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Abstract. We present
:::
Our

:::::
study

::
is
::::::

aimed
:::

at
:::::::::

estimating

::
the

:::::::
added

:::::::
value

:::::::::
provided

::::
by

:::::::::::
Numerical

::::::::
Weather

:::::::::
Predictions

:::::::
(NWP)

::::
data

:::
for

::::
the

::::::::
modeling

::::
and

:::::::::
prediction

::
of

::::::::::::::
rainfall-induced

:::::::
shallow

::::::::::
landslides.

::::
We

:::::::::::
implemented

a quantitative indirect statistical modeling for predicting5

rainfall-induced shallow landsliding. We consider as input
layers both static thematic predictors, such as

:
of
:::::

such

:::::::::
phenomena

:::
by

::::::
using,

:::
as

:::::
input

::::::::::
predictors,

:::::
both

:
geomor-

phological, geological, climatological information , and
numerical weather model’s forecast. Two different

:::
and10

::::::::
numerical

::::
data

::::::::
obtained

::
by

:::::::
running

::
a
::::::
limited

::::
area

:::::::
weather

::::::
model.

:::::
Two

:::::::
standard

:
statistical techniques are used to com-

bine together the above mentioned predictors
::
the

::::::::
predictor

:::::::
variables: a Generalized Linear Model and Breiman’s Ran-
dom Forests. We tested these two techniques

::::::
models

:
for two15

rainfall events that occurred in 2011 and 2013 in Tuscany
region (central Italy). Model’s evaluation is measured by
means

::::::::
Modeling

::::::
results

:::
are

:::::::::
compared

::::
with

::::
field

:::::
data

:::
and

::
the

::::::::::
forecasting

:::::
skill

::
is

:::::::::
evaluated

:::
by

:::::
mean

:
of sensitivity-

specificity ROC
:::::::
Receiver

:::::::::
Operating

::::::::::::
Characteristic

::::::
(ROC)20

analysis. In the 2011 rainfall event, the Random Forests
technique performs slightly better , whereas in the 2013
rainfall event the

:::
than

:
Generalized Linear Model provides

more accurate predictions. This study seeks also to establish
whether the rainfall-induced shallow landsliding prediction25

might substantially benefit from the information provided by
the numerical weather model’s outputs.

::::
with

::::
Area

:::::
Under

:::
the

::::
ROC

:::::
Curve

:::::::
(AUC)

:::::
values

::::::
around

::::
0.91

:::
vs

::::
0.84.

:::
In

:::
the

::::
2013

::::::
rainfall

:::::
event,

::::
both

::::::
models

:::::::
provide

:::::
AUC

:::::
values

::::::
around

::::
0.7.

Using the variable importance parameter
:::::
output provided30

by the Random Forests algorithm, we asses
:::::
assess

:
the added

value carried by numerical weather forecast, in particular in

:
.
:::
The

:::::
main

::::::
results

:::
are:

:::
(i)

:::
for

:::
the

:::::::
rainfall

::::
event

::::::::
occurred

::
in

::::
2011

::::
most

:::
of

:::
the

::::
NWP

:::::
data,

:::
and

::
in

::::::::
particular

::::::
hourly

::::::
rainfall

:::::::::
intensities,

:::
are

:::::::::
classified

::
as

:::::::::::
“important”

::::
and

:::
(ii)

::::
for

:
the35

rainfall event characterized by deep atmospheric convection
and heavy precipitations.

:::::::
occurred

:::
in

::::
2013

:::::
only

:::::
NWP

:::
soil

:::::::
moisture

::::
data

::
in

:::
the

::::
first

::::::::::
centimeters

:::::
below

::::::
ground

::
is

:::::
found

::
to

::
be

:::::::
relevant

::::
for

::::::::
landslide

::::::::::
assessment.

::
In

:::
the

::::::::::
discussions

::
we

::::::
argue

::::
how

:::::
these

::::::
results

::::
are

:::::::::
connected

::
to

:::
the

:::::
type

::
of40

::::::::::
precipitation

::::::::
observed

::
in

:::
the

:::
two

::::::
events.

:

1 Introduction

In the last years, in the north-western part of Tuscany re-
gion and nearby areas ,

::::::
(central

::::::
Italy),

::::
were

:::
hit

:::
by

:
notice-45

able heavy rainfall events occurred (Parodi et al., 2012; Sac-
chi, 2012; Avanzi et al., 2013; Rebora et al., 2013; Fiori
et al., 2014; Buzzi et al., 2014). During these events, the

:
;
::::::::::
Perna et al. ,

:::::::
2015 ).

::
In
:::::::::

particular
:::
the

::::::::::::
north-western

::::
part

::
of

:::::::
Tuscany

::::::
region

:::
is

::::
very

::::::
prone

:::
to

:::::::
frequent

::::
and

::::::
severe50

:::::::::
rainstorms,

::::
due

::
to

:::
its

:::::::::::
geographical

::::::::
position

::::
and

::
its

:::::
steep

::::::::
orography

:::::
close

:::
to

:::
the

::::
sea,

:::::::
making

::::
this

::::
area

::::
one

:::
of

:::
the

::::::
wettest

::
in

:::::::
northern

::::
and

::::::
central

::::
Italy

:::::::::::::::::::
(Brunetti et al., 2009) .

:::::::
Because

::
of

:::
the

:::::::
fragility

::
of

:::
the

:::::::
territory

:::::::::::::::::
(Avanzi et al., 2013) ,

::::
large

:
rainfall amounts and intensities triggered a great num-55

ber of shallow landslides, causing damages, injuries and
human losses. Steep slopes and deep valleys induced a
persistently high relief of energy and a shallow landsliding
susceptibility.

::
To

:::::::
mention

::
a

:::
few

:::
of

::::
these

:::::::::
disastrous

::::::
events,

::
on

:::::
24-25

:::::::::
December

:::::
2009

:::::
heavy

:::::::
rainfalls

::::
and

:::::
snow

::::::
melting60

:::::::
triggered

:::::
more

::::
than

:::
600

:::::::::
landslides

::
in

::
the

:::::::
Serchio

::::
river

:::::
valley

:::
and

::::::
Apuan

:::::
Alps

:::::::::::::
(Avanzi et al. ,

:::::::
2013 ).

:::::::
During

:::::::
October
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::::
2010

::
a
::::::::
relatively

:::::
long

:::
wet

:::::
spell

::::::
played

::
a
:::::::::

significant
::::

role

::
in

:::::::::::
predisposing

::::
the

::::::
slopes

::::::::::
instability.

::::::::::::
Subsequently

:::
the

::::::::
rainstorm

:::
that

:::::::
affected

:::
the

::::::::::::
Massa-Carrara

::::
area

::
on

:::
31

::::::
October65

:::::
2010,

:::::::
triggered

::::::::
hundreds

::
of

:::::::::
landslides

:::::::::::::::::
(Avanzi et al., 2013) .

