
Revised Section 2 1 

2 The HIBEVA method 2 

2.1 Theoretical model 3 

The model chosen to represent and extrapolate extreme values of WL is the Generalised 4 

Pareto Distribution (GPD), applied to a Peaks-Over-Threshold (POT) sample. This extreme 5 

value model has been widely used and is most commonly recommended as it makes use of all 6 

the high values for the period under study to adjust the parametric distribution (Coles, 2001; 7 

Hawkes et al., 2008). Bernardara et al. (2014) recommend a double-threshold (𝑢𝑝,𝑢𝑠) 8 

approach to deal with auto-correlated environmental variables in a POT framework. First, 9 

physical declustering is performed by selecting a proper physical threshold 𝑢𝑝 above which 10 

only the maximum WL value is selected for each event that exceeds this threshold. The 11 

independence of the maximum WL selected is ensured by setting a minimum interval between 12 

peak water levels. This interval is typically chosen to be representative of storm duration on 13 

the site under study. The value for 𝑢𝑝 is set so that a sample of several hundred peak values 14 

can be selected to include both moderate and strong storm events. In practice, this 15 

corresponds to a number 𝑛 of events per year between 5 and 10 in average. The second step of 16 

the double-threshold approach is a statistical optimization consisting in selecting a relevant 17 

value of the statistical threshold 𝑢𝑠 (𝑢𝑠 > 𝑢𝑝), which is used in the formulation of the GPD, 18 

limiting both bias and variance (Bernardara et al., 2014). The choice of 𝑢𝑠 is driven by 19 

classical visual tools such as mean residual life and parameters stability plots (see Coles 20 

(2001)). 21 

The GPD is a distribution with two parameters (𝜎 - scale parameter, and 𝜉 - shape parameter). 22 

For a given threshold 𝑢𝑠, the cumulative distribution function (CDF) of the GPD is equal to 23 

the probability 𝑃(𝑋 ≤ 𝑥|𝑋 > 𝑢𝑠), where the random variable 𝑋 describes observed peak 24 

water levels, and it can be written as follows: 25 

𝐺(𝜉,𝜎)(𝑥) = {
1 − (1 +

𝜉(𝑥−𝑢𝑠)

𝜎
)
+

−
1

𝜉
         if 𝜉 ≠ 0

1 − 𝑒𝑥𝑝 (−
(𝑥−𝑢𝑠)

𝜎
)             if 𝜉 = 0

               for 𝑥 > 𝑢𝑠 (1) 26 

Where 𝜎 > 0 and the notation 𝑦+ for 𝑦 ∈ ℝ is defined as 𝑦+ = 𝑚𝑎𝑥(𝑦, 0). The support of 27 

the distribution is 𝑢𝑠 < 𝑥 ≤ 𝑢𝑠 − (𝜎 𝜉⁄ ) if 𝜉 < 0 and 𝑥 > 𝑢𝑠 if 𝜉 ≥ 0. Whereas 𝜎 represents 28 



the scale of the distribution (in units of 𝑥), 𝜉 controls the behaviour of the distribution's tail. If 1 

𝜉 < 0, the distribution is bounded, we are in the Weibull domain. If 𝜉 > 0 (resp. = 0), the 2 

distribution is unbounded, we are in the Fréchet (resp. Gumbel) domain. Contrary to the 3 

Weibull domain, a small change of 𝜉 in the Fréchet domain involves significant changes of 4 

the distribution. 5 

2.2 Bayesian framework 6 

In contrast with classical statistical methods used to compute the parameters of the 7 

distribution and to derive extreme values (e.g., maximum likelihood, method of moments, 8 

probability weighted moments…), Bayesian techniques provide a natural framework to deal 9 

with uncertainties. They are designed to obtain the full posterior distribution of variables of 10 

interest and not only point estimates (Coles and Tawn, 2005). 11 

Let’s denote by 𝜃 the vector of parameters (𝜉, 𝜎). Its posterior distribution is related to the 12 

likelihood of data through Bayes' theorem: 13 

𝑓(𝜃|𝐷) =
𝑓(𝐷|𝜃)𝑓(𝜃)

𝑓(𝐷)
 (2) 14 

Where 𝑓(𝐷|𝜃) is the likelihood function of a set of observations 𝐷 given the parameters 15 

vector, 𝑓(𝜃) is the prior distribution of the parameters and 𝑓(𝐷) is a normalising constant 16 

depending only on the observations. 𝑓(𝜃) translates the prior knowledge one may have about 17 

the parameters. In our study, we have no prior information about GPD parameters for our 18 

dataset. Consequently, we use a non-informative flat prior (𝑓(𝜃) ∝ 1) (Payrastre et al., 2011). 19 

