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We thank the referee for his review that led to improving our paper.

In particular, taking into account Specific comments 1, 2 and 3, as well as Technical
corrections 2 to 10, we revised Section 2 entirely. The new version of Section 2 is
provided in the attached pdf to alleviate the text in the point-by-point reply below.

Specific comments:

C3605

1. P7067 L13–16: It is not clear why the annual maximum is referred to when dis-
cussing return levels here. There is perhaps a confusion between return levels of peak
events and annual return levels (i.e. return levels of annual events)? The annual return
level xp for return period T is the level exceeded in one of every T years on average,
i.e. the level exceeded by the annual maxima maxy(WL) once on average every T
years. Since in T years there are T annual maximum events, the number exceeding
xp follows Binomial(T ,Pr(maxy(WL) > xp)) hence xp satisfies the equation:

Pr(maxy(WL) > xp) = 1/T

However, the model fits peak events X > u so it is more natural to define the return
level xp for return period T as the level exceeded once on average by a peak event in
T years. With npy peak events per year, the number of exceedances of xp in T years
follows Binomial(Tnpy,Pr(X > xp)) hence here xp satisfies:

Pr(X > xp) = 1/(Tnpy)

The paper therefore appears to be calculating return levels of peak events but present-
ing them as an approximation to annual return levels. If this is intended, it should be
noted that the approximation holds only when the probability of exceedance is small,
i.e. for high return periods. Though if annual return levels are intended, it is not clear
why the approximation is required at all. Alternatively, if the use of annual return levels
is not required, Eq. (3) should be simplified by removing all reference to the annual
maximum.

Authors’ response: We agree with the referee that the phrasing might be confusing.
What we meant originally was to define the return level xp for return period T as the
level exceeded once on average by a peak event in T years. Eq.(3) was then written
to state that return levels of peak events can be approximated by annual return levels.
This approximation holds only when the probability of exceedance is small but this was
verified in our case study: indeed, the approximation is used only for convenience in
the interpretation of results for Xynthia’s WL as T is read directly on a return level
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plot (Figure 3). We compare annual probabilities of exceedance written as 1:T years.
Strictly speaking, since we deal with peak events, p=1:T years is neither an annual
probability of exceedance nor an event probability of exceedance. In the last case,
we should rather compute p=1: (Tnpy) but this value is not directly interpretable using
Figure 3. That is why we prefer to use the annual probability of exceedance p =
1− (1− 1/(Tnpy))npy ≈ 1 : T years (when Tnpy is large enough). The manuscript will
be modified to clarify this point. In particular, an Appendix will be added (see Appendix
A attached), Section 2 will be revised (see Revised Section 2 attached) and Section
3.2 will be slightly modified (see below):

Modification of Section 3.2 : P7074 L25 "(Fig. 3). Because the calculated return
periods of Xynthia’s WL are large (typically greater than 100 years) and it makes more
sense to speak about predictive exceedance probabilities rather than predictive return
periods (see Sect. 2.2), we will compare results in terms of annual probabilities of
exceedance (see Sect. 2.2 and Appendix A). Then we shall recall that the prediction
for a Xynthia-like WL can be interpreted as the probability that next year’s maximum
WL (e.g. in 2010 if we are in 2009) will exceed Xynthia’s WL. In case (. . .)"

2. It would appear that every observation above the threshold u is fitted to the GPD
and then the extremal index is used to correct for the temporal dependence when
estimating return levels. An alternative approach, which is perhaps more common,
is to first identify independent peaks above the threshold and then fit only the cluster
maxima to GPD. There is then no need for the correction, so long as λ represents the
mean number of independent peaks above u per year. This approach would seem to
be more consistent with the historical events used in the case study as they appear to
represent the peaks of separate events rather than a complete list of all known time-
steps when the perception threshold was exceeded.

Authors’ response: We agree with the referee and we will modify the manuscript ac-
cordingly (see the revised Section 2 attached). As a result, this will also clarify the
Binomial vs Poisson issue raised by the referee (see Technical correction 11). The
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results with the more common approach of fitting a POT sample selected with a tem-
poral independence criterion do not change much compared to the old version (using
an extremal index to correct a posteriori for the temporal dependence between peaks).

