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EXACT INTEGRATION OF NONLINEAR SCHRODINGER EQUATION 

A. R. Its, A. V. Rybin, and M. A. Sail' 

The degeneracy of finite-gap expressions is used to obtain a many- 
parameter family of smooth periodic and almost periodic solutions of 
the nonlinear SchrSdinger equation in terms of elementary functions. 
A scheme for obtaining these solutions by the Darboux transformation 
method is considered. Propagation of a soliton on an arbitrary 
background is studied. 

Introduction 

The nonlinear SchrSdinger (NS) equation is one of the fundamental nonlinear equations 
that can be treated by the inverse scattering method [I]. This means that for this 
investigation one can employ the entire rich arsenal of methods of the modern theory of 
completely integrable systems. In particular, the problem of constructing and studying a 
large set of different types of exact solutions can be realized in the framework of formal 
schemes such as finite-gap integration (and its "degenerate" versions) and the Darboux 
transformation method. The stimulus to the writing of the present paper was the paper [2], 
which discussed some exact solutions of the NS equation. Having given an interesting 
physical interpretation of these solutions, the authors of [2] asserted that the obtaining 
of the solutions that they had found by means of the general methods of the inverse 
scattering technique mentioned above, in particular those like finite-gap integration, 
was difficult. 

The present paper consists of three sections. In the first, taking degenerate 
general finite-gap formulas, we obtain a many-parameter family of smooth periodic and 
almost periodic solutions of the NS equation expressed in terms of elementary functions. 
These solutions are "multiphase" analogs of the solutions that appear in [2]. We also 
discuss the place of these solutions in the general classification of periodic solutions 
of the NS equation. In the second section, we consider the scheme of Darboux dressing of 
a periodic solution; this leads to the same results. In the third section, we dress an 
arbitrary solution of the NS equation and calculate the phase shift of a soliton scattered 
by a decreasing background and the contributions to the densities of the integrals of the 
motion (particle number, momentum, energy, etc.) introduced by the soliton in the case of 
a n  arbitrary background. 

i. Degeneracy of Finite-Gap Formulas 

All the constructions of the present section are based on the following simple 
remark. 

ASSERTION i.I. Suppose the functions u(x, t) and w(x, t) satisfy the system of 
equations 

iut+a=--2wa2=O, --iwL+w=--2uw2=O 

a n d  a r e  e x t e n d e d  t o  c o m p l e x  v a l u e s  o f  x t o  m e r o m o r p h i c  f u n c t i o n s .  
t h a t  

(1.1) 

Suppose, in addition, 

u(ix, t)=~(ix, t), x, tOE. (1.2) 

Then the function 
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o(x, t)=w(ix, t), x, t ~ ,  

is a smooth solution of the NS+ equation 

iv,+v=§ d ~v=O. 

Proof. The validity of Eq. (1.3) for the function v is trivial. 

( i . 2 )  

(1 .3 )  

The absence of real 
poles with respect to x for the function v(x, t) follows from the fact that substitution 
in (1.3) of the fraction c/(x--x~(t))~,x, xo~,c~s leads to the necessary equation c = 0 
because of the sign in front of the nonlinearity. 

Assertion i.i suggests a way of obtaining a rich family of solutions of Eq. (1.3) 
that are almost periodic with respect to x and can be expressed in terms of elementary 
functions. For this, it is obviously sufficient in the many-soliton (on constant back- 
ground) solution of the system (i.i) to make the substitution x § ix and choose the 
parameters of the solution in such a way (if, of course, this is possible) that Eq. (1.2) 
is ensured. We now turn to the implementation of this program. 

Many-soliton solutions of the system (I.i) can be obtained in a form convenient for 
analysis by taking the degenerate forms of its general finite-gap solutions obtained in 
[3,4]. The corresponding procedure is carried out in [5], and its result, given directly 
for the functions u(ix, t) and w(ix, t), is 

O_~ (x, t) O~ (z, t) 
a(ix, t) Ot(x,t) exp(--2it+i~), w(ix, t)=__O~(x,t-------~exp(2it--i~), 

O~(x,t)'~-~ ~ exp{ ~ ,  In[~ '~-=~']  ' 
k~{O,i} n ~ > ~  

V, B~I)...,~ 

n 

~,  k,(i• -- 2• -I- (r -- 1)In T, -- i + nv)} , 

V t --~v 
r---~--t, § ~ ' =  t + k ~ '  •  

(1.4) 

where N~6C, ~6~, L~6(-I, I), %~,, v=l ..... n>~l, are parameters of the solution. The symbol 

denotes summation over all n-dimensional vectors k whose coordinates kv are either 
~6{o, I} n 

0 or i. Note also that 

0 z 
u( a, O w(~z, t)= -7~z~ ln Oi (x, O 

and, in addit ion,  for the functions Or(X, t )  we have determinant representat ions of the 
form 

{ ~ %+i %+1 O~-(x, t)=det(I+M,), M~---- 2~ exp (r--l) In - - +  
�9 ~ + ~ .  ~-i % - t  