In that case, 𝑓(𝜃|𝐷) is proportional to the likelihood function. 20 

To sample effectively the posterior distribution of interest, we use a Markov Chain Monte 21 

Carlo (MCMC) algorithm. MCMC algorithms allow sampling values of the parameters from 22 

the posterior distribution, without computing the normalising constant. In this study, the 23 

Metropolis-Hastings (MH) algorithm (Metropolis et al., 1953; Hastings, 1970) is used to 24 

generate a set of 40,000 vectors 𝜃 with density 𝑓(𝜃|𝐷). The convergence of the chain is 25 

checked numerically with the Geweke test (Geweke, 1992) and visually with trace plots. We 26 

can then compute the corresponding quantiles of WL according to the GPD. In particular, the 27 

mode of the set of vectors 𝜃 can be retrieved as the vector maximizing the likelihood function 28 

(because of the proportionality between 𝑓(𝜃|𝐷) and 𝑓(𝐷|𝜃)). The associated quantiles 𝑥𝑇 29 

correspond therefore to the maximum likelihood estimates for WL. Credibility intervals on 30 

WL can also be estimated based on the large set of quantile values. Results can be displayed 31 



on a return level plot once the correspondence between quantiles 𝑥𝑇 (𝑥𝑇 > 𝑢𝑠) and return 1 

periods 𝑇 has been set up: 2 

𝑃(𝑋 > 𝑥𝑇) =
1

𝑛𝑇
 (3) 3 

where 𝑛 is the mean number of exceedances of threshold 𝑢𝑝 per year. The quantile 𝑥𝑇 is said 4 

to be the standard estimative 𝑇-year return level and it is exceeded once on average by a peak 5 

event in 𝑇 years. Conversely, 𝑇 is said to be the standard estimative return period of level 𝑥𝑇. 6 

Since 𝑃(𝑋 > 𝑥𝑇) = 𝑃(𝑋 > 𝑢𝑠)𝑃(𝑋 > 𝑥𝑇|𝑋 > 𝑢𝑠), Eq. (3) can be rewritten in a more 7 

suitable form to construct a return level plot: 8 

1 − 𝐺𝜃(𝑥𝑇) =
1

𝜆𝑇
  (4) 9 

where  𝜆 = 𝑛𝑃(𝑋 > 𝑢𝑠) is the mean number of exceedances of threshold 𝑢𝑠 per year. 10 

One main advantage of the Bayesian analysis is the possibility to integrate all the available 11 

information in a unique predictive distribution for extreme WL values (Coles and Tawn, 12 

2005), which is defined as follows: 13 

𝑃(𝑋 ≤ 𝑥|𝑋 > 𝑢𝑠, 𝐷) = ∫ 𝐺𝜃(𝑥)𝑓(𝜃|𝐷) 𝑑𝜃𝜃
  (5) 14 

Thus, the predictive distribution of a new observation 𝑥 (given it is greater than 𝑢𝑠) can be 15 

easily estimated as the mean of GPD values calculated at 𝑥 for the entire set of sampled 16 

parameters and can be represented on a return level plot after solving the equation 𝑇̃ =17 

1 (𝜆𝑃(𝑋 > 𝑥̃𝑇|𝑋 > 𝑢𝑠 , 𝐷))⁄ , where 𝑥̃𝑇 is the predictive return level associated with the 18 

predictive return period 𝑇̃. Although the terminology of predictive return period is loose, it is 19 

useful in order to maintain comparison with the standard analogue 𝑇 (Coles and Tawn, 2005). 20 

Since all the uncertainty information has been integrated in the final result, credibility 21 

intervals are no longer defined. Instead, the value 𝑝 = 1 (𝑛𝑇̃)⁄  can be interpreted as the 22 

probability that, given all the available information, a future peak WL will exceed 𝑥̃𝑇. 23 

