

The May 27, 1937 catastrophic flow failure of gold tailings at Tlalpujahua, Michoacán, México

by

^{1*}Macías, J.L., ²Corona-Chávez, P., ³Sánchez-Núñez, J.M., ^{4,5}Martínez-Medina, M.,
²Garduño-Monroy, V.H., ¹García-Tenorio, F., and ¹Cisneros-Máximo, G.

¹Instituto de Geofísica, Unidad Michoacán, Universidad Nacional Autónoma de México, Campus-
Morelia, Morelia, 58090, Michoacán, México (macias@geofisica.unam.mx)

²Instituto de Investigaciones en Ciencias de la Tierra, Universidad Michoacana de San Nicolás de Hidalgo, Morelia, 58040, Michoacán

³Instituto Politécnico Nacional-CIEMAD. Miguel Othón de Mendizabal s/n. Col. La Escalera., 07320, Del. Gustavo A. Madero. México D.F.

⁴Maestría en Geociencias y Planificación del Territorio, Universidad Michoacana de San Nicolás de Hidalgo, Morelia, 58040, Michoacán

⁵Instituto Nacional de Estadística Geografía e Informática, Centro de Información Michoacán, 58130, Morelia, 58040, Michoacán

Manuscript submitted to Natural Hazards and Earth System Sciences

*Corresponding author

June 16, 2014

34 **Abstract**

35 On 27 May 1937, after one week of sustained heavy rainfall, a voluminous flood caused the death
36 of at least 300 people and the destruction of the historic El Carmen church and several
37 neighborhoods in the mining region of Tlalpujahua, Michoacán, central Mexico. This destructive
38 flood was triggered by the breaching of the impoundment of the Los Cedros tailings and the
39 sudden release of circa 16 Mt of water-saturated waste materials. The muddy silty flood, moving
40 at estimated speeds of 20–25 m/s, was channelized along the Dos Estrellas and Tlalpujahua
41 drainages and devastated everything along its flow path. After advancing 2.5 km downstream, the
42 flood slammed into El Carmen church and surrounding houses at estimated speeds of ~7 m/s,
43 destroying many of construction walls and covering the church floor with ~2 m of mud and
44 debris.

45 Revision of Eeyewitness accounts, and newspaper articles, together with analysis of archived
46 photographic materials, indicated that the flood consisted of three muddy pulses. This
47 interpretation is confirmed and extended by the results of our geological investigations during
48 2013 and 2014. Stratigraphic relations and granulometric data for selected proximal and distal
49 samples show that the flood behaved as a hyperconcentrated flow along most of its trajectory.
50 Even though premonitory signs of possible impoundment failure were reported days before the
51 flood, and people living downstream were alerted, authorities ordered no evacuations or other
52 mitigative actions. The catastrophic flood at Tlalpujahua provides a well-documented, though
53 tragic, example of impoundment breaching of a tailings dam caused by the combined effects of
54 intense rainfall, dam weakness, and inadequate emergency-management protocols—
55 unfortunately an all too common case-scenario for most of the world's mining regions.

56

57

58 **1 Introduction**

59 “Tailings” is the general term for milled waste materials from processing of ore that are
60 successively accumulated during the course of mining activities (Rico et al., 2008). Such tailings
61 are usually accumulated upstream/downstream valleys or ring impoundments and, in all cases,
62 these are retained by an outer dam wall or dyke generally made of wood (Klohn, 1972, Blight,
63 1997; Sammarco, 2004; Blight and Fourie, 2003). As summarized by Blight and Fourie (2003), if
64 for any reason the dam wall breaks, there is the danger that the settled tailings can escape the
65 impoundment, causing mass movements and/or a flow failure, which commonly results in serious
66 socio-economic and environmental consequences. Several dam failures have occurred during the
67 past century, with key examples studied in South Africa (Blight et al., 1981; Nierkirk and
68 Vlijoen, 2005), Spain (Ayala-Carcedo, 2004; Gens and Alonso, 2006), Italy (Genevois and
69 Tecca, 1993; Chandler and Tosatti, 1995; Berti et al., 1997), Chile (Dobry and Alvarez, 1967).
70 Sammarco (2004) grouped dam breakouts into two categories: *i*) failures in which water flows
71 over the tailings causing erosion and transportation of the material progressively deposited
72 downstream (overtopping) and, *ii*) failures in which liquefaction of the tailings and/or breakout of
73 the dam produces a highly hazardous flow that rushes downhill. Blight and Fourie (2003)
74 documented different types of dam failures from mine tailings and municipal dumps by analyzing
75 a database of 184 cases (US National Committee on Large Dams, 1994). These authors
76 documented at least 22 failures over a period of 72 years (1928 to 2000) that caused 1400
77 casualties. Rico et al. (2008) documented 147 cases worldwide of dam tailings failures triggered
78 by 16 different factors, including: management operations, seismic liquefaction, rise of the
79 phreatic surface, mass movement slope instability, fluvial undermining, inadequate/insufficient
80 beach or free board, piping/seepage, dam overtopping/overflow, foundation failure, water level
81 rise, snowmelt, inadequate decant pipe construction, unusual rainfall event/~~period~~, insufficient

82 perviousness of filter drain, mine subsidence, and structural failure. However, the most common
83 incidences were caused by unusual rain/snow periods, accounting for as much as 26 % of all
84 factors, or 39% for a combination of one or two factors [\(Rico et al., 2008a\)](#). As documented by
85 these authors, breaching floods are usually composed of highly water-saturated oozy sediment,
86 which exhibits a wide range of fluid behavior from debris flows to muddy floodwater (Rico et al.,
87 2008a). Considering outflow volume versus runout distance, these authors ~~elassify-grouped~~ these
88 floods into two categories: 1) floods with high viscosity spilled mine waste, and 2) floods with
89 large volume of water within the tailings dam (70-85 %) related to heavy rains and dam
90 overtopping. Despite all these data, there remains an evident gap between the diversity of the
91 tailings dam characteristics in the world and the relative few studies documenting them,
92 especially for cases in Latin America. Consequently, modern geotechnical, hydrological, and
93 hydraulic studies are critically needed to improve the environmental regulations relevant to safe
94 management of mine wastes.

95 In this work, we present a ~~very~~-well -documented case study of a dam failure on May 27, 1937,
96 caused by a combination of unusual rainfall and breaching of the tailings impoundment that
97 generated a catastrophic flood in the town of Tlalpujahua, Michoacán, central México. Based on
98 eyewitness accounts, information in printed reports, and [past and present photographs](#)~~pictures~~, we
99 present [herein new additional](#) results from detailed field [reconnaissance](#)~~survey~~ and [selected](#)
100 laboratory analyses, we were able to reconstruct the flow type, behavior and dynamics
101 downstream as well as its impact to settlements.