( ~ + ~ , ) x - ( •  =- (n~+n, . 
2 

PROPOSITION 1.1. Under the conditions n=2N, N>~t, %N+j=--Lj, 0<L~<t, ~b=q~~ ~+~= 
3f+idTcj, ]=t  . . . .  N, 

) N N 

~=t ~J+?~ z=l ~N+j--?l ' 

the relation (1.2) holds in formulas (1.4). 

d~, cj6~, 

Proof. Under the considered restrictions on the parameters X v and Nv, the argument 
Ir(klx, t) of the exponential that occurs in the definition of the functions 0r(X , t) can 
be rewritten in the form* 

(i.s) 

*In all that follows, the Latin indices take values from 1 to N, the Greek, from 1 to 2N. 
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t)=  ,(ln I ] -' 

~,~ ~v+~+~ a 

(2• (k~-k~+~) ) + (r-i) ~'~, ( In 7j--i ks + 

Suppose the vectors k and m are related by m~=J--kN+~, m~v+~=i--ks.. Then it is obvious that 

J > [  

s (i(• (m~+m~+~) - (2x~k~t-c~) (m~-m~+s) ) + 
J 

where 

- l n 7 +  

We now note that under the condition Ls=--%N+j 

~ + i  ~+~--i ' ~ + ~  ~+~+7~+~ 

and t h e s e  e q u a t i o n s  e n a b l e  us  t o  t r a n s f o r m  ( 1 . 6 )  i n t o  

A(k(m) Ix, t)=L(x)+ ~~,1 [ ~'-~" ]= 

' f . + j - - ' f l  = ,  ' ~ , ~ + l - - ' h  

'f~+~+'h "f~,+,+'h' 

+ !~-, (ml x, t) +I (m) -- 2 s 1 7 6  (mj+mN+~). 
J 

Here 

Taking 

N-- I  N N--I N 

2 ~-~t ]~ _ 

/ = 1  j = / + l  / = l  j = / + t  
X N -- "-~--~J " N 

i n t o  a c c o u n t  ( 1 . 7 )  once  more ,  we o b t a i n  
N j - - t  Ar--I N 

j = z  l = ~  t~--t~ j=, z=:+t ~s--L ~j 
/V N ..... A r N 

j=t 1=2 a~+J--V j=t *=t, z=~J ~--Lz 
/V 

t=, "(~r+.~--'~z j 

i.e., 

i,(k(m) lx, t ) = I , ( x ) + s  %-% ] ~ +Io_,(mlx, t). 
vT>la ~ - 

(1.6) 

(1.7) 
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Therefore 

O.(x,t) = 

exp{l.(x)+Zln[Y'--Y~y.+%,t~] ~} 
v>l~ 

where by virtue of the first of Eqs. (1.7) 

%--1 
exp I,. (k [ x, t) ~ ~ exp 1. (k (m) I x, t) = 

m6{o, 1} 2N 

Z I~.-r I E (x) O~-r (x, t), (m exp t) X~ 

m~to , I} 2N 

.(x)=o~.{-.~E(~,x§247176 } 
and this quantity does not depend on r. 

From the relation ~,=E8~_~ the identity (1.2) in Eqs. (1.4) now follows directly. We 
have proved Proposition i.I. 

Assertion i.I and ProposiKion i.i lead us to 

THEOREM i.i. Suppose N~J, N6~. Then for any ~>0 and any set {~, x0~, t0~}[= i such that 
0<~<], zoo, t0fi~, the equation iv t + Vxx + 21vl=v = 0 has a solution smooth with respect 
to x, t6~ of the form 

O~ (~, t) 
v~ (x, t) = O~ (x, t) exp (2i t - i~) ,  

where 

o.~x,,)_- Z e.. {Z'~ [ "--" ]'<"" § "+')+ Yj + Y~ 
~ { o ,  1} ~N J > /  

In --?j?t k,~+jkz_.[_(r__J) Zln ~ ( k / +  kN+j)_~_ 
�9 + Y.~Y~. j 

Z ~,~ (~, § '.-~ § Z :'', (x- xo,> (~, § ,~,(, -,0,)(~,-~.+,),}, r =  ,,,; 
2 J 

N N 

~=~,~j ?J--~'~ ~=~ i_7~7~ ' '~ = V ~ ' •165 8~=2~fl/i-;~ ~ 

( 1 . 8 )  

At the same time 

l~Z'= a' In Ot (x, t). 

