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Abstract

Debris flows and flash floods are often preceded by intense, convective rainfall. The
establishment of reliable rainfall thresholds is an important component for quantitative
hazard and risk assessment, and for the development of an early warning system. Tra-
ditional empirical thresholds based on peak intensity, duration and antecedent rainfall5

can be difficult to verify due to the localized character of the rainfall and the absence of
weather radar or sufficiently dense rain gauge networks in mountainous regions. How-
ever, convective rainfall can be strongly linked to regional atmospheric patterns and
profiles. There is potential to employ this in empirical threshold analysis.

This work develops a methodology to determine robust thresholds for flash floods10

and debris flows utilizing regional atmospheric conditions derived from ECMWF ERA-
Interim reanalysis data, comparing the results with rain gauge derived thresholds. The
method includes selecting the appropriate atmospheric indicators, categorizing the po-
tential thresholds, determining and testing the thresholds. The method is tested in the
Ubaye Valley in the southern French Alps (548km2), which is known to have localized15

convection triggered debris flows and flash floods. This paper shows that instability of
the atmosphere and specific humidity at 850hPa are the most important atmospheric
indicators for debris flows and flash floods in the study area. Furthermore, this paper
demonstrates that atmospheric reanalysis data is an important asset, and could re-
place rainfall measurements in empirical exceedence thresholds for debris flows and20

flash floods.

1 Introduction

A key component in risk assessments for natural hazards is quantifying the probability
of occurrence in relation to specific intensities of the hazardous events. Intense short
duration precipitation, long-lasting rainfall, and snowmelt are all potential triggers for25

hydro-meteorological hazards in mountainous areas in Europe (Brunetti et al., 2013;
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Sene, 2013). However, while rainfall is often an important element in triggering hydro-
meteorological hazards, the actual atmospheric conditions are often complex, with very
localized rainfall.

In the European Alps and Mediterranean region, debris flows are generally caused
by heavy rainfall from either intense convection, or sustained heavy frontal rainfall5

(Tarolli et al., 2012). Antecedent conditions, such as previous rainfall, snowmelt and
evaporation, are also important, however they are often not collected or incorporated
into the threshold (Guzzetti et al., 2008). Debris flows can be generated by a number
of different causes, such as liquefaction of the toe part of landslides, blocking of chan-
nels, and accelerated erosion along gullies. Heavy rainfall may trigger debris flows and10

flash floods in the same channels filled with sediments (van Asch et al., 2013), and
both events can be approached similarly in the threshold analysis. Within this paper
we refer to rapid instantaneous events such as debris flows or flash floods as flash
events.

The role of rainfall in triggering debris flows and flash floods can be examined using15

physically based models (e.g. Quan Luna et al., 2011; van Asch et al., 2013). Through
the use of hydrologic and stability models, these physical models take into account not
only rainfall, but other factors such as pore pressure and slope stability (Aleotti, 2004).
However, the models can be computationally costly and require extensive parameteri-
zation and calibration. Therefore, the application of such models is often only feasible20

for relatively small areas, such as a single torrent or a few square kilometres (Brunetti
et al., 2013).

For larger areas (tens of square kilometres upwards), empirical rainfall thresholds
are more frequently used (e.g. Aleotti, 2004; Giannecchini, 2006; Frattini et al., 2009;
Brunetti et al., 2010; Berti et al., 2012). Thresholds define minimum or maximum con-25

ditions of one or more triggering factors for a particular hazardous event (Frattini et
al., 2009). The research focus in this field recently has been towards the develop-
ment of objective and reproducible thresholds (Guzzetti et al., 2008). Methods include
Bayesian inference, where the parameters of the threshold are fit using a probability
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approach (Guzzetti et al., 2007), and a Frequentist approach, based on the frequency
of conditions that have resulted in landslides (Brunetti et al., 2010). A detailed review
of empirical thresholds for debris flows and landslides can be found in Guzzetti et al.
(2008).

For debris flows a typical approach is to define a threshold based on the intensity,5

duration or antecedent rainfall amounts (Guzzetti et al., 2008). The general form of the
rainfall threshold is as below (Eq. 1), with three examples from Caine (1980) (Eq. 2),
Guzzetti et al. (2008) (Eq. 3), and Cepeda et al. (2010) (Eq. 4):

I = αDβ (1)
10

I = 14.82D−0.39 (2)

I = 2.20D−0.44 (3)

I = 29.14D−1.34 (4)15

where intensity (I)is given in mm/hr, duration (D) in hours, and α and β are curve
parameters

Empirical rainfall thresholds rely on accurate rainfall measurements, often requiring
sub-daily data (e.g. Aleotti, 2004; Giannecchini, 2006; Cepeda et al., 2010). However,
as many hydrological and meteorological stations still collect only daily rainfall, fine res-20

olution data is not always available. In mountainous areas, precipitation can vary greatly
with altitude. Without extensive meteorological networks, the effect of orographic pro-
cesses on the spatial variation of rainfall can be difficult to determine (Tobin et al.,
2011). Therefore, in many threshold studies, many hazardous events are excluded
from analysis. Brunetti et al. (2013) automatically excluded events where the closest25

rain gauge was more than 5km away or there was not sufficient rainfall data, and in
Meyer et al. (2012), 20% were excluded due to insufficient information.

Other challenges for empirical rainfall thresholds include having a detailed and suf-
ficiently complete inventory of events, and deciding and defining the indicators to use
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in the thresholds. It also is often not clear how to define a rainfall event (when it starts
and finishes), although recent papers have tried to address this (Brunetti et al., 2010;
Berti et al., 2012). Finally, many of the empirical methods establish a threshold above
which debris flows may occur, without considering non-event observation also above
the threshold, as there are many more non-event days. Meyer et al. (2012) used only5

debris flow events to determine the threshold, then analysed the annual frequency of
days above the threshold. As rainfall is not the only factor governing debris flows, there
will likely always be uncertainty in the definition of rainfall thresholds (Berti et al., 2012).

