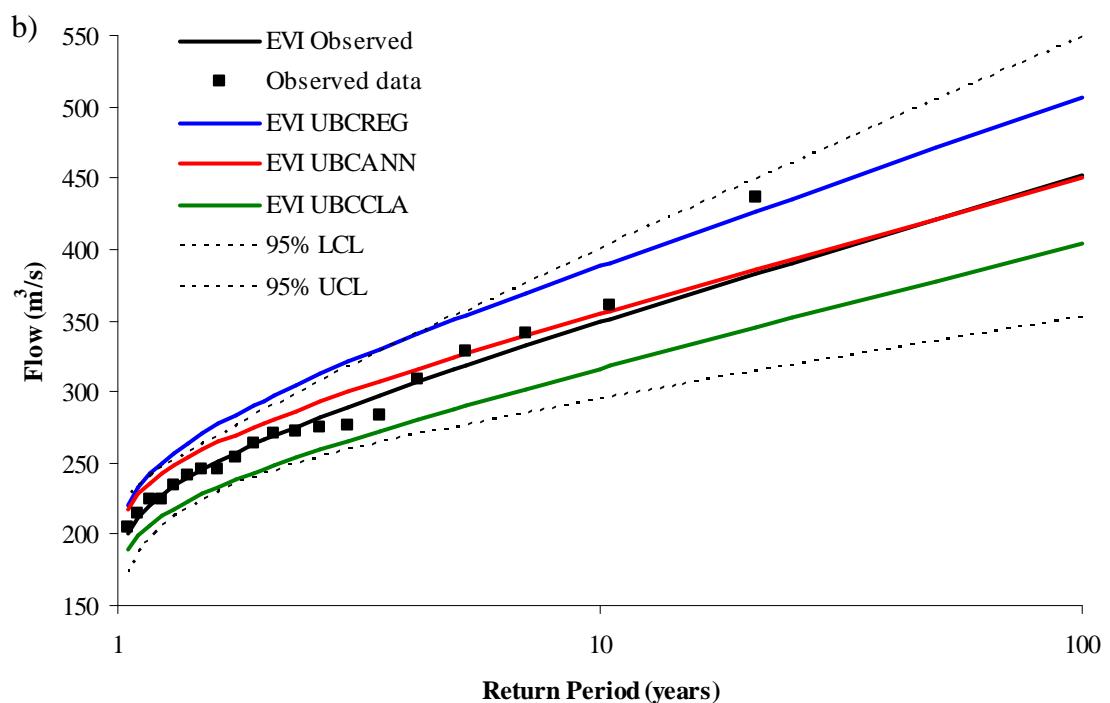
4 UBCANN method, b) UBCCLA method.