In addition, if we introduce ~N+j=~, ~+j=i/~j, •215 8~+j=--5~, ~~ ~ x0N+j=x0j, t0N+j=t0~, then 

for VN(X, t) we can find the determinant representation 

det(I+M3) 
v~ (x, t) = �9 exp (2it-ir 

det(I+MO 

where 

27" exp{ t ~f.--i %--/ M.?j,-- + 

% 

(•215 ( x - x , . ) - ( 5 ~ + 8 . ) ( t - t o . ) +  Z ~ (q o+q o) ~, r=3,  i. 
2 

Thus, we have constructed a (3N + l)-parameter family of smooth solutions of the NS+ 
equation that are almost periodic with respect to x (periods T5=2~/~). These solutions 
are multimode (and, in the terminology of [2], multiperiodic) analogs of the simplest 
solutions of this type found in [2]. In our notation, the case considered in [2] corre- 
sponds to solutions VN(X, t) with N = i, 2, which, as is shown in [2], describe the 
effects of one- and two-mode weak modulations of a stationary wave* v0=exp(2it-iq0)o 

*In applications of the equation NS+ to fiber optics, considered in [2], the spatial and 
time variables change places. 
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The existence of multimode generalizations of the solutions vi and v= was already 
noted in [2]. However, the fear was expressed there that the corresponding exact 
formulas would be too complicated for meaningful analysis. It appears to us that the 
results of the present section (obtained ultimately through the use of the general theory 
of finite-gap solutions of the NS+ equation) show that the fear expressed in [2] is not 
substantiated. The formulas given by Theorem i.i for the multimode solution v N are 
completely analogous to the multisoliton formulas familiar in the theory of completely 
integrable systems, and this, in its turn, makes it possible to investigate fairly 
effectively the multimode solutions VN(X, t) themselves as t ~ • 

THEOREM 1.2. Suppose the parameters 6j are such that 

max~<2,  min~j~2~0. 

Then 
/ F  

A t* cos • (x-xo~) exp ( ~ 2 5 ~ i ~ )  + O (exp (~450t)) ]exp (2it-icp+icp~), 

(1.9) 

(I.i0) 

where 
N /V 

2~ 
A+ ~ = -  exp (• 2• ~ i + ~ j  ' ~--~' 

~ve~ 
N 

The proof of Theorem 1.2 is based on the usual (see, for example, [i]) methods of 
asymptotic analysis of multisoliton formulas and consists of separating in the sum (1.8) 
the first 2N + i leading terms in the limit t + -+~. For example, in the limit t + --~ 
these terms correspond to vectors k with the coordinates 

. e 2 6 j  t ~ - +  

t ~+ kl= . . .  =k~= i ,  k~++t= . . .  =k2N=0, 

k l = . . . = k ~ = t ,  kN+i=l, kN+2=...=k2N=0+ 

ki=0, k~--=.. .=k~=l, kN+t=. . .=k2n=0,  
�9 �9 �9 �9 �9 . �9 . �9 o , . . . . . . . . . . . . .  

�9 �9 �9 o �9 . . . . .  . �9 �9 . . . . . . . . . . .  

k 2 = . . . = k ~ = i ,  kx+t= . . .  =k~+5-~=kN+r =k2n=0, kn+~=l, 

ki=...=k~-l=kj+l=...=kN=l, k~=0, k N + i = . . . = k ~ = 0 ,  

�9 . �9 �9 �9 , �9 ~ �9 . �9 . �9 o ~ ~ �9 �9 

e 2 6 N  t 

, . . o . . . , . . . . . . . . . .  

k l = . . . = k ~ = l ,  kN+t=. . .=k~n-i=0,  k2n=l, 

ki=...=k~-i=i, k~=0, k~+i=...=k~s=0. 
(i.il) 

To save space, we shall omit the simple algebraic manipulations that then lead 
ultimately to (i.i0). 

Remark i.i. When the condition (1.9) on the parameters ~j is lifted, the rough 
result 

N 

v~(x, t ) = [ t + o ( t ) ]  exp (2it+i~• t ~ : ~ ,  A~=~+--~-=--2  ~ccos t - - - ~ -  , 

o b v i o u s l y  remains  v a l i d .  However, in  t he  sum ( 1 . 8 )  t h e r e  appear  b e s i d e s  t he  terms d i s t i n -  
gu i shed  in  ( 1 . i )  a d d i t i o n a l  te rms of  magni tude  comparable  t o  t h o s e  g iven  in  ( 1 . 1 1 ) .  There -  
f o r e ,  in  t h e  g e n e r a l  ca se  we cannot  g u a r a n t e e  t h a t  t h e  s o l u t i o n  VN(X, t )  w i l l  have t he  
s imple  and p h y s i c a l l y  t r a n s p a r e n t  ( s e e  [2 ] )  form of  t h e  f i r s t  n o n t r i v i a l  te rm of  t he  
expans ion  as t + • as g iven  by fo rmula  ( 1 . 1 0 ) .  In  p a r t i c u l a r ,  such a s i t u a t i o n  w i l l  
occur  in  t h e  p u r e l y  p e r i o d i c  case  (mult imode s o l u t i o n  in  t h e  r i g o r o u s  s e n s e ) ,  when 
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•215 •215 0<• ]=1 . . . . .  N. (1 .12 )  