102

103 **2. Methodology**
104 We compiled all available information of the Dos Estrellas mining activities as well as the
105 eyewitness accounts, new papers and printed reports, including the historical and photographic

106 archive of the historic gold tailings flood at Tlalpuhajua Michoacán, México. Mining and
107 geological data were set into the geographic spatial database from the National Institute of
108 Statistics, Geography and Informatics (INEGI, 2007): For digital elevation models (DEM) of 10
109 x 10 m resolution digital the “E14A16” topographic maps of 2007 (1:50,000) were used. DEM’s
110 were used to arrange the thematic patterns: slope, drainage pattern and shading models. Six
111 printed aerial photos (1:75,000) of two flight lines (L12 and L13), two orthophotos (E14A16E1
112 and E14A16F1) panchromatic (1: 10,000), and the SPOT5 panchromatic satellite image (2.5m /
113 10 m multispectral resolution) were used to build a preliminary map which includes lithological
114 contacts, drainage patterns and characterization of the tailing dump. All geographical information
115 was processed using the commercial software ArcGIS 9.1 and Erdas 9.3. Fieldwork lead to the
116 final map (Fig. 8) accompanied by detailed 23 stratigraphic columns carried out along the pattern
117 of tailing flood. From these sections 14 samples were selected for particle size analysis. Matrix
118 samples were dry sieved 1φ ranges between -5 and 4 φ, and wet sieved fractions between 5 and
119 9φ (31-2 m), using the laser fence meter instrument Universidad Michoacana de San Nicolás de
120 Hidalgo. The results were normalized to obtain a full-size spectrum (Kellerhals and Bray, 1971).
121 Granulometric statistical parameters (Md φ and σφ) were calculated for each sample, according
122 to Inman (1952) and Folk and Ward (1957) (Fig. 9).
123

124 **3. Background geology and geography**

125 The Mining District El Oro-Tlalpuhajua (MDOT) is located within the states of Michoacán and
126 Mexico and is part of the hydrological basin "Lerma Santiago River", region 12 (Fig. 1). In terms
127 of geologic setting, the MDOT is located within the Miocene-Pliocene Trans-Mexican Volcanic
128 Belt (Gómez-Tuena et al., 2007). However, the geological unit that actually hosts the MDOT ore
129 deposits is comprised of Jurassic-Early Cretaceous basement rocks (Silva-Ortiz and Salgado-

130 Soto, 1988; De La Teja Segura, 2000; Centeno-García et al., 2003). Even though MDOT is
131 essentially known as a gold deposit, the mineralization in the district is part of an extensive silver
132 metallogenic province (Ostroumov and Corona Chávez, 1999; Albinson et al., 2001) (Fig. 1). The
133 mineralized structures are hosted in a NW-SE hydrothermal vein system, which has a roughly
134 tabular form, ~3.5 km in length and with thicknesses varying from 0.5 to 33 m. Au-Ag minerals
135 are essentially hypogenic sulphides and sulfosalts associated with a gangue of calcite and quartz
136 (Flores, 1920; Reiniery, 1955).

137 Geographically, the MDOT lies within a mountainous area, with average elevations of 2600-3000
138 m and moderately steep slopes ~~ranging from~~ 16 to 35°. The morphology of the MDOT basin
139 ends abruptly to the north because of the active tectonics of the Morelia-Acambay Graben
140 system. To the East, the MDOT is adjacent to El Oro region, where monogenetic cinder cones
141 coexist with shallow lacustrine basins containing wetlands. The MDOT has humid temperate
142 climate, with summer rainfall averaging 900 mm per year (CNA, 2013;
143 <http://www.conagua.gob.mx/>; Fig. 2). The driest months are from January to May and November
144 to December with precipitations under 40 mm (see Figure 2). The region's annual average
145 temperature varies between 12 and 18°C, with the lowest in January (~3-18°C) and higher
146 temperatures during April and May (>22°C).

147

148 **43. Summary of the MDOT development**

149 Industrial mining in Mexico began during the Colonial era, during which the MDOT was known
150 as the "Real de Minas of Tlalpujahua". During this time, a series of exposed veins were exploited
151 within areas of the present-day cities of El Oro and Tlalpujahua (Fig. 1). During the following
152 centuries (XVI-XX), the mining works were continuous and large, medium, and small mining
153 companies succeeded to create a culture linked to the work of mineral extraction and processing

154 of silver and gold. The largest production period began in the early XIX ; since then, the mining
155 activity can be summarized in three periods (Fig. 32): I) during the first one (1820-1870), the
156 British El Oro Company committed capital and technology towards the rehabilitation of mines
157 that were destroyed or abandoned during the Mexican Independence War; ii) in the second one
158 (1898-1938) (Fig. 1B and Table 1), the richest gold veins were discovered under the Cerro
159 Somera and were exploited intensively; and iii) the third one (1939-1959), when the Mining
160 Cooperative "Las Dos Estrellas" in El Oro and Tlalpujahua and the Commission of Mining
161 Development started operations (Uribe Salas, 2008; 2009). The towns of Tlalpujahua (XVI
162 century) and El Oro (XVIII century) became increasingly developed with the construction of the
163 mineral separation and metal-casting plants, roads, shafts or pits to access mineral deposits, and
164 accumulation of dumps and mine tailings (Uribe Salas, 2008) (Fig. 1). Many investigations of
165 mining exploration in the DMOT have been carried out, but there are no published records of
166 industrial mining production since the 1960s. Nonetheless, despite the demise of active mining,
167 the villages of El Oro and Tlalpujahua have survived during recent decades, coexisting with the
168 piles of tailings and archaeological industrial remains. At Tlalpujahua, there is a museum that
169 focuses on the history and the remains of the region's mining past, including a very informative
170 and pleasant tour inside a mine.

171

172 **5.4 The Los Cedros Tailings dam**

173 On December 14, 1907, the mining company received the authorization to construct a tailings
174 dam by a Federal Agency (Secretaría de Fomento). On January 25, 1908, the company submitted
175 a project plan (involving 33 acres) to the Federal agency and constructed within its property the
176 base of the dam at the Sangria stream at an approximated elevation of 2850 m above sea level,
177 besides the Los Cedros metallurgical plant and ~500 m near the village of Tlalpujahua.

178 The impoundment began with the construction of a wood retaining wall and during more than
179 three decades, these tailings dam, well-known as “Lamas Los Cedros” considering their
180 proximity with Los Cedros metallurgical plant were associated with the exploitation and
181 generation of mine wastes from the “Las Dos Estrellas” mine (Fig. 3). These tailings filled areas
182 upstream of the gullies of Sangría and Dos Estrellas and drastically modified the morphology of
183 the terrain around the village of Tlalpujahua. Consisting of soft unconsolidated material
184 associated with cyanidation processes, the mass of accumulated tailings was prone to
185 remobilization.

186 The dam was built with wood to form a rectangular base where mine wastes were deposited after
187 crushing, milling, cyanidation and concentration processes were performed. The thickness of the
188 tailings increased rapidly (ca. 35 m thick) to an approximated elevation up to 2875 m and
189 acquired a platform-like form (Fig. 4). From 1908 to 1936, the dam had an approximated volume
190 of 14.7 Million tons of mine waste (Uribe Salas, 2009; Corona Chávez et al., 2010; Table 1). In
191 1934, the mine had its largest production (820,603 tons, ~2 thousand tons/day). By 1935, the
192 mining company was projecting the construction of a new dam, suggesting that Los Cedros dam
193 was already at or near its capacity. However, this new project of the company never materialized.

194

195 45.1 Premonitory signs of a catastrophe

196 Prior to the 27 May catastrophe, dam caretakers had reported cracks and softening of the
197 impoundment surface, but apparently, these reports were considered of no immediate danger
198 (Bernal-Navarro, 2012). However, this author concluded that the base of the impoundment had
199 softened due to the persistent rains and a permanent stream that existed at the base of the gully. In
200 fact, on May 26, at 5:30 pm a ~4 tons block detached from the lower part of the impoundment
201 leaving a 30 m-wide hole. After this small landslide, mine dam caretakers warned villagers

202 downstream to leave their homes because a large landslide may occur. Unfortunately, only a few
203 paid any attention and this warning went unheeded. That same day, at around 11:20 pm, another
204 block detached from the impoundment, flooding the road to the Los Cedros metallurgical plant
205 and the Juarez bridge. Intense rain accompanied by lightning persisted throughout the night.