3. P7069 L2–P7070 L8: It is much simpler to derive the historical likelihood of Eq.
(12) by observing that the peaks exceeding the perception threshold X0 in ny years
occur as a Poisson process. Since the number of exceedances of u in ny years is
assumed to be Poisson(λny), it follows that the number of events H exceeding X0 in
ny years is also Poisson with mean given by λnyPr(X > X0|X > u) = λny(1-Gθ(X0)).
Eq. (12) then follows directly after writing the historical likelihood as: f(Dhist|θ) =
Pr(H|θ)f(historicaldata|X > X0, θ)

Authors’ response: We agree with the referee who suggests a more elegant way of
deriving Eq.(12). The manuscript will be modified accordingly (see the revised Section
2 attached).

Technical corrections:

1. P7064 L22–24: Bayesian methods are not required to incorporate historical data as
censored observations; any likelihood-based method would do (e.g. maximum likeli-
hood). So the use of a Bayesian approach should instead be justified in terms of the
better representation of uncertainty, for example.

Authors’ response: We agree with the referee and we will modify the manuscript as
follows:

"(. . .) (see e.g. Baart et al., 2011). The added value of using historical information
in EVA has been widely recognised for the last 30 years in the domain of hydrology
(see e.g. Benito et al. (2004) for a review). Among the statistical techniques devel-
oped to combine both sources of data (recent observations and historical information),
Bayesian methods provide the most flexible and adequate framework because of their
natural ability for handling uncertainties in extreme value models (Reis and Stedinger,
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2005; Coles and Tawn, 2005). Surprisingly, we found only one reference (. . .)"

2. P7065 L5–6 and elsewhere: The approach of integrating partial historical informa-
tion into an extreme value analysis is referred to as Bayesian Markov Chain Monte
Carlo (or BMC2) following Reis and Stedinger (2005). However, the essence of the
method is to incorporate the historical data into the model likelihood as censored ob-
servations yet this is not reflected in the title. Moreover, in general the approach need
not depend upon a Bayesian model nor on Markov Chain Monte Carlo (MCMC); other
numerical integration methods could be used to fit the Bayesian model and obtain the
same estimates, while the modified likelihood could equally be applied in a classical
maximum likelihood analysis for example to obtain similar results. I therefore suggest
that the title BMC2 is replaced by something more appropriate.

Authors’ response: We agree with the referee. Therefore, the method will no longer
be called BMC2 but HIBEVA (Historical Information in Bayesian Extreme Value Anal-
ysis). We still keep the word Bayesian in the title as this is central in our paper (e.g.
predictive distribution could not have been obtained using classical maximum likelihood
analysis). In addition, we will modify the manuscript as follows:

"In the hydrology field, Reis and Stedinger (2005) developed a Bayesian Markov Chain
Monte Carlo (MCMC) approach to tackle the issue of integrating partial historical infor-
mation within EVA. The essence of the approach is to incorporate partial historical data
into the model likelihood as censored observations. In the present study, we build on
this approach to develop a Bayesian MCMC method adapted for EVA of coastal water
levels (called HIBEVA – for Historical Information in Bayesian Extreme Value Analysis,
hereafter)."

3. P7065 L22–23: There are strong arguments in favour of extrapolating to extreme
values via fitting Peaks-Over-Threshold to GPD so these should be referred to (see
e.g. Coles, 2001).

Authors’ response: OK, the manuscript will be modified as follows (see also the re-
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vised Section 2 attached):

"The model chosen to represent and extrapolate extreme values of WL is the Gener-
alised Pareto Distribution (GPD), applied to a Peaks-Over-Threshold (POT) sample.
This extreme value model has been widely used and is most commonly recommended
as it makes use of all the high values for the period under study to adjust the parametric
distribution (Coles, 2001; Hawkes et al., 2008)."

4. P7066 L4–5: The support of the GPD is stated here as x≤ u−(σ/ξ) if ξ < 0 and
x ∈ < otherwise but this does not account for the additional constraint x > u.

Authors’ response: OK, the manuscript will be modified accordingly (see also the
revised Section 2 attached):

"The support of the distribution is u < x≤u-(σ/ξ) if ξ < 0 and x > u if ξ≥0.”

5. P7066 L5–6: The text states "σ represents the width of the distribution" but I suggest
‘scale’ is used rather than ‘width’ here to avoid confusion with the width of the support
of the distribution, which is referred to in the preceding sentence.