It is readily understood that at large N the quantities 

]• ] / 1  ]2~r176 
6j = --N- r, 4N~, ]=  t . . . . .  N, 

will not satisfy the condition (1.9). For small N, for example, for N = 2 (the case 
analyzed in [2]), the inequalities (1.9) can be attained. Then, in contrast to the 
assumption made in [2], it is more natural to expect the Fermi-Pasta-Ulam effect in the 
case of weak modulation of the stationary wave precisely when the periods of the perturba- 
tion are noncommensurable; assuming z~ to be arbitrary points of the interval (0,2), we 
can readily achieve fulfillment of the inequality 

m a x [ •  • 2 1 5 2 1 5  ] 
4 J : 4 J" 

For example, for this it is sufficient to require 

2 - ~ 3 < • 2 1 5  < •  

We now discuss the classification of the solutions VN(X, t) in terms of the spectral 
properties of the corresponding Dirac operator, 

L N = i a 3 ~ x + (  0 ~ ) 
--~ 0 

which is related to the NS+ equation (1.3) in the framework of the inverse scattering 
method. In obtaining the formulas for the solution VN, we used the procedure of going to 
the degenerate general finite-gap solutions as described in [5]. If we carry out the 
analogous procedure in the corresponding formulas (see [5]) for the Baker-Akhiezer 
function, we arrive at the following explicit expression for the normalized ((~)li=.~=0=i) 
solution of the equation L~=%~z 

( ~ ) =  Oo(%,x,t) 0i(0,0) e x p [ i x ~ l + % f  it2%~1+% z •  
Oo (~, o, o) o, (x, t) 

(~2) = 0~(~, x, t) 0~(0, O) exp[ix~i+%i i t2~t+~+i t_ i~]  (~+~2+ t ) ,  (1 .13 )  
00(~,0,0) O~(x,t) 

where 91(x,  t )  i s  de te rmined  in ( 1 . 4 ) ,  and the  formulas  f o r  the  f u n c t i o n s  8 r (h ,  x, t ) ,  
r = 0, 2, a r e  o b t a i n e d  from the  co r r e spond ing  formulas  f o r  0r(X, t )  by r e p l a c i n g  in them 
the  pa rame te r s  qj by the  f u n c t i o n s  

~-~7-4-~) (~ +0 
Formulas ( 1 . 1 3 )  show t h a t  f o r  any t t he  spect rum of  the  o p e r a t o r  L N on L~(~) i s  con t inuous  
and i s  t he  union of  the  r e a l  l i n e  ~ and the  i n t e r v a l  of  t he  imaginary a x i s  [ - - i ,  i ]  
(F ig .  1) ,  and t h a t  t he  f u n c t i o n  W(~) can be ex tended  to  a s i n g l e - v a l u e d  a n a l y t i c  f u n c t i o n  
on a Riemann s u r f a c e  of  genus ze ro ,  

z2=t+~ 2, (1.14) 

i.e., in accordance with the well-known (see [6]) classification of almost periodic 
solutions of the NS+ equation the solutions v N for any N ~ 1 are single-valued solutions. 
The corresponding Baker-Akhiezer functions are described by formulas (1.13). Thus, in 
contrast to the self-adjoint case of the NS+ equation (see [3]), the set of single-valued 
solutions of the NS+ equation contains in addition to the trivial solution exp[--i~+2it] an 
infinite series of solutions VN, which are labeled by the natural number N and parametrized 
by 3N + 1 parameters. It is obvious that a similar additional series can be constructed 
in the case of g-band solutions with g > 0. The reason why this additional component in 
the manifold of finite-gap solutions of the NS+ equation has not hitherto been noted is 
curious. The point is that (see the review [7]) for smoothness and almost periodicity of 
a finite-gap solution it was assumed to be necessary for the degree of the divisor D of 
the poles of the corresponding Baker-Akhiezer function to be equal to the kind of the 
algebraic curve r along which the solution itself is constructed -- a property that is 
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Fig. i 

clearly violated in the case of the solutions* v N. The basis for this point of view was, 
first, all the accumulated experience of work with finite-gap solutions of different 
integrable models. This showed that if the degree of D exceeded the kind of F then, as a 
rule, one did not obtain almost periodic solutions but rather solutions that could be 
interpreted as soliton solutions on the background of finite-gap solutions. In addition, 
in the self-adjoint and purely periodic case of the NS_ equation the equality of the 
degree of D and the kind of F can be rigorously proved (see [3]). However, it was not 
noted [6] that the corresponding arguments (for example, such as the distribution of one 
of the points of the "additional" spectrum in each gap) do not extend to the nonself-adjoint 
case that we have with the NS+ equation. The solutions VN(X, t) considered in the present 
paper show that in nonself-adjoint situations the degree of D can exceed the kind of r 
without destroying the smoothness and almost periodicity - each solution v N is a smooth 
function almost periodic with respect to x with group of periods Tj=2~/• 

We note a further feature of the manifold of finite-gap solutions of the NS+ equation 
revealed by analysis of the solutions v N. In the purely periodic case (1.12) it follows 
from (1.13) that the points • are doubly degenerate eigenvalues of the periodic and 
antiperiodic problems for the operator L N on the interval (0,2~/x). As a consequence, in 
the nonself-adjoint case of the NS+ equation the manifold of g-gap solutions is determined 
not only by the edges of the bands of the spectrum and the divisor D but also by the 
degenerate gaps that occur in the finite bands of the spectrum. 