206

207 **45.2 The May 27 1937 flood known as “Las Lamas”**

208 At around 5:20 am of May 27th, a large block (6-8 tons) of tailings collapsed (Bernal-Navarro,
209 2012), producing a din followed after a few seconds by a powerful air blast “that we interpreted
210 as an air pressure wave” that flattened trees, fences, and houses. Eyewitnesses described the flood
211 as a muddy to sandy fetid mass that rapidly channeled into, and filled, the stream. The ensuing
212 flood rushed downstream, first hitting the Los Cedros metallurgical plant (Figure 5A-B) and then
213 the Trigueros hill. Inhabitants felt the ground shaking caused by the flood impact.

214 As the flood crashed against Trigueros hill, it diverted into an eastern upstream flood and a
215 western downstream flood. The upstream flood flowed moved eastward to the Los Cedros
216 metallurgical plant a few hundred meters and then it waned and stopped. Instead the downstream
217 flood rapidly transformed into a huge catastrophic wave at least 30 m in depth that swept towards
218 the village of Tlalpujahua and San Jesus del Monte hill that was crowned by a church. Between,
219 Los Cedros Metallurgical plant and San Jesus del Monte hill at least eight neighborhoods were
220 completely destroyed (among which La Cuadrilla, Chinches Bravas, El Dos, and Las Cabecillas).
221 Unfortunately, no detailed census of these neighborhoods existed; in fact, many people who were
222 oblivious of the happenings at Tlalpujahua were working at the Dos Estrellas mine at the time.

223 Eyewitness accounts gathered by Bernal-Navarro (2012) described the flood phenomena
224 observed by inhabitants of Tlalpujahua that are next summarized to better understand the nature
225 of the flood. The huge rushing flood uprooted everything along its path as houses, trees, electrical

226 poles, people, and animals were swept away. The electrical poles and wires downed by the flood
227 generated short circuits, producing explosions, lightning, and gases. The explosions burned trees
228 everywhere, initiating short-lived fires. During all this chaos, the windy storm persisted. Some
229 people climbed the hills of Trigueros and San Jesus del Monte to save themselves (Fig. 6).
230 Survivors who that reached these, or lived at higher elevations, described that the flood had the
231 appearance of a fetid lake moving downstream. The muddy flood scoured the outskirts of
232 Tlapujahua and move around Jesus del Monte hill downstream along the Tlapujahua River.
233 Eyewitnesses observed roofs, logs, furniture, and plants floating on the flood.

234 After advancing one kilometer, the flood encountered El Carmen village, including the church,
235 cemetery, and hamlets located along the eastern bank of the river. The flood partly destroyed the
236 structures, buried the church with at least 2 m of mud. Some walls of the El Carmen church were
237 destroyed while others withstood the impact of the flood including the painting of the “Madonna
238 El Carmen” (Fig. 6). ~~One of these intact walls protected the painting of the “Madonna El~~
239 ~~Carmen” this was considered as a miracle by the surviving inhabitants.~~ Days after the
240 catastrophic flood, inhabitants dug out the undamaged painting and paraded in a religious
241 procession to transport it to the Tlapujahua Cathedral. Beyond El Carmen Village, the muddy
242 flood did not weaken but continued downstream for several more kilometers, but without
243 encountering any other churches or hamlets. Because the muddy deposits had a whitish to light-
244 gray color, the inhabitants nowadays know it as the “Las Lamas” flood deposit. The flood
245 catastrophe produced a casualty toll of circa 300 people.

246

247 **65 Mineralogy and chemistry of the tailings**
248 The physical and chemical characteristics of the MDOT tailings ~~were previously~~ studied in
249 ~~Corona Chávez et al.~~ (2010). Most of the tailings have silt to clay textures (Siebe et al., 1996)

250 with a grain- size distribution of silt (<80%) and significant variations of clay (7-10%) and fine
251 sand (7-38%). pH varies from neutral to slightly alkaline (7.8-8.46) with variable conductivity
252 (predominantly > 800 moh/cm) which indicates a minor and variable concentration of metals.
253 Mineralogically, the tailings consist of quartz (> 42%), clay (9-19%), and calcite (11-12%). The
254 amounts of opaque minerals vary little (> 2-3%) and consist of pyrite, argentite, galena, goethite,
255 ilmenite, magnetite, hematite, arsenopyrite, chalcopyrite, and pyrrhotite (Maldonado Villanueva,
256 2008). The analyzed samples contained abundant silica (56-92 wt. %), aluminum (5-13 wt. %),
257 iron (3-5 wt. %), calcium (2.5-5 wt. %) and potassium (1-2 wt. %) (Corona Chávez et al., 2010).
258 The samples have values that are potentially profitable, with Au 0.6 to 4.4 g/ton and Ag 1.8-
259 178.3 g/ton. The potentially toxic elements (PTE) show values ranging from: 3.0 to 83.9 ppm for
260 As, 7.4 to 808.6 ppm for Cu, 16.5 to 317.5 ppm for Pb, and 63.8 to 548.2 ppm for Zn. Some of
261 these concentrations exceed the official safe levels established by the Mexican government.
262 Finally, the nature of the tailings with respect to water chemistry anomalies (Nieto Monroy,
263 2007) is dominated by relatively neutral water and, therefore, the PTE values of the tailings did
264 not seem to generate acid drainage.

265

266 **76 Tailings Flood Deposit (TFD)**

267 The tailings flood deposit (TFD) is easily recognized along its extent because it is a light-gray to
268 white color that contrasts with the local basement rocks, such as red, yellow and brown alluvial
269 deposits, brown paleosols, and modern soil. The TFD appears as scattered outcrops along the Dos
270 Estrellas and El Carmen (Tlalpujahua) streams.

271 76.1 Distribution and volume.

272 Proximal exposures of the TFD (or Las Lamas) deposit occur around the San Jesus del Monte
273 hill. At the top of this hill stands the San Jesus del Monte church (Fig. 6), which withstood the

274 worst part of the 1937 flood. Today, this hill and church lie within the Tlalpujahua village limits.
275 Proximal outcrops of Las Lamas flood are found on the San Jesus del Monte hill at minimum and
276 maximum elevations of 2,500 m and 2,540 m, respectively. From this site on, the deposit can be
277 traced downstream along the Tlalpujahua River (Fig. 7A). The deposit appears either as flat
278 terraces (1-2 m thick) or as an overbank layer (20-40 cm thick) resting on top of older alluvial
279 deposits and local basement rocks (andesites, schists, and paleosols). On the other hand, distal
280 deposits occur as far as 9 km from San Jesus del Monte hill, at site 23 and at an elevation of 2350
281 m (Fig. 8), where it is 45 cm thick. Here, an eyewitness described that the flood travelled more
282 than 1 km from this location where it was still able to carry meter-size boulders. The most distal
283 locations are further north at elevations of 2270 m along the Venta de Bravo Valley and close to
284 the Federal Highway 15 where it connects to the cities of Maravatio and Atlacomulco. By
285 considering a minimum extent of 11 km for the deposit and the present exposures, we estimate
286 the deposit to cover a minimum area of about 982,000 m². If we assume an average thickness of 1
287 m for the deposit, we would obtain a minimum volume of 982,000 m³ of material (0.00098 km³).

