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Abstract 9 

Rainfall-runoff modelling procedures for ungauged and poorly gauged watersheds are 10 

developed in this study. A well established hydrological model, the University of British 11 

Columbia (UBC) watershed model, is selected and applied in five different river basins 12 

located in Canada, Cyprus and Pakistan. Catchments from cold, temperate, continental and 13 

semiarid climate zones are included to demonstrate the develop procedures. Two 14 

methodologies for streamflow modelling are proposed and analysed. The first method uses 15 

the UBC watershed model with a universal set of parameters for water allocation and flow 16 

routing, and precipitation gradients estimated from the available annual precipitation data as 17 

well as from regional information on the distribution of orographic precipitation. This method 18 

is proposed for watersheds without streamflow gauge data and limited meteorological station 19 

data. The second hybrid method proposes the coupling of UBC watershed model with 20 

artificial neural networks (ANNs) and is intended for use in poorly gauged watersheds which 21 

have limited streamflow measurements. The two proposed methods have been applied to five 22 

mountainous watersheds with largely varying climatic, physiographic and hydrological 23 

characteristics. The evaluation of the applied methods is based on combination of graphical 24 

results, statistical evaluation metrics, and normalized goodness-of-fit statistics. The results 25 

show that the first method satisfactorily simulates the observed hydrograph assuming that the 26 

basins are ungauged. When limited streamflow measurements are available, the coupling of 27 

ANNs with the regional non-calibrated UBC flow model components is considered a 28 

successful alternative method over the conventional calibration of a hydrological model based 29 

on the employed evaluation criteria for streamflow modelling and flood frequency estimation. 30 
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1 Introduction 1 

The planning, design and management of water resources projects require good estimates of 2 

streamflow and peak discharge at certain points within a basin. Observed meteorological and 3 

streamflow data are used, initially, for the understanding of the hydrological processes and, 4 

then, for modelling these processes in order to estimate the streamflow of a watershed. It is 5 

likely that most watersheds or basins of the world are ungauged or poorly gauged. There is a 6 

whole spectrum of cases, which can be collectively embraced by the term “ungauged basins”.  7 

Some basins are genuinely ungauged, others are poorly gauged, or those previously gauged, 8 

where measurements discontinued due to instrument failure and/or termination of a 9 

measurement program. Also, the term “ungauged basin” refers to a basin where 10 

meteorological data or river flow, or both, are not measured. The international community has 11 

recognized this challenging problem and as a result the International Association of 12 

Hydrological Sciences (IAHS) had declared the previous decade (2003-2012) the “Decade of 13 

the Ungauged Basin” (Sivapalan et al., 2003). The IAHS Decade on Prediction in Ungauged 14 

Basins (PUB) was a major new effort and an international research initiative to promote the 15 

development of science and technology to provide hydrological data where the ground based 16 

observations are needed but missing. This initiative included theoretical hydrology, remote 17 

sensing techniques, in situ observations and measurements, and water quantity and quality 18 

modelling (Hrachowitz et al., 2013). 19 

In ungauged watersheds, where there are no data, the hydrologist has to develop and use 20 

models and techniques which do not require the availability of long time series of 21 

meteorological and hydrological measurements. One option is to develop models for gauged 22 

watersheds and link the model parameters to physiographic characteristics and apply them to 23 

ungauged watersheds, whose physiographic characteristics can be determined. Another option 24 

is to establish regionally valid relationships in hydrologically similar gauged watersheds and 25 

apply them to ungauged watersheds in the region. This approach holds both for hydrograph 26 

and flood frequency analysis. The various methods proposed for hydrological prediction in 27 

ungauged watersheds can be categorized into statistical methods, hydrological and stochastic 28 

modelling methods (Blöschl et al., 2013; Hrachowitz et al., 2013; Parajka et al., 2013; Salinas 29 

et al., 2013b). Regionalization techniques are usually applied for statistical methods. These 30 

techniques include the regression analyses of flood statistics (statistical moments of flood 31 

series) or flood quantiles of gauged watersheds within a homogenous region against 32 
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geographical and geomorphologic characteristics of the watersheds (Kjeldsen and Rosbjerg, 1 

2002), the combination of single site and regional data, the spatial interpolation of estimated 2 

flood statistics at gauged basins using geostatistics (Blöschl et al., 2013), and the Region Of 3 

Influence (ROI) approach (Burn, 1990). Then, the established relationships are applied to 4 

ungauged watersheds of the region. 5 

In the hydrological modelling methods, hydrological models of varying degrees of complexity 6 

are used to generate synthetic flows for known precipitation (Singh and Woolhiser, 2002; 7 

Singh and Frevert, 2005; Singh, 2012). The complexity of the models can vary from simple 8 

event-based models to continuous simulation models, lumped to distributed models, and 9 

models that simulate the discharge in sub-daily, daily, or larger time steps.  In this approach, a 10 

hydrological model is firstly calibrated to gauged watersheds within a region and the model 11 

parameters are linked through multiple regression to physiographic and/or climatic 12 

characteristics of the watersheds or are spatially interpolated using geostatistics or even using 13 

the average model parameter values (e.g. Micovic and Quick, 1999; Post and Jakeman, 1999; 14 

Merz and Bloschl, 2004). At the ungauged watersheds of the region, the model with the 15 

estimated model parameters is used for hydrological simulation (Wagener et al., 2004; Zhang 16 

and Chiew, 2009; He et al., 2011; Wagener & Montanari, 2011; Bao et al., 2012; Razavi & 17 

Coulibaly, 2013; Viglione et al., 2013)   18 

The stochastic modelling methods employ a hydrological model, which is used to derive the 19 

cumulative distribution function of the peak flows. These methods use a stochastic rainfall 20 

generation model, which is linked to the hydrological model. The cumulative distribution 21 

function of peak flows could be estimated analytically (Iacobellis and Fiorentino, 2000; De 22 

Michele and Salvadori, 2002), in case that a simple hydrological model is used. However, the 23 

simplifications and the assumptions made in the analytical derivation of the cumulative 24 

distribution function of peak flows may result in poor performance. To overcome this 25 

problem the peak flow frequency could be estimated numerically using either an event-based 26 

model (Loukas, 2002; Svensson et al., 2013) or a continuous model (Cameron et al., 2000; 27 

Engeland and Gottschalk, 2002). 28 

There are difficulties in universally applying the above methods for hydrograph simulation 29 

and peak flow estimation of ungauged watersheds. These difficulties arise from the definition 30 

of the homogenous regions, the number and the areas of the gauged watersheds, and the 31 

different runoff generation processes. The definition, or delineation, of homogeneous 32 
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hydrologic regions has been a subject of research for many years and it is necessary for the 1 

application of regionalization techniques. The definition of homogeneous regions enables 2 

uncorrelated data to be pooled from similar watersheds. A hydrological homogeneous region 3 

can be defined by geography, by stream flow characteristics, and by the physical and climatic 4 

characteristics of the watersheds. However, problems may arise when an ungauged watershed 5 

is to be assigned to a region. The assignment of the watershed to a region is unambiguous, 6 

when the geographical classification is used and the regions are delineated clearly. On the 7 

other hand, the hydrological response of the ungauged watershed may be similar to the 8 

response of watersheds belonging in more than one region. This is particularly true for 9 

watersheds that are close to region boundaries. In the case of a classification based on stream 10 

flow and watershed characteristics, the regions commonly overlap each other. For a 11 

classification of regions based on the physical and climatic characteristics of the watersheds, 12 

the ungauged watershed could be erroneously assigned to a region. Furthermore, even if a 13 

homogenous region is correctly defined and an ungauged watershed is assigned in that region 14 

there should be enough watersheds with extended length of meteorological and streamflow 15 

records in order to develop statistically significant regional relationships. However, this is not 16 

the case in many parts of the world, where data are very limited, both spatially and 17 

temporally. Additionally, the physiographic characteristics, such as slopes, vegetation 18 

coverage, soils, etc., and the runoff generation processes (rainfall runoff, snowmelt runoff, 19 

glacier runoff, etc.) are changing as the size of the watershed is increasing even in the same 20 

region. 21 

The streamflow of a watershed is often measured for a limited period and these streamflow 22 

data are inefficient for hydrological model calibration and statistical analysis. In this paper, a 23 

technique that couples a hydrological model with Artificial Neural Networks (ANNs) is 24 

proposed to improve the streamflow simulation and estimation of peak flows for watersheds 25 

with limited streamflow data. In recent years, ANNs have become extremely popular for 26 

prediction and forecasting of climatic, hydrologic, and water resources variables (Govindaraju 27 

and Rao, 2000; Abrahart et al., 2004) and are extensively reviewed for their effectiveness in 28 

estimation of water quantitative and qualitative variables (Maier and Dandy, 2000; Maier et 29 

al., 2010) and in hydrological modelling and forecasting applications (ASCE, 2000; Dawson 30 

and Wilby, 2001; Abrahart et al., 2010; Abrahart et al., 2012). In the context of hydrological 31 

modelling, ANNs have mainly been used as rainfall-runoff models for the prediction and 32 

forecasting of streamflow in various time steps (Coulibaly et al., 1999; ASCE, 2000; Dawson 33 
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and Wilby, 2001; Jain et al., 2009; Abrahart et al., 2010). Abrahart et al. (2012) present recent 1 

ANN applications and procedures in streamflow modelling and forecasting which include 2 

modular design concepts, ensemble experiments, and hybridization of ANNs with typical 3 

hydrological models. Furthermore, ANNs have been used for combining the outputs of 4 

different rainfall-runoff models in order to improve the prediction and modelling of 5 

streamflow (Shamseldin et al., 1997; Chen and Adams, 2006; Kim et al., 2006; Nilsson et al., 6 