One way to approach the significance of a threshold is using Bayesian probability
(e.g. Berti et al., 2012). Bayesian probability takes into account the likelihood of an10

event given certain conditions. However, while Bayes’ theorem is useful in determining
the probability of an event above a certain threshold, it does not take into account the
probability that an event would be below this threshold. So even if the probability of an
event occurring above a particular threshold is high, many events may occur below this
threshold.15

The thresholds above all use rainfall directly, however, it is also possible to anal-
yse the cause of heavy precipitation. Ingredients that can lead to precipitation include
mechanisms for uplift of an air mass (such as heating at the surface or orographic lift),
increased saturation of the atmosphere, or a mixing of two or more air masses (such
as fronts and low pressure systems). Maddox et al. (1979) found for the US that 43%20

of flash floods were caused by local convection, while the rest were synoptically driven.
Studies in the Mediterranean basin show heavy precipitation events are often caused
by quasi-stationary local convention (e.g. Nuissier et al., 2008). Atmospheric indica-
tors can summarize the principle atmospheric conditions leading to heavy rainfall for a
particular area, depending on the different causal mechanisms.25

While atmospheric indicators have not had widespread usage in threshold analysis
for flash events, they have been used as indicators for heavy rainfall and downscal-
ing climate projections. Trapp et al. (2009) used the product of convective available
potential energy (CAPE) and deep-layer wind shear (DLS) as an indicator for severe
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thunderstorms. Nuissier et al. (2011) used synoptic (large-scale) weather types based
on the Hess- Brezowsky Grosswetterlagen classification, as well as low-level mois-
ture flux and low-level wind direction to detect heavy precipitation events in southern
France. Other examples of using atmospheric indicators for heavy precipitation include:
Schmidli et al. (2007), Chen et al. (2010), and Jeong et al. (2012). Identification of5

synoptic atmospheric conditions that lead to flooding has also been undertaken in a
number of studies (e.g. Petrow et al., 2009; Parajka et al., 2010).

Atmospheric indicators can be obtained using reanalysis data from physically-based
models. Using a forecast model combined with observations, reanalysis data is both
consistent with atmospheric observations and the laws of physics (Dee et al., 2011).10

The weighting given to the observations differs depending on the quality of the obser-
vations. Less reliable fields, such as precipitation, are less dependent on observations
than more reliable fields such as mean sea level pressure (Tapiador et al., 2012). How-
ever, the quality of the output is dependent on the skill of the underlying forecasting
model. Overall though, reanalysis data provides a wide range of atmospheric variables15

that are both spatially complete and coherent (Dee et al., 2011).
Rather than rainfall thresholds from local weather stations, this research develops

empirical atmospheric thresholds for debris flows and flash floods using atmospheric
indicators to identify the potential heavy rainfall events, using 63 flash events in the
Southern French Alps. The main advantages are that a dense observational rain gauge20

network is no longer required, and that there is no need to define explicitly what a rain-
fall event is. Furthermore, atmospheric thresholds can lead to a better understanding
of the meteorological conditions that are related to the occurrence of debris flows and
flash floods. Empirical atmospheric thresholds therefore may can be an alternative to
the conventional empirical rainfall thresholds where dense observational networks are25

not available, or where further investigation is required to the cause of the rainfall.
The structure of the paper is as follows: first an overview of the study area and the

dataset is given, followed by a description of the methodology to develop atmospheric
thresholds. The methodology includes dividing the flash events into those caused by

6
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local convection, and those that are from more synoptically driven, widespread rainfall.
Thresholds using weather station data are also generated for comparison. The results
are then presented and discussed, with a conclusion on the main results and limitations
of developing and using empirical atmospheric threshold for debris flows and flash
floods.5

2 Study area and data description

The Ubaye Valley is an east-west oriented valley in the Alps de Haute-Provence, France
with a catchment size of around 548km2 and elevation between 1100m and 3000m
a.s.l (Fig. 1). The Ubaye Valley has a mountainous Mediterranean climate with snow
cover at high altitudes for approximately half of the year (Malet et al., 2007). Previous10

investigation has found that hydro-meteorological events are generally associated with
snowmelt and high intensity summer storms, although the precise triggering conditions
have been difficult to determine (Flageollet et al., 1999).

Four of the five weather stations are located close to the main river channel (Fig.
1). Station 5 (Table 1) is only operational during the summer and hence only used15

for qualitative comparison with the other locations. Information on elevation, length of
measurement series and variables for all the weather stations can be found in Table 1.
All stations measure daily precipitation, and station 1 also records temperature. Sta-
tions 1 to 4 are homogeneous based on the criteria from Wijngaard et al. (2003) and
three homogeneity tests (Pettitt, 1979; Alexandersson , 1986; Wang et al., 2010). Total20

annual precipitation amounts for stations 1 to 4 vary between 730mm and 985mm, with
the mean annual daily maximum precipitation amount between 46mm (station 1) and
53mm (station 4). The correlation between station 5 and the other four stations in sum-
mer is low: between 0.02 and 0.08, based on the Kendall’s tau correlation coefficient
(Kendall , 1970). The correlation between stations 1 to 4 is higher: between 0.69 and25

0.74.
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The Ubaye Valley has an extensive landslide, debris flow, and flash flood inventory
compiled from historical data in municipal archives, newspapers and technical reports
(Flageollet et al., 1999). Historical records provide valuable information on temporal
occurrence of larger events, although the events recorded depend on the exposure
and awareness of the observers to the hazard (Ibsen and Brunsden, 1996; Carrara et5

al., 2003).
The historical inventory contains 29 flash floods and 39 debris flows events observed

between 1979-2010, which occurred between March and November (Fig. 2). Tarolli et
al. (2012) found a similar seasonal distribution of flash floods, with events generally
occurring between August to November in the western Mediterranean. On average,10

discharge levels between September and November closely follows the mean pre-
cipitation intensity, while the discharge increases from March to July mainly due to
snowmelt (Fig. 2). As the valley is orientated west-east, north facing slopes are likely
to retain snow longer than south facing slopes.