288 By using We used a digital elevation model for estimating the volume by using a common cut
289 and fill command the contour lines and thicknesses and the Spatial Analyst software of ArcGIS
290 we obtaining a volume of 1,492,000 m³ (0.00149 km³). As described below, the flood moved
291 with sediment-water concentrations of ~50%, therefore, if we assume such concentrations existed
292 at the time of the flooding, it might have had a minimum volume between 0.0019 and 0.0029
293 km³.

294

295 76.2 Description and granulometry
296 Twenty-two stratigraphic sections were measured of the remnants along the path of the Tailings
297 Flood Deposit (TFD) (Fig. 8). From ten of these sections, we sampled 14 specimens to perform

298 granulometric analyses from -8 to +12 ϕ grain-sizes (Fig. 9). The correlation of these sections
299 suggested that the deposit mainly consists of one massive layer. However, at two locations (El
300 Carmen Church TL08 and TL14) three and two beds were described, respectively. At locations
301 between San Jesus del Monte and El Carmen the deposit is soft and loose, but beyond El Carmen
302 church it is partly indurated and contains void spaces in all sections..

303 The TFD shows a light-gray to whitish color and has a flat planar lower contact and an upper
304 contact grading into the modern soil. It usually overlies a brown to orange paleosol that may
305 contain pottery or other artifacts (site TL13) or over the local green-schist basement (site TL-18)
306 (Fig. 10C). At section TL14, the TFD deposit overlies the 1937 soil, a brown hyperconcentrated
307 flow, a brown paleosol, a debris flow deposit with rounded to angular blocks pieces of broken
308 glass in a coarse sand-matrix, and the underlying schists (Fig. 10A). All this sequence stands
309 beside or atop the remains of an old bridge wall. This stratigraphic column suggests that other
310 historical fluvial debris flows have occurred at Tlalpujahua.

311 Along its extent, the TFD has variable thicknesses, for instance around 40 cm at section TL-13
312 (San Jesus del Monte Church), 2.8 m at site TL16 (0.8 km downstream), and 40 cm at the farthest
313 location (TL-23) (Fig. 8). As a whole, the deposit is massive, matrix-supported (>56 %), and
314 composed of sandy to clayey particles (Fig. 9, Table 23). These characteristics indicate that the
315 deposit had an unimodal granulometric distribution with the main mode shifting from 1 to 4 ϕ
316 (Table 23) and good sorting (0.55-1.35 $\sigma\phi$). The structure, texture, and grain-size characteristics
317 of TFD suggest it corresponds to a hyperconcentrated flow deposit (Fig. 9). In some sections,
318 however, the deposit may contain scattered gravel to boulder -size fragments, as in section TL-
319 01B (up to 40 %) or at section TL-21 (43 %) (Table 23). In these sections, the granulometric
320 distribution of TFD is bimodal, with a coarse mode (-5 to -3 ϕ) not shown at other locations, a

321 fine mode (1.8-4 ϕ) and medium sorting (5.2 to 1.1 $\sigma\phi$). The structure, texture, and grain-size
322 characteristics of the deposit at these specific locations allow us to classify them as debris- flow
323 deposits.

324 At site TL13, along the steps of the San Jesus del Monte church, the TFD varies in thickness
325 from 80 cm to 40 cm. It overlies an anthropogenic layer rich in pottery shards, charcoal and other
326 remains, and older debris flow and the basement green schists (Fig. 11).

327 Site TL01 (remains of the El Carmen Church) exhibits an extraordinary sequence of the TFD
328 made of three different layers (A-C) separated by erosive contacts. The intermediate unit, which
329 is rich in boulder size fragments and church blocks, seems to correlate with the deposit at all
330 other locations (Fig. 12A-B). These layers are light-tan in color, massive, and partly indurated
331 with voids. The lowermost layer A rests on the 1937 El Carmen church floor (Fig. 12B). It is a 40
332 cm thick and contains sporadic subangular clasts usually smaller than 3 cm set in silty to clayey
333 matrix (~95 %).

334 Layer B (\leq 0.85 cm thick) consists of angular to subangular clasts (30-84 cm in diameter) set in a
335 clayey-silty matrix (80 %). This layer contains stone church blocks, glassware, pottery, bricks,
336 wood chips, and charcoal. Layer C (\leq 60 cm thick) is heterolithologic with ignimbrite and
337 metamorphic subangular fragments ranging in size from 1.5 to 6 cm in diameter. The clasts are
338 dispersed in the middle part of the bed within a sandy to silty matrix (70-75 % wt.). The upper
339 portion of layer C grades into the modern soil.

340

341 **87 Discussion**

342 Mining activity in the MDOT reached its elimax apex during the first half of the XX century,
343 when the “Las Dos Estrellas Company” was established. At that time, \geq 2 mil tons of rock were

344 extracted daily producing alike amounts of waste materials disposed into the tailings. As
345 mentioned previously, the construction of the Los Cedros tailings dam in 1908, and accumulation
346 of waste materials within it, drastically modified the geomorphology and the drainage system
347 around the village of Tlalpujahua. The mass of >2 million tons of soft unconsolidated material
348 associated with cyanidation processes was prone to remobilization. Such morphological and
349 hydrological modifications of the landforms were primed for some triggering phenomenon to
350 release a large amount of material in a catastrophic way.

351 Taking into account all the previous information of the event, the worldwide literature of similar
352 events, ~~and our own research~~, we conclude that several factors combined to produce the terrible
353 flood catastrophe as summarized by Rico et al. (2008, 2008a). First at all, the impoundment was
354 built upstream, infilling the Dos Estrellas valley and changing the morphology and drainage
355 pattern of the perennial and seasonal streams. Secondly, prior to the breaching of the dam, some
356 people witnessed diverse small landslides caused by softening of the impoundment. This was
357 likely facilitated by seepage of a small stream that flowed at the bottom of the tailings dam
358 (Bernal Navarro 2012). At that time, the people living downstream were alerted, but the
359 authorities did not evacuate them or took any additional preventive measures. Therefore, a
360 combination of bad management operations and the lack of preventive measures to evacuate
361 people at risk played an important role in the catastrophe, as it has been emphasized by Gipson
362 (2003). These anthropogenic factors compounded the effect of sustained torrential rainfall in the
363 region that saturated and softened the tailings dam material, culminating in the breaching of the
364 impoundment that suddenly released a silty, fetid mass that rapidly transformed into a
365 catastrophic flood. To date, no Mexican regulations exist to prevent the environmental impact of
366 tailings ponds as it has been proposed in other countries several decades ago (e.g., Yet, despite
367 recent advances, environmental problems and dam failures continued to occur (East, 2000), even

368 during the past decade (Azam and Li, 2010). For example, the October 4, 2010 dam failure in
369 Hungary released 700,000 m³ of tailings with fatal consequences, underscoring the critical
370 importance to understand, and possibly to mitigate, these failures. A step forward regarding the
371 study and analyses of dam failures was proposed by Neves Correia et al., (2011) who applied a
372 Failure Modes and Effects Analysis (FMEA) at Cerro do Lobo tailings, Portugal.