::
On

::::
25

::::::::
October

:::::
2011

:::
a

:::::::::
mesoscale

::::::::::
convective

:::::::
system

::::::::::::::::::::::
(Rebora et al., 2013) caused

:::::
large

::::::::::::
precipitations

:::::::
amounts

::
in

::
the

:::::::
Magra

::::
river

::::::
valley;

:::::
flash

::::::
floods,

:::::::::
landslides

::::
and

:::::
debris

::::
flows

::::::::
occurred

::
in

:::
the

::::
area

::::::
causing

::::
huge

:::::::::
economic

:::::
losses

:::
and70

::::::
thirteen

:::::::
fatalities

::::::::::::::::::::::::::::::::::
(Rebora et al., 2013; Galve et al., 2014) .

In this work, we
::
To

:::::::
arrange

:::::::
efficient

::::::
alarm

:::::::
systems

:::
and

::
in

:::::
order

::
to

::::::
reduce

:::::::
property

:::::::
damage

::::
and

::::::
hazard

:::
for

::::::
human

::::
lives,

:::::
civil

:::::::::
protection

:::::
plans

::::
are

:::::::
adopted

:::
on

::::
the

:::::
basis

::
of

:::::::::
operational

::::::::
weather

::::::::
forecast

:::::::::::::::::::::::
(Regione Toscana, 2006) .75

:::::::::::
Nevertheless,

:::::::::
prediction

:::
of

::::::::::::::
rainfall-induced

:::::::::
landslides

::
is

::::::::::
problematic

:::::
since

::
it

::
is

::::::::::
determined

:::
by

::::::
rainfall

::::::::::
infiltration,

:::
soil

::::::::::::::
characteristics,

::::::::::
antecedent

:::::
soil

:::::::::
moisture

:::::::
content

:::
and

:::::::
rainfall

::::::::
history

::::::::::::::::::::
(Guzzetti et al., 2007) .

::::::::::
Regarding

::
the

:::::
area

:::::
under

::::::
exam

::::
(see

::::::
figure

:::
1),

::::::
several

:::::::
studies

::::
deal80

::::
with

::::
the

:::::::::
definition

:::
of

::::
the

:::::::
critical

::::::::
rainfall

:::::::::
thresholds

::::::::::::::::::::
(Guzzetti et al., 2007) for

:::::
the

::::::::::
initiation

:::::
of

::::::::
shallow

:::::::::
landsliding

:::
and

::::::
debris

:::::
flows.

::::::
Among

:::::
these

:::::::
studies,

::
we

:::::
recall

::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
Giannecchini (2005, 2006); Giannecchini et al. (2007, 2012); Rosi et al. (2012); Segoni et al. (2014b) .

:::::::
Another

:::::::::::
approach

::::::
for

:::::::
the

::::::::::::
prediction

:::::
of85

::::::::
landslides

::::::
is

::::::
a

:::::::::::::::
susceptibility

:::::::::::::
assessment

::::::::::::::::::::::::::::::::::::::::
(Chung and Fabbri, 1999; Guzzetti et al., 2005a) ,

::::
since

:::::::
future

::::::::::
landslides

::::
are

:::::::
likely

:::
to
:::::::

occur
::::::

under

::
the

:::::::
same

::::::::::
conditions

:::::
that

::::::::::
produced

::::::
them

::::
in

::::
the

:::
past

:::::::::::::::::::::
(Guzzetti et al., 1999) .

::::::
For

:::::
the

:::::::::::::
north-western90

:::::::
Tuscany

::::
and

:::::::
nearby

::::::
areas,

::::::::
several

::::::
works

:::::
deal

:::::
with

:::::::
landslide

:::::::::::::
susceptibility

::::::::::
mapping

::::::::::
(hereafter

::::::::
LSM):

::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
Catani et al. (2005); Ermini et al. (2005); Federici et al. (2007); Avanzi et al. (2009); Falaschi et al. (2009); Catani et al. (2013) .

::::::
Among

:::::
these

::::::::
studies,

:::::::::::::::::::::::::::
Catani et al. (2013) implemented

::
a

:::::::
landslide

::::::::::::
susceptibility

:::::::::
estimation

::
in

:::
the

:::::
Arno

:::::
river

:::::
basin,95

::
by

::::::
using

:::
the

:::::::::
Random

:::::::
Forests

:::::::::
technique.

:::
In

:::::::::
particular

:::
they

::::::::::
considered

:::::
some

::::::
issues

:::::::
related

::
to

::::
the

:::::::::
resolution

::
of

::
the

::::::::
mapping

::::
unit

::::
and

::
to
::::

the
:::::::
optimal

:::::::
number

::
of

::::::::
landslide

::::::::::
conditioning

:::::::::
variables.

:::
In

:::::::::
particular

:::::
they

::::::
found

::::
that

::
a

:::::::
mapping

::::
unit

:::
of

:::
50

::
m

::::::
(pixel

:::::
size)

:::::
gives

:::
the

::::
best

::::::
results100

::::
with

::::::
respect

::
to

:::
10,

:::
20,

:::::
100,

:::
250

::::
and

:::
500

:::
m

:::::::
mapping

:::::
units.

::::::::
Moreover

::::
they

:::::
took

::::
into

:::::::
account

::::::
several

:::::
input

:::::::::
predictors

::::
such

::
as

:::::::::::::::
geo-morphology

::::::
factors

:::::::
(digital

::::::::
elevation

::::::
model,

:::::
slope,

::::::::::
curvatures,

:::::::
slopes),

:::::::::
lithology

:::::::
factors,

::::
land

::::::
cover,

:::::::
distance

::
to

:::::
roads,

:::::
rivers

::::
and

:::::
faults

::::
and

::::::::::
climatology

::::::
factors.105

::::
They

:::::::::
concluded

::::
that

:::
the

:::::::
optimal

:::::::
number

::
of

:::::::::
predictors

:::
for

::
the

::::::::::::
classification

:::::
ranges

:::::
from

::
9

::::::::
(mapping

::::
unit

:::
10

::
m)

:::
to

::
24

::::::::
(mapping

:::
unit

:::
20

:::
and

:::
50

:::
m).

:::::
None

::
of

:::
the

:::::
cited

::::::
papers

::::
make

:::
use

::
of

::::::::
numerical

:::::::
weather

:::::::
forecast

::
as

:::::
input

:::::::::
predictors.

:::::::
Recently

:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(Schmidt et al., 2008; Segoni et al., 2009; Mercogliano et al., 2013a,b; Segoni et al., 2014a) the110

::::::::
Numerical

::::::::
Weather

::::::::::
Predictions

::::::
(NWP)

::::
data

::::
are

::::::
arising

::
as

:
a
:::::::::
promising

:::
and

:::::::
reliable

::::
tool

:::
for

:::
the

:::::::::
prediction

::
of

:::::::
shallow

::::::::
landslides

:::::::::
triggered

:::
by

::::::::::::
precipitation.