All the above remarks concerning the place of the solutions v N in general hierarchy 
of exact solutions of the NS+ equation are merely of theoretical interest. With regard to 
applications, we are inclined, in contrast to the authors of [2], to regard the ordinary 
theory of finite-gap integration as rather complete; for we have obtained the "new" 
solutions v N from the well-known "old" finite-gap formulas. Of course, we recognize the 
analytic skill of the authors of [2] and the fact that without their discovery of the 
solutions v I and v 2 we should have had no cause to reconsider the important points in the 
method of finite-gap integration mentioned above. 

. 

iqt=q=+2rq 2, irt=-~-2qP, 

which differs from the system (i.i) by the substitution q § --q. 

It is well known [I] that the integration of the system (2.1) is based on the fact 
that it is the condition of simultaneous solvability of the linear system 

Use of Darboux Transformation 

In [8], an analysis was made of the formulas of Darboux transformation for the system 

(2.1) 

(2.2) 

Wt=(2~2o3+2EU+V)W, u=(O iq ) V = ( - i r q  q" ) W = (  ~ ). (2.3) 
ir 0 ' --~ irq ' 

Darboux transformation makes it possible to construct solutions of the system (2.1) 
from a known bare (r(x, t), q(x, t)). We have the following 

PROPOSITION 2.1. [8]. The solution of the system (2.1) (r[N], q[N]) can be found in 
accordance with the formulas 

*The functions 8r(X, x, t) have precisely'2N poles on the surface (i.14), and their projec- 
tions onto the X plane coincide with the points X~. Therefore, the number of zeros of the 
function 80(X , 0, 0) (poles of W(~)) is 2N. 
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where 

A, (2N) 
r [ N ] = r + 2 . - -  ( 2 . 4 )  

A (2N)' 

A (2N) 
q f N l = q + 2  ( 2 . 5 )  

A (2N) ' 

i - - i  

A,h= [ ( ~k ~ ,  i = i ,  2 . . . . .  N, A (2N) = det (A,k) 
' i--l--N " I )~ h (p~, ~=N-ri . . . .  , 2N ,  

{ ~ i - i  
A~(2N)=det (B~)  B ~ =  ~ (Pk, /-----t, 2 . . . . .  N + f ,  k = t , 2 ,  .. 2N. 

' )~iS-2~ph , i = N + 2  . . . . .  2N, " ' 

We can obtain Ai(iN) if in 51(2N) we interchange ~ and Ok; (r ~p~)r is a fixed 
solution of the system (2.2)-(2.3) corresponding to the eigenvalue X = Xk- 

The reduction of the system (2.1) and its solutions to the NS+ equation 

ir, +r=+ Zrlri2=O ( 2 . 6 )  

reduces to taking 

~2k=%~-1, ~k=+cp~-l ,  qo2k=q=~2~-i, k = l ,  2, . . . , N. 

After reduction, formula (2.4) takes, when the Darboux transformation is used once (N = I), 
the form 

r [ l ]= r - -2 (~ - -~ )  - ~ ( 2 . 7 )  
I l +l l" 

In this section we shall show how the method of Darboux dressing of the periodic solution 
of the NS+ equation (2.6) yields the exact solutions found by the authors of [2]. By 
direct substitution one can show that Eq. (2.6) has the solution 

r(x, t ) = A  exp (is), s=ax+(ZA2--a2)t ,  ( 2 . 8 )  

where without loss of generality A~. We shall seek the solution of the system (2.2)-(2.3) 
(for q = r) corresponding to this potential in the form 

e -~/~ a ( x , t )  
~ = ( * ) = (  e "/~ ( x , t ) ) "  ( 2 . 9 )  q~ v 

Substitution of (2.9) in (2.2) leads to a linear system with constant coefficients for 
the functions u(x, t)and v(x, t), the solution of which gives rise to the following 
cases. 

A. Eigenvalues Pl = ~? = 0. The characteristic equation has the form (~ + a/2) 2 = 
--A 2 ; then 

[ ] i i 
 =x-x0-2=t  _+iiAt, 

2A 2A 

~/~A~-4A~t~-~+4it 
r[i]=A --, ~=x-x~-iat, 

%~ + ~ + 4A ~t ~ 

P ( t ) - ~  
I r [ i ]  [2=A~+2 ( p ( t ) + ~ ) ~  , p ( t ) =  +4A2t '. 