Cepeda et al. (2010) developed Eq. 4 for debris flows based on hourly precipitation15

from Station 1. Only 7 debris flows were used, as the others occurred before sub-
daily precipitation measurements were available (1998), or the precipitation or inven-
tory record was deemed to be not sufficient (Cepeda et al., 2010). For the threshold,
86% of the debris flow events used were correctly predicted, and 5.5% of rainfall events
above the threshold resulted in a debris flows. However, no threshold was obtained us-20

ing only the longer daily rainfall dataset. To obtain a threshold for a longer time period,
other methods or datasets are therefore required.

ECMWF ERA-Interim reanalysis data is used for analysing the regional atmospheric
variables. The data has a spatial resolution of 80km (T255) covering the period 1979-
2012 (Dee et al., 2011). More information about observation and data assimilation and25

model characteristics for ERA-Interim can be found in Dee et al. (2011). The study area
is approximately half of one grid box, so only the grid box containing the study area and
those directly beside it are used (nine in total). The variables chosen (Table 2) contain
commonly used predictors for statistical downscaling precipitation from Global Climate

8
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Models at multiple atmospheric pressure levels (Chen et al., 2010; Jeong et al., 2012).
In addition, convective available potential energy (CAPE), deep layer shear (DLS), and
soil moisture fields are also included. The first two are added as they might be indicative
for convective (Marsh et al., 2009) and soil moisture as part of antecedent conditions.
CAPE in particular is an estimate of the energy that a parcel of air would have at the5

surface if it was lifted. High positive CAPE values indicate that the air may be unstable
and favourable for convection. A brief description of each of the variables is also given
in Table 2. Atmospheric indicators at 850hPa and 700hPa represent lower tropospheric
conditions, while indicators at 500hPa and 250hPa represent the upper troposphere.
The surface variables are available at 3 hourly time steps, with the others at 6 hourly10

time steps (Dee et al., 2011). DLS is estimated using the following equation and the
surface wind fields (u10m,v10m) and 500hPa wind fields (u500hPa, v500hPa) (Seltzer
et al., 1985):

DLS =
√

(u500−u10)2+(v500− v10)2 (5)

3 Methodology15

This section explains a method to establish empirical thresholds for debris flows and
flash flood events (flash events) based on regional atmospheric conditions or indicators
from the reanalysis dataset. Two different thresholds are considered: (1) a probabilistic
threshold based on Berti et al. (2012), determining the likelihood of a flash event using
a variety of indicators, and (2) a static threshold that takes into account the number20

of flash events below the threshold as well as the probability of occurrence. Besides
defining the threshold, the methodology also examines (a) if the local weather station
network was adequately capturing the rainfall causing the event, (b) whether intense
convection was the main rainfall source triggering the events, and (c) if other meteoro-

9
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logical triggers, such as snowmelt, are relevant to triggering events in the study area.
The three steps of the proposed methodology are:

Section 3.1: Categorize events based on potential meteorological triggers
Section 3.2: Select appropriate atmospheric indicators for each category
Section 3.3: Compute the probabilistic and static thresholds and then apply these5

over a validation period
Based on the availability of the weather station data and reanalysis data, the period

1979-2010 was chosen as the focus study period. The years from 1989 to 2004 are
used for calibration and two validation periods are selected, namely 1979-1988 and
2005-2010. By splitting the validation period into two segments, changes in data qual-10

ity, such as measurement techniques or observational coverage, are expected to be
reduced while maintaining as long as possible data period. The probabilistic and static
thresholds are also established using local weather station data for direct comparison
with the empirical regional atmospheric thresholds.

3.1 Categorization of events15

The proposed categories are based on the governing rainfall generation processes,
with a secondary subdivision based on potential antecedent conditions. The four cate-
gories are: Ls - locally generated rainfall, spring, Lr - local rainfall, summer, Ss-synoptic
(large scale atmosphere) rainfall, spring, and Sr synoptic rainfall summer. The classifi-
cation is based on Merz and Blöschl (2008), who identify five categories for river floods20

based on the type of rainfall and antecedent conditions such as snowmelt and rain-
fall over several weeks. The categories Ls and Ss assume snowmelt is an antecedent
condition, while Lr and Sr assume no snowmelt. For this study, seasonal antecedent
conditions (snowmelt or/and rainfall) are based on the average annual discharge pat-
tern in Section 2. From Fig. 2, the discharge generally returns to near baseflow levels25

in July. Added to this, the east-west orientation of the Ubaye Valley means that the
south facing slopes will be snow-free earlier than the north facing slopes. Therefore,

10
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the spring events were defined as flash events between March and June for south
facing slopes, and between March to mid-July for north facing slopes.