373

374 78.1 Failure of the Tlalpujahua tailings dam

375 Unfortunately, no local weather stations existed around the MDOT before the failure. The first
376 station (15183-Oro), which became operational in 1972, is relatively close to the Los Cedros
377 metallurgical plant (Fig. 15). This station has a continuous rainfall record from 1972 to 2002,
378 with some small gaps in 1988, 1993, and 1994. By using descriptive statistical methods.
379 Martínez-Medina et al. (2012) concluded that the MDOT showed an average precipitation of 900
380 mm per year (~~904 mm mode and a median of 34 mm~~). These results resemble the regional
381 rainfall weather (see Figure 2). However, it is worth noting that, during this period, at least two
382 years had atypical rainfall (exceeding >1200 mm) ~~one of them . The first is evidently related to~~
383 ~~the May 27, 1937 catastrophic flow failure and, the second occurred during in the 1986 year,~~
384 when the rainfall exceeded 2000 mm (Fig. 13). With this study, Martínez-Medina et al. (2012)
385 argued concluded that return periods for 1800-2100 mm rainfalls occurred every 29 years. On the
386 other hand, there is evidence that atypical rainfall periods have caused other catastrophic debris
387 flows along the Tlalpujahua-Americas stream as it has been attested by at least two historical
388 floods (older than 1937) observed in the stratigraphic record (site TL-14). One of them, had a
389 coarser granulometry than the 1937 flood, and contained broken glass and blocks from an old
390 bridge destroyed by this debris flow suggesting that previous events along the Tlalpujahua-
391 Americas stream have had larger magnitudes. By considering the time recurrence of the most

392 recent extreme rainfall event (in 1986) and the sedimentological record, we may expect that an
393 atypical event may occur in the near future in Tlalpujahua and consequently the risk is still
394 present.

395

396 78.23 Reconstruction of events

397 Eyewitness accounts clearly described the passage of at least two floods on the morning of May
398 27, 1937. At 5:40 am (Bernal Navarro, 2012). The first landslide from tailings dam caused a huge
399 roar that was suddenly accompanied by an air pressure wave. The roaring noise likely alerted
400 people in Tlalpujahua and spurred them to try to escape. By natural instinct, people in their
401 pajamas or partly nude were seen walking, crawling, and running uphill to Trigueros, Tlalpujahua
402 and to Jesus del Monte Church. It is not clear how many people were able to flee this first flood
403 wave, which was as deep as 20 m around Tlalpujahua. People who managed to save themselves
404 observed the horror of terrified, screaming people being engulfed by the flood and disappearing
405 downstream. Some survivors were able to rescue other people, although they failed in their
406 attempts to either save lives or rescue their belongings, when they were cut off by the flood.

407 ~~Eyewitnesses mentioned that a woman with her head poking out of the flood was asking for help~~
408 ~~when another wave of mud dragged her to death.~~ From such accounts, it is clear that the main
409 devastating flood was followed by several smaller waves and surges.

410 ~~Based on our reconnaissance fieldwork and the sedimentological analyses of samples collected of~~
411 ~~the TFD along the Sangria and Dos Estrellas streams and the Tlalpujhaua river, we conclude that~~
412 ~~the~~The stratigraphic reconstruction of the deposit record shows at least three
413 hyperconcentrated/debris flow deposits associated with the same number of floods. The best
414 exposure of this interpretation is seen at El Carmen church (TL-01). This conclusion was
415 confirmed by the detailed governmental report carried out by an expert who described three flow

416 surges and several other details and facts of the tragedy (Antonio López Portillo, 1937 in Juárez
417 Bobadilla, 2007).

418

419 78.32 Flood behavior

420 As previously discussed, there were at least three flow surges. The first and largest flow
421 originated in the Sangria gully, and the later smaller flows involved sources at the Dos Estrellas
422 stream. Eyewitness accounts, historical photographs, and recent fieldwork helped us to
423 understand the dynamic behavior of the largest flow. The flow was sourced from someplace
424 along the Sangria gully, the initial mass fed by the fine-grained tailings (silt and sand material)
425 and cyanide mixed with water that rapidly rushed down the gully. At ca. 0.7 km from the
426 probable source, the flow initially struck the Los Cedros metallurgical plant and impacted against
427 Trigueros northern side hill scraping ca. 30 m of forest (Fig. 14A).

428 ~~$\int_a^b y dx = Q/v \int_a^b y dx v Q = \int_a^b y dx (\sqrt{2gh})$~~

429 Velocities of the flow were estimated from runup obstacles aligned perpendicular to the flow bny
430 using the simple relationship $v = \sqrt{2gh}$ in which h is the runup height g is the acceleration due to
431 gravity (Sheridan et al., 2005). High mud marks observed in photographs were about 30-m high,
432 suggesting flow speeds of 25 m/s. As emphasized by Sheridan et al. (2005) these estimates are
433 considered minimum velocities because this equation does not account for friction.

434 To determine the discharge of the flood along its path we used the OriginLab program to create
435 cross sections of the channel and we defined the polynomial best matched topographic profile of
436 the channel (0.97 ratio) with order three to nine polynomials. Once the area of the section was
437 obtained then equation (1) was used to determine the discharge.

438 $\int_a^b y dx = Q/v$ 1

439 Where:

440 $\int_a^b y \, dx$ = function that satisfied the shape of the channel bottom (polynomial)

441 Q = Discharge

442 v = Velocity obtained from equation (2).

443 $Q = \int_a^b y \, dx (\sqrt[3]{2g h})$ 2 without considering basal friction (Sheridan et al., 2005).

444 At the breached dam we considered a thickness of 40 m and a width of 200. The calculated area
445 with the OriginLab program was 3,870 m² for which we obtained a flow discharge of $Q =$
446 108,360 m³/s with flow velocities of 24 m/s.

447 The impact of the flood against Trigueros hill split caused its split into a short-lived, less
448 powerful upstream surge that only advanced a few hundred meters and the huge sustained flow
449 wave that rushed downstream towards the village of Tlalpujahua, scouring the old road, trees and
450 tailings from the retaining wall of the dam (Fig. 14B). Unfortunately, several neighborhoods
451 stood downstream and were completely devastated by the flood (Fig. 14C). Pictures of the places
452 and remains of these neighborhoods show the maximum thickness of deposits and the high-water
453 marks suggesting that the wave was moving as an hyperconcentrated flow (ca. 50 % sediment
454 concentration). Downstream, the Tlalpujahua river carved a gully between the outskirts of the
455 Tlalpujahua village and the Jesus del Monte hill that was surrounded by several neighborhoods,
456 including La Cuadrilla, at its base.

457 The catastrophic flood reached depths of approximately 20 m in this area destroying
458 everything in its path, knocking down all standing things, and scouring the ground to the base of
459 the Jesus del Monte church located at ca. 1.4 km from the flood source (Fig. 14D-E).
460 Eyewitnesses reported that the moving flood was striking the frontal walls of the church to the
461 point of tilting them. The flood reached a maximum elevation of 20-m at the church for estimated

462 speeds of 20 m/s (60 km/hr). Here, the flow discharge was calculated at $Q = 20,643 \text{ m}^3/\text{s}$ (for a
463 section of 10 high and 235 m wide section and flow velocities of 14 m/s). After the Jesus del
464 Monte hill the flood was confined within the gully, along which several neighborhoods were
465 located, including El Carmen village that was ~~After the Jesus del Monte hill the flood was~~
466 ~~confined within the gully, along which several neighborhoods were located, including El Carmen~~
467 ~~village.~~

468 ~~El Carmen village was very typical of the region because it was perhaps one of the oldest~~
469 ~~settlements of Tlalpujahua, and it was~~ dedicated to the “Maddona El Carmen” with an historical
470 cemetery behind the church. The flood hit El Carmen village, which is located at 2.4 km from the
471 flood source, at speeds of 7 m/s (25 km/hr) knocking down the western walls of the church, while
472 the entrance and altar were able to resist the impacts. The flow discharged calculated here was Q
473 $= 8,722 \text{ m}^3/\text{s}$ (for an area of 10 high by 235 m wide, and velocities of 10 m/s).