Authors’ response: OK, the manuscript will be modified as follows (see also the re-
vised Section 2 attached):

"Whereas σ represents the scale of the distribution (in units of x), (. . .)"

6. P7067 L1: I assume the non-informative prior distribution applied was the improper
flat prior (f(θ) ∝ 1) since the uniform distribution cannot be used for variables with
infinite support.

Authors’ response: Yes, the referee is right. The manuscript will be modified as
follows to clarify this point (see also the revised Section 2 attached):

"Consequently, we use a non-informative flat prior (f(θ) ∝ 1) (Payrastre et al., 2011)."

7. P7067 L5: MCMC algorithms are very flexible but some would argue that they are
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not a very efficient sampling method since they can take many iterations to converge
etc.

Authors’ response: OK, we will delete the word “efficiently” in the manuscript (see the
revised Section 2 attached).

8. P7067 L10: It is not obvious how the mode can be retrieved from a set of samples
of continuous variables since every sample value is likely to be unique. Nor is it clear
why it is particularly useful to extract maximum likelihood estimates when a Bayesian
approach is being used.

Authors’ response: In the particular case of using a non-informative flat prior in the
Bayesian model, the posterior distribution of θ is proportional to the likelihood of data.
Thus, among the 40,000 vectors θ generated, the one giving the maximum value of the
likelihood is also the one maximising the posterior distribution of θ, i.e. the mode of the
distribution. The manuscript will be modified to clarify this point (see also the revised
Section 2 attached):

"In particular, the mode of the set of vectors θ can be retrieved as the vector maximizing
the likelihood function (because of the proportionality between f(θ|D) and f(D|θ)). The
associated quantiles xT correspond therefore to the maximum likelihood estimates for
WL."

Moreover, the interest of extracting maximum likelihood estimates relies on the possi-
bility to calculate both standard estimative return levels (equal to what would have been
obtained using a classical maximum likelihood estimator) and predictive return levels
within the Bayesian framework. In addition, it is also of interest to visualize credibility
intervals as it indicates the width of the posterior distribution of quantiles (and therefore
the statistical uncertainty on the results). A passage will be added in the manuscript to
stress this on (see also the revised Section 2 attached):

P7068 just before L12 “The formulation of the likelihood (. . .)”: "Within the Bayesian
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framework, it is therefore possible to calculate and compare both standard estimative
return levels xT (equal to what would have been obtained using a classical maximum
likelihood estimator) and predictive return levels x̃T . While the predictive return levels
incorporate all the uncertainty information, standard estimative return levels can be
associated with credibility intervals which provide an overview of the uncertainty related
to the quantiles xT when visualised on a return level plot."

9. P7068 L14: The non-historical data are first referred to as ‘systematic’ here in
passing but this has not been defined. Nor is it clear why ‘systematic’ is an appropriate
name for the non-historical data.

Authors’ response: The word ‘systematic’ refers to the systematic gauging era. It will
be defined in the manuscript P7064 L14 and P7068 L14 (see below). We used this
term as it is commonly used in the hydrology field.

P7064 L14: "In the past, before the era of systematic gauging, extreme events also
happened." P7068 L14: "(. . .), thus separating the systematic period (with systematic
tide gauge records) and the historical period :"

10. P7068 L14: It is not clear what is gained by partitioning the data into ‘systematic’
and ‘historical’. Mathematically, it would seem that the systematic data is treated the
same as the historical data for the special case that the perception threshold is equal
to u and there are no censored observations (i.e. h2 = h3 = 0). Since ultimately
a collection of perception thresholds are applied, each with separate sets of known
and censored observations, the first of these could be taken as the systematic data to
simplify the presentation.

Authors’ response: We agree with the referee that mathematically, the systematic
data is treated the same way as the historical data for the special case that the percep-
tion threshold is equal to u and there are no censored observations (i.e. h2 = h3 = 0).
However, we believe it is better for the presentation to separate the two datasets as it
eases the understanding of what is new in the likelihood function compared to a classi-
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cal case with only known values. Indeed, the historical information is often partial (i.e.
h1 = 0) whereas the systematic data are known. Moreover, whereas the systematic
data are originally corrected from the mean sea-level rise, this correction needs to be
done in the historical likelihood for the historical perception threshold (cf Eq. 11 in the
revised Section 2).