The rainfall generation processes are split into types where local conditions are driv-
ing the generation, or whether it is governed by the synoptic atmospheric processes.
In Done et al. (2006), the authors estimate the rate at which CAPE is being removed5

by convective heating as:

tCAPE ∼
CAPE

dCAPE/dt
(6)

where tCAPE is the convective timescale and dCAPE
dt is the rate of change of CAPE

removed by convective heating.
Done et al. (2006) suggest that with convective timescales shorter than 6 hours the10

synoptic conditions are governing the instability of the atmosphere, while locally driven
intense convection occurs when tCAPE values are high. Non-convective precipitation
would also have a low tCAPE value, as CAPE values are generally low (Molini et
al., 2011). Applying the criteria by Molini et al. (2011), flash events with tCAPE > 6hr
are classified as locally convective (L), and with tCAPE < 6hr corresponding to more15

equilibrium conditions (S).
Molini et al. (2011) and Done et al. (2006) further modified equation 6 by estimating

the latent heat release using the precipitation rate. However, as hourly rainfall rates are
not available for any weather station before 1998, and Done et al. (2006) explain this is
just a rough indication of the convective timescale, the version in equation 6 is used.20

The accuracy of the classification of rainfall generation type is dependent on the
accuracy of CAPE from ERA-Interim. Molini et al. (2011) found, when comparing CAPE
values from ERA-Interim with those from a near-by radiosonde, there was only modest
correlation, with a coefficient of determination of approximately 60%. Differences would
be expected however, when comparing the grid box average with a point location.25

11
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3.2 Indicator selection

Each day in the calibration period 1989-2004 is assigned a label as an event day (a
day where one or more flash events were recorded), and non-event days (where no
flash event was recorded). The atmospheric indicators that show a distinction between
event days and non-event days can then be used in the development of atmospheric5

thresholds (Section3.3). The silhouette index (SI) is used to identify atmospheric indi-
cators that best differentiate between the clusters of flash events and non-flash events.
This index takes into account both the separation between the two clusters as well as
the cohesion within the cluster (Rousseeuw, 1987). The index was developed as part
of a tool to visualise the distinction between multiple clusters, and as a guide to the10

validity of the clustering and selection of number of clusters (Rousseeuw, 1987). It has
since been used as a validation tool in classifying atmospheric conditions (e.g. Huth et
al., 2008; Kannan and Ghosh, 2011; Kenawy et al., 2013).

An individual silhouette value determines how similar a point is to other points in its
own cluster compared to points in other clusters (Rousseeuw, 1987). The SI then the15

average of all the silhouette values (Huth et al., 2008), with Eq. 7 valid for two clusters:

SI =
1

2

2∑
c=1

1

nc

nc∑
i=1

bi− ai
max(ai, bi)

(7)

where nc is the number of observations in cluster c, bi is the average Euclidean distance
between an observation i and all observations in the other cluster and ai is the average
Euclidean distance between i and all observations in the same cluster.20

The SI varies between -1 and 1. An individual silhouette value of 1 indicates that the
observation is correctly classified as a flash or non-flash event, while a near zero value
indicates that the observation could belong to either cluster, and negative values indi-
cate misclassification (Ansari et al., 2011). The highest SI indicates the best clustering
(Ansari et al., 2011). An overall SI value of 1 means that the clusters are compact and25

well separated from each other (Kenawy et al., 2013).
12
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A worked example of the SI for floods in the Ubaye River is given. Days with high
discharge values (flood days) are compared with no-flood days. The no-flood days
chosen had similar event and antecedent rainfall amounts as the flood days. Fig. 3
shows the individual silhouette values for flood days/ and no-flood days in the Ubaye
Valley based on Q850 and U&V850. The left figure shows the individual silhouette5

values for each flood day are above 0, indicating they are more similar to the other
flood days that the no-flood days. For the no-flood days, half of the days have positive
silhouette values and are likely correctly classified. The other half has negative values,
indicating they are more similar to the flood days. The figure on the right side plots
the no-flood and flood days, and shows the separation between the two groups. It10

shows that generally flood days have higher specific humidity and more easterly winds
compared with no-flood days.

The SI value is less reliable for clusters when there is a large difference between
the number of flash and non-flash events. Therefore, x days are randomly selected to
calculated the SI using the normalized atmospheric variables, where x is the number15

of flash events. This is repeated multiple times (10,000), with variables with the highest
mean SI value selected for threshold analysis. Any atmospheric indicators that had
more than 10% of SI values less than zero were discarded. In Sect. 4.2, only the mean
SI value is given.

As conventional thresholds are generally defined using two variables, the analysis is20

performed with the two best performing indicators. Furthermore, too many indicators
could create noise, or lead to over-fitting of the data (Kenawy et al., 2013). The de-
gree of correlation between atmospheric predictors also reduces the benefit of using
many predictors (Hewitson and Crane , 2006). However, where the inventory of flash
events is more substantial, more three or more atmospheric variables could be used to25

improve the atmospheric threshold.

13
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3.3 Probabilistic and static thresholds

Bayes’ theorem expresses the conditional probability of an event A, such as a flash
event, occurring given some condition or conditions,B, such as atmospheric conditions
(Eq. 8). It is based on the unconditional probability of A occurring, P (A), unconditional
probability of the condition occurring P (B), and the conditional probability of P (B|A).5

P (A|B) =
P (B|A)P (A)

P (B)
(8)

Using the two indicators from Section 3.2 that had the highest SI value, the proba-
bility of a flash event occurring was calculated over the observed range of each of the
indicator. This is similar to Berti et al. (2012), although extended to using atmospheric
indicators.10

A limitation of using probability of occurrence is that is does not take into account
the percentage of flash events above the threshold. Therefore, a static threshold is
also determined considering both the number of events above and below the thresh-
old. A static threshold is taken to be a threshold where the values of the indicators
remain constant. The indicators used for the static threshold are the same as for the15

probabilistic threshold.
A confusion matrix displays the performance of a prediction algorithm, such as a

static threshold. The four classifiers in the confusion matrix(Mason and Graham, 1999)
are:

– True positives (TP): the number of correctly predicted events20

– False positives (FP): the number of events predicted, but where no event occurred

– False negatives (FN): the number of events that were not predicted

– True negatives (TN): the number of days that were correctly predicted as non-
events

14
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These classifiers can then be used to determine the correlation between the pre-
dicted and observed results using the Matthews Correlation Coefficient (MCC; Powers,
2011):