2006; Cerda-Villafana et al., 2008; Liu et al., 2013) and the river flow forecasting (Brath et 7 

al., 2002; Shamseldin et al., 2002; Anctil et al., 2004a; Srinivasulu and Jain, 2009; Elshorbagy 8 

et al., 2010; Mount et al., 2013).    9 

The objectives of the study are therefore to develop rainfall-runoff modelling procedures for 10 

ungauged and poorly gauged watersheds located in different climatic regions. A well 11 

established RR model (Singh, 2012), the University of British Columbia (UBC) watershed 12 

model, is selected and applied in five different river basins located in Canada, Cyprus and 13 

Pakistan. Catchments from cold, temperate, continental and semiarid climate zones are 14 

included to demonstrate the develop procedures. In the present study, the term “ungauged” 15 

watershed refers to a watershed, where river flow is not measured and the term “poorly 16 

gauged” watershed indicates a watershed, where continuous streamflow measurements are 17 

available for three hydrological years. Two streamflow modelling methods are presented.  18 

The first method is proposed for application at ungauged watersheds, using a conceptual 19 

hydrological model, the UBC watershed model.  In this method, most of the parameters of the 20 

UBC watershed model are taking constant values and the precipitation gradients are estimated 21 

by analysis of available meteorological data and/or results of earlier regional studies. A 22 

second modelling procedure that couples the UBC watershed model with ANNs is employed 23 

for the estimation of streamflow of poorly gauged watersheds with limited meteorological 24 

data. The coupling procedure of UBC ungauged application with ANNs is an effort to 25 

combine the flexibility and capability of ANNs in nonlinear modelling with the physical 26 

modelling of the rainfall-runoff process acquired by a hydrological model.   27 

 28 

2 Study basins and data base 29 

For the assessment of the developed methodologies preferably a large number of undisturbed 30 

data-intensive catchments located in different climate zones should be studied. However, data 31 

for these catchments are very difficult to obtain, which is why the study is limited to five river 32 
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basins located in different continents. The main selection criteria were accessible 1 

hydrometeorological data of good quality, and that the studied watersheds represent various 2 

climatic types with diverse runoff generation mechanisms. Hence, the developed 3 

methodologies are applied to five watersheds located in various geographical regions of the 4 

world and having varying physiographic, climatic, and hydrological characteristics, and 5 

quality and volume of meteorological data. The runoff of all study watersheds contributes to 6 

the inflow of local reservoirs. 7 

Two watersheds are forested watersheds located in British Columbia, Canada. The first 8 

watershed, the Upper Campbell watershed, is located on the east side of the Vancouver Island 9 

Mountains and drains to the north and east into the Straight of Georgia. The 1194 km2 basin is 10 

very rugged with peaks rising to 2235 m and with mean basin elevation of 950 m (Table 1). 11 

The climate of the area is characterized as a maritime climate with wet and mild winters and 12 

dry and warm summers. Most of precipitation is generated by cyclonic frontal systems that 13 

develop over the North Pacific Ocean and move eastwards.  Average annual precipitation is 14 

about 2000 mm and 60% of this amount is falling in the form of rainfall. Significant but 15 

transient snowpacks are accumulated, especially in the higher elevations. Runoff and the 16 

majority of peak flows are generated mainly by rainfall, snowmelt and winter rain-on-snow 17 

events (Loukas et al., 2000). The runoff from the Upper Campbell watershed is the inflow to 18 

the Upper Campbell Lake and Buttle Lake reservoirs. Daily maximum and minimum 19 

temperature were available at two meteorological stations one at 370 m, and the other at 1470 20 

m and daily precipitation at the lower elevation station. In total, seven years of daily 21 

meteorological and streamflow data (October 1983 – September 1990) were available from 22 

the Upper Campbell watershed.   23 

The second study watershed is the Illecillewaet watershed, which is located on the west slopes 24 

of the Selkirk Mountains in southeastern British Columbia, 500 km inland from the Coast 25 

Mountains. The size of the watershed is 1150 km2 and its elevation ranges from 400 m to 26 

2480 m (Table 1). Illecillewaet River is a tributary of the Columbia River and contributes to 27 

the Arrow Lakes reservoir. The climate of the area is continental with cold winters and warm 28 

summers with frequent hot days and is influenced by the maritime Pacific Ocean air masses 29 

and by weather systems moving eastwards. Average annual precipitation ranges from 950 mm 30 

at the mouth of the watershed to 2160 mm at the higher elevations. Substantial snowpacks 31 

develop during winter at all elevations of the watershed. The snowpack at the valley bottom is 32 
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usually depleted by the end of April, but permanent snowpacks and a glacier with an area of 1 

76 km2 exist at the highest elevations. Streamflow is mainly generated during spring, by rain 2 

and snowmelt, and summers, from snowmelt and the contribution of glacier melt (Loukas et 3 

al., 2000). Good quality daily precipitation and maximum and minimum temperature data are 4 

measured at three meteorological stations at 443 m, 1323 m, and 1875 m of elevation, 5 

respectively. Twenty years of meteorological and streamflow data (October 1970 – September 6 

1990) were used to assess the simulated runoff from the watershed. 7 

The third study basin is the Yermasoyia watershed, which is located in the southern side of 8 

mountain Troodos of Cyprus, roughly 5 km north of Limassol city. The watershed area is 157 9 

km2 and its elevation ranges from 70 m up to 1400 m (Table 1). Most of the area is covered 10 

by typical Mediterranean type forest and sparse vegetation. A reservoir with storage capacity 11 

of 13.6 million m3 was constructed downstream the mouth of the watershed in 1969, for 12 

irrigation and municipal water supply purposes (Hrissanthou, 2006). The climate of the area is 13 

of Mediterranean maritime climate with mild winters and hot and dry summers. Precipitation 14 

is usually generated by frontal weather systems moving eastwards. Average basin wide 15 

annual precipitation is 640 mm, ranging from 450 mm at the low elevations up to 850 mm at 16 

the upper parts of the watershed. Mean annual runoff of Yermasoyia river is about 150 mm, 17 

and 65% of it is generated by rainfall during winter months. The river is usually dry during 18 

summer months. The peak flows are observed in winter months and produced by rainfall 19 

events. Good quality daily precipitation from three meteorological stations located at 70 m, 20 

100 m, and 995m of elevation were used. Data of maximum and minimum temperature 21 

measured at the low elevation station (70 m) were used in this study.  In total, eleven years of 22 

meteorological and streamflow data (October 1986 – September 1997) were available for 23 

Yermasoyia watershed. 24 

The fourth and fifth study watersheds, the Astor and the Hunza watersheds, are located within 25 

the Upper Indus River basin in northern Pakistan. The Astor watershed spans elevations from 26 

2130 to 7250 m and covers an area of 3955 km2, only 5% of which is covered with forest and 27 

10% is covered with glaciers (Table 1). Precipitation is usually generated by westerly 28 

depressions, but occasionally monsoon storms produce heavy precipitation. Average basin 29 

annual precipitation is about 700 mm and more than 90% of this amount is snow (Ahmad et 30 

al., 2012). Runoff and the peak streamflows are mainly generated by snowmelt and glacier 31 

melt (Loukas et al., 2002; Archer, 2003).  Mean annual streamflow is about 120 m3/s, which 32 
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amounts 5% of the inflow to the downstream Tarbela reservoir. Daily precipitation and 1 

maximum and minimum temperature data are measured at one meteorological station located 2 

at the elevation of 2630 m.  In total, nine years of meteorological and streamflow data 3 

(October 1979 – September 1988) were available from the Astor watershed. The Hunza 4 

watershed lies within the Karakoram Mountain Range. Hunza River flows southwest from its 5 

headwaters near the China/Pakistan border, through the Karakoram to join the Gilgit River 6 

near the town of Gilgit. The Hunza watershed has a total drainage area of 13100 km2 (Table 7 

1) and the entire area is a maze of towering peaks, massive glaciers and steep sided gorges. 8 

The highest mountain peaks within the Hunza basin area are Batura (7785 m), Rakaposki 9 

(7788 m) and Disteghil Sur (7885 m). The elevation of Hunza basin ranges from 1460 to 7885 10 

m. Twenty three percent of the watershed area is covered by glaciers including the large 11 

Baltura and Hispar glaciers (Bocchiola et al., 2011; Ahmad et al., 2012). The Hunza basin is 12 

arid and annually receives less than 150 mm of precipitation, mainly in the form of snow, 13 

from westerly weather systems. More than 90% of the annual runoff and peak streamflows 14 

are generated by glacier melt (Loukas et al., 2002; Archer, 2003). Mean annual streamflow is 15 

about 360 m3/s, which amounts more than 13% of the inflow to the downstream Tarbela 16 

reservoir. Daily precipitation data measured at two meteorological stations located at 1460 m 17 

and 2405 m of elevation were used. Data of maximum and minimum temperature measured at 18 

the low elevation station (1460 m) were used in this study. Four years of meteorological and 19 

streamflow data (October 1981 – September 1985) were available from the Hunza basin. 20 

 21 

3 Method of Analysis 22 

Two methodologies are proposed in this paper for the simulation of daily streamflow of the 23 

five study watersheds. The first methodology uses the UBC watershed model with estimated 24 

universal model parameters and estimates of precipitation distribution, and it is proposed for 25 

use in ungauged watersheds. The second methodology proposes the coupling of UBC 26 

watershed model with ANNs, and is intended for use in watersheds where limited streamflow 27 

data are available. The UBC watershed model and the two methodologies are presented in the 28 

next paragraphs. 29 



 9 

3.1 The UBC watershed model 1 

The UBC watershed model was first presented 35 years ago (Quick and Pipes, 1977), and has 2 

been updated continuously to its present form. The UBC is a continuous conceptual 3 

hydrologic model and calculates daily or hourly streamflow using as input data precipitation, 4 

maximum and minimum temperature data. The model was primarily designed for the 5 

simulation of streamflow from mountainous watersheds, where the runoff from snowmelt and 6 

glacier melt may be important, apart from the rainfall runoff. However, the UBC watershed 7 

model has been applied to variety climatic regions, ranging from coastal to inland mountain 8 

regions of British Columbia including the Rocky Mountains, and the subarctic region of 9 