In the limits t § _+~, a rational pulse propagating with velocity 2a disappears: r[l] § r. 
We have called this solution an exulton.* 

B. General Case. The characteristic equation has the form ~+(%A a/2)~+A~=0( 

u=c~ exp (O) +c~ exp (--8), 0=~t (x+ (2%--a) t), 

~t--i (~+a/2) ~+i  (~+a/2) 
v=c~ exp (0) -- cz exp (0). 

iA iA 

( 2 . 1 0 )  

*From the Latin exilio, to jump out or appear suddenly (the term was proposed by L. S. Mok- 
roborodova). 
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For brevity, using (3.16) (see below), we write down the formula only for the square of the 
modulus of the solution: 

02 
l r[ t ] ] ~=A ~ + Ox ~ ln{ ch ( 2 ~  (x-at) +4  (%~,- -%~)  t) + 

A S + l ~ + ~ / 2 1 2 + l ~ l  ~ 

where ~=~+i~, ~=~i+i~2. We merely note one special case of formula (2.11): 

~.,=-a/2, ~-----0, ~2=?-A-ri-~-~ ~, IAI>Ix~I, 

] (A --~,~ ) +4[ ~,~/A [~ (A2-~  ~) ch p cos q l r [ l ] l ~ = A  ~ 41 ~'-/A~ ~ 
[ ch p+ ] ~ /A  [ cos q]~ 

p=4~,~]/A~-)~t, q=]/A~-~ ~ (x-2at). 

For fixed t, this solution is periodic with respect to x, and as t ~ +~ we have r[l] ~ r. 
Thus, this solution describes a process of self-excitation and damping of an x-periodic 
wave. 

Many-soliton solutions on a periodic background, solutions of the type of periodic 
modulations, exultons, and their interaction with one another can be described by formula 
(2.4) (with allowance for the reduction to the NS+ equation), where as (~, ~)r it is 
necessary to take the functions given by (2.9). At the same time, (Uk, vk)T are chosen 
in accordance with A) and B). The scheme of Darboux dressing in the case of the NS_ 
equation is based on formulas (2.4) and (2.5) with imposition of the reduction 

q=-~, ~,~=~,~_~, ~,~=~;_~, ~=~-~, k=i, 2 .... , N. 

This enables us in an entirely similar manner to dress the zeroth or periodic solution of 
the NS_ equation and obtain large classes of, in general, singular solutions. 

We note finally that formulas (2.4) and (2.5) also make it possible to dress finite- 
gap solutions. For this, it is sufficient to use the corresponding expressions for the 
Baker-Akhiezer function. We will obtain different forms of solutions on a finite-gap 
background, and the particular form of the solution (soliton, exulton, etc. ) will be 
determined by means of the arguments of Sec. I. 

(2.11) 

. NS+ Soliton on an Arbitrary Background 

In this section, we extend the technique of obtaining solutions on an arbitrary back- 
ground that was first employed for the Korteweg-de u (KdV) equations [9], and we 
study the question of the interaction of a soliton of the nonlinear SchrSdinger equation 
(2.6) with an arbitrary small solution of the NS+ equation (background). For this, we 
shall seek a solution of the system (2.2)-(2.3) (under the condition of reduction to the 
NS+ equation: r = q) corresponding to arbitrary potential r(x, t) in the form 

2 

where  c 1 and  c 2 a r e  a r b i t r a r y  c o n s t a n t s .  We s h a l l  s e e k  t h e  f u n c t i o n s  nl(x, t, • n2(x, t, • 
h,(x, t, • h2(x, t, • i n  t h e  fo rm o f  t h e  a s y m p t o t i c  s e r i e s  

n~=-- ~=-~-; f~(x',t)dx', n2= ~ Jgn ( ' , t ) d z ' ,  ( 3 . 3 )  

S u b s t i t u t i o n  o f  ( 3 . 1 )  and ( 3 . 2 )  i n  t h e  l i n e a r  s y s t e m  l e a d s  t o  t h e  r e c u r s i o n  r e l a t i o n s  
k - - i  0( 

(3.5) 
j=i 
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At the same time 

g~=(-0%, ~>~, 

(b,+O ~/,+b~+J~= - Z (b~f~_~+~+ (b~) 1~_~+~), 
j = l  

c~=(-l)~.. 

(3.6) 

(3.7) 

(3.8) 

b ,r ,r,+,r!,r, dx S ,rldx 
The recursion relation (3.5) arose for the first time in the pioneering paper [i0]; gn 
and fn are  polynomial d e n s i t i e s  of the  i n t e g r a l s  of the motion. 

Now, when ~ and ~ corresponding to the a r b i t r a r y  background r (x ,  t )  have been con- 
s t r u c t e d ,  we Darboux dress this background in accordance with formula (2.7). For this, we 
substitute (3.1) and (3.2) in (2.7), and we obtain 

r [ t ] =r--4i~ A~ exp (i%) +B~ exp (--i~) -t-A2 exp (0) q-B2 exp (--0) (3.9)  
A~ exp (iz) +B~ exp (--ix) +A4 exp (0) +B~ exp (--0) 

where 

~=2oc(X-Xo)+4(~2-~2)t, 0=2 O(x-xo)+8o~t, • 

,r , : I  ,r A,=hlh~----(-~-q--s [r,=dx'-~ - ~ [rl 2 4: 
ca 

...)(--ir~ _t_ t__t_(_ir_ir~ S]rl 2dx'-t-~-s lrt zdx) 4-'. '), 
x 

B~=exp(~+n2)=exp Irl ~ rf~ +...  dz'+ + • +...  dx' 

--ir + r - -  A2=hzexpnz-~ - - - ~  -~7(-ir,-gr S lr]~dx' + ~-~ ~ ] [2dx )+...)exp S ( lrl2 + rr~ + .)dx, 
-~ _~ -~ ~ N z " . 