474 The flood buried the church with 2.5 m of debris and mud. Behind the church, the flood was able
475 to move and tilt grave markers as they are exposed nowadays. High-mud marks 5 m above the
476 deposit that partially buried the church corroborated that the flood was moving as a
477 hyperconcentrated flow. The flood was able to incorporated chunks of church walls as large as 30
478 cm. Kinematical structures of the flowFlow dynamics suggest that these blocks were suspended
479 and rolled downstream.

480 Downstream and beyond this area, there are a lot of scattered remnants of the TFD deposit at
481 several locations as far as 8 km downstream. In all these sections, the tailings deposit appears as a
482 massive hyperconcentrated flow deposit without any signs of dilution into a sediment-laden flow.

483 At section TL19 (one of the furthest sections from dam breakout) the flow had a discharge of $Q =$
484 $2,297 \text{ m}^3/\text{s}$ (4 high by 97 m width) with flow velocities of 8.8 m/s.

485

486

487 **89. Conclusions**

488 An extreme rainfall event, which lasted at least five days, triggered the softening, and ultimately,

489 the breaching of the Los Cedros tailings dam at Tlalpujahua, Central Mexico. The tailings dam

490 during 30 years accumulated >2 MT of rock waste milled by cyanidation at Las Dos Estrellas

491 mine. The sudden breaching of the dam generated a muddy flood that moved with

492 hyperconcentrated amount of sediments, destroying several settlements, a church, and killed circa

493 300 people. This study used historical photographic materials, eyewitness accounts, and data

494 from recent field and laboratory studies to reconstruct the flood behavior with increasing distance

495 from the source. We believe that our results provide a useful insight on such collapses.

496 Worldwide databases of dam failures suggest that a combined effect of rainfall and dam rupture

497 of the dam is the dominant case for nearly 40% of all cases (Rico et al., 2008). Thus, careful

498 analyses of past catastrophic floods of tailings in inactive and active mining districts must be

499 conducted to collect the knowledge analyzed and considered as a basic knowledge to improve

500 governmental regulations and oversight related to minimize the risks of future hazardous events

501 that may threaten human lives and property.

502

503 **Author contribution:** All authors, carried fieldwork at Tlalpujahua and participate during

504 manuscript writing. P. Corona, M. Martínez and V.H. Garduño revised the archive data of the

505 mine and resumed local geology and mining activities. J.M. Sánchez analyzed grain size data, F.

506 García performed granulometric analysis, and G. Cisneros managed the GIS database. J.L.

507 Macías prepared the manuscript with contributions from all co-authors.

508

509 **Acknowledgments**

510 We are grateful to the Museo Tecnológico y Minero del Siglo XIX “Dos Estrellas” for providing
511 us unique oral information and access to its photographic archive of the disaster. We also thank to
512 Remedios Cisneros of the Instituto de Investigaciones Metalúrgicas, Universidad Michoacana de
513 San Nicolas de Hidalgo for the laser analyses of the fine-grained material of samples. We
514 appreciate the comments and suggestion made to this manuscript by Robert I. Tiling and the
515 reviews of Fernando Nardi and an anonymous referee.

516

517

518 **References**

519 Ayala-Carcedo, F. J.: La rotura de la balsa de residuos mineros de Aznalcóllar (España) de 1998
520 y el desastre ecológico consecuente del río Guadiamar: causas, efectos y lecciones. Boletín
521 Geológico y Minero, 115, 711–738, 2004.

522 Azam, S. and Li, Q.: Tailings Dam Failures: A Review of the Last One Hundred Years.
523 Geotechnical News, December, 50-53, 2010.

524 Albinson, T., Norman, D. I., Cole, D., and Chomiak, B. A.: Controls on formation of low-
525 sulfidation epithermal deposits in Mexico: constraints from fluid inclusion and stable isotope
526 data. Society of Economic Geologists Special Publication Series 8, 1-32, 2001.

527 Bernal-Navarro, G.: Notas y apuntes para la historia de la Mina Las Dos Estrellas. APE Editorial,
528 México D.F., 80 p, 2012.

529 Berti, M., Genevois, R. and Tecca, P. R.: The 1985 flow slide and debris flow at Stava (Italy), in
530 Chen, C-L. (ed.) Debris-Flow Hazards Mitigation. American Society of Civil Engineers,
531 New York, 309–321, 1997.

532 Blight, G. E.: Destructive mudflows as a consequence of tailings dyke failures. Proc. Inst. Civ.
533 Eng. 125, 9–18, 1997.

534 Blight, G. E., and Fourie, A. B.: A review of catastrophic flow failures of deposits of mine waste
535 and municipal refuse, Introductory report of the International Workshop on Occurrence and
536 mechanisms of flows in natural slopes and earthfills, IW-FLOWS2003, Sorrento, Italy, 14–

537 16 May 2003, Associazione Geotecnica Italiana (AGI),
538 (<http://www.unina2.it/flows2003/flows2003/articoli/articoli.htm>), 2003.

539 Blight, G. E., Robinson, M. J. and Diering, J. A. C.: The flow of slurry from a breached tailing
540 dam, Journal of South African Inst. Mining and Metallurgy, January, 1–8, 1981.

541 Centeno-García, E., Corona-Chávez, P., Talavera-Mendoza, O. and Iriondo, A.: Geology and
542 tectonic evolution of the western guerrero terrane: a transect from Puerto Vallarta to
543 Zihuatanejo. In: Geologic Transects Across Cordilleran Mexico, Guidebook for the fieldtrips
544 of the 99th Geological Society of America Cordilleran Section Meeting April 1-3, 2003 and
545 Publicacion Especial del Instituto de Geología y Centro de Geociencias UNAM, México
546 D.F., 201-228, 2003.

547 Chandler, R. J., and Tosatti, G.: The Stava tailings dam failure, Italy, July 1985. In Proceedings
548 of the Institution of Civil Engineers Geotechnical Engineering, 113, 67–79, 1995.

549 Comisión Nacional del Agua: Available on line (<http://www.conagua.gob.mx/>)

550 Corona Chávez, P., Uribe Salas, J. A. Razo Pérez, N., Martínez Medina, M., Maldonado
551 Villanueva, R., Ramos Arroyo Y.R. and Robles Camacho J.: The impact of mining in the
552 regional ecosystem: the mining district of El Oro and Tlalpujahua, Mexico. De Re Metallica,
553 ISSN: 1577-903315, 2010 pp. 1-15, 2010.

554 De la Teja Segura, G.: Carta Geológico-Minera de Tlalpujahua. Secretaría de Comercio y
555 Fomento Industrial, Chart and internal report 65p, 2000.

556 Dobry, R., and Alvarez, L.: Seismic failures of Chilean tailings dams. Journal of the Soil
557 Mechanics and Foundation Division, American Society of Civil Engineers, 94, 237–260,
558 1967.

559 East, D. R.: Tailings dam failures — why do they continue to occur? Mining Engineering, 2,
560 December, 57–60, 2000.

561 Flores, T.: Estudio geológico-minero de los distritos de El Oro y Tlalpujahua, Boletín del
562 Instituto Geológico de México, Núm. 37, México, 1920.