Canada (Hudson and Quick, 1997; Quick et al., 1998; Micovic and Quick, 1999; Loukas et 10 

al., 2000; Druce, 2001; Morrison et al., 2002; Whitfield et al., 2002; Merritt et al., 2006; 11 

Assaf, 2007). The model has also been applied to the Himalayas and Karakoram Mountain 12 

Ranges in India and Pakistan, the Southern Alps in New Zealand and the Snowy Mountains in 13 

Australia (Singh and Kumar, 1997; Singh and Singh, 2001; Quick, 2012; Naeem et al., 2013). 14 

This ensures that the model is capable of simulating runoff under a large variety of conditions. 15 

The model conceptualizes the watersheds as a number of elevation zones, since the 16 

meteorological and hydrological processes are functions of elevation in mountainous 17 

watersheds. In this sense, the orographic gradients of precipitation and temperature are major 18 

determinants of the hydrologic behavior in mountainous watersheds. These gradients are 19 

assumed to behave similarly for each storm event. Furthermore, the physiographic parameters 20 

of a watershed, such as impermeable area, forested areas, vegetation density, open areas, 21 

aspect, and glaciated areas are described for each elevation zone and can be estimated from 22 

analog and digital maps and/or remotely sensed data. Hence, it is assumed that the elevation 23 

zones are homogeneous with respect of the above physiographic parameters. In a recent 24 

study, the UBC watershed model was integrated into a geographical information system that 25 

automatically identifies and estimates the physiographic parameters of each elevation zone of 26 

a watershed from digital maps and remotely sensed data (Fotakis et al., 2014). A certain 27 

watershed can be divided in up to 12 homogeneous elevation zones. The UBC watershed 28 

model provides information on snow-covered area, snowpack water equivalent, potential and 29 

actual evapotranspiration, soil moisture interception losses, groundwater storage, surface and 30 

subsurface runoff for each elevation zone separately and for the whole watershed. Fig. 1 31 

presents the flow diagram of the UBC watershed model.  32 
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The model is made up of several sub-routines: the sub-routine for the distribution of the 1 

meteorological data, the soil moisture accounting sub-routine, and the flow routing sub-2 

routine. The meteorological distribution sub-routine distinguishes between total precipitation 3 

in the form of snow and rain using the temperature data. If the mean temperature is below 0oC 4 

or above 2oC, then all precipitation is in the form of snow or rain, respectively. When the 5 

mean temperature is between 0oC and 2oC, then the percentage of total precipitation, which is 6 

rain, is estimated by, 7 

100
2

% ×= eTemperatur
RAIN         (1) 8 

and, the remaining percentage of precipitation is snow. Snow is stored until melts, whereas 9 

rain is immediately processed by the soil moisture routine accounting to a sub-routine. Each 10 

meteorological station has two representation factors, one for snow, P0SREP, and one for 11 

rain, P0RREP. These factors are introduced because precipitation data from a meteorological 12 

station are point data and they may not be representative for a larger area or zone. If the data 13 

are representative, then, these parameters are equal to zero. 14 

The point station data of precipitation are distributed over the watershed using the equation,  15 
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where PRi,j,l is the precipitation from meteorological station i for day j and elevation zone l, 17 

P0GRAD is the percentage precipitation gradient, and ∆elev is the elevation difference 18 

between the meteorological station and the elevation zone. 19 

The UBC model, then, adjusts the precipitation gradient according to the temperature, 20 

)(TSTGRADSNOWGRADRAIN −=        (3) 21 

where ST(T) is a parameter, which is affected by the stability of the air mass. The ST(T) 22 

parameter can be shown (Quick et al., 1995) that it is related to the square of the ratio of the 23 

saturated and dry adiabatic lapse rates, LS and LD, respectively i.e. 
2
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versus temperature reveals an almost linear variation between -30oC and +20oC. The 25 

gradient of this linear approximation is 0.01, so that ST(T) can be estimated as, 26 
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meanTTST ⋅= 01.0)(          (4) 1 

where Tmean is the mean daily temperature. 2 

The UBC watershed model has the capability of using three different precipitation gradients 3 

in a single watershed, namely P0GRADL, P0GRADM, P0GRADU. The low elevation 4 

gradient, P0GRADL, applies to elevations lower than the elevation E0LMID, whereas the 5 

upper elevation gradient, P0GRADU, applies above the elevation E0LHI and the mid-6 

elevation gradient, P0GRADM, applies to elevations between E0LMID and E0LHI. 7 

The temperature in the UBC watershed model is distributed over the elevation range of a 8 

watershed according to the temperature lapse rates. Two temperature lapse rates are specified 9 

in the UBC watershed model, one for the maximum temperature and one for the minimum 10 

temperature. Furthermore, the model recognizes two conditions, namely the rainy condition, 11 

and the clear sky and dry weather condition. Under the rainy condition, the lapse rate tends to 12 

be the saturated adiabatic rate. Under dry weather condition and during the warm part of the 13 

day, the lapse rate tends to be the dry adiabatic rate, whereas the lapse rate tends to be quite 14 

low and occasionally zero lapse rates may occur during dry weather and night. The lapse rate 15 

is calculated for each day using the daily temperature range (temperature diurnal range) as an 16 

index. A simplified energy budget approach, which is based on limited data of maximum and 17 

minimum temperature and can account for forested and open areas, and aspect and latitude, is 18 

used for the estimation of the snowmelt and glacier melt (Quick et al., 1995). 19 

The soil moisture accounting sub-routine represents the non-linear behaviour of a watershed. 20 

All the non-linearity of the watershed behavior is concentrated into the soil moisture 21 

accounting sub-routine which allocates the water from rainfall, snowmelt and glacier melt 22 

into four runoff components, namely, the fast or surface runoff, the medium or interflow 23 

runoff, the slow or upper zone groundwater runoff and the very slow or deep zone 24 

groundwater runoff. The impermeable area, which represents the rock outcrops, the water 25 

surfaces and the variable source saturated areas adjacent to stream channels, divides the water 26 

that reaches the soil surface after interception and sublimation into fast surface runoff and 27 

infiltrated water. The total impermeable area at each time step varies with soil moisture, 28 

mainly due to the expansion or shrinkage of the variable source riparian areas. The percentage 29 

of the impermeable areas of each elevation zone varies according the Equation (5): 30 
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where, C0IMPA is the maximum percentage of impermeable areas when the soil is fully 1 

saturated, S0SOIL is the soil moisture deficit in the elevation zone, and P0AGEN is a 2 

parameter which shows the sensitivity of the impermeable areas to changes in soil moisture. 3 

The water infiltrated into the soil must first satisfy the soil moisture deficit and the 4 

evapotranspiration and then continues to infiltrate into the groundwater or runs off as 5 

interflow. This process is controlled by the “groundwater percolation” parameter (P0PERC). 6 

The groundwater is further divided into an upper and deep groundwater zones by the “deep 7 

zone share” parameter (P0DZSH). This water allocation by the soil moisture accounting sub-8 

routine is applied to all watershed elevation zones. Each runoff component is then routed to 9 

the watershed outlet, which is achieved in the flow routing sub-routine. However, a different 10 

mechanism is employed in the case of high intensity rainfall events, which can produce flash 11 

flood runoff.  The runoff from these events is controlled by the soil infiltration rate. For these 12 

high intensity rainfall events, some of the rainfall infiltrates into the soil and is subject to the 13 

normal soil moisture budgeting procedure previously presented. The remaining amount of 14 

rainfall, which is not infiltrated into the soil, is considered to contribute to the fast runoff 15 

component, is called FLASHSHARE and is estimated by: 16 

( ) FMRPMXIMPPMXIMPFLASHSHARE ⋅−+= 1      (6) 17 

where, FMR is the percentage of the flash share, ranges from 0 to 1 and is estimated by : 18 
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and  PMXIMP is percentage of impermeable area of the elevation zone and is estimated by 20 

Equation (5), RNSM is the summation of rainfall, snowmelt and glacial melt of the time step, 21 

V0FLAS is a parameter showing the threshold value of precipitation for flash runoff, and 22 

V0FLAX is the parameter showing the maximum value of precipitation, which limits the  23 

FMR range. The last two parameters (i.e. V0FLAS and V0FLAX) take characteristic values 24 

for a given watershed and their values depend on the geomorphology of the watershed (e.g. 25 

land slope, impermeable areas). The flow routing, employed in the UBC watershed model, is 26 

linear and thus, significantly simplifies the model structure, conserves the water mass, and 27 

provides a simple and accurate water budget balance. The flow routing parameters are: the 28 

snowmelt and rainfall fast runoff time constants, P0FSTK, and P0FRTK, respectively, the 29 
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snowmelt and rainfall interflow time constants, P0ISTK, and P0IRTK, respectively, the upper 1 

groundwater time constant, P0UGTK, the deep zone groundwater time constant, P0DZTK, 2 

and the glacier melt fast runoff time constant, P0GLTK. 3 

The UBC watershed model has more than 90 parameters. However, application of the model 4 

to various climatic regions and experience have shown that only the values of 17 general 5 

parameters and two precipitation representation factors (e.g. P0SREP and P0RREP) for each 6 

meteorological station have to be optimised and adjusted during calibration, and the majority 7 

of the parameters take standard constant values. These varying model parameters can be 8 

separated into three groups: the precipitation distribution parameters (namely, P0SREP(i), 9 

P0RREP(i), P0GRADL, P0GRADM, P0GRADU, E0LMID  and E0LHI), the water allocation 10 

parameters (namely, P0AGEN, P0PERC, P0DZSH, V0FLAX and V0FLAS), and the flow 11 

routing parameters (namely, P0FSTK, P0FRTK, P0ISTK, P0IRTK, P0UGTK, P0DZTK, and 12 