( ir_t_l  ( B ~=h~expg ,= \T  --~ \ -ir~+ ir ~ l r l = dz " - 
x 

i@~ [r[2dx)_4_...)exp S( ~ _~ rf~,gz +...)dx', 

t 
-~ao 

ca 

i~ ~ lr[~dx)+...)exp ~( [r[2._ fr, q_...)dx, nt..." 
= 

A~=k~ + exp(n2+~)= --s if,+i~ ~ Irl~ ax ' -  

ca X 

-6-_~ .. _ca [r I ~ ~ ~-+... dx', 

B,=h,~, + exp(n,+~,)--( ir -6 l.l_( --ir.-I-irS Irl d x ' - -  
-- ~ ~ ~\ 

--~ ... g -~ tr~--tr  [rl  ~ + 

(3.10) 
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) )  ~---~- ~ Irl'dx + +exp ~ Ir[S I~,1 ~,2 -- dr'. ( 3 . 1 ! )  9 " ' "  2 ~ 
~oo  x 

If we set r(x, t) = 0, then (3.9) goes over into the simplest single-soliton solution 
of the NS+ equation: 

exp (-2i  (a (x-xo) § (a ~ -~)  t) ) 
r [ t l = - 2 i ~  

ch (2~ (z-xo) +Salt) 

Thus, we can i n t e r p r e t  t he  s o l u t i o n  (3 .9 )  which we have c o n s t r u c t e d  as p e r t u r b a t i o n  of  
t he  s i n g l e - s o l i t o n  NS+ s o l u t i o n  by an a r b i t r a r y  background.  

If in Eqs. (3.i) and (3.3) we set c I = 0, then we obtain the NS+ solution 

r[ t ] =r-4 i~  ~ exp n2 
h2hz + exp(n~+~)" 

For c 2 = 0, we have 

�9 h~ exp ~ 
r[ i l=r--4i[~ 

hlhi + exp (ni+gi) ' 

We now cons ide r  the s o l i t o n  phase s h i f t  f o l l o w i n g  s c a t t e r i n g  by an a r b i t r a r y  dec reas ing  
background.  

PROPOSITION 3 .1 .  The phase s h i f t  of  a s o l i t o n  on passage  through a r a p i d l y  
dec rea s ing  background i s  de te rmined  by the  e x p r e s s i o n  

t -~ I r[~ dx q icz t ~ (r~--r~f)dx + 
2 a 2 - ~  ~ 

~zz+~ ~ -~ (~z2+~) ~ 2 -~ 4 ~  ~J_~ (Irl~-Ir~l~)dx' 

(3.12) 

(3.13) 

i.e., it is an asymptotic series whose coefficients are integrals of the motion of the 
background -- the particle number, momentum, energy, etc. 

Suppose r(x, t) § 0 as [x I + ~; to be specific, we take a < 0 and ~ < 0. Using the 
notation (3.10), we see that 

a2+~ 2 + C+~ 2 
% . . . . . .  x O. 

2 ~  
We let x and t tend to +~ in such a way that 0 remains constant. Then 

~n 

Therefore, for large positive x and t formula (3.9) goes over into 

r[t]~--2i~ exp{.i(%-- Imn2~)} 
ch(O+O+) (3 .14)  

where O+----(nz'+~2")/2. Similarly, letting x and t tend to -~ for fixed 8, we see that for 
large negative x and t formula (3.9) gives 

r [ t ]~ - -2~  exp{--i(x + Imn'~)} (3 .15)  
ch(O-O_) 

where 

N n 
- -  dx ,  O -  = - -  

n~ ~ + ~  

Comparing (3.14) and (3.15), we can readily obtain the expression (3.13) for the 
phase shift*. 

*Analogous expressions for the KdV equation in terms of scattering data were first obtained 
by A. B. Shabat. 
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PROPOSITION 3.2. For polynomial densities of the first three integrals of the motion 
of the NS+ solution r[l] (soliton on an arbitrary background) the following formulas hold: 
for the particle number density 

Ox 

for the momentum density 

V~(r[ i ]r[ t l~-r[ I Lr[ l ])='/2(rg-r~) + - -  

for the energy density 

(3.16) 

z--~ a ~ a (~a--ra) 
2 Ox ~ lnA + ~ x  (3.17) 

2A 

(3.18) 

(3.19) 

(3 .20)  

(• = a~ 

4 Ox ~ 

Tx ' A ~ 3 x A /  +21r[~ + 2 A ' 

where A=I~]2+I~I 2, a=g(• 

The proposition is proved by direct calculation by means of (2.7). 