:::
In

:::::
New

::::::::
Zealand,

::::::::::::::::::::::::::::
Schmidt et al. (2008) implemented

::
a
::::::::

landslide
::::::::::

forecasting

::::::
system

:::::
based

:::
on

::::
three

:::::::::::
components:

:::
(i)

:::::::
regional

:::::
NWP

::::
data115

:::::::
(forecast

:::
up

::
to

:::
48

::
h

::::::
ahead),

::::
(ii)

:
a
:::::::::::

hydrological
::::::

model
:::
fed

::::
with

:::::
NWP

:::::
data

::::::
aimed

::
at
::::::::::

simulating
::::

soil
::::::::

moisture
::::

and

::::::::::
groundwater

:::::
levels

::::
and

:::
(iii)

::
a

::::
slope

:::::::
stability

::::::
model

:::::
aimed

::
at

::::::::
estimating

::::::
failure

::::::::::
probabilities

::::::
within

:
a
::::::::
hillslope.

::::
The

:::::
spatial

::::::::
resolution

:::
of

:::::
NWP

::::
data

::
is

:::
12

::::
km,

:::::::
whereas

::::
the

::::::::
resolution120

::
of

:::
the

:::::::::::
hydrological

:::::
model

::::
and

::
of

::::
the

::::
slope

::::::::
stability

:::::
model

:
is
:::

30
::::

m.
::::
For

::
a

:::::::
specific

:::::::
extreme

::::::
event

::::::::
occurred

:::
in

:::
the

:::::
lower

:::::
North

:::::
Island

:::
of

::::
New

:::::::
Zealand

:::
on

::::::::
February

:::::
2004,

:::
the

::::::
authors

::::::::
achieved

::
hit

:::::
rates

::
of

:::::
about

:::::::
70-90%

::::
and

::::
false

:::::
alarm

::::
ratios

:::
of

::::::
about

:::::
30%.

::::::::::::::::::::::::::::
Segoni et al. (2009) implemented

::
a125

:::::::
real-time

::::::::::
forecasting

::::::
chain

::::
for

::::::::::::::
rainfall-induced

:::::::
shallow

:::::::
landslide

:::
to

:::
be

:::::
used

:::
for

:::::
civil

:::::::::
protection

:::::::::
purposes.

::::
The

:::::::::
architecture

:::
of

:::
the

::::::::::
forecasting

:::::
chain

::
is
:::::
quite

::::::::
complex

:::
and

::::
takes

:::::::::
advantage

:::
of

::::::::::
techniques

::::
and

:::::
tools

:::::
from

::::::::
different

::::
fields

:::::::::
including

:::::::::::
meteorology,

:::::::::
hydrology,

:::::::::::::::
geomorphological130

:::
and

:::::::::::
geo-technical

::::::::::
modelling,

::::::
remote

:::::::
sensing

:::
and

:::::
GIS.

:::
For

::::
what

::::::::
concerns

:::
the

:::::
NWP

:::::
data,

:::
the

:::::::
authors

::::::::::
downscaled

:::
the

::::::
rainfall

:::::::
forecast

::::::::
provided

:::
by

::
a
:::::::

limited
::::
area

::::::
model

:::::
using

:
a
::::::::::::

metagaussian
::::::
model

::::::
aimed

::
at
:::::::::::

reproducing
::::::::::

small-scale

::::::
rainfall

::::::
fields.

::::
The

:::::
final

:::::::::
resolution

:::
of

::::
the

:::::::::::
precipitation135

::::::
forecast

::
is
:::::

1.75
:::
km

::
in

:::::
space

::::
and

::
10

::::
min

::
in
:::::

time.
::::::::
Similarly

::::::::::::::::::::::::::::::::::
Mercogliano et al. (2013a,b) implemented

:::
a
:::::::::::

forecasting

::::
chain

:::
for

:::::::
rainfall

:::::::
induced

:::::::
shallow

:::::::::
landslides.

::::
They

:::::::
coupled

::
the

::::::
NWP

:::::::
regional

:::::
data,

::::::::
originally

:::::::::
produced

::
at

:::
2.8

::::
km

::
of

::::::::
resolution

::::
and

::::::::::
statistically

:::::::::::
downscaled

::
to
::::

10
:::
m,

::::
with

::
a140

::::::::
physically

::::::
based

::::::
slope

:::::::
stability

:::::::::
simulator

::::::::::::
(hydrological

:::
and

::::::::::::
geo-technical

::::::
tool).

:::
In

::::::::::::::::::::::::
Mercogliano et al. (2013b) ,

::
the

::::::::
authors

:::::
tested

::::
the

:::::::::
procedure

:::
in

::
a
:::::

pilot
::::

site
:::

in
:::
the

:::::::::::
north-western

::::
part

:::
of

::::::::
Tuscany

:::::::
(Lucca,

::::::
Pistoia

::::
and

:::::
Prato

:::::::::::
administrative

::::::::::
provinces)

:::
for

::
a
:::::::

specific
:::::::

rainfall
::::::

event.
::
A145

:::::::::
quantitative

:::::::::
validation

:::
of

::::
the

::::::
results

::::
was

::::
not

:::::::::
performed,

::::::::::
nevertheless

::::
the

:::::::::
authors

::::::::::
concluded

:::::
that

::::::::::
additional

::::::::::::::
well-documented

::::::
study

:::::
cases

:::::
need

:::
to

:::
be

:::::::::
simulated

:::
to

:::::
better

::::::::::
understand

:::
the

:::::::
spatial

:::::::::::
organization

:::
of

::::
the

:::::
input

:::::::::
parameters

:::
and

:::::::
improve

:::
the

::::::
quality

::
of

:::
the

:::::::
results.150

:::
Our

::::::
work

:::::
takes

:::
its

::::::
origin

:::::
from

::::::
these

:::::
latter

:::::::
papers.

:::
We

:
considered two heavy rainfall events occurred in

2011 and 2013, that affected Lunigiana and Garfag-
nana in the north-western part of Tuscany region (cen-
tral Italy). We carried out an analysis including a sta-155

tistical modeling of spatial landslide occurrence by using
two models

:::::::::
techniques: the Generalized Linear Model (here-

after GLM, ;
:

McCullagh, 1984; McCullagh and Nelder,
1989) and the Random Forests classifier (hereafter RF,

:
;
:
Breiman, 2001). For both statistical models, we used,160

as predictors, static geographical layers (referred also as
instability or predisposing factors, e.g. digital elevation
model, slope, land use, see section 2.2 for further details)
characterizing the areas affected by the heavy precipitations
from a geomorphological, geological and climatological165

point of view. Moreover, since recently (Schmidt et al. ,
2008 ; Segoni et al. , 2009 ; Mercogliano et al. , 2013b ),
the Numerical Weather Prediction’s (NWP) outputs are
arising as a promising tool for the prediction of shallow
landslides triggered by precipitation, in the statistical models170

we considered, as dynamical predictors, the forecast
:::
and

::::::::
dynamical

:::::
NWP

::::
data

:
achieved by running the Weather and
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Research Forecasting (WRF) model (Skamarock et al., 2005;
Skamarock and Klemp, 2008)for the selected dates. For
both rainfall events, we used, as ground truth, the landslides175

inventory maps, created via field surveys of the expert
personnel of Civil Protection Office (2011 event, Lunigiana
area) and of the Genio Civile Office (2013 event, Garfagnana
area) a few days after the heavy precipitations. .