Within the Bayesian framework, it is therefore possible to calculate and compare both 24 

standard estimative return levels 𝑥𝑇 (equal to what would have been obtained using a classical 25 

maximum likelihood estimator) and predictive return levels 𝑥̃𝑇. While the predictive return 26 

levels incorporate all the uncertainty information, standard estimative return levels can be 27 

associated with credibility intervals which provide an overview of the uncertainty related to 28 

the quantiles 𝑥𝑇 when visualised on a return level plot. 29 



Finally, it is worth noting that for large return periods, the annual exceedance probability of a 1 

given level is directly available reading a return level plot constructed with peak event return 2 

periods contrary to the peak event exceedance probability of that level. Indeed, the former is 3 

equal to 1: 𝑇 (or 1: 𝑇̃) whereas the latter is given by Eq. (3) 1: 𝑛𝑇 (or 1: 𝑛𝑇̃) (cf Appendix A). 4 

2.3 Likelihood formulation 5 

The formulation of the likelihood function in Equation (2) depends on the characteristics of 6 

observations 𝐷 (Payrastre et al., 2011). We can split the likelihood function into two parts, 7 

thus separating the systematic period (with systematic tide gauge records) and the historical 8 

period: 9 

𝑓(𝐷|𝜃) = 𝑓(𝐷𝑠𝑦𝑠|𝜃)⏟      
systematic likelihood

𝑓(𝐷ℎ𝑖𝑠|𝜃)⏟      
historical likelihood

  (6) 10 

Let’s assume we have a number 𝑠 of systematic tide gauge observations above 𝑢𝑠 (𝑥1, … , 𝑥𝑠) 11 

and a historical period of 𝑛𝑦 years with 𝐻 = ℎ events above a perception threshold 𝑋0 12 

(𝑋0 > 𝑢𝑠). The ℎ events above 𝑋0 during the historical period are supposed to be exhaustive. 13 

This is a necessary condition. Historical information can be of different types. The number ℎ 14 

can thus be broken down into ℎ1 historical events whose water levels are known (𝑦1, … , 𝑦ℎ1), 15 

a number ℎ2 of historical events that exceeded the perception threshold 𝑋0 but whose exact 16 

water levels are not known and ℎ3 historical events whose water levels are known to be 17 

within a given range of values (lower bounds 𝑦1
𝑙𝑏 , … , 𝑦ℎ3

𝑙𝑏  larger than 𝑋0; upper bounds 18 

𝑦1
𝑢𝑏 , … , 𝑦ℎ3

𝑢𝑏). The general expression of the likelihood of systematic data is: 19 

𝑓(𝐷𝑠𝑦𝑠|𝜃) = ∏ 𝑔𝜃(𝑥𝑖)
𝑠
𝑖=1   (7) 20 

Where 𝑔𝜃 is the probability density function of the GPD for parameters 𝜃. 21 

The likelihood of historical data is: 22 

𝑓(𝐷ℎ𝑖𝑠|𝜃) = 𝑃(𝐻|𝜃)∏ 𝑔𝜃,𝑋|𝑋>𝑋0(𝑦𝑗)
ℎ1
𝑗=1 ∏ [𝐺𝜃,𝑋|𝑋>𝑋0(𝑦𝑙

𝑢𝑏) − 𝐺𝜃,𝑋|𝑋>𝑋0(𝑦𝑙
𝑙𝑏)]

ℎ3
𝑙=1  (8)  23 

The first term of the right hand side is the probability of observing ℎ = ℎ1 + ℎ2 + ℎ3 events 24 

above 𝑋0 during 𝑛𝑦 years whereas the two product terms specify the historical information for 25 

ℎ1 and ℎ3 historical events. Considering that the peaks exceeding 𝑢𝑠 occur as a Poisson 26 

process (Coles, 2001), then the number of exceedances of 𝑢𝑠 in 𝑛𝑦 years follows a Poisson 27 

distribution of parameter 𝜆𝑛𝑦. Consequently, the number of exceedances of 𝑋0 in 𝑛𝑦 years 28 



follows a Poisson distribution of parameter 𝜆𝑛𝑦𝑃(𝑋 > 𝑋0|𝑋 > 𝑢𝑠) = 𝜆𝑛𝑦[1 − 𝐺𝜃(𝑋0)]. 1 

Thus: 2 

𝑃(𝐻|𝜃) =
(𝜆𝑛𝑦[1−𝐺𝜃(𝑋0)])

ℎ

ℎ!
𝑒𝑥𝑝(−𝜆𝑛𝑦[1 − 𝐺𝜃(𝑋0)])  (9) 3 

Replacing Eq. (9) into Eq. (8) and since 𝑔𝜃,𝑋|𝑋>𝑋0(𝑥) = 𝑔𝜃(𝑥) (1 − 𝐺𝜃(𝑋0))⁄  and 4 