MCC =
TP ×TN −FP ×FN√

(TP +FP )× (TP +FN)× (TN +FP )× (TN +FN)
(9)

The MCC is similar to the Pearson’s product- moment correlation coefficient applied5

to contingency tables (Powers, 2011). A value of 1 indicates perfect correlation, while
zero indicates no relationship and negative values indicate negative correlation. Al-
though to our knowledge the MCC has not been used in rainfall threshold assessment,
it has been used in bioinformatics, as an assessment tool where there are unequal
events and non-events (Baldi et al., 2000; D’Este and Rahman, 2013).10

The MCC is calculated for each combination of atmospheric indicators from the prob-
abilistic threshold. The threshold with the highest MCC value is chosen as the static
threshold, with the added condition in that at least 50% of the flash events are also
above the threshold. These selection criteria are somewhat subjective, as the optimal
threshold will depend on the application.15

4 Results and discussion

4.1 Categorization of events

Table 3 shows the tCAPE value (Eq. 6) for all separate events in the period 1989-2004.
In 66% of the events, local convection was considered to be the dominant meteoro-
logical trigger for flash events in the Ubaye Valley. The earliest local convective event20

reported in a year occurred on the The observed convective events occurred between
the 1st of June and the latest on the 23rd November (numbers 5 and 13 in Table 3). The
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synoptic events occurred over a wider range of months, between March and November
( numbers 9 and 1 in Table 3).

It is possible that some of the flash events are in the wrong category. Four of the nine
synoptic events had no rainfall recorded in at least half of the stations 1-4, which would
not be expected with widespread rainfall (numbers 3,4,6,8 in Table 3). However, any5

misclassification would likely only reduce the efficiency of the clustering (Section 4.2),
and the significance of the thresholds (Section 4.3). Therefore we used the classifica-
tion as indicated in Table 3 for the subsequent analysis.

4.2 Indicator selection

The two best performing indicators for the local convective events were CAPE and10

specific humidity at 700hPa (Fig. 4). These two indicators showed the highest SI value,
0.32 (apart from using only Q700). CAPE especially has been used before as an indi-
cator for intense convection (Marsh et al., 2009), as it indicates atmospheric instability.
Q850 Q700 is indicative of low-level moisture, which is also necessary for locally gener-
ated precipitation. Comparatively, the U&V winds showed very low SI values, indicating15

that wind conditions do not separate flash event days from non-event days. This was
also true for DLS and soil moisture (SWL). The vertical integral of water vapour flux
was also trialled, however the SI value was also low (not shown). Temperature, vortic-
ity and divergence showed moderate SI values, between 0.1 and 0.25 depending on
what other atmospheric indicator it was paired with. The moderate SI values separate20

the flash events from the non-event days somewhat, but not as much as CAPE and
Q700 Q850.

Figure 5 (top) shows that for all the synoptic events, only 10 indicator combinations
were significant (at p = 0.10). The highest SI value (0.15) was also half of the value
found for local convective events. As the number of significant indicator pairs was low,25

To improve the indicator selection, the SI was calculated again further splitting the
events into the Ss and Sr categories (Fig. 5 middle and bottom). However, this was
a trade-off between the limited number of events belonging to each classification and
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potential differences in indicators. However this meant that there were only 4 to 5 flash
events in each group. Therefore, any thresholds were unlikely to be as robust as for
the local convection and weather stations, as there were fewer events to both calibrate
and validate the thresholds.5

Splitting the synoptic events into the Sr and Ss categories showed differences be-
tween the atmospheric indicators with the highest SI (Fig. 5, middle and bottom). For
Ss events, temperature at multiple pressure levels separated days with flash events
from days with no flash events. This was in combination with 8-day average mid-level
divergence, temperature, CAPE or specific humidity. The highest SI value of 0.21 was10

for temperature (3-day) and specific humidity (8-day), both at 700hPa. These two indi-
cators were then used as the basis of the thresholds in Section 4.3. For the Sr flash
events, the significant indicators were divergence at 700hPa 850hPa (daily), low level
specific humidity, SWL, and 8-day average temperature (Figure 5). The highest SI of
0.42 for the Sr flash events corresponded to specific humidity and 8-day average tem-15

perature at 700hPa. Low level moisture (Q700 and Q850) again appeared to be a key
atmospheric indicator. Low level temperature was also a key indicator, although only
when Ss and Sr events were separated (Fig. 5). It was possible that one class was
associated with colder temperatures, and the other with warmer temperature, which
then cancel when combined.20

Finally, for the local weather station data, the highest SI value of 0.29 was for the 4
day and daily total rainfall based on the data from station 3. Other stations and combi-
nation of stations were tried, but all had lower SI values. These indicators were similar
to those for debris flows in Jaiswal and van Westen (2009) , where 1 and 5 day totals
were used. A four-day antecedent period was chosen over five-day as it had a slightly25

higher SI value (0.29 compared with 0.27). Intensity and duration indicators are not
used, as hourly data were not available before 1998. Also, previous attempts using
daily data showed all flash events were below the thresholds Eq. 2 and Eq. 3.
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4.3 Probabilistic and static threshold

4.3.1 Weather station thresholds5

Based on Bayes’ theorem and one and four day rainfall totals, there was Using the
daily values and four-day values for antecedent conditions, a threshold was generated
that showed increasing chance of flash events with higher rainfall totals. The highest
probability of a flash event was 17% when the one-day total is above 80mm and the
four-day above 96mm (Fig. 6). This is lower than the maximum probability found in the10

study by Berti et al. (2012) of 40-60%.
While Fig. 6 seems reasonable (more precipitation, more likely for a flash event to

occur), there are a few limitations. There are nine days with precipitation totals above
82mm where no flash event was recorded and hence zero probability of flash occur-
rence. The lack of recorded events may have been because of low precipitation inten-15

sity, or the amount recorded by the rain gauge was much higher than for the rest of the
study area. Spatial heterogeneity of rainfall may also be the reason why during the cal-
ibration period no precipitation was recorded for one flash event, and less than 10mm
for a further six flash events. From Fig. 1, the affect torrents were in some instances
more than 10km away from a rain gauge, which is especially problematic for localized20

convection where the precipitation is confined an area less than 10km2.
For the static threshold, the maximum MCC value during the calibration period, with

at least 50% of events above the threshold, corresponded to the following Weather
Station threshold (ThresWS):