:

The approach we adopted, is an attempt to conjugate180

and integrate the added information carried by a regional
numerical weather model which operates at the meso-γ
scale (≃2-20 km of spatial resolution), with the micro-
γ scale (≤ 20 m of spatial resolution, according to Or-
lanski, 1975) which is an average value of the map-185

ping unit of landslide size occurring at the basin scale
(Guzzetti et al., 1999, 2005b). This

:::::::::
Differently

::::
from

:::
the

::::
cited

:::::
papers

:::::::::::::::::::::::::::::::::::::::::::
(Schmidt et al., 2008; Mercogliano et al., 2013a,b) ,

:::
this goal is achieved without performing any downscaling of
the NWP data (

:::
grid

:::::
point

:::::
about 3 kmof horizontal resolution)190

to a finer resolution. In this way we preserve the original in-
formation content provided by the numerical model .

::::::
without

:::::::::
introducing

::::
any

::::::::
artificial

::::::::::
knowledge

:::
on

:::
the

:::::::::::
precipitation

:::::::
patterns.

Results obtained show how both statistical models (GLM195

and RF) perform adequately (i.e. we obtain similar results
as found in previous studies) in predicting the shallow
landsliding occurrence. In the 2011 rainfall event, the model
based on the RF classifier performs slightly better than that
one based on the GLM model, whereas in the 2013 rainfall200

event the GLM model gives more accurate predictions. The
evaluation of the

::::::::
modeling results is performed through the

analysis of the Receiver Operating Characteristics Curve
(ROC)

:::::
curve

:
in terms of the underlying area (AUC), a

threshold-independent index widely used (Frattini et al.,205

2010).
In the discussion, we assess the relative importance

of the added value provided by the numerical weather
predictions in particular in the event occurred in 2011,
where deep atmospheric convection, yielding high rainfall210

intensities (mm/h), characterized the precipitation type.
Using the

::::::
Beside

:::
the

::::::::
reliability

::
of

:::
the

::::::::
statistical

::::::::
modeling

::
of

:::::::::::::
rainfall-induced

:::::::
shallow

:::::::::
landslides,

::::
the

:::::::::
innovative

::::::
feature

::
of

:::
our

::::::
study

::
is
::::

the
::::::::::

assessment,
::::

by
:::::
using

:
RF’s variable

importance parameter, we point out the fact that NWP data215

are relevant for landslide hazard mapping not only because
of predictions on precipitations amounts, but also because of
predictions on precipitations rate (mm/h) and on soil water
content at different levels below ground.

:::::::::
diagnostics,

::
of

:::
the

::::::
relative

:::::::::
importance

:::
of

:::::
NWP

::::
data

::
in

:::::
LSM,

:::::
since

::
so

:::
far

::::
there220

:
is
::
a
::::
lack

::
of

::::::
studies

:::::::
focusing

:::
on

:::
this

:::::
issue.

:

The positive impact of mesoscale NWP’s outputs, supports
the reliability of numerical forecast and further confirms
(Schmidt et al., 2008; Segoni et al., 2009; Mercogliano et al., 2013b)

::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(Schmidt et al., 2008; Segoni et al., 2009; Mercogliano et al., 2013a,b) its

use for the setting-up of a real-time forecasting chain for225

the prediction of the occurrence of rainfall-induced shal-
low landslides over large areas (basin catchment scale).

The paper is organized as follows: in section 2.1 we
describe the two rainfall events, with particular regard to
the meteorological and atmospheric features in terms of230

precipitation type and rainfall intensities. In section 2.2
we describe the geographical static predictors used in the
statistical models, stressing their importance for landsliding
as reported in previous works. Section 2.3 provides details
about the numerical weather model used to produce the235

meteorological dynamical predictors, namely rainfall data
and soil moisture estimates, that feed the statistical models.
The design and details of the statistical modeling framework
based on the GLM model and on the RF classifier are
described in section 2.4. The preliminary results for the240

selected study cases are shown in section 3 and discussed in
section 4.

2 Materials and methods

2.1 Description of the study cases and of the areas of
interest245

As stated in the introduction, we developed the
::
We

::::::::::
implemented

:::
the

:
statistical modeling of shallow landsliding

induced by precipitation, focusing our attention on two heavy
rainfall events that occurred in the north-western part of Tus-
cany region (central Italy,

:::
see

::::::
figure

:
1) on 25th October 2011250

(Lunigiana) and on 18th March 2013 (Garfagnana). In the
following two sub-sections, we describe the rainfall events
from a meteorological point of view and we give a brief de-
scription of the area of interest considering geographical and
geomorphological features.255

2.1.1 Study case 25th October 2011

The first rainfall event, hereafter 25OCT2011, occurred on
25th October 2011 and involved the Lunigiana area belong-
ing to the administrative province of Massa-Carrara (see inset
figure in the left side of figure 1). The area is located along260

the Appennine
:::::::::
Apennines

:
chain and is mainly mountainous

(highest peaks reaches almost 2000 m). It is very close to
the Ligurian Sea gulf from which it is only a few kilometers
away. Due to its orography and geographical position, the
area represents a natural barrier for the Atlantic humid air265

masses and frequently the precipitation amounts reaches or
exceeds 3000 mm per year, making this area one of the more
rainy in Italy

::::::
wettest

::
in

::::
Italy

::::::::::::::::::
(Brunetti et al., 2009) . From a

hydrological point of view, it is characterized by the presence
of one main river basin (Magra basin) having an area of about270

992 km2 (in the administrative province of Massa-Carrara).
A detailed study on the critical thresholds able to trigger shal-
low landslides in this area was carried out by Giannecchini
(2006). Avanzi et al. (2013) studied the fragility of the terri-
tory by analyzing the damages occurred in two heavy rainfall275

events in 2009 and 2010 (in this latter paper the study area
was slightly larger than that one here under exam).
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From a geological point of view, following Di Naccio
et al. (2013), Northern Apennines are a NW-SE-trending
belt formed by NE-verging tectonic units stacked since the280

late Oligocene after the collision of the Corsica-Sardinia
and Adria continental blocks. Main tectonic units are (i) the
Liguride allochthon; (ii) the Subligurian unit; and (iii) the
Tuscan unit (for a comprehensive synthesis and review see
Argnani et al., 2003 and references therein).285

From a meteorological point of view, the 25OCT2011
rainfall event was deeply investigated by Buzzi et al. (2014)
using a numerical weather model and by Rebora et al. (2013)
using the measurements available from a large number of
sensors, both ground based and space-borne. In this lat-290

ter paper, the authors concluded that the large scale fea-
tures of the event and the complex geographical character-
istics of the area, determined the conditions for the per-
sistence of heavy precipitation systems