P0GLTK). These parameters are optimized through a two-stage procedure. However, in this 13 

paper, the water allocation parameters and the flow routing parameters are given constant 14 

universal values, whereas the precipitation distribution parameters are estimated from the 15 

meteorological data and/or using the results of earlier regional studies on precipitation 16 

distribution with elevation, as will be presented below. The total number of model parameters 17 

for Upper Campbell and Astor watersheds are 19, for Illecillewaet and Yermasoyia are 23 and 18 

for Hunza are 21, as will be shown below. 19 

3.2 Methodology for ungauged watersheds 20 

The five study watersheds, initially, were treated as ungauged watersheds, assuming that 21 

streamflow measurements were not available. On the other hand, meteorological data were 22 

used from the available stations at each study watershed. The UBC watershed model was used 23 

to simulate the streamflow from the five study watersheds. Twelve (12) out of the 17 general 24 

varying model parameters were assigned constant universal values, which either estimated or 25 

taken as default (Table 2 and Table 3). This work uses the results of a recent paper (Micovic 26 

and Quick, 1999) that applied the UBC watershed model in twelve heterogeneous watersheds 27 

in British Columbia, Canada with different sizes of drainage area, climate, topography, soil 28 

types, vegetation coverage, geology, and hydrologic regime. Micovic and Quick (1999) found 29 

that averaged constant values could be assigned to most of the model parameters. Table 2 30 

shows the averaged values of the model parameters that mainly affect the time distribution of 31 

the runoff. 32 
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Additionally, the UBC watershed model water allocation parameters P0AGEN, V0FLAX, 1 

and V0FLAS were assigned the default values suggested in the manual of the model (Quick et 2 

al., 1995). The flow routing parameter of glacier runoff, P0GLTK, was assigned the value of 3 

rainfall fast flow routing parameter, P0FRTK, assuming that the response of the glacier runoff 4 

is similar to the response of the fast component of the runoff generated by rainfall. The values 5 

of these parameters are presented in Table 3. Apart from these parameters, the precipitation 6 

distribution parameters were estimated from the available meteorological data, separately for 7 

each watershed. This estimation procedure is described in the next paragraphs for each one of 8 

the five study watersheds. 9 

3.2.1 Estimation of model precipitation distribution parameters for Upper 10 

Campbell watershed 11 

Only one precipitation station was available in the Upper Campbell watershed. For this station 12 

the precipitation representation parameters for rainfall and snowfall, P0RREP and P0SREP, 13 

respectively, were set to zero. The results of earlier studies on the precipitation distribution 14 

with elevation in the coastal region of British Columbia (Loukas and Quick, 1994; Loukas 15 

and Quick, 1995) were used for assigning values of precipitation distribution model 16 

parameters. In these earlier studies, it was found that the precipitation increases 1.5 times 17 

from the coast up to an elevation, which equals about two-thirds of the elevation of the 18 

mountain peak, and then levels off at the higher elevations. Using this information, the low 19 

precipitation gradient, P0GRADL, was estimated from Equation (2), substituting as PRi,j,l the 20 

mean annual precipitation of the lower meteorological station located at 370 m, PRi,j,l+1 the 21 

increased 1.5 times the mean annual precipitation of the lower meteorological station, and 22 

∆elev the elevation difference between the elevation of the maximum precipitation (two-23 

thirds of the maximum mountain peak, 1490 m) and the elevation of the lower meteorological 24 

station (370 m) equals 1120 m. The estimated value of P0GRADL was estimated to be equal 25 

to 3.7%. The elevation where the maximum precipitation occurs (1490 m) defines the value of 26 

model parameter E0LMID. The middle and upper precipitation gradients (i.e. P0GRADM and 27 

P0GRADU) were set to zero. In this case, there was not necessary to define the model 28 

parameter E0LHI, because the precipitation was assumed constant above E0LMID elevation 29 

(1490 m). 30 
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3.2.2 Estimation of model precipitation distribution parameters for 1 

Illecillewaet watershed 2 

Three precipitation stations were available at the Illecillewaet watershed located at elevations 3 

of 443 m, 1323 m, and 1875 m, respectively. The model precipitation representation 4 

parameters for rainfall and snowfall and for all three stations were set to zero (i.e. P0RREP(1) 5 

= P0SREP(1) = P0RREP(2) = P0SREP(2) = P0RREP(3) = P0SREP(3) = 0). The low 6 

precipitation gradient, P0GRADL, was estimated from Equation (2) using the mean annual 7 

precipitation at the low and middle elevation stations, and the elevation difference between 8 

the two stations (∆elev=1323-443=880 m). P0GRADL was found equal to 6%.  Similarly, the 9 

middle precipitation gradient, P0GRADM, is estimated equal to 5.5%, considering the mean 10 

annual precipitation of the middle and upper elevation station. The upper precipitation 11 

gradient, P0GRADU, was set to zero. The parameter E0LMID was set equal to the elevation 12 

of the middle elevation station, which is 1323 m. The parameter E0LHI was set equal to the 13 

highest elevation of the watershed, 2480 m. 14 

3.2.3 Estimation of model precipitation distribution parameters for 15 

Yermasoyia watershed 16 

Precipitation data from three meteorological stations located at 70 m, 100 m, and 995m of 17 

elevation were available at Yermasoyia watershed. The precipitation representation 18 

parameters for snowfall and for all three stations were set equal to zero, because snowfall is 19 

rarely observed (i.e. P0SREP(1) =  P0SREP(2) = P0SREP(3) = 0). The annual precipitation 20 

data of the three stations were compared with the annual precipitation of other stations in the 21 

greater area of the watershed. This comparison showed that the three meteorological stations 22 

record 30% more annual rainfall than other stations located at similar elevations. For this 23 

reason the rainfall representation parameters for all three stations were set equal to -30% (i.e. 24 

P0RREP(1) = P0RREP(2) = P0RREP(3) = -30%). The low precipitation gradient, P0GRADL, 25 

was estimated using Equation (2) and the mean annual precipitation of the lower elevation 26 

station and the mean annual precipitation at the upper elevation station. The precipitation 27 

gradient between the two lower elevation stations is essentially zero, because of the small 28 

elevation difference. The lower precipitation gradient parameter, P0GRADL, was estimated 29 

equal to 4.9%.  The parameter E0LMID was set equal to the elevation of the upper elevation 30 

station, which is 995 m. The middle and the upper precipitation gradients, P0GRADM and 31 
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P0GRADU, respectively, were set equal to zero. This means that the simulation was 1 

performed with one precipitation gradient. In this case, there was not necessary to define the 2 

model parameter E0LHI. 3 

3.2.4 Estimation of model precipitation distribution parameters for Astor 4 

watershed 5 

In the Astor watershed, only the precipitation data of one meteorological station located at 6 

2630 m were available. For this reason and because there was not any information on the 7 

distribution of precipitation with elevation, all the model precipitation representation and 8 

distribution parameters, i.e. P0RREP, P0SREP, P0GRADL, P0GRADM, and P0GRADU, 9 

were set equal to zero. In this case, there was not necessary to define the model parameters 10 

E0LMID and E0LHI, which were set equal to zero. 11 

3.2.5 Estimation of model precipitation distribution parameters for 12 

Hunza watershed 13 

Daily precipitation data from two meteorological stations located at 1460 and 2405 m of 14 

elevation were available at Hunza basin. The mean annual precipitation at the two stations 15 

was estimated and indicated that the precipitation gradient between the two stations was 16 

essentially zero. For this reason and because there was not any information on the distribution 17 

of precipitation with elevation, all the model precipitation representation and distribution 18 

parameters were set equal to zero (i.e. P0RREP(1) = P0SREP(1) = P0RREP(2) = P0SREP(2) 19 

= P0GRADL = P0GRADM = P0GRADU = E0LMID = E0LHI = 0). 20 

3.3 Methodology for poorly gauged watersheds 21 

The streamflow is frequently measured for a limited period of time. These streamflow data are 22 

inadequate for peak flow analysis and validation of the simulated streamflow. Unfortunately, 23 

there are no specific guidelines about the precise calibration length of streamflow data needed 24 

for optimal hydrological model performance in poorly gauged watersheds (Seibert and Beven, 25 

2009). Several studies in gauged watersheds showed that for an acceptable rainfall-runoff 26 

model calibration a large calibration record which includes wet and dry years with at least 27 

eight years is needed for complex hydrologic models and the minimum requirements are one 28 

hydrological year (Sorooshian et al., 1983; Yapo et al., 1996; Duan et al., 2003). For example, 29 

Yapo et al. (1996) stated that for a reliable and acceptable model performance a calibration 30 
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period with at least eight years of data should be used for NWSRFS-SMA hydrologic model 1 

with 13 free parameters. Harlin (1991) suggests that from two up to six years of streamflow 2 

data are needed for optimal calibration of the HBV model with 12 free parameters. Xia et al. 3 

(2004) suggest that at least three years of streamflow data are required for successful 4 

application of their model (with seven parameters) at a case study in Russia. To this direction 5 

few studies investigate the use of limited number of observations for calibration periods 6 

shorter than one year. Brath et al., (2004) for flood peaks modelling using a continuous 7 

distributed rainfall-runoff model suggest that three months are minimum requirements for 8 

flood peak estimation. However, their best results are acquired with the use of one year 9 

continuous runoff data. Perrin et al. (2007) found that calibration of a simple runoff model 10 

(the GR4J model with four free parameters) is possible using about 100–350 observation days 11 

spread randomly over a longer time period including dry and wet conditions. These results 12 

were also verified by Seibert and Beven (2009) which showed that a few runoff 13 

measurements (larger that 64 values) can contain much of the information content of 14 

continuous streamflow time series. The problem of limited streamflow data might be tackled 15 

if the data are selected in an intelligent way (e.g. Duan et al., 2003; Wagener et al., 2003; 16 