11. P7070 L1–2: The number of exceedances of u is assumed to be Poisson when
deriving the historical likelihood. However, earlier in the paper when defining the return
level it is stated that there are n events per year which would imply that the number of
exceedances should be Binomial. A reason should be given for this discrepancy.

Authors’ response: In the paper, we first extract from the original time series of WL
every peak separated by at least 9 hours (so as to select every high water). Then,
every peak above the threshold u is fitted to the GPD and then the extremal index is
used to correct for the temporal dependence when estimating return levels (cf Specific
comment 2). The “Binomial aspect” comes from the fact that the tidal signal is deter-
ministic and cyclic. For example, on the French Atlantic coast, which is a macrotidal
environment, we know there are about 706 high tides per year. Since the duration of
storms is typically larger than 12 hours, the odds are the maximum WL (tide + storm
surge) during a storm will occur at high tide (or close to high tide). As a result, the
maximum possible number of peaks above u is equal to the number of high tides per
year, n (defined P7067). Then, strictly speaking, the number of exceedances of u in ny
years is Binomial(nny, p), with p = Pr(X > u).

However, the Binomial distribution converges towards the Poisson distribution when
nny → ∞ and nnyp → ν constant. In our case study, it can be verified that
Poisson(λny) ∼ Binomial(nny, p) and consequently that Poisson(λny(1 − Gθ(X0))) ∼
Binomial(nny, p(1−Gθ(X0))). Moreover, considering that the threshold u is adequately
chosen and assuming we are in the domain of asymptotic validity of the GPD, the num-
ber of events above u occurring in a fixed interval of time follows implicitly a Poisson
distribution (Coles, 2001). This is consistent when considering that extreme water lev-
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els are a manifestation of storms whose occurrences are by nature random.

To answer the referee’s comment, there is no real discrepancy as both distributions
(Poisson and Binomial) may be equally applied in our case to describe the number of
exceedances of a threshold. We prefer to use Poisson as it seems more intuitive and
consistent with the occurrence of storms. With the new version of the manuscript (see
Revised section 2 attached), following referee’s specific comment 2, we first select a
POT sample of WL using a physical threshold up (Bernardara et al., 2014) with an
independence criterion: every peak must be separated from the others by at least
72h (typical storm duration on the French Atlantic coast). That way, the number n of
peak events per year is no longer fixed, only its empirical mean can be calculated. As
a result, it is more straightforward to see the number of events above the statistical
threshold us (Bernardara et al., 2014) occurring in a fixed interval of time as a Poisson
distribution of annual rate λ = np.

12. P7070 L2: The threshold exceedance rate λ is first introduced when defining the
return level and applied again to derive the historical likelihood. However, the paper
does not state how it is estimated. While the rate could be treated as uncertain under
the Bayesian framework, the case study implies that it is instead fixed at the proportion
observed in the synthetic data. This should be clarified.

Authors’ response: We agree with the referee on the fact that the rate could be treated
as uncertain under the Bayesian framework. However, we believe it would have raised
the complexity of the case study. The aim of the paper is indeed to show the potential
of the HIBEVA method rather than to present a holistic treatment of La Rochelle case
study as it is highlighted in the discussion and conclusion. The manuscript will be
modified as follows to indicate the possibility of treating λ as uncertain and to state
how it is estimated:

P7073 L6 "The first step of the double-threshold approach detailed in Sect. 2.1 is
the physical declustering of systematic data. With a minimal duration of 72 h (typical

C3614



storm duration on the French Atlantic coast) between two peaks to ensure their inde-
pendence, the physical threshold up is chosen so that n, the mean number of peak
events per year, is about 10. Then, the statistical threshold us is selected using the
classical tools described in Sect. 2. This provides a threshold us= 6.68 m for the case
with the smallest dataset, i.e. case 1. For this case, the mean number of peak WL
that exceed that threshold per year is λ= 2.9. It is estimated as the number of peak
WL exceeding us divided by the effective duration of the systematic period (about 26
years for case 1). For sake of intercomparison, the threshold us is kept constant for
every case (1 to 4). It should be noted that the rate λ could be treated as uncertain
under the Bayesian framework, thus making the problem tridimensional. In that case,
the likelihood of systematic data (cf Eq. (7)) should be modified to account for the prob-
ability of observing s peak WL during the systematic period. However, to simplify the
presentation, we chose to fix λ at the proportion observed in the systematic dataset.
Results are presented (. . .)"