:::::::::::
precipitations

:
over

the same region, i.e.
::
an

:
organized and self-regenerating295

mesoscale convective system (MCS). In the area of inter-
est, rainfall amounts were registered by the remotely au-
tomated weather station network operated by the National
Civil Protection Department. The maximum cumulative rain-
fall was recorded at the Pontremoli rain-gauge (Magra river300

valley) with maximum rainfall rates of 374 mm/24 h, 317
mm/12 h, 243 mm/6 h, 158 mm/3 h and 67 mm/1 h. As
stated in Rebora et al. (2013) this rainfall event has the key
atmospheric conditions for heavy precipitations and severe
flood events over complex orography, i.e.: (i) conditionally305

or potentially unstable air masses; (ii) moist low-level winds;
(iii) steep orography that helps to release the conditional
instability associated with the low-level jet; and (iv) a slowly
evolving synoptic pattern that slows the advance of the heavy
precipitation system, hence increasing their persistence

::
For310

:::
this

::::::::::
rain-gauge,

:::::::::::::::::::::::::::
Regione Toscana (2011) reported

::::::::
estimates

::
of

:::::
return

::::::
period

::::::
rainfall

:::::
events

:::
for

:::
1-,

::
3-,

:::
6-,

:::
12-

::::
and

::::::
24-hour

:::::::
duration:

:::
51,

::::
438,

::::::
>500,

:::::
>500

:::
and

::::
293

::::
years

:::::::::::
respectively.

The landslide
:::::::
Landslide

::
inventory map for this event

was created by
::::
both

::::
field

:::::::
surveys

:::
of

:
the expert person-315

nel of the Regional Civil Protection Office . The
:::
and

::::
using

:::::::::::
Rapid-Eye

:::::::
images.

:::
A
::::::::::::::

semi-automatic
:::::::::

detection

::::::::
algorithm

::::::
based

:::
on

::::::::::
Rapid-Eye

::::::::
pre/post

::::::
event

:::::::
images

:::
(13

:::::::
October

:::::::::
pre-event

::::
and

:::
29

::::::::
October

::::::::::
post-event)

::::
was

::::::
applied.

:::::
The

:::::::::
Rapid-Eye

:::::
data

::::
were

::::::::::::
multispectral

:::::::
5-bands320

::::
with

::::::
5-meter

:::
of

::::::
spatial

:::::::::
resolution.

:::::::
Shadow

::::
areas

:::
in

::::::
satellite

::::::
images

::::::
created

:::::::::
problems

::
in

::::
the

:::::
lower

:::::
parts

::
of

:::::::::
hillslopes,

::::::::
especially

:::
in

::::
less

:::::::::
populated

::::
and

:::::::
hardest

::
to

::::::
reach

:::::
areas,

::
so

:::::::
possible

:::::::::::::::::::
commission/omission

:::::
errors

::::
may

::::::
occur.

:::::
Since

:::::::
technical

:::::::::
authorities

:::::::
surveys

:::::
were

:::::::::
conducted

::::::
mostly

:::::
close325

::
to

::::::::
populated

::::::
areas,

:::::::
possible

::::::::
omission

::::::
errors

::::
may

:::::
occur

::
in

::::::::
particular

::
in

:::::::
forested

:::::
areas.

:::
The

::::
final

::::::::
inventory

:
map reported

243 shallow landslides in an area of about 212 km2 (see
the minimum bounding rectangle in the left side of figure
1)while

:
,
:::::::
whereas

:
the convex hull where landslides were330

observed has an area
:
of
::::

the
::::
area

::::
has

:::
an

:::::
extent

:
of about

123 km2.
:
).
::::::::

Average
::::

area
:::

of
:::::::::

landslides
:::

is
::::::
around

:::::
2260

::
m2

::::
and

:::::::
average

:::::::::
perimeter

::
is
:::::::

around
::::
181

:::
m,

:::::::
whereas

:::
the

::::::
average

:::::::
altitude

::
of

::::::::
landslide

::::::::
initiation

:::::
points

::
is
:::::::

around
:::
588

::
m.

:::::::::
Estimating

::::
how

::::::
much

::::::::
complete

::
is

:
a
::::::::
landslide

::::::::
inventory335

:
is
:::

a
:::::::

difficult
:::::

task
:::::::::::::::::::::

(Malamud et al., 2004) .
:::::::::::

Nevertheless

::
in

:::::
figure

::
2
:::

we
::::::

show
:::
the

::::::::
landslide

::::::::::
probability

:::::::
density

::
as

:
a
::::::::

function
:::
of

:::::::::
landslides

::::
area

:::::::::::::::::::::::
(Malamud et al., 2004) that

::::::
follows

::::
the

:::::
same

::::::
trend

:::
of

:::::::::::::
frequency-area

:::::::::::
distributions

::
of

:::::::::::
landslides

:::::
as

::::::::
found

::::
in

::::::::::
previous

::::::::
works340

:::::::::::::::::::::::::::::::::::::
(Guzzetti et al., 2002; Malamud et al., 2004) .

2.1.2 Study case 18th March 2013

The second rainfall event, hereafter 18MAR2013, occurred
on 18th March 2013 and involved the Garfagnana area be-
longing to the administrative province of Lucca (see inset345

figure in the right side of figure 1). This is mainly a moun-
tainous area (the average elevation of the main catchment is
717 m)and, as Lunigiana, also this area ,

::::
and is very close to

the Ligurian Sea gulf. Long-time series of precipitation data
recorded by local rain-gauges report yearly average about350

2000-2300 mm (Avanzi et al., 2013). Hydrologically, it is
characterized by the presence of one main river basin (Ser-
chio basin) with an area of about 1565 km2 plus several other
minor rivers.

Geological features of the area are very similar to the ones355

described in section 2.1.1 for Lunigiana. For an extensive and
deeper analysis see Di Naccio et al. (2013) and references
therein.

The 18MAR2013 rainfall event occurred during the month
of March 2013, which recorded the monthly highest pre-360

cipitation amounts over the last 30 years (Regione Toscana,
2013) , for what concerns the north-western part of Tuscany
and the Serchio and Magra basins in particular. During the
period 5-19 March 2013, the rain-gauges belonging to the ad-
ministrative province of Lucca and to the Serchio river basin,365

registered about 310 mm of precipitation against an average
monthly value of about 80 mm (climatology is based on the
period 1983-2012). This relevant amount of precipitation was
the result of two major rain-storms that affected the area of
interest: the first one occurring in the period 11-12 March370

2013, the second one occurring on 18th March 2013 (the one
under exam here).

::::
2013.

:
Due to the high degree of satura-

tion of the soils and due to the surface runoff, on 18th March
2013, several regional hydro-meters exceeded the warning
levels and flooding alerts were issued by the local Civil Pro-375

tection Office (Regione Toscana, 2013) for 5 rivers (Om-
brone Pistoiese, Bisenzio, Serchio, Magra, Cecina). As can
be argued from synoptic analysis

:::::::::::::::::::::
(Regione Toscana, 2013) ,

the 18MAR2013 rainfall event was determined firstly by
a warm front over the northern Tyrrhenian Sea and Lig-380

urian Sea, driven by a deep low over Great Britain (988
hPa at 06 UTC). Then in the second part of the day the
cold front hit the Tuscany region, while the precipitations
ended by the late evening/night. The regional rain-gauges
network registered hourly precipitation intensities up to 31385
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mm/h (rain-gauge located near the Monte Macine peak at
1480 m a.s.l.), whereas the average hourly precipitation in-
tensity among the available pluviometers was about 9 mm/h.
See table 4 for summary statistics on observed and modelled
1-hour precipitation intensities.