Juston et al., 2009) or using information from other variables such as data from groundwater 17 

and snow measurements in a multiobjective context (e.g. Efstratiadis and Koutsoyiannis, 18 

2010; Konz and Seibert, 2010; Schaefli and Huss, 2011). The above studies give an indication 19 

of the potential value of limited observation data for constraining model prediction 20 

uncertainties even for ungauged basins. However, these studies indicated that the results 21 

diverse significantly between the watersheds, depend on the days chosen for taking the 22 

measurements, and misleading results could be obtained with the use of few streamflow data 23 

(Seibert and Beven, 2009). Furthermore, the employed conceptual hydrological models are 24 

simple and with small number of free parameters and more research is needed for complicate 25 

hydrological structures with larger than 10 parameters such as the UBC watershed model. In a 26 

recent study, the impact of calibration length in streamflow forecasting using an artificial 27 

neural network (ANN) and a conceptual hydrologic model the GR4J was assessed (Anctil et 28 

al., 2004b). The results showed that the hydrological model is more capable than ANNs for 1-29 

day-ahead flow forecasting using calibration periods less than one hydrological year due to its 30 

internal structure and similar results are obtained for calibration periods from one to five 31 

years. However, the ANN model outperformed the GR4J model for calibration periods larger 32 

than five years as a result of their flexibility (Anctil et al., 2004b). 33 
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Based on the above studies and discussion, it is difficult to define the minimum requirements 1 

for model (conceptual or black-box) calibration for poorly gauged watersheds. Furthermore, 2 

model accuracy may also depend on the climatic zone, an aspect that is rarely explicitly 3 

analysed. Therefore, we developed a methodology that can make use of limited streamflow 4 

information with the internal memory of a non-calibrated semi-distributed rainfall-runoff 5 

model and the predictive capabilities of ANNs for poorly gauged watersheds as defined in this 6 

study.  7 

3.3.1 UBC coupling with ANNs 8 

The coupling of the UBC watershed model with ANNs is described in this section. Artificial 9 

Neural Networks distribute computations to processing units called neurons or nodes, which 10 

are grouped in layers and are densely interconnected. Three different layer types can be 11 

distinguished: an input layer, connecting the input information to the network and not 12 

carrying any computation, one or more hidden layer, acting as intermediate computational 13 

layers, and an output layer, producing the final output. In each computational node or neuron, 14 

each one of the entering values (xi) is multiplied by a connection weight, (wji). Such products 15 

are then all summed with a neuron specific parameter, called bias (bj0), used to scale the sum 16 

of products (sj) into a useful range: 17 

∑
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A non linear activation function (sometimes called also transfer function) to the above sum is 19 

applied to each computational node producing the node output. Weights and biases are 20 

determined by means of a non-linear optimization procedure, called training that aims at 21 

minimizing an error function expressing the agreement between observations and ANN 22 

outputs. The mean squared error is usually employed as the learning function. A set of 23 

observed input and output (target) data pairs, the training data set, is processed repeatedly, 24 

changing the parameters of ANN until they converge to values such that each input vector 25 

produces outputs as close as possible to the observed output data vector.   26 

In this study, the following neural network characteristics were chosen for all ANN 27 

applications: 28 
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1) Structure of ANNs: Feedforward ANNs were used, which means that information passes 1 

only in one direction, from the input layer through the hidden layers up to the output layer, 2 

allowing only feedforward connections to adjacent layers. 3 

2) Training algorithm:  Back-propagation algorithm (Rumelhart et al., 1986) was employed 4 

for ANNs training.  In this training algorithm, each input pattern of the training data set is 5 

passed through the network from the input layer to the output layer.  The network output 6 

is compared with the desired target output, and the error according to the error function, E, 7 

is computed. This error is propagated backward through the network to each node, and 8 

correspondingly the connection weights are adjusted based on the Equation: 9 
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where ∆wji(n) and ∆wji(n-1) are the weight increments between the node j and i during the nth 11 

and (n-1)th pass or epoch. A similar equation is employed for correction of bias values. In 12 

Equation (9) the parameters ε and α are called learning rate and momentum, respectively. The 13 

learning rate is used to increase the chance of avoiding the training process being trapped in a 14 

local minimum instead of global minima, and the momentum factor can speed up the training 15 

in very flat regions of the error surface and help prevent oscillations in the weights. 16 

3) Activation function: The sigmoid function is used: 17 
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The sigmoid function is bounded between 0 and 1, is monotonic and nondecreasing function 19 

that provides a graded, nonlinear response. 20 

The UBC watershed model, as it has been previously discussed, distributes the rainfall and 21 

snowmelt runoff into four components, i.e. rainfall fastflow, snowmelt fastflow, rainfall 22 

interflow, snowmelt interflow, upper zone groundwater, deep zone groundwater and glacial 23 

melt runoff. These runoff components due to errors in measurements and inefficiently defined 24 

model parameters may not be accurately distributed affecting the overall performance of the 25 

hydrologic simulation. The UBC watershed model was using the parameters with values 26 

described in the previous subsection of the paper. In order to take advantage of the limited 27 

streamflow data and achieve a better simulation of the observed discharge, the runoff 28 

components of the UBC watershed model are introduced as input neurons into ANNs. During 29 
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the training period of ANNs the simulated total discharge of the watershed is compared with 1 

the observed discharge to identify the simulation error.   2 

The geometry or architecture of ANNs, which determines the number of connection weights 3 

and how these are arranged, depends on the number of hidden layers and the number of 4 

hidden nodes in these layers. In the developed ANNs, one hidden layer was used to keep the 5 

ANNs architecture simple (three-layer ANNs), and the number of the hidden nodes was 6 

optimized by trial and error. In this sense, the input layer of ANNs consists of four to seven 7 

input neurons, depending on the runoff generation mechanisms of the basin, one hidden layer 8 

with varying number of neurons, and one output layer with one neuron, which is the total 9 

discharge of the watershed (Fig. 2). Since, the various input data sets span different ranges 10 

and to ensure that all data sets or variables receive equal attention during training, the input 11 

data sets were scaled or standardized in the range of 0 and 1. In addition, the output variables 12 

were standardized in such a way as to be commensurate with the limits of the activation 13 

function used in the output layer. In this study, the sigmoid function (Eq. 10) was used as the 14 

activation or transfer function, the output data sets (watershed streamflow) were scaled in the 15 

range 0.1-0.9. The advantage of using this scaling range is that extreme high and low flow 16 

events, occurring outside the range of the training data, may be accommodated (Dawson and 17 

Wilby, 2001).   18 

However, the final network architecture and geometry were tested to avoid over-fitting and 19 

ensure generalization as suggested by Maier and Dandy (1998). For example, the total 20 

number of weights was always kept less than the number of the training samples and only the 21 

connections that had statistically significant weights were kept in the ANNs.  The developed 22 

ANNs were operated in batch mode, which means that the training sample presented to the 23 

network between the weight updates was equal to the training set size. This operation forces 24 

the search to move in the direction of the true gradient at each weight update, although 25 

requires large storage. The mean squared error was used as the minimized error function 26 

during the training. The initial values of weights for each node were set to a value, 
if

a
1= , 27 

where fi is the number of inputs for the node. The learning rate (ε in Eq. 9) was set fixed to a 28 

value of 0.005, whereas the momentum (α in Eq. 9) was set equal to 0.8 as suggested by Dai 29 

and Macbeth (1997).   30 
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3.3.2 Evaluation of the method 1 

For the four study watersheds, namely, Upper Campbell, Illecillewaet, Yermasoyia, and Astor 2 

watersheds, the first three years of streamflow record were assumed to be available for 3 

training of ANNs. In this sense, the observed streamflow used as target output of ANNs was 4 

the daily measured streamflow for the hydrological years 1983-84 to 1985-86 for Upper 5 

Campbell watershed, the streamflow data for the hydrological years 1970-71 to 1972-73 were 6 

considered for the Illecillewaet watershed, the data for the hydrological years 1986-87 to 7 

1988-89 were used for the Yermasoyia watershed and the streamflow for the hydrological 8 

years 1979-80 to 1981-82 were used for the Astor watershed. For the fifth catchment, the 9 

Hunza watershed, streamflow data for two hydrological years (1981-1982 and 1982-1983) 10 

were used for ANN training. The daily streamflow measurements for the remaining years of 11 

record were used for the validation of the methodology in each study watershed. The 12 

modelling procedure with this configuration is termed UBCANN or method with limited data. 13 

It should be noted that the early stopping technique was applied to UBCANN to prevent 14 

overfitting and to improve the generalization ability of the developed UBCANNs. The last 15 

year in each watershed of the training period was used as an indication of the error when 16 

ANN training should stop (test set).    17 

For comparison purposes, the UBCANN method was compared with the ungauged 18 

application of the UBC model which is termed UBCREG and with the classical calibration of 19 

the UBC model in poorly gauged watersheds using the same calibration period for each 20 

watershed as defined previously. The latter method is termed UBCCLA and is used for 21 

evaluation of the proposed coupling method UBCANN for poorly gauged watersheds. The 22 

UBC free parameters are optimized through a two stage procedure. At the first stage, a 23 

sensitivity analysis of each parameter is performed to estimate the range of parameter values 24 

for which the simulation results are the most sensitive. At the second stage, a Monte Carlo 25 

simulation is performed for each parameter of each group by keeping all other parameters 26 

constant. The parameter values are sampled from the respective parameter range defined in 27 

the first stage of the procedure (sensitivity analysis). The parameter value that maximizes the 28 

objective function is put in the parameter file and the procedure is repeated for the next 29 

parameter of the group and then for the parameters of the next group. The procedure starts 30 

with the optimization of the precipitation distribution parameters and ends with the 31 
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optimization the flow routing parameters. The objective function of the above calibration 1 

procedure is defined as: 2 

obs

sim

V

V
NSEEOPT −−= 1         (11) 3 

where Vsim and Vobs are the simulated and the observed flow volumes, respectively and NSE is 4 

the Nash-Sutcliffe Efficiency (Nash and Sutcliffe, 1970) defined as: 5 
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where, iQobs is the observed flow on day i, iQsim is the simulated flow on day i, Qobs  is the 7 

average observed flow and n is the number of days for the simulation period. The evaluation 8 

of all the applied methods is based on combination of graphical results, statistical evaluation 9 

metrics, and normalized goodness-of-fit statistics. Furthermore, a comprehensive procedure 10 

proposed by Ritter and Muñoz-Carpena (2013) for evaluating model performance is tested to 11 

all applied methods. Approximated probability distributions for NSE and Root Mean Square 12 