– ThresWS : one-day precipitation > 20mm and four-day antecedent precipitation >25

22mm

The values for the static threshold are given in Table 4. Only 8.5% of the total number
of days were above the ThresWS ((TP+FP)/(FN+TN)), while 55% of the flash events
were above the ThresWS (TP/(TP+FN)). Somewhat surprisingly, 45% of the event days
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had less than 20mm of rainfall. The percentage of the total number of days above
ThresWS was slightly lower for the two validation periods (7.5% and 6.1% respectively),5

and the percentage of flash events drops even more ( 35.7% and 33.3% respectively).
While the likelihood of a flash event still remains higher for days above the static thresh-
old in the validation period, the drop in percentage of flash events above the threshold
indicates differences in the triggering conditions between the calibration and validation
periods. As both the validation periods are different, this suggests that the changes10

are not completely from changes in the landscape or mitigation works. The torrents in
which flash events occurred are generally closer to station 3 in the earlier validation
period than the calibration period.

The results for the static threshold are comparable to those from other studies.
Cepeda et al. (2010) found for the same study area that their threshold is exceeded15

on average 8.6 times per year, while 60% of debris flows are above the threshold (if
including all debris flows between 1998 and 2010). While the percentage of correctly
predicted events is slightly lower, the percentage of false positives is only a third of the
amount using Eq. 4. The better performance of the rainfall threshold using hourly data
from Station 1 indicates that rainfall intensity is important rather than daily amount. The20

daily total of 20mm was in the range of Meyer et al. (2012), between 15–107mm/day.
The probability of static threshold exceedence was also similar to Meyer et al. (2012),
whose threshold was exceeded between 0 and 77 days in a year (8.5% corresponds
to 31 days a year).

4.3.2 Atmospheric thresholds: Local convection25

Flash events during the summer and autumn period are more likely under high insta-
bility (CAPE) and high 700hPa specific humidity (Fig. 7). As both the instability of the
atmosphere and low level moisture increase in Fig. 7, the probability of a flash event
also increases. High instability but low moisture (so less probable raincloud develop-
ment) show low probability of a flash event, as is expected. The highest probability
(100%) is higher than found in Section 4.3.1 st and from Berti et al. (2012)st. This cor-
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responds to CAPE values above 1100 J/kg and normalized Q700 greater than 1.45,
although this has only been observed once between 1989 and 2003.5

For the static threshold, the maximum MCC value during the calibration period, cor-
responded to the following threshold (ThresL):

– ThresL: CAPE > 250 J/kg and normalized specific humidity at 700hPa > 0.40

The confusion matrix results and MCC values are shown in Table 4. From this table
it can be seen that 6.8% of the days are above ThresL, compared with 75% of local10

convective flash events. In the validation periods, the percentage of days above ThresL
rises to 7.8% (Validation Period 1) and 7.3% (VP2) and 71% and 80% for the local
convection flash events.

Compared with the results in Section 4.3.1, both the probability threshold and static
thresholds perform better for the local convection than for the weather station threshold.15

Figure 7 shows higher probabilities of flash event occurrence than Figure 6. Similarly,
the MCC value for all three periods was higher for the local convection atmospheric
threshold. And in In both validation periods, more flash events were above the ThresL
than ThresWS , with an even smaller number of FPs in the first validation period. Lower
number of FP is important for early warning systems where the number of false alarms20

should be minimised.
While the CAPE value in ThresL was low for intense convection, similar limits have

been found in other studies (e.g. for hail Niall and Walsh , 2005; Pistotnik et al., 2011,
for heavy rainfall). Trapp et al. (2009) also found that availability of low level water
vapour was a key component of changes in severe convection at mid-latitudes.25

4.3.3 Atmospheric thresholds: Synoptic, spring

Based on Section 4.2,it appears when the Ss and Sr events are grouped together that
the resulting SI values are low, performing better than when the SI values are calcu-
lated individually. However this meant that there were only 4 to 5 flash events in each
group, only two or three more than the number of indicators. Therefore, the thresholds
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were unlikely to be as robust as for the local convection and weather stations, as there
were fewer events to both calibrate and validate the thresholds.5

Fig. 8 shows for Ss indicators, that with warmer 700hPa temperatures and higher
specific humidity the probability of flash event occurrence increases. Warm low to mid-
level temperatures could be associated with melting of snow and high moisture levels
could indicate rain. Fig. 8 had similar probabilities of occurrence compared to ThresWS ,
with the highest probability of occurrence of 12.5%. Similar to Figure 6, the most ex-10

treme days (days with the highest 8-day moisture and warmest 3-day temperature),
were not associated with flash events.

Using the criteria in Sect. 3.3 resulted in the following threshold (ThresSs):

– ThresSs :three-day mean temperature at 700hPa > 271 K and eight-day mean
normalized specific humidity at 700hPa > 0.7015

The values for the confusion matrix and MCC are in Table 4. Only 4.3% of days are
above ThresSs, and 50% of the flash events. In the validation periods, the percentage
of days above the threshold increased to 7.4% (Validation period 1) and 7.2% (VP 2),
while only one of the three days in the first validation period was above the threshold.
In the second validation period, there were no events in this category.20

As was in ThresSs, if the three-day average temperature at 700hPa (lower tropo-
sphere) is be above 271K, then the majority of the study area would be at above freez-
ing temperatures. While snow could still fall at the highest elevations, it is likely that it
would rain in lower regions, and that any snow on the ground may melt. The second
requirement of ThresSs, specific humidity at 700hPa being higher than normal, also25

indicated possible rainfall. Therefore, ThresSs indicated possible snowmelt and rainfall
as triggers for flash events.