Because the higher integrals do not have a physical meaning, we shall not give the 
analogous expressions for their densities. 

The expressions (3.16), (3.17), and (3.18) are new, because in their derivation we 
did not use any assumptions about the asymptotic behaviors of ~(x,t),  ~(x , t ) , r (x , t ) .  Thus, 
the terms additional to the background densities can be interpreted as the particle number 
density, momentum, energy, etc., that correspond to the soliton in the background- 
soliton interaction situation when the background behaves arbitrarily at • Thus, we 
obtain the possibility of describing the soliton background to the integrals of the 
motion also in the situations when the energy of the background is infinite, for example, 
for a periodic or random background. In the case of a decreasing background, we can 
readily show for the solution (3.9) of the nonlinear SchrSdinger equation that we have 
constructed, using (3.1) and (3.2) and going over to integrals, that 

t _  ~ (r[t]r[tL_r[t]>[i]~dx t_!_ ~ (r~-~P)dx+8i~,  
2 2 

~(Ir[l]l~-Ir[t]~lZ)dx=~ (I r ,'-- I~l ')  dz+t6~ ( - ~ - -  =') . (3.21) 

Thus, each integral of the motion of the solution r[l](x, t) can be represented as a 
sum of the corresponding integrals of the background and the exact single-soliton solution 
(3.13) of the NSE. In the case of a rapidly decreasing background formulas (3.19), (3.20), 
and (3.21) can be assumed to be known and to follow from the representation of the 
integrals of motion in terms of the scattering data. Additivity can also be proved for 
the higher integrals. 

We thank V. B. Matveev for his interest in the work. 
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NON-EQUILIBRIUM THERMODYNAMICS OF A GAS OF SOLITONS OF 

KINK TYPE IN QUASIONE-DIMENSIONAL SYSTEMS 

V. G. Bar'yakhtar, B. A. Ivanov, 
A. L. Sukstanskii, and E. V. Tartakovskaya 

A kinetic equation for solitons of kink type in quasione-dimensional 
systems is constructed. Calculations and a comparative analysis are 
made for the ~4 and sine-Gordon models. For both models, possible 
mechanisms of relaxation of the soliton gas to equilibrium are 
pointed out, and the temperature dependence of the transport 
coefficients is found. 

I. Introduction 

The physics of one-dimensional objects has a number of qualitative features, and 
therefore crystals with quasione-dimensional nature of the ordering (magnetic, ferroelec- 
tric, etc.) attract much interest [1,2,3]. One of the most interesting differences of 
quasione-dimensional systems is that even to describe the low-temperature thermodynamics 
it is necessary to take into account not only quasilinear excitations (when we refer to 
magnetic systems, we shall call them magnons) but also essentially nonlinear excitations, 
i.e., solitons of kink type (domain boundaries) [1,2,4]. Although the density of kinks at 
low temperatures is small compared with the magnon density (the energy of these last is 
much lower), the contribution of the kinks is in a number of cases decisive -- their 
presence, strictly speaking, destroys the long-range order in the system [5], the kinks 
determine the central peak of the two-time correlation functions [1,2], etc. 

Soliton solutions and the part they play in the construction of the equilibrium 
thermodynamics of quasione-dimensional systems have been considered by a number of authors 
in different ways [1,4,6,7]. This resulted in the formulation of a simple and adequate 
phenomenological approach (for the literature, see [4]). According to this approach, the 
thermodynamic properties of a large class of systems can be described on the basis of the 
following model. In the system, there exist magnon and kink gases that are nearly ideal, 
and the densities of the excitations of the two types are determined by Bose and Maxwell 
distributions, respectively. In such a treatment, the particular properties of kinks as 
nonlinear extended objects are not important. The properties of more complicated solitons 
of bion type have also been considered in the framework of this approach [8]. 

In the further development of this direction, one is led naturally to consider the 
nonequilibrium thermodynamics of quasione-dimensional systems. Essentially, we must here 
analyze the establishment of equilibrium in the system consisting of kinks and magnons; 
in the first place, it is necessary to calculate the transport coefficients of the gas 
of kinks. 

The classical analog of this problem is the problem of the relaxation of a small 
admixture of a heavy gas in a light gas in the case when collisions between the heavy 
particles play no role [9]. To describe the kinetics of such a system, it is sufficient 
to consider the collisions of the heavy particles with the light ones. Provided the 
momentum of the heavy particle changes little, the distribution function of the heavy 
particles can be described by a kinetic equation with collision integral of Fokker-Planck 
type. As was shown in [i0,ii], such a situation also obtains for a kink gas, namely, the 
kink distribution function f(p, x, t) can be described by the Fokker-Planck equation 

Institute of Metal Physics, Ukrainian SSR Academy of Sciences, Kiev. Translated from 
Teoreticheskaya i Matematicheskaya Fizika, Vol. 74, No. i, pp. 46-60, January, 1988. 
Original article submitted June 2, 1986. 

32 0040-5779/88/7401-0032512.50 ~ 1988 Plenum Publishing Corporation 