Error are derived with bootstrapping followed by bias corrected and enhanced calculation of 13 

confidence intervals. The statistical hypothesis testing of the indicators is done using 14 

threshold values to compare model performance. More details on the evaluation protocol 15 

could be found in Ritter and Muñoz-Carpena (2013). 16 

Finally, the streamflow simulation results of the applied methods for ungauged and poorly-17 

gauged watersheds were used for frequency analysis of the annual maximum peak flows. This 18 

analysis was performed only for the watersheds which have streamflow data for at least six 19 

(6) consecutive years. Based on these criteria, Hunza watershed is excluded for this 20 

comparison. The estimated peak flows were compared with the observed peak flows of the 21 

four study watersheds (Upper Campbell, Illecillewaet, Yermasoyia and Astor). Furthermore, 22 

the results of frequency analysis of the estimated peak flow by the two methodologies were 23 

compared to the results of frequency analysis of the observed peak flows. The frequency 24 

analysis was performed using the Extreme Value Type I theoretical distribution (EVI) due to 25 

the small sample of the streamflow observations, and due to its simple two-parameter 26 

estimation procedure. This distribution is a special case of the Generalized Extreme Value 27 

(GEV) distribution and the GEV distribution is considered in a recent study as a potential 28 
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pan-European flood frequency distribution (Salinas et al., 2013a). Furthermore the EVI has 1 

proven to give satisfactory and acceptable results for return periods less than 50 yr and 100 2 

years, respectively, in estimating hydrometeorological extremes (Koutsoyiannis, 2004). 3 

 4 

4 Application and results 5 

The daily streamflow of the five study watersheds was simulated using the two proposed 6 

methodologies for ungauged watersheds and poorly gauged watersheds. The simulated and 7 

observed hydrographs compared graphically and statistically. Five statistical indices were 8 

used to assess the accuracy and performance of the two simulation methods, namely, the NSE, 9 

the percent runoff volume error 100% ×−=
Vobs

VobsVsim
DV , the correlation coefficient (CORR) 10 

between the simulated and the observed flows, the root mean square error (RMSE, in m3/s) 11 

between the simulated and the observed flows: 12 
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and the average percent error of the maximum annual flows: 14 
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where, jMaxQsim is the simulated maximum annual flow of year j, jMaxQobs is the observed 16 

maximum annual flow of year j, and k is the number of hydrological years of the simulation 17 

period.   18 

The model efficiency (NSE) is widely used in hydrological simulation studies. It compares the 19 

scale and the shape of the simulated and the observed hydrographs and its optimal value is 1.  20 

The percent runoff volume (%DV) is a scale parameter and measures the percent error in 21 

volume under the observed and the simulated hydrographs for the period of simulation. 22 

Positive values of %DV indicate overestimation of the observed runoff volume, negative 23 

values of %DV indicate underestimation of the observed runoff volume, and %DV equal to 24 

zero indicate perfect agreement between simulated and observed runoff volumes. The 25 

correlation coefficient (CORR) is a shape statistical parameter that measures the linear 26 
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correlation between the observed and simulated flows with optimal value of 1. The root mean 1 

square error (RMSE) measures the residual or error variance between the simulated and the 2 

observed flows and its optimal value is 0. The average percent error of the maximum annual 3 

flows (%AMAFE) estimates the average percent error in the simulation of the maximum 4 

annual peak flows for the simulation period. Positive values of %AMAFE show, an average 5 

overestimation of the maximum annual flow, whereas negative values indicate, on average, 6 

underestimation of the maximum annual flow.  Its optimal value is 0. 7 

The five study watersheds, firstly, were treated as ungauged and the UBCREG methodology 8 

for ungauged watersheds was applied. The daily streamflows of the study watersheds were 9 

simulated using the uncalibrated UBC watershed model with the estimated values of model 10 

parameters presented previously. The results of these simulations are shown in Fig. 3 and 11 

Table 4. The simulation was performed for the whole period of available data in each study 12 

watershed since the UBC watershed model was uncalibrated and thus, the whole simulation 13 

period is a validation period for the performance of the method. However, the training and 14 

validation periods indicated in Fig. 3 and Table 4 are indicated for comparison with the results 15 

of the second methodology intended for use in poorly gauged watersheds with limited 16 

streamflow measurements. 17 

The graphical and the statistical comparison of the simulated hydrographs with the observed 18 

hydrographs (Fig. 3 and Table 4) show that, in general, the ungauged UBCREG method 19 

estimates with reasonable accuracy the observed hydrograph. For Upper Campbell watershed, 20 

the value of CORR (CORR = 0.84) indicates that the method reproduced the shape of the 21 

observed hydrograph reasonably well but the annual peak streamflows were severely 22 

underestimated (%AMAFE = -32.06% in Table 4). The method performed better in the 23 

Illecillewaet watershed, for which there was a significant improvement in the simulation of 24 

hydrograph (NSE = 0.84 and CORR = 0.96 in Table 4). However, in the Illecillewaet, the 25 

method overestimated the total runoff volume and the maximum annual peak flows (%DV = 26 

14.63% and %AMAFE = 11.26% in Table 4). The simulation results for the Yermasoyia 27 

watershed indicate that the method reproduced reasonably well the shape and scale of the 28 

hydrograph (NSE = 0.73 and CORR = 0.87 in Table 4), but overestimates the runoff volume 29 

and the annual peak discharge (%DV = 11.45% and %AMAFE = 9.85% in Table 4). The 30 

overall worst simulation results were acquired in the Astor watershed, although the annual 31 

peak flows were, on average, overestimated (%AMAFE = 6.3%), the runoff volume was 32 
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underestimated (%DV = -7.68%), leading to small but acceptable value of model efficiency 1 

(NSE = 0.68) (Table 4). On the other hand, the best simulation results were found for the 2 

Hunza watershed. The statistical indices (Table 4) and the graphical comparison of the 3 

simulated and the observed hydrographs (Fig. 3) indicate that the shape and scale of the 4 

observed hydrograph were reasonably reproduced. 5 

The above results indicate that the simulation accuracy heavily depends on the quality and 6 

availability of meteorological data. This is obvious from the simulation results for 7 

Illecillewaet watershed (Fig. 3b and Table 4). This watershed has three high quality 8 

meteorological stations and the hydrograph shape was simulated with improved accuracy, 9 

although the runoff volume and the annual peak flows were overestimated (Table 4). The 10 

performance of the method, also, seems to be dependant on the runoff generation 11 

mechanisms. Comparatively, better simulation results have acquired for watersheds that the 12 

runoff is mainly generated by snowmelt and glacier melt than for watersheds where rainfall 13 

runoff is the dominant runoff generation mechanism. For example, the runoff simulation 14 

statistics for the Yermasoyia watershed is similar to the simulation statistics for the Upper 15 

Campbell watershed, although data from three precipitation stations were used for streamflow 16 

simulation of the small Yermasoyia watershed (157 km2) and only one precipitation station 17 

was used in Upper Campbell watershed, which is larger in area (1194 km2). Furthermore, the 18 

best simulation results have been achieved for the Hunza and Illecillewaet watersheds (13100 19 

km2 and 1150 km2 in area, respectively). The runoff in Yermasoyia watershed is generated by 20 

rainfall, whereas snowmelt is a significant percentage of total runoff in Upper Campbell. On 21 

the other hand, more than 90% of the runoff in Hunza basin is generated by glacier melting, 22 

whereas snowmelt and glacier melt produces the majority of runoff in Illecillewaet watershed.  23 

The spatial variability of rainfall is much larger than the variability of snowfall. Also, the 24 

precipitation gradients are steeper and more consistent for snowfall than rainfall (Loukas and 25 

Quick, 1994; 1995). Hence, larger number of precipitation stations is necessary in watersheds, 26 

where rainfall-runoff is the dominant runoff generation mechanism, in order to capture the 27 

spatial variability of rainfall and better simulate the streamflow (Brath et al., 2004). However, 28 

keeping in mind the very limited number of meteorological stations and data used, the overall 29 

results of the UBCREG methodology are judged satisfactory and show that the UBC 30 

watershed model can simulate reasonably well the watershed streamflow in various climatic 31 

and hydrological regions with a universal set of model parameters and making assumptions of 32 

precipitation stations representativeness and precipitation distribution. 33 
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The second proposed UBCANN methodology for poorly gauged watersheds was applied to 1 

the five study watersheds, assuming that only two or three years of daily streamflow data 2 

were available. The UBC watershed model was, firstly, run as in the first methodology for the  3 

years that streamflow data were assumed to be available and the calculated runoff components 4 

were used as input to ANNs. The ANNs were optimized and trained for this initial period and 5 

then, the UBC watershed model coupled with the trained ANNs was run and validated for the 6 

remaining period for validation. The final geometry or architecture of the optimized ANNs for 7 

the five study watersheds is presented in Table 5. Fig. 3 and Table 6 present the simulation 8 

results for the training and validation periods of the UBCANN methodology at the five study 9 

watersheds. Comparison of the graphical (Fig. 3) and statistical results (Tables 4 and 6) 10 

indicate that the coupling of UBC watershed model with ANNs greatly improves the 11 

simulation of hydrographs and maximum annual streamflow in all five watersheds over the 12 

first methodology. The discussion will be focused on comparison of the validation periods of 13 