13. P7074 L16–18: What is meant by “The standard estimation of return period is”
here? Is this calculated from the predictive exceedance probability, perhaps after av-
eraging out the parameter uncertainty? Alternatively, is the return period derived as a
function of the parameters and then summarised by the mean or median estimate?

Authors’ response: The standard estimation of return period is the return period as-
sociated with the quantile xT , derived from the maximum likelihood estimates of the
posterior distribution of the parameters (see e.g. Technical correction 8). Therefore,
the standard estimation of return period is the return period that would have been ob-
tained using a classical maximum likelihood estimator for the GPD parameters.

14. P7079 L4–5: It should be made clear here that the plotting positions are not used
for the model fitting (as they are in some classical estimation methods) but are used
only for plotting return level estimates in Fig. 3. Appendix A would appear to only
show how exceedance probabilities are assigned to observed values Xi but there is no
mention of how the censored observations are plotted.
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Authors’ response: As suggested by the referee, we will clarify the manuscript as
follows:

P7079 L5 "(. . .) on the formulation of Hirsch and Stedinger (1987). The plotting posi-
tions are used only for plotting return level estimates in Fig. 3, they are not involved in
the model fitting process."

In addition, Appendix B (in the new version of the manuscript, the plotting positions are
indeed detailed in Appendix B) will be clarified to indicate how each type of historical
information (i.e. known values – h1, only lower bounds – h2, range of values – h3) is
dealt with in the method. For h2 type, Xi is taken as the corresponding lower bound
whereas for h3 type, Xi is taken as the middle value of the corresponding range:

P7079 L9 "(. . .) (systematic or historical). In the case of historical censored observa-
tions, Xi is taken either as the corresponding lower bound for historical events that
exceeded a value but whose exact water levels are not known, or as the middle value
of the corresponding range for historical events whose water levels are known to be
within a given range of values. Let (. . .)"

15. P7080 L12: This should cite Cunnane (1978): Cunnane, C. (1978) Unbiased
plotting positions - A review. J. Hydrol., 37, 205– 222.

Authors’ response: The citation will be added in the reference section of the
manuscript.

16. Table 2: What is meant by “Standard estimative return values” here? The text
implies that return levels are estimated by solving for x̃p after averaging over the pa-
rameter uncertainty (P7068 L7). However, the same paragraph states that credibility
intervals are no longer defined, in which case how are those in Table 2 constructed? As
with return period above, it is possible to algebraically solve for return level conditional
upon the parameters which then provides a probability distribution for each return level
estimate. If this was used, was the best estimate taken as the mean, median or mode?
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Similarly, the table caption states that it provides 95% credibility intervals but are these
central probability intervals (corresponding to the 2.5% and 97.5% quantiles) or per-
haps a highest posterior density interval? The table caption should either indicate what
the four cases are in the first column or refer to where they are defined (i.e. in Fig. 3).

Authors’ response: For the first part of the referee’s comment, we believe it is the
same remark as Technical correction 13. Our response is detailed for Technical cor-
rections 8 and 13. Considering the second part of the referee’s comment, the standard
estimative return levels are calculated from the maximum likelihood estimates of the
posterior distribution of the parameters, which correspond to the mode of the posterior
distribution of the parameters (see again Technical corrections 8 and 13). The 95%
credibility intervals are central probability intervals, the caption of Table 2 will be clari-
fied accordingly. Finally, we will follow the referee’s suggestion by indicating in the table
caption what the four cases are.

17. Figure 3: Of the four cases defined in this plot, the historical data is used in cases
3 and 4 while the 2010 data is used in cases 1 and 4. The order would perhaps be
more intuitive if the 2010 data was instead used in cases 2 and 4 (i.e. if cases 1 and 2
were swapped).

Authors’ response: We agree with the referee. The order of the four cases will be
modified accordingly.
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Please also note the supplement to this comment:
http://www.nat-hazards-earth-syst-sci-discuss.net/2/C3605/2015/nhessd-2-C3605-
2015-supplement.pdf
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