𝐺𝜃,𝑋|𝑋>𝑋0(𝑥) = 𝐺𝜃(𝑥) (1 − 𝐺𝜃(𝑋0))⁄ , Eq. (8) becomes: 5 

𝑓(𝐷ℎ𝑖𝑠|𝜃) =
(𝜆𝑛𝑦)

ℎ

ℎ!
𝑒𝑥𝑝(−𝜆𝑛𝑦[1 − 𝐺𝜃(𝑋0)])(1 − 𝐺𝜃(𝑋0))

ℎ2∏ 𝑔𝜃(𝑦𝑗)
ℎ1
𝑗=1 ∏ [𝐺𝜃(𝑦𝑙

𝑢𝑏) −
ℎ3
𝑙=16 

𝐺𝜃(𝑦𝑙
𝑙𝑏)] (10) 7 

So far, we have implicitly considered that the POT sample represents a stationary process. 8 

This assumption is systematically made in the hydrology field (Gaume et al., 2010). However, 9 

extreme WL exhibit long-term trends that cannot be ignored. Over the 20
th

 century, these 10 

trends have been shown to be similar to those of mean sea-level (MSL) at most locations 11 

worldwide (Woodworth et al., 2011). To account for this behaviour in the systematic dataset, 12 

the linear trend is calculated for the entire tide gauge record and removed from the data. Then 13 

data are adjusted to have a mean sea-level equal to that of the reference year of interest. The 14 

historical perception threshold must also be corrected for the MSL rise (and called hereafter 15 

the adjusted perception threshold). Once this is done, Equation (10) becomes: 16 

𝑓(𝐷ℎ𝑖𝑠|𝜃) =17 

∏ [
𝜆ℎ𝑚

ℎ𝑚!
𝑒𝑥𝑝(−𝜆[1 − 𝐺𝜃(𝑋0,𝑚)]) (1 − 𝐺𝜃(𝑋0,𝑚))

ℎ2,𝑚
∏ 𝑔𝜃(𝑦𝑗)∏ [𝐺𝜃(𝑦𝑙

𝑢𝑏) −
ℎ3,𝑚
𝑙=1

ℎ1,𝑚
𝑗=1

𝑛𝑦
𝑚=118 

𝐺𝜃(𝑦𝑙
𝑙𝑏)]] (11) 19 

Where 𝑋0,𝑚 is the adjusted perception threshold for historical year 𝑚 and ℎ1,𝑚, ℎ2,𝑚, ℎ3,𝑚 20 

are respectively the numbers of historical events with known WL, with unknown WL and 21 

with WL within a range of values, that exceeded 𝑋0,𝑚 during year 𝑚. ℎ𝑚 is the total number 22 

of historical events that exceeded 𝑋0,𝑚 during year 𝑚 (ℎ𝑚 = ∑ ℎ𝑖,𝑚
3
𝑖=1 ). 23 

  24 



Appendix A 1 

Appendix A: Relation between annual exceedance probability and peak event 2 

return period 3 

Let’s denote by maxy, the annual maximum. Using Eq. (3), the probability that the annual 4 

maximum of WL is greater than 𝑥𝑇 is:  5 

𝑃(maxy(𝑊𝐿) > 𝑥𝑇) = 1 − 𝑃(𝑋 ≤ 𝑥𝑇)
𝑛 = 1 − (1 −

1

𝑛𝑇
)
𝑛

 (A1) 6 

For large return periods 𝑇, more precisely when 𝑛𝑇 ≫ 1, Eq. (A1) becomes: 7 

𝑃(maxy(𝑊𝐿) > 𝑥𝑇) ≃
1

𝑇
 (A2) 8 

which can be interpreted as follows: the standard estimation of the annual exceedance 9 

probability of level 𝑥𝑇 is 1: 𝑇 years. Thus, in that case, the annual exceedance probability is 10 

directly available reading a return level plot constructed with peak event return periods 11 

contrary to the peak event exceedance probability (cf Eq. (3)). 12 

Similarly, in the case of the predictive distribution, we obtain: 13 

𝑃(maxy(𝑊𝐿) > 𝑥̃𝑇) ≃
1

𝑇̃
 (A3) 14 

which can be interpreted as follows: the probability that, given all the available information, 15 

next year’s maximum WL will exceed 𝑥̃𝑇, is 1: 𝑇̃ years. 16 

 17 