UBCANN application since the ANNs of this methodology were optimized during the 14 

training period and an improvement in the simulation results is expected. Furthermore, to 15 

investigate the suitability of the UBCANN method for poorly gauged watersheds the classical 16 

calibration method of the hydrological model is applied and compared. Table 7 presents the 17 

results of the UBCCLA method as benchmark model for watersheds with limited information. 18 

The simulation results of the UBCANN method for Upper Campbell watershed indicate that 19 

although there is significant improvement in the prediction of runoff volume and maximum 20 

annual peak flows (Table 6), the model efficiency (NSE=0.68) has the same value with the 21 

first method (Table 4). On the other hand, the runoff simulation is greatly improved in the 22 

other four study watersheds. All statistical indices of the hydrological simulation have been 23 

improved in Illecillewaet, Yermasoyia, and Astor watersheds (Table 6). Only, the percent 24 

runoff volume error (%DV=-11.26% in Table 6) is not improved over the results of the 25 

UBCREG method (%DV=0.25% in Table 4) for Hunza watershed. The improvement of the 26 

hydrograph simulation leads to better estimation of runoff volume and peak streamflow. The 27 

improvement of runoff simulation with the second methodology depends upon the volume 28 

and the range of the available streamflow data, since ANNs are a data intensive technique. 29 

When the available data cover a large range of streamflows, then the trained ANNs can 30 

accurately and efficiently simulated the unknown streamflows. 31 
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Application of the UBCCLA method shows that UBC is a reliable hydrological model in 1 

streamflow modelling at diverse climatic environments since the statistics are improved using 2 

streamflow data for calibration (Table 7). However, from Tables 6 and 7 it is difficult to 3 

assess the superiority of the UBCANN method with the UBCCLA method. For example, the 4 

validation NSE values show that the UBCANN method in Yermasoyia and Astor watersheds 5 

greatly outperforms the UBCCLA method, in Upper Campbell and Illecillewaet is marginally 6 

inferior than the UBCCLA method and in Hunza watershed both methods perform similarly 7 

(Tables 6 and 7). These contradictory results are also in agreement with the study of Anctil et 8 

al. (2004b) which showed that similar results are obtained using a simple hydrological model 9 

and an ANN rainfall-runoff model for calibration periods from one to five years. For this 10 

reason the evaluation tool developed by Ritter and Muñoz-Carpena (2013) was used to assess 11 

the two methods for poorly gauged watersheds. Figs. 4-8 present the comprehensive 12 

validation results of the UBCANN and UBCCLA methods for the study watersheds. These 13 

figures show the scatterplots of observed and simulated values with the 1:1 line, the values of 14 

NSE and RMSE and their corresponding confidence intervals (CI) at 95%, the qualitative 15 

goodness-of-fit interpretation of NSE based on the established classes; and the verification of 16 

the presence of bias or the possible presence of outliers. Approximated probability 17 

distributions of NSE and RMSE were obtained by block blockstrapping with the bias corrected 18 

and accelerated method, which adjusts for both bias and skewness in the bootstrap 19 

distribution. The calculation procedure of these figures is described analytically in Ritter and 20 

Muñoz-Carpena (2013). Careful examination of scatterplots, NSE classes and 95% CI of the 21 

selected evaluation metrics NSE and RMSE showed that the UBCANN method is less 22 

effective in streamflow modelling than the UBCCLA in two watersheds (Fig. 4 and Fig. 5) 23 

whereas in the other three watersheds is superior than the UBCCLA method (Figs. 6-8). For 24 

these watersheds no prior information was used for the distribution of precipitation 25 

distribution and ANNs with input the UBC flow components showed great skills in 26 

reproducing the daily streamflow patterns. However, in cases where prior hydrological 27 

knowledge was incorporated in the UBC model such as in the two Canadian watersheds 28 

ANNs showed similar capabilities with UBCCLA approach due to expert knowledge 29 

“optimization” of the ungauged UBC flow components.  30 

The second step of the analysis was to compare the simulated and observed maximum annual 31 

peak flows and to perform a simple frequency analysis using the EVI theoretical distribution. 32 

It should be noted that the EVI distribution was selected to demonstrate the employed 33 
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methods for ungauged and poorly gauged watersheds and other candidate distributions could 1 

be used. This analysis was performed only for the four study watersheds (Upper Campbell, 2 

Illecillewaet, Yermasoyia and Astor) which have streamflow data for at least six (6) 3 

consecutive years. Application of the non-parametric Kolmogorov-Smirnov test for checking 4 

the adequacy of the selected distribution with the observed and simulated values showed that 5 

the EVI distribution is acceptable at 5% significance level for all observed and simulated 6 

streamflow values at the study watersheds. Fig. 9 shows the comparison of the fitted EVI 7 

distributions using the three methodologies (UBCREG, UBCANN and UBCCLA) with the 8 

observed data and the fitted observed EVI for the four study watersheds. For Upper Campbell 9 

watershed these results indicate that the methodology for ungauged watersheds 10 

underestimates the observed maximum annual peak flows. Comparison of the UBCANN and 11 

UBCCLA methods for flood frequency estimation in poorly gauged basins showed that high 12 

peak flows are more accurately represented by the UBCANN method (Table 8 and Fig. 9a). 13 

Peak flow frequency analysis for Illecillewaet watershed indicates that the UBCREG 14 

methodology overestimate the observed peak flows. The best flood frequency curves for this 15 

watershed is acquired with the use UBCANN method whereas the UBCCLA method 16 

underestimates the peak flows for all examined return periods (1-100 years) (Table 8 and Fig. 17 

9b).  Peak flow frequency analysis, for the poorly gauged Yermasoyia watershed, shows again 18 

the superiority of the UBCANN method against the UBCCLA method. Flood frequency 19 

analysis of the UBCREG method suggests that caution is required for flood modelling since 20 

the method significantly underestimates the observed peak flows (Table 8 and Fig. 9c). 21 

Finally, in Astor watershed, all applied methods perform similarly and the flood frequency 22 

estimation using simulated values underestimates the observed flows at larger return periods 23 

(Table 8 and Fig. 9c). However, the simulated peak flows using the methodology for 24 

ungauged watershed underestimates the observed peak flows except for the maximum annual 25 

peak of the last hydrological year of record 1996-97 (Fig. 3). For this particular year, the 26 

method severely overestimates the maximum annual peak flow. The result is that the 27 

estimated peak flows with return periods of 25-, 50-, and 100-years are quite similar with the 28 

applied methods for poorly gauged watersheds (Table 8). Overall the coupling of ANNs with 29 

the ungauged UBC flow model components is considered an improvement and an alternative 30 

method over the conventional calibration of a hydrological model with limited streamflow 31 

information based on the evaluation criteria employed for streamflow modelling and flood 32 

frequency estimation. 33 



 29 

 1 

5 Conclusions 2 

Rainfall-runoff modelling procedures for ungauged and poorly gauged watersheds are 3 

developed in this study. A well established hydrological model (Singh, 2012), the UBC 4 

watershed model, is selected and applied in five different river basins located in Canada, 5 

Cyprus and Pakistan. Catchments from cold, temperate, continental and semiarid climate 6 

zones are included to demonstrate the developed procedures. Two methodologies for the 7 

modelling of streamflow are proposed and analysed. The first methodology, proposed for 8 

ungauged watersheds, uses the UBC watershed model with a set of universal constant values 9 

of model parameters and making assumptions and estimates about the representativeness of 10 

precipitation stations and precipitation distribution. This methodology requires good 11 

description of the watershed (area, elevation bands, vegetation coverage, soils, etc) and 12 

limited meteorological stations and data to estimate the distribution of precipitation over the 13 

elevation range of the watershed or even regional information about the orographic 14 

precipitation gradients of a watershed. The second methodology is an extension of the first 15 

method and couples the UBC watershed model with ANNs. This method is proposed for 16 

poorly gauged watersheds. The limited streamflow data are intended for training of ANNs. 17 

For comparison purposes, this method is compared with the classical calibration of the UBC 18 

model in poorly gauged watersheds. The evaluation of all the applied methods is based on 19 

combination of graphical results, statistical evaluation metrics, and normalized goodness-of-20 

fit statistics. 21 

Application of the employed methods to five watersheds having areas ranging from 157 to 22 

13100 km2, different runoff generation mechanisms, and located in various climatic regions of 23 

the world, resulted in reasonable results for the estimation of streamflow hydrograph and peak 24 

flows. The first methodology for ungauged watersheds performed quite well, despite the very 25 

limited available meteorological data. The second hybrid method is a significant improvement 26 

of the first methodology because it takes advantage of the even limited streamflow 27 

information. The coupling of the UBC regional model with ANNs provides a good alternative 28 

to the classical application (UBC calibration and validation), without the need of optimizing 29 

UBC model parameters. The ANNs coupled to the UBC watershed model improve the 30 

streamflow modelling at poorly gauged basins. Furthermore, using the non-calibrated UBC 31 

flow components as input to ANNs in a coupling or hybrid procedure combines the flexibility 32 



 30 

and capability of ANNs in nonlinear modelling with the conceptual representation of the 1 

rainfall-runoff process acquired by a hydrological model. Hence, the black-box constraints in 2 

ANN modelling of the rainfall-runoff are minimised. Overall the coupling of ANNs with the 3 

regional UBC flow model components is considered as a successful alternative method over 4 

the conventional calibration of a hydrological model with limited streamflow information 5 

based on the employed evaluation criteria for streamflow modelling and flood frequency 6 

estimation. In the future the two methodologies should be compared with other regional 7 

techniques or hydrologic models and could be applied in other regions to generalise the 8 

results. Also, a step further could be a more rigorous estimation of flood frequency 9 

incorporating also the uncertainty of the state variables. 10 
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Table 1. Characteristics of the five study watersheds. 1 