While both Fig. 8 and ThresSs made physical sense, the atmospheric threshold for
synoptic-spring events did not perform well in the validation periods. as well as for local
convection events in Table 4. Both the percentage of flash events correctly predicted
and the MCC values were lower, as well as the probability of occurrence. This may
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have been was partly due to the small number of events, and possibly that synoptic
events require more than two to correctly the number of indicators trying to capture the
atmospheric triggering conditions.5

4.3.4 Atmospheric thresholds: Synoptic, summer

Synoptic flash events in summer generally occurred with eight days of lower than nor-
mal temperature at 700hPa, and increased specific humidity at 850hPa (Fig. 9). As Sr
flash events are associated with colder temperatures, compared to warmer tempera-
tures for Ss flash events, this explains why T700 does not have a significant SI value10

when Sr and Ss are grouped together (Sect. 4.2). The probability of occurrence for this
category was lower than any of the previous groups, with a maximum of 2%.

The Sr static threshold using the above atmospheric indicators corresponded to the
following threshold (ThresSr):

– ThresSr: normalized specific humidity at 850hPa > 0.15 and eight-day mean nor-15

malized temperature at 700hPa < -0.40

The final group of values in Table 4 shows the performance of the above threshold.
During the summer (July - November), 9.3% of days were above ThresSr, and 60% of
synoptic summer flash events. However, the percentage of days above the threshold
dropped in the two validation periods (8.1% and 5.9%), and no flash events were above20

the threshold. This was true even though there were more flash events in the first val-
idation period than during calibration. For four flash events, the Q850 value was too
low, and for the other three flash events, the T700 was too warm. Therefore, while the
threshold was reasonable during the calibration period, it did not hold for the validation
periods.25

Colder temperatures during a summer synoptic flash event are not unreasonable.
Lower temperatures in summer may be associated with a front passing or cooler tem-
peratures from prolonged cloud cover (and potentially rainfall). Similar to the other three
atmospheric categories, high specific humidity indicated higher atmospheric moisture
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and more likely rain. However, ThresSr was unsuccessful in the validation period. It
could be that different synoptic conditions lead to flash events in the two validation
periods, or that the events were misclassified.5

4.3.5 General discussion

As with any empirical threshold, accuracy and completeness of the inventory and
weather data are important. During the classification and subsequent threshold anal-
ysis, it is possible that flash events were misclassified. The spatial and temporal res-
olution of ERA-Interim was not fine enough to explicitly resolve convection. Therefore,10

parameterization schemes are used, although Dee et al. (2011) show improvements
in the convection parameterization from earlier reanalysis products. Furthermore, as
the CAPE values take into account instability over the depth of the troposphere, CAPE
values may be underestimated when convection is confined to a shallow layer (Niall
and Walsh , 2005). As found in Section 4.1, it is likely that some events may have been15

misclassified as local convection or as synoptic.
The number of flash events limits the inferences that can be drawn from the results

from this paper. The difficulty of developing atmospheric thresholds with few calibra-
tion events was borne out with the synoptic thresholds failing to capture the synoptic
flash events in the validation period. However, for the convective flash events, the at-20

mospheric threshold still captured 75% events in the validation periods. Furthermore,
grouping all 63 flash events together, the atmospheric threshold still performs better
than the weather station, although by a smaller margin.

As synoptic flash events generally performed the worst, further investigation on these
nine events was undertaken. Based on the Hess-Brezowsky Grosswetterlagen synop-25

tic weather type (James, 2007), all synoptic flash event days except the 19/08/1996
event show evidence of a low pressure system near the study area. With the small
number of events and variety of different locations of the fronts or low pressures, it
may not have been possible to use the traditional threshold-type approach for these
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events. A potential solution could be to identify key groups of indicators instead. There-
fore, further investigation would be needed to determine if a) the events were correctly
dated, b) caused by synoptic meteorological triggering conditions or c) triggered by5

non-meteorological factors.
Atmospheric thresholds, like most empirical thresholds, are reliant on near-complete

inventories, and only speculations can be made about what may happen under un-
observed conditions. Therefore, these methods cannot completely replace physically
based models and other threshold analysis techniques. However, for the Ubaye Valley10

where local convection appears to be the main meteorological trigger of flash events,
the atmospheric threshold improves on the local rainfall threshold. This methodology
therefore has a potential to work in other areas where rainfall observations are not
available, or not complete enough for the traditional empirical rainfall threshold.

5 Summary and Conclusions15

The objective of this research was to develop empirical thresholds for rainfall triggered
debris flows and flash floods using atmospheric indicators for the Ubaye Valley, France.
Similar to rainfall thresholds, these thresholds could be used in risk assessment, early
warning systems, or climate change projections. Empirical atmospheric thresholds
were obtained for the Ubaye Valley, France, as well as weather station derived rain-20

fall thresholds for comparison. Using both atmospheric indicators and weather station
data, In each case two types of thresholds were obtained: a probability threshold and a
static threshold, based on classification statistics and specifically the MCC value. The
main conclusions are as follows:

– In general the atmospheric indicators performed better than the weather station25

threshold (average MCC value of 0.16 compare with 0.10, and higher probability
of occurrence). They also performed better than rainfall thresholds using hourly
data.
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– The most important atmospheric indicators were CAPE and specific humidity at
850hPa. Both fit with convective precipitation being the main driver.