563 Genevois, R., and Tecca, P. R.: The tailings dams of Stava (northern Italy): An analysis of the
564 disaster. In Chowdhury, R. and Sivakumar, M. (eds) Environmental Management. Geo–
565 Water and Engineering Aspects. A.A. Balkema, Rotterdam, 23–38, 1993.

566 Gens, A., and Alonso, E. E.: Aznalcóllar dam failure. Part 2: Stability conditions and failure
567 mechanism. Géotechnique, 56, 185–201, 2006.

568 Gipson, A. H.: Tailings dam failures — the human factor. In: Tailings and Mine Waste '03.
569 Balkema Publishers, Lisse, A.A. 451–456, 2003.

570 Gómez-Tuena, A., Orozco-Esquivel, M. T. and Ferrari, L.: Igneous petrogenesis of the Trans-
571 Mexican Volcanic Belt, in Alaníz-Álvarez, S.A., and Nieto-Samaniego, Á.F., eds., Geology
572 of México: Celebrating the Centenary of the Geological Society of México: Geological
573 Society of America Special Paper 422, p. 129–181, 2007.

574 Juárez Bobadilla J. A.: Las Lamas. 27 de mayo 1937. El Despertador Tlalpujahuense,
575 <http://tlalpujahua.blogspot.mx/2007/06/las-lamas-27-de-mayo-1937.html>, 2007.

576 Klohn, W.: Hidrografía de las zonas desérticas de Chile. Contribución Proyecto CHI-35.
577 Programa de las Naciones Unidas para el Desarrollo, 188 p, 1972.

578 Maldonado Villanueva. R.: Caracterización mineralógica de fases minerales metálicas en
579 muestras de jales del distrito minero El Oro-Tlalpujahua, México. Universidad Nacional
580 Autónoma de México, Facultad de Ingeniería, Tesis de licenciatura, 89 pp, 2008.

581 Martínez Medina M., Corona Chávez, P., Ramos Arroyo Y., Bocco Verdinelli G., and Martínez
582 Arredondo J. C.: Caracterización hidrográfica del distrito minero el oro y tlalpujahua:
583 implicaciones en los procesos de erosión y de remoción de los residuos mineros. Simposio
584 de la cuenca del lago de Cuitzeo, Morelia Mich. 14 al 16 de noviembre. Memorias p. 35-42,
585 2012.

586 Nieto Monroy, A. P.: Variabilidad espacial y temporal de la hidrogeoquímica de arroyos del
587 Distrito Minero El Oro-Tlalpujahua, Guanajuato: Universidad de Guanajuato, Tesis de
588 Licenciatura, 64p, 2007.

589 Neves Correia dos Santos, R., Maria Mello Saraiva Caldeira, L., and Bilé Serra, J. P.: FMEA of a
590 tailings dam, Georisk: Assessment and Management of Risk for Engineered Systems and
591 Geohazards, DOI:10.1080/17499518.2011.615751, 2011. EN PAG 15 TIENE 2013

592 Nierkirk, H. J. Van and Viljoen, M. J.: Causes and consequences of the Merriespruit and other
593 tailings-dam failures. Land Degradation and Development 16, 201–212, 2005.

594 Ostroumov, M., and Corona-Chávez, P.: Ensayo metalogenético del estado de Michoacán. in: La
595 Carta Geológica del Estado de Michoacán escala 1: 250 000 en 4 hojas con notas
596 explicativas, 27p, 1999.

597 Reiniry, E.: Aceituno, Informe geológico de la región auroargentífera de El Oro, México, y
598 Tlalpujahua, Michoacán, México, s/e. Consejo de Recursos Minerales, 56p, 1955.

599 Rico, M., Benito, G., Salgueiro, A. R., Díez-Herrero, A., and Pereira, H. G.: A review of the
600 European incidents in the worldwide context Reported tailings dam failures. *Journal of*
601 *Hazardous Materials* 152, 846–852, 2008.

602 Rico, M., Benito, G., and Díez-Herrero, A.: Floods from tailings dam failures. *Journal of*
603 *Hazardous Materials*, 154 (1–3) 79–87, 2008a.

604 Sammarco, O.: A tragic disaster caused by the failure of tailings dams leads to the formation of
605 the Stava 1985 Foundation. *Mine Water and the Environment* 23, 91–95, 2004.

606 Sheridan, M.F., Stinton, A.J., Patra, A., Pitman, E.B., Bauer, B., Nichita, C.C.: Evaluating
607 Titan2D mass-flow model using the 1963 Little Tahoma Peak avalanches, Mount Rainier,
608 Washington. *Journal of Volcanology and Geothermal Research*, 139, 89–102, 2005.

609 Siebe, C. D., Jahn, R., and Stahr, K.: Manual para la Descripción y Evaluación Ecológica de
610 Suelos en el Campo: Chapingo, México. Sociedad Mexicana de la Ciencia del Suelo, A.C.,
611 Publicación Especial, 4, 57 pp, 1996.

612 Silva Ortiz, I. and Salgado Soto, Z.: Estudio estratigráfico estructural en la región de Tlalpujahua-
613 El Oro, Edos de Mich. Méx. Ed. Instituto Politecnico Nacional. México D.F. pp 74, 1988.

614 Uribe Salas, J. A.: Recuento histórico bibliográfico de la minería en la región central de México.
615 Ed. UMSNH, IIH y Departamento de Historia de México. pp 271, 1994.

616 Uribe Salas, J. A.: Historia de la minería en Michoacán, volumen II. Ed. UMSNH, Sociedad
617 Mexicana de Mineralogía, Museo Tecnológico del Siglo XIX “Las Dos Estrellas”, 2 vols.
618 Morevallado Editores, Morelia, Michoacán. 227 p, 2008.

619 Uribe Salas, J. A.: Historia económica y social de la Compañía Minera “Las Dos Estrellas” en El
620 Oro y Tlalpujahua, 1898-1959. México, Universidad Autónoma Metropolitana, Universidad
621 Michoacana de San Nicolás de Hidalgo. Morevallado Editores, Morelia, Michoacán, 560p,
622 2009.

623 Uribe Salas, J. A.: Notas y apuntes para la historia de la Mina Las Dos Estrellas (1899-1960).
624 Museo Tecnológico Mineo del Siglo XIX. APE Editorial, México D.F., 80 p., 2012.

625 US National Committee on Large Tailings Dams: Tailings dam incidents, 1994.

626

627

628

629

630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650 **Figure Captions**
651
652 **Figure 1.** Location of the Mining District of El Oro-Tlapujahua (MDOT) in Central Mexico
653 (inset), showing the principal rock types, ore veins, and tailings dams. Geological map of the
654 MDOT from Corona-Chavez et al. (2010).
655
656 **Figure 2.** Annual precipitation and temperature data recorded at the meteorological stations at
657 from El Oro (15183) and Presa Brockman (15070) of the Comisión Nacional del Agua (CNA).
658
659 **Figure 3.** Historical record of the amounts of material extracted by the Mining Company (1898-
660 1938) and Cooperativa Minera “Dos Estrellas” (1939-1959) and the relationships with the
661 metallurgical processes used (after Uribe Salas, 2008).