Watershed 

 

Location/Country Drainage 

Area 

(km2) 

Elevation 

Range  

(m) 

Climate  

Type 

Mean Annual 

Precipitation 

(mm) 

Mean Annual 

Discharge 

(m3/s) 

Main Runoff 

Generation 

Mechanisms  

Meteorological Station 

Availability  

(Station Elevation, m) 

Upper 

Campbell 

Coastal British 

Columbia/Canada 

1194 180-2235 Pacific 

Maritime 

2000 71 Rainfall - 

Snowmelt 

1 P.S.*(370) 

2 T.S.* (370, 1470) 

Illecillewaet Southwestern 

British 

Columbia/Canada 

1150 440-2480 Continental 2100 53 Snowmelt 3 P.S. (443, 1323, 1875) 

3 T.S. (443, 1323, 1875) 

Yermasoyia Cyprus 157 70-1400 Mediterranean 640 0.5 Rainfall 3 P.S. (70, 100, 995) 

1 T.S. (70) 

Astor Himalayan 

Range/Pakistan 

3955 2130-7250 Himalayan 

Alpine 

700 120 Snowmelt – 

Glacier melt 

1 P.S. (2630) 

1 T.S. (2630) 

Hunza Karakoram 

Range/Pakistan 

13100 1460-7885 Continental 

Alpine 

150 360 Glacier melt 2 P.S. (1460, 2405) 

1 T.S. (1460) 

*P.S. denotes Precipitation Station, T.S. denotes Temperature Station 2 
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 1 

Table 2. Averaged values for the parameters of UBC watershed model affecting the time 2 

distribution of runoff (Micovic & Quick, 1999).  3 

Model 

Parameter 

P0PERC 

(mm/day) 

P0DZSH P0FRTK 

(days) 

P0FSTK 

(days) 

P0IRTK 

(days) 

P0ISTK 

(days) 

P0UGT

K (days) 

P0DZTK 

(days) 

Value 25 0.30 0.6 1 3 4 20 150 

 4 

Table 3. Default values for the water allocation and flow routing parameters of UBC 5 

watershed model.  6 

Model 
Parameter 

P0AGEN 
(mm) 

V0FLAX 
(mm) 

V0FLAS  

(mm) 

P0GLTK 
(days) 

Value 100 1800 30 0.6 
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Table 4. Statistical indices of streamflow simulation with the proposed methodology for 1 

ungauged watersheds – UBCREG method. 2 

Watershed Hydrologic 

Period 

NSE %DV 

(%) 

CORR RMSE 

(m3/s) 

%AMAFE 

(%) 

1983-1986 0.72 -7.80 0.85 39.9 -27.6 

1986-1990 0.68 -3.93 0.83 41.9 -35.4 

 

Upper 

Campbell 1983-1990 0.70 -5.56 0.84 41.0 -32.1 

1970-1973 0.89 12.03 0.96 20.9 7.3 

1973-1990 0.83 15.09 0.96 23.8 11.9 

 

Illecillewaet 

1970-1990 0.84 14.63 0.96 23.4 11.3 

1986-1989 0.78 14.94 0.88 0.85 -20.0 

1989-1997 0.68 8.91 0.86 0.60 21.1 

 

Yermasoyia 

1986-1997 0.73 11.45 0.87 0.67 9.85 

1979-1982 0.76 -6.15 0.90 63.2 -0.06 

1982-1988 0.65 -8.68 0.82 84.7 9.48 

 

Astor 

1979-1988 0.68 -7.84 0.84 78.2 6.30 

1981-1983 0.86 5.82 0.95 172.7 9.65 

1983-1985 0.90 0.25 0.95 171.5 1.03 

 

Hunza 

1981-1985 0.88 2.80 0.94 172.1 5.34 
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Table 5. Geometry of optimized ANNs used in the methodology for poorly gauged 1 

waterhseds.  2 

Number of neurons Watershed 

Input Layer Hidden Layer Output Layer 

Upper 
Campbell 

6 

(rainfall fastflow, snowmelt 
fastflow, rainfall interflow, 

snowmelt interflow, upper zone 
groundwater, deep zone 

groundwater) 

4 1 

Illecillewaet 7 

(rainfall fastflow, snowmelt 
fastflow, rainfall interflow, 

snowmelt interflow, upper zone 
groundwater, deep zone 

groundwater, glacial melt 
runoff) 

7 1 

Yermasoyia 4 

(rainfall fastflow, rainfall 
interflow, upper zone 

groundwater, deep zone 
groundwater) 

3 1 

Astor 7 

(rainfall fastflow, snowmelt 
fastflow, rainfall interflow, 

snowmelt interflow, upper zone 
groundwater, deep zone 

groundwater, glacial melt 
runoff) 

5 1 

Hunza 5 

(rainfall fastflow, snowmelt 
fastflow, upper zone 

groundwater, deep zone 
groundwater, glacial melt 

runoff) 

5 1 
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Table 6. Statistical indices of streamflow simulation with the proposed methodology for 1 

poorly gauged watersheds – UBCANN method. 2 

Watershed Hydrologic 

Period 

NSE %DV 

(%) 

CORR RMSE 

(m3/s) 

%AMAFE 

(%) 

Training 

1983-1986 0.82 -0.69 0.91 31.7 -16.6 

 

Upper 

Campbell Validation 

1986-1990 0.68 0.47 0.84 42.5 -14.9 

Training 

1970-1973 0.97 -0.04 0.98 10.9 -11.2 

 

Illecillewaet 

Validation 

1973-1990 0.90 2.11 0.96 18.2 8.98 

Training 

1986-1989 0.91 2.71 0.95 0.55 -15.5 

 

Yermasoyia 

Validation 

1989-1997 0.80 -4.15 0.90 0.48 -12.7 

Training 

1979-1982 0.94 -1.40 0.97 30.7 -8.31 

 

Astor 

Validation 

1982-1988 0.79 -3.05 0.89 64.4 15.1 

Training 

1981-1983 0.94 -0.86 0.97 113.1 -0.41 

 

Hunza 

Validation 

1983-1985 0.91 -11.26 0.96 158.9 -4.45 

 3 
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Table 7. Statistical indices of streamflow simulation with the classical methodology for 1 

poorly gauged watersheds – UBCCLA method. 2 

Watershed Hydrologic 

Period 

NSE %DV 

(%) 

CORR RMSE 

(m3/s) 

%AMAFE 

(%) 

Calibration 

1983-1986 0.75 -2.36 0.87 37.4 -14.6 

 

Upper 

Campbell Validation 

1986-1990 0.70 1.47 0.84 40.9 -24.2 

Calibration 

1970-1973 0.95 -0.93 0.98 13.5 -0.22 

 

Illecillewaet 

Validation 

1973-1990 0.92 1.38 0.96 16.7 0.91 

Calibration 

1986-1989 0.83 -0.22 0.91 0.75 -16.1 

 

Yermasoyia 

Validation 

1989-1997 0.73 -2.21 0.88 0.55 26.1 

Calibration 

1979-1982 0.82 -0.08 0.91 55.1 -9.98 

 

Astor 

Validation 

1982-1988 0.70 0.32 0.83 79.0 -0.41 

Calibration 

1981-1983 0.93 -4.43 0.96 122.4 -7.88 

 

Hunza 

Validation 

1983-1985 0.91 -2.07 0.96 165.5 -12.1 
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Table 8. Flood frequency estimation using annual maximum peak flows (m3/s). 1 

Return Period  

(Years) 

Fitted EVI  

Observed data 

Fitted EVI  

UBCREG  

Fitted EVI 

UBCANN 

Fitted EVI 

UBCCLA 

Upper Campbell watershed 

25 1061 713 963 926 

50 1167 787 1071 1018 

100 1272 859 1179 1110 

Illecillewaet watershed 

25 390 436 393 352 

50 421 471 421 378 

100 452 506 450 404 

Yermasoyia watershed 

25 33.7 26.2 35.2 29.5 

50 39.6 30.3 41.6 34.4 

100 45.4 34.5 47.9 39.3 

Astor watershed 

25 934 800 809 793 

50 1036 871 875 851 

100 1137 941 940 909 
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Figure 1.  Flow diagram of the UBC Watershed model.  2 
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Figure 2. Typical ANN geometry for combining the outputs of the UBC Watershed model in 3 

the methodology for poorly gauged watersheds. 4 
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 1 

Figure 3. Comparison of observed and simulated hydrographs for a) Upper Campbell, b) 2 

Illecillewaet, c) Yermasoyia, d) Astor and e) Hunza watersheds. 3 
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e) 
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 1 

 2 

Figure 4. Goodness-of-fit evaluation for validation period (1986-1990) at Upper Campbell 3 

watershed a) UBCANN method, b) UBCCLA method. 4 

 5 

a)  
 

b)  
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 1 

  2 

Figure 5. Goodness-of-fit evaluation for validation period (1973-1990) at Illecillewaet 3 

watershed a) UBCANN method, b) UBCCLA method. 4 

a)  
 

b)  
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  2 

Figure 6. Goodness-of-fit evaluation for validation period (1989-1997) at Yermasoyia 3 

watershed a) UBCANN method, b) UBCCLA method. 4 

a)  
 

b)  
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Figure 7. Goodness-of-fit evaluation for validation period (1989-1997) at Astor watershed a) 3 

UBCANN method, b) UBCCLA method. 4 

a)  
 

b)  
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  2 

Figure 8. Goodness-of-fit evaluation for validation period (1989-1997) at Hunza watershed a) 3 

UBCANN method, b) UBCCLA method. 4 

 5 

 6 

a)  
 

b)  
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 3 

Figure 9. Flood frequency estimation for a) Upper Campbell, b) Illecillewaet, c) Yermasoyia, 4 

and d) Astor watersheds. 5 
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