– Intense locally driven convection appears to the main meteorological trigger for
flash events in the study area (over 66% of events). Under these conditions, pre-5

cipitation can be confined to a small area, and may explain why high precipitation
values were not always recorded by the local weather stations.

– Different atmospheric indicators in spring and summer supports snowmelt being
an important antecedent condition for flash events in the study area in the spring.

– Even though the atmospheric thresholds performed better, there was still the high10

level of uncertainty in both the probabilistic thresholds and the static thresholds.
This was especially true for the synoptic rainfall events.

– The number of observed events limits any statistical inference in the thresholds
obtained, although this is partly mitigated using a validation dataset.

– The methodology also needs to be trialled in other locations. It may be that in15

areas where there is a stronger relationship between the local weather stations
and rainfall at the location of the flash events that intensity - duration thresholds
are more suitable.
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Fig. 1. The study area including the location of rain gauges and a single river gauging station.
Red lines depicts the affected torrents where debris flows or flash floods occurred between
1979 and 2010 (map based on Breinl et al., 2013)
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rain gauge. Dark blue indicates zero probability of occurrence.
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Fig. 7. Probability of a local convection flash event based on atmospheric indicators CAPE and
normalized specific humidity at 700hPa (between 1989-2003).
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Fig. 8. Probability of a flash event from spring synoptic rainfall based on eight-day mean specific
humidity at 700hPa and three-day mean temperature at 700hPa between 1989-2003.
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Fig. 9. Probability of a flash event from summer synoptic rainfall based on eight-day mean
temperature at 700hPa and three-day mean specific humidity at 850hPa between 1989-2003.
The y-axis is inverted to highlight that the figure represents the probability of a flash event given
that T700 is less than the a particular value and Q850 is greater than a particular value.
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Table 1. Weather station information for the Ubaye Valley. The numbers refer to those in Fig. 1.
The useable years show the percentage of years that are homogeneous and have at least 99%
of days where the gauge was working. T = temperature, P = precipitation. The final column is
the mean annual total precipitation, where applicable.

Site Elevation Variable Time Useable Summary
(m a.s.l.) Period Years (mm)

1. Barcelonnette 1,152 T 1961-2010 92%
P 1928-2010 80% 740

2. Condamine 1,325 P 1955-2004 98% 670
3. Saint-Paul 1,903 P 1971-2010 90% 930
4. Uvernet 1,660 P 1955-2010 95% 980
5. Super - Sauze 1,950 P 1996-2004 Summer only
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Table 2. ERA-interim variables used in this study, along with abbreviations used. A brief de-
scription of each variable is also given.

Variable Pressure level Description

Precipitation (RR) Surface Rain and snow
CAPE Surface Estimate of instability of the atmo-

sphere
Soil moisture(SWL) Surface Soil moisture for top layer (0-7cm).
Specific humidity, (Q) 850hPa, 700hPa,

500hPa
Atmospheric moisture

U&V wind 10m, 850hPa,
700hPa, 500hPa

Meridional (V) and zonal (U) wind
speed

Temperature (T) 850hPa, 700hPa,
500hPa, 250hPa

Temperature

Vorticity (Vo) 850hPa, 700hPa,
500hPa, 250hPa

Local spinning motion of the air

Divergence(D) 850hPa, 700hPa,
500hPa

Expansion or spreading out of a
vector field
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Table 3. Classification of the flash events in the calibration period 1989-2003. The list contains
the date of event, the tCAPE value, and its category : Ls - local rainfall, spring Lr - local rainfall,
summer, Ss synoptic rainfall, spring , Sr synoptic rainfall, summer.

Local convection Synoptic
Date tCAPE Group Date tCAPE Group

1. 18/06/1989 7 Ls 1. 03/11/1991 -1 Sr
2. 14/08/1990 13 Lr 2. 02/06/1992 -1 Ss
3. 29/09/1991 46 Lr 3. 12/07/1993 0 Sr
4. 06/10/1991 24 Lr 4. 11/05/1994 0 Ss
5. 01/06/1992 19 Ls 5. 13/05/1994 0 Ss
6. 18/06/1992 93 Ls 6. 06/07/1996 0 Sr
7. 21/07/1992 8 Lr 7. 19/08/1996 1 Sr
8. 27/09/1992 9 Ls 8. 25/07/1997 0 Sr
9. 10/07/1993 12 Ls 9. 22/03/2001 0 Ss
10. 05/11/1994 77 Lr
11. 28/08/1997 9 Lr
12. 12/08/2000 9 Lr
13. 13/08/2000 20 Lr
14. 23/11/2000 8 Lr
15. 26/07/2001 55 Lr
16. 05/06/2002 27 Ls
17. 23/06/2002 15 Ls
18. 27/07/2003 10 Lr
19. 05/08/2003 110 Lr
20. 08/08/2003 20 Lr
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Table 4. Results for the static threshold for the calibration period (1989-2003) and valida-
tion period 1 (1979-1988) and validation period 2 (2004-2010). The total number of days
(TP+FN+FP+TN) is the same for the weather station and local convection. The number is lower
for Ss and Sr, as they are only applied over spring and summer respectively.

TP FN FP TN MCC
Weather station

Calibration 16 13 412 5037 0.13
Validation 1 10 18 244 3381 0.10
Validation 2 2 4 145 2406 0.06

Local convection
Calibration 15 5 332 5126 0.17
Validation 1 14 5 255 3397 0.18
Validation 2 4 1 171 2381 0.13

Synoptic -snowmelt
Calibration 2 2 93 2198 0.10
Validation 1 1 2 105 1422 0.05
Validation 2 0 0 70 967 -

Synoptic -rainfall
Calibration 3 2 193 2097 0.09
Validation 1 0 6 115 1409 0
Validation 2 0 1 60 1010 0
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