5

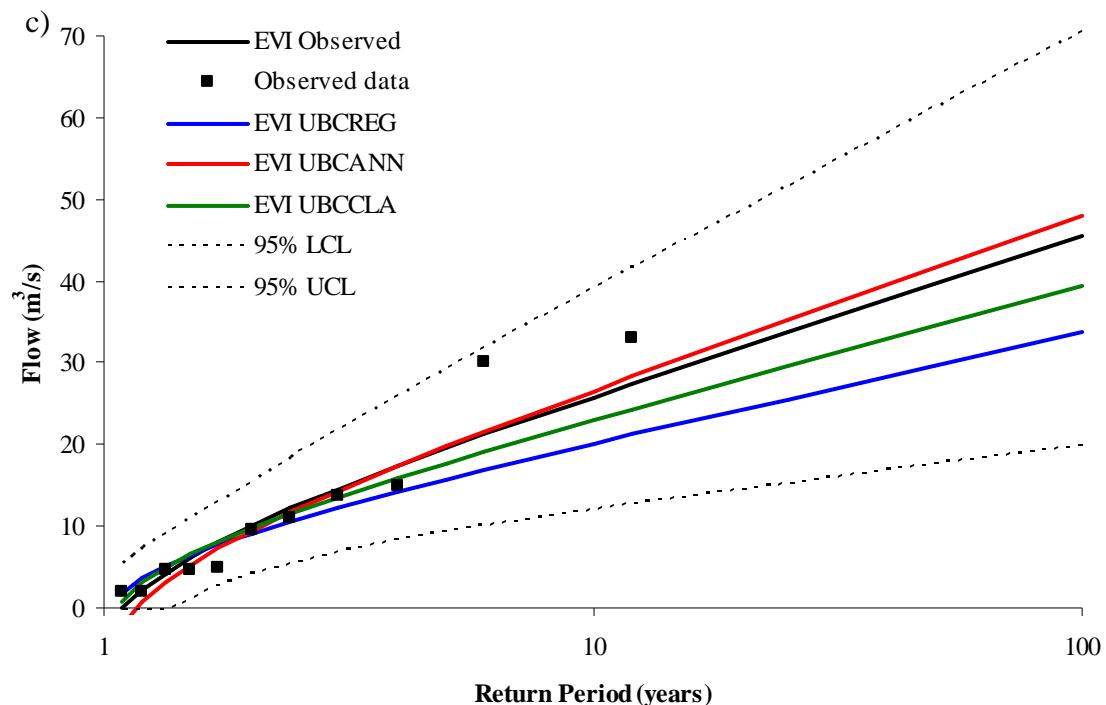
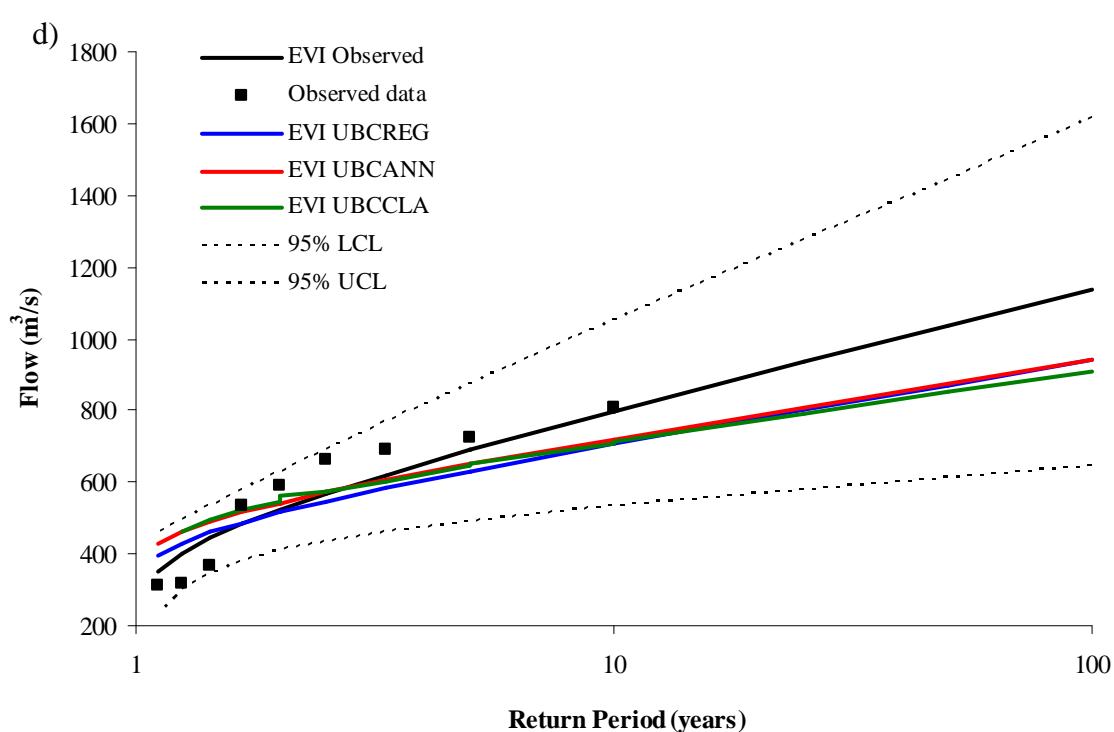
6



1



2



4 Figure 9. Flood frequency estimation for a) Upper Campbell, b) Illecillewaet, c) Yermasoyia,
5 and d) Astor watersheds.