662
663 **Figure 4.** Panoramic views in 1937 from the southeast that show A) Los Cedros tailings dam
664 with a platform-like form prior to the collapse; and B) The tailings and the Dos Estrellas Stream
665 scoured by the flood after the collapse. See people standing on the hill in the foreground.
666
667 **Figure 5.** Panoramic view of Los Cedros Metallurgical plant of “Las Dos Estrellas” Mining
668 Company at the Sangria stream, A) before and B) after the collapse. The white squares show the
669 same location in both images, and an undisturbed roof of the Metallurgical plant (white arrows).
670
671 **Figure 6.** A) Panoramic and B) close-up view from the southwest of San Jesus del Monte hill and
672 Church after the May 27, 1937 flood with rubble, and wood planks dispersed on the surface and
673 the striped slopes of the hill. C) View of the same hill prior to the flood that shows houses on its
674 southern slope.
675
676 **Figure 7.** Different views of El Carmen Church after the 1937 flood and extent of the deposit
677 along the Tlalpujahua river (A), and rubble and high-mud marks (yellow arrows).
678
679 **Figure 8.** Shaded relief map of the MDOT displaying the location of Tlalpujahua and Venta de
680 Bravo villages, the extension of Los Cedros tailings in 1937 as well as the present extension of
681 the 1937 flood deposit. Red circles are stratigraphic sections measured during this study. Insets
682 are cross profiles indicating the shape of the flow channel and some flow indicators as High Mud
683 Marks.
684
685 **Figure 9.** Cumulative curves of the TFD deposit at different distances from the source. Most of
686 the deposits are fine-grained (hyperconcentrated flow deposits) while a few exposures contained
687 boulder and gravel-sized particles set a silty matrix (debris flow deposits). See Figure 8 for
688 locations of the samples.
689
690 **Figure 10.** Aspects of the Tailings Flood Deposit (TFD) at three sections along its path. A) At
691 section TL-14, the TDF rests over a paleosol, a thin hyperconcentrated flood deposit (HFD),
692 another paleosol, and a basal debris flood deposit (DFD) that contains pieces of bottle glass. The

693 DFD forms a paleo-channel that stands against the remains of an old stone bridge. B) View of the
694 TFD at section 17 overlying a paleosol and the lower brown hyperconcentrated flood deposit
695 (HFD) rich in sand-size particles. C) At section TL-18 the TFD overlies a poorly developed
696 paleosol, a reworked bed with gravel-sized fragments and schists from the local basement. D) At
697 section TL-19 the deposits rests directly on top of a thicker paleosol.

698

699 **Figure 11.** View of section TL13 looking to the west at the steps of San Jesus del Monte Hill.
700 The section shows from the base schists, a debris flow deposit that turns into pottery rich soil,
701 and the whitish TFD atop grading into the modern soil cover with trees.

702

703 **Figure 12.** A) Panoramic view from the east of the remains of El Carmen church buried by the
704 Tailings Flood Deposit (section TL-01). The excavation of the church remains exposed the
705 ancient floor of the sanctuary also observed in insets. B) Stratigraphic column showing three beds
706 separated by dashed yellow lines and their granulometric bimodal distributions.

707

708 **Figure 13.** Timeline showing the 1986 year with exceptionally high precipitation recorded in the
709 region of MDOT. Data from the 15183-El Oro meteorological station from . The Las Llamas
710 ~~flood occurred during sustained intense rainfall in May 1937 when no weather station existed. It~~
711 ~~is interesting to note two atypical precipitation events have return periods of 49 years (Corona~~
712 ~~Chavez et al., (2010).~~

713

714 **Figure 14.** Views of damage caused by the Tailings flood in 1937 at different locations of this
715 study: Los Cedros metallurgical plant (A), Trigueros Hill (B), the Dos Estrellas stream between
716 Trigueros and Jesus del Monte (C), and Jesus del Monte (D-F). HMM = High Mud Marks.

717

718

719

720

721

722

723

724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744

Table 1. Summary of extracted metals and amount of waste produced at Tlalpujahua

Year	Extracted (tons)	Silver (Kg)	Gold (Kg)	Waste (tons)
1900				
1901	22435	2000	0	20435
1902	52722	4700	1000	47022
1903	67305	6000	1500	59805
1904	75157	6700	2000	66457
1905	89740	8000	2000	79740
1906	131133	11690	2321	117122
1907	325309	29000	3227	293082
1908	432000	28127	3075	400798
1909	341111	35000	5000	301111
1910	424198	47685	6530	369983

1911	479723	62627	6775	410321
1912	505000	63000	6000	436000
1913	673053	60000	4000	609053
1914	245664	21900	1000	222764
1915	191820	17100	4000	170720
1916	229959	20500	4300	205159
1917	463655	41333	5200	417122
1918	482354	43000	5000	434354
1919	509770	45444	4000	460326
1920	504789	45000	3300	456489
1921	503533	44888	3000	455645
1922	473313	46675	2750	423888
1923	493857	41966	2699	449192
1924	533772	35428	2548	495796
1925	665316	37024	2805	625487
1926	632056	45627	2096	584333
1927	752198	51132	2351	698715
1928	693460	55850	2328	635282
1929	693257	64461	1914	626882
1930	676962	76425	2034	598503
1931	593835	46447	1856	545532
1932	786936	38385	1812	746739
1933	821645	31702	1585	788358
1934	829663	40111	2416	787136
1935	777759	46339	2138	729282
1936	717755	40000	2000	675755
1937	628129	28452	1258	598419
1938	589275	--	--	589275
1939	761431	--	--	761431
1940	772083	--	--	772083
1941	758148	--	--	758148
1942	759625	--	1500	758125
1943	744709	--	--	744709
1944	614713	--	--	614713
1945	379183	--	--	379183
1946	266073	2676	228	263169
1947	178750	--	--	178750
Total	23344333	1372394	109546	21862393

745

746

747

| **Table 32.** Granulometric analyses and statistical parameters of samples collected along the Tailings Flood

Deposit.

Sample	Gravel (-8φ a -2φ)	Sand (-1φ a 4φ)	Silt (5φ a 8φ)	Clay (≥ 4φ)	Fines (Silt + Clay)	Matrix (-1φ a 9φ)	Mdφ	σφ	Skewness	Curtosis
TL-01A	4.2	64.41	27.93	168.98	196.91	95.23	6.2	2.73	-0.21	0.97
TLA-01B	39.67	56.54	2.26	105.59	107.85	59.05	-1.1	2.8	-0.32	0.83
TL-01C	7.06	66.14	23.71	57.11	80.82	91.97	2.12	4.15	-0.38	1.53
TL-13D1	3.39	94.22	2	18.44	20.44	96.39	2.3	0.93	-0.19	1.34
TL-13D2	0	98.96	0.84	19.78	20.62	99.9	2.6	0.55	0.09	1.01
TL-14D	0	96.35	2.98	29.82	32.8	99.65	4.3	0.57	-0.04	0.95
TL-14C	0	97.41	2.08	32.69	34.77	99.73	2.55	0.7	0.07	0.99
TL-15B	0	97.7	2.01	19.3	21.31	99.85	1.75	1.35	0.26	0.8
TL-18	0	89.04	9.26	51.11	60.37	99.11	1.8	0.98	0.38	0.9
TL-19	0	89.3	8.98	36.71	45.69	99.09	2.6	0.75	0.11	1.67
TL-20	0	93.3	5.87	42.42	48.29	99.56	3.15	1.15	-0.48	0.71
TL-21	43.04	50.04	5.9	29.01	34.91	56.38	-6.25	5.23	0.73	0.51
TL-22	7.05	88.9	6.67	39.92	46.59	95.94	2.6	1.05	-0.19	2.41
TL-23	11.16	88.74	0.05	4.81	4.86	88.8	0.95	1.73	-0.3	1.24

748

749

750

751

752

753