::
For

::::
this

::::::
rainfall

:::::
event,

::
it

:::
was390

:::
not

:::::::
possible

:::
to

:::::::
estimate

::::::
return

::::::
period

::::
due

::
to

::::
the

::::
lack

::
of

:
a
::::
long

::::
and

:::::::::
consistent

::::
time

:::::
series

:::
in

:::
the

::::
area.

:::::::::::
Nevertheless

::::::::::::::::::::::::::::
Regione Toscana (2013) evaluated

:::
this

:::::
event

:::
as

::::
one

::
of

:::
the

:::::
largest

::
of

:::
the

::::::::
previous

::
20

:::::
years.

:

The landslide
::::::::
Landslide

:
inventory map for this event was395

created by
::::
field

:::::::
surveys

::
of

:
the expert personnel of the lo-

cal Genio Civile Office. The map reported 127 shallow land-
slides in an area of about 2038 km2 (see the minimum
bounding rectangle in the right side of figure 1), while the
convex hull where landslides were observed has an area of400

about 1416 km2.
:::
Due

::
to

::::
time

::::::::::
constraints,

::
it

:::
was

:::
not

:::::::
possible

::
to

:::::::
integrate

:::::
field

:::::::
surveys

:::::::::::
observations

::::
with

:::::::
pre/post

:::::
event

::::::
images

:::::::
analyses

::::
and

::::
thus

:::::::::::::::::::
commission/omission

:::::
errors

:::
are

::::
very

:::::
likely

::
to

::::::
occur.

::::
The

::::
field

:::::::
surveys

:::
did

::::
not

::::::
collect

:::
any

:::::::::
information

:::::
about

:::
the

::::
size

::::
(area

::::
and

::::::::
perimeter)

::
of

:::::::::
landslides,405

::
so

:::
we

:::::
cannot

::::::
report

:::::::::
descriptive

:::::::
statistics

:::
on

:::
the

::::::::
inventory.

:

2.2 Description of the geographical static predictors

In the following, we list the geographical static predic-
torsconsidered in the statistical modeling of landslide
hazard. We divided them in four groups: geomorphology,410

hydrology, geology and climate related predictors. The
layers are raster datasets and were produced using GIS
technologies. The pixel resolution of each layer is 30 m, if
not otherwise specified.
An extensive and exhaustive discussion about the choice of415

the input parameters (typology and number of predictors)
in susceptibility assessment studies can be found in Catani
et al. (2013) and we used this work as a main referencefor
the choice of the predictors. Here we recall that the .

::::
The

usefulness of some predictors is still debated and can depend420

on the methodology adopted or the area of investigation and
its landslide features. Moreover the number of predictors
taken into account is also debated and it has been also found
that increasing the number of predisposing factors could
lead to a worsening of the prediction accuracy (Floris et al.,425

2011). For this reason, in landslide susceptibility assessment,
it is important to implement an automated procedure for the
selection of the meaningful variables. As discussed in more
detail in section 2.4, we chose two suitable methods: the
logistic regression with an AIC selection (the GLMmodel)430

and the RF algorithm, since it naturally estimates the
variable’s importance for predictive classification.
All the predictors here described are schematically listed in
table 1.

435

Geomorphology-related predictors:

– Elevation (DEM): this dataset is a hydrologically cor-
rected 30 m Digital Elevation Model, resampled from

an original database produced at 10 m of resolution. El-
evation is a very common parameter often taken into440

account in landslide susceptibility assessments (Catani
et al., 2013; Felicı́simo et al., 2013), since it is related
to several predisposing factors such as average precipi-
tation, vegetation, etc. . .

– Altitude above channel network (AaCN): the algorithm445

for producing the altitude above channel network uses
the channel network for streams. It measures the alti-
tude for each grid cell of the DEM to the nearest chan-
nel network elevation. A splines interpolation surface is
created, called Channel Network Base Level, then this450

value is subtracted from the DEM to obtain the Altitude
Above Channel Network. This parameter has been used
in recent works of landslide susceptibility assessment

::::
LSM

:
by Marjanovic et al. (2011) and Mărgărint et al.

(2013)455

– Aspect (ASP): it represents the orientation of each cell
with respect to the adjacent cells. It influences the land-
slide susceptibility because it determines how the ter-
rain is exposed to rainfall and solar radiation (Guzzetti
et al., 1999) and thus to soil water content460

–
:::::
Slope

::::::
(SLP):

::
it
:::

is
:::::::
directly

:::::::
derived

:::::
from

::::
the

:::::
DEM

::::
layer.

:::
It

:::::::
controls

::::
the

:::::::
driving

::::::
forces

:::::::::::
(component

::
of

:::::
weight

:::
of

:::::::
material

:::
in

:::
the

::::::::
direction

:::
of

:::::::
failure)

:::::
acting

::
on

:::::::::
hillslopes.

::::
For

:::::
these

:::::::
reason,

::
it
::::

has
:::::

been
::::::
widely

::::
used

::
in

:::::::::::::
geomorphology

::::
and

::::::::
landslide

:::::::
mapping

::::::
studies465

:::::::::::::::::::::::::::::::::::::::::::::::::
(Guzzetti et al., 1999; Goetz et al., 2011; Catani et al., 2013)

– LS Factor (LSF): it represents the topographic factor
(length-slope factor) from the Revised Universal Soil
Loss Equation (RUSLE) according to Moore and Wil-
son (1992). Despite the fact that the RUSLE equation470

is commonly used to predict soil erosion on an cell-by-
cell basis, recently a high correlation has been found
between (R)USLE-based soil erosion map and landslide
locations (Pradhan et al., 2012)

– Planar curvature (PLAC): basically it is the sec-475

ond derivative of DEM and corresponds to the
concavity/convexity of the land surface measured
perpendicular to aspect, i.e. parallel to the con-
tour. Catani et al. (2013)

::::::::::::::::::
Goetz et al. (2011) and

:::::::::::::::::::
Catani et al. (2013) and

:
used this parameter (and its480

standard deviation) in their landslide susceptibility
study based on RF model

::::
GAM

:::::
and

:::
RF

:::::::
models

::::::::::
respectively

– Profile Curvature (PRFC): it is a common morpholog-
ical layer derived from the digital elevation model. It485

describes the shape of the relief in the direction of the
steepest slope. It corresponds to the concavity/convexity
of the land surface measured parallel to aspect, i.e. per-
pendicular to the contour. It is known to affects the flow



6 Capecchi et al.: Statistical modeling of shallow landslides using static predictors and NWP data

velocity of water and influences erosion and deposi-490

tion. It has been used in several landslide assessment
studies among which we recall Catani et al. (2013) who
used this parameter (and its standard deviation) in
their landslide susceptibility study based on RF model

::::::::::::::::::
Goetz et al. (2011) and

:::::::::::::::::
Catani et al. (2013)495

Hydrology-related predictors:

– Convergence index (COVI): this index represents the
convergence/divergence with respect to overland flow.
It is similar to plan or horizontal curvature, but gives
much smoother results. The calculation uses the aspects500

of surrounding cells and looks to which degree the sur-
rounding cells point to the center cell. The result is given
as percentages, negative values correspond to conver-
gent flow conditions, positive to divergent ones. This
predictor has been recently used in landsliding suscep-505

tibility maps by Nefeslioglu et al. (2011)

– Time of concentration (ToC): it measures the response
of a watershed to a rainfall event. It measures the time
(in hour) needed by a rainfall drop to reach the closure
of a watershed from the farther point of it. It is a func-510

tion of the topography, geology, and land use within the
watershed. It is considered as one of the most critical
factor for the estimation of the duration of the trigger-
ing rainfall (D’Odorico and Fagherazzi, 2003)

– Topographic Wetness Index (TWI): it is commonly used515

to quantify topographic control on hydrological pro-
cesses. It is calculated by using the formula:

TWI =
a

tanβ

where a is the local upslope contributing area and β is
the local slope angle. This index is related to the soil520

moisture (Nefeslioglu et al., 2008; Yilmaz, 2010). The
main limitation of the above formula is that it assumes
a steady-states conditions and uniform soil properties.
However researchers denote that the formula is applica-
ble in a wide range of cases and it has been used in as-525

sessment in landslide susceptibility mapping
::::
LSM

:
(Ne-

feslioglu et al., 2012).

– Distance from drainage channel network (DfCN): this
is the euclidean distance from rivers network. The dis-
tances from rivers have been evaluated by computing530

the minimum distance between cells and the nearest
watercourse. This layer has been considered in simi-
lar works as a predisposing factor, because it takes into
account possible activating mechanism related to ero-
sion along the slope foot (Mossa et al., 2005; Mancini535

et al., 2010). Recently it has been used by several au-
thors as a predictor in landslide susceptibility mapping

::::
LSM

:
(Floris et al., 2011; Catani et al., 2013; Demir

et al., 2013; Devkota et al., 2013).

Geology-related predictors: this group of predictors includes540

data from two regional databases produced by the Tuscany
administration: the Regional Geological Continuum (scale
is 1:10000) and the regional pedological database (scale is
1:50000). The Regional Geological Continuum is the joint
effort of several local institutions (universities, research insti-545

tutes, private entities, coordinated and leaded by the regional
administration) and was recently updated with extensive field
campaigns covering about 70% of the territory. This database
is freely available through web facilities. The regional pedo-
logical database (level 2) has been revised during the period550

2009-2012. It was derived using data collected over sample
areas of the territory. On average, the sample areas extent
were about 15-25 km2 and 20 to 40 observations were per-
formed with the standard of 2 to 4 vertical profiles. The con-
trols consisted of soil stratigraphic profiles, described, sam-555

pled and analyzed from wells or exploratory drillings. In a
second stage of the work, an unsupervised classification of
the whole territory was performed and further corrected by
expert personell

::::::::
personnel.

– Distance from main tectonic features (DfTF): this is560

the euclidean distance from main tectonic features. This
layer has been used by Costanzo et al. (2012) for
landslide susceptibility modelling

::::
LSM

:
on large scale,

resulting as an effective factor for translational slides.

– Bedrock litho-technical map (BLT): it comprehends 15565

different classes of bedrock based on litho-technical
properties derived from bibliography

:::::::
literature. This

layer is time-invariant and it has been considered as a
relevant causal factor in predictive hazard models as-
suming that future landslide are likely to occur in the570

past and present instability sites (Guzzetti et al., 1999).
Catani et al. (2005) acknowledged the bedrock lithology
as a strong controlling factor on landslide occurrence in
their study for the Arno river basin (Tuscany region)

– Landslides main scarps (LMS): this layer represents575

the exposed portions of the surface of rupture. These
features are obtained with automated procedures from
landslide crowns and DEM

– Soil permeability (SKST): this predictor is derived from
the regional pedological database and has been deter-580

mined using HYRES pedo-transfer function (PDTf).
The term ‘permeability’ as used in soil surveys, indi-
cates saturated hydraulic conductivity (Ksat). In other
words, it indicates the rate of water movement, centime-
ters per hour, when the soil is saturated.585

– Landslides and superficial deposits (LaSD): this layer
takes into account the presence of landslide bodies, or
areas where superficial formations (debris cones, talus,
colluvial and eluvial deposits, etc. . . ) outcrop. The use
of this layer in susceptibility assessment studies is jus-590

tified by the hypothesis that future landslides will be
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likely to occur under the same conditions that led to
past landslide events (Varnes et al., 1984; Carrara et al.,
1991)

– Slope Structural Setting (SSS): it represents the relation595

:::::::::
relationship

:
between the structural setting and the slope

aspect (Cruden and Hu, 1998). This factor is rarely con-
sidered in large scale susceptibility analysis due to the
difficulty of data acquisition and its expression in a con-
tinuous surface (Atkinson and Massari, 1998; Guzzetti600

et al., 1999; Donati and Turrini, 2002). In this study the
SSS factor was obtained by the spatialization of the atti-
tude data available in the regional database, taking into
account all the elements that lead to the rupture of the
geological substrate continuity. The continuous surface605

realized was then combined with the slope aspect and
slope gradient to obtain information about the relation
between landslides and different combinations of slope
structural setting.

::::
Since

::
it
::
is
::
a
:::::::::
directional

:::::::
variable

:::
we

:::::::::
considered

:::
the

:::
sine

::
of
:::
the

:::::
SSS.610

Climate-related predictors: recently rainfall climatology has
been considered into landslide susceptibility models as a pre-
disposing factor instead as a triggering factor (Schicker and
Moon, 2012; Catani et al., 2013). In fact the average precip-
itation values describe the attitude of the territory to be hit615

by a storm of a given type. In the following, we included a
set of variables accounting for the precipitation amount (ex-
pressed in mm) of a rainfall event occurring in a defined time
interval (expressed in hours) and having a defined returning

:::::
return

:
period (expressed in years). In this, our predictor is620

slightly different from that one considered by Catani et al.
(2013) who evaluated the returning

:::::
return

:
period of a defined

precipitation amount occurring in a defined time interval.

– Rainfall 12, 24, 48, 96 hours duration and 100 years re-
turn period (R12, R24, R48, R96): this dataset is the re-625

sult of rainfall frequency analysis (Baldi et al., 2014). It
estimates the amount of rainfall falling at a given point
for a specific duration and returning

:::::
return period. In

the present study, the durations considered are
::::::
duration

:::::::::
considered

::
is 12, 24, 48 and 96 hours and the returning630

:::::
return

:
period is 100 years. It was derived from statis-

tical analysis of rainfall time series of regional rain-
gauges network (30 years minimum), that were inter-
polated over the area of interest.

Besides
:::::
Beside

:
the above mentioned layers, we included in635

the static predictors two additional thematic maps:

– Corine land cover (COR): land cover provides in-
formation on vegetation and takes into account hu-
man activity on hills slope. It is considered a pre-
disposing factor and has been used for landslides640

probability of occurrence mapping (Varnes et al.,
1984; Costanzo et al., 2012; Catani et al., 2013). In
the present study we derived a raster layer of land

cover with 45 classes starting from the
:::
The

:
origi-

nal Corine dataset (Bossard et al., 2000)
:::::::
produced

:
at645

scale 1:10000
::
has

:::
45

:::::::
classes.

::::
Only

::
8
::::::
classes

::::::
belong

::
to

::
the

:::::::::::
25OCT2011

:::::
area;

::::
95%

:::
of

:::
the

:::::::
territory

::
is
:::::::

covered

::
by

::
6
:::::::
classes

::::::
namely

::::::::::::
broad-leaved

::::::
forest,

:::::::::
agriculture

::::
with

:::::::::
significant

:::::
areas

::
of

:::::::
natural

::::::::::
vegetation,

:::::::
complex

::::::::
cultivation

::::::::
patterns,

::::::
mixed

::::::
forest,

:::::::::::
non-irrigated

:::::
arable650

:::
land

:::::
and

::::::::::
transitional

:::::::::::::::
woodland-shrub.

::::
Ten

:::::::
classes

:::::
belong

:::
to

:::
the

:::::::::::
18MAR2013

::::
area,

:::::::
namely:

:::::::::::
broad-leaved

:::::
forest,

::::::
mixed

:::::::
forest,

::::::::
complex

::::::::::
cultivation

::::::::
patterns,

:::::::::
agriculture

::::
with

:::::::::
significant

:::::
areas

::
of

::::::
natural

:::::::::
vegetation,

:::::::::
transitional

::::::::::::::
woodland-shrub,

:::::::::::
non-irrigated

::::::
arable

::::
land,655

:::::::::::
discontinuous

::::::
urban

:::::::
fabric,

::::::
olive

:::::::
groves,

:::::::
natural

::::::::
grassland

:::
and

:::::::::
coniferous

:::::
forest.

:

– Vegetation Index (EVI): the EVI vegetation index is
derived from the Moderate Resolution Imaging Spec-
troradiometer (MODIS) on board of the Terra and660

Aqua satellite (Huete et al., 2002). The
:::
This

:
index is

designed for providing accurate measurements of re-
gional to global scale vegetation dynamics (phenology).
Conceptually it is complementary to the well known
Normalized Difference Vegetation Index (NDVI) from665

which differs because it is more responsive to canopy
structural variations, including leaf area index (LAI),
canopy type, plant physiognomy , and canopy archi-
tecture (Gao et al., 2000). Formally it is a difference
of Near Infrared, red and blue atmosphere-corrected670

surface reflectances
::::::::
reluctance. In the present paper we

used a layer derived from the temporal climatology of
the index, using the available satellite imagery for the
time series starting from February 2000 and ending in
December 2013. Time series data are aggregated to 16675

days to minimize cloud contamination. The spatial res-
olution of the layer is 250 m. Vegetation status, density
and health is considered a predisposing factor for shal-
low landslide and debris flows because it is basically a
proxy for wetness. It reflects the variation in subsurface680

water and because deep-rooted vegetation bind collu-
vium to bedrock. Vegetation index (namely NDVI and
in particular its radiometric signature), has been used
as an aid to the visual detection of landslides and for
the semi-automatic classification of satellite images into685

stable or unstable slopes (Borghuis et al., 2007; Mondini
et al., 2011; Guzzetti et al., 2012).

2.3 Description of the NWP model and of the numerical
weather predictors

The limited-area numerical model used in this study is690

the Weather and Research Forecasting (WRF) model (Ska-
marock et al., 2005; Skamarock and Klemp, 2008). It is
the result of the joint efforts of US governmental agen-
cies and university. It is a fully compressible, Eulerian,
non-hydrostatic mesoscale model, specifically designed to695
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provide accurate numerical weather forecast both for re-
search activities, with the dynamical core Advanced Re-
search WRF (ARW), and for operations, with the dynam-
ical core Non-hydrostatic Mesoscale Model (NMM). In the
present work we used the WRF-ARW core updated at version700

3.5 (April 2013). The model dynamics, equations and numer-
ical schemes implemented in the WRF-ARW core are fully
described in Skamarock et al. (2005), Klemp et al. (2007)
and Skamarock and Klemp (2008). The model physics, in-
cluding the different options available, is described in Chen705

and Dudhia (2000).
A summary of the model’s settings chosen for the present

study is shown in table 2, while the geographical extent of the
simulation area is depicted in figure ??

:
1

:::::
(outer

:::::::::
rectangle).

Here we briefly recall that the horizontal spatial resolution710

adopted (3 km) is known to be adequate to resolve explicitly
the convective processes (Kain et al., 2008; Bryan and Mor-
rison, 2012).
Initial and lateral boundary conditions were obtained from
the ECMWF-IFS (European Centre for Medium-Range715

Weather Forecasts-Integrated Forecasting System) global
model. The spectral resolution of the global model is T1279,
which roughly corresponds to 16 km of horizontal resolu-
tion; vertical levels are 91. Since one of the main purposes
of this work is to investigate the potential ability of the re-720

gional numerical model to predict in advance possible land-
slides triggered by heavy rainfall, as boundary conditions, we
used the forecast (not analysis) provided by the ECMWF-IFS
model. The analysis time is 00 UTC 24th October 2011 for
the 25OCT2011 event and 00 UTC 17th March 2013 for the725

18MAR2013 event. The length of the simulations is 48 hours
for both events.

The choice of the geographical static instability factors has
been discussed in section 2.2. For what concerns the NWP
predictors, in this preliminary stage of the investigation, we730

subjectively decided to include a minimal set of explana-
tory variables, namely: precipitation amounts cumulated

::::::::::
accumulated

:
over the rainfall event, mean and maximum

hourly precipitation intensity, mean and maximum soil mois-
ture in four layers below ground. Soil moisture is evaluated in735

the following four layers: 0-10 cm, 10-40 cm, 40-100 cm and
100-200 cm below ground. This is the partition of soil imple-
mented in the Noah land surface model (Chen et al., 1996)
and

:::::
which

::
is

::::::::::
incorporated

:::
in the WRF model incorporates

and runs this model for what concerns the the physical pro-740

cesses occurring in the interface between land and the near
surface atmosphere. A summary of the meteorological pre-
dictors is reported in table 1 (bottom part of the table)

::
To

:::::::
validate

::::
the

::::::
rainfall

::::::::
forecast

::::::::
provided

:::
by

:::
the

:::::
WRF

:::::
model

::
in

:::::
terms

:::
of

::::::::::
quantitative

::::::::::
precipitation

:::::::
forecast

::::::
(QPF),745

::
we

::::
used

:::
the

::::
data

:::::::
gathered

:::
by

::
the

::::::::
remotely

:::::::::
automated

::::::
weather

:::::
station

::::::::
network

:::::::
operated

:::
by

::::
the

:::::::
National

:::::
Civil

:::::::::
Protection

::::::::::
Department.

::::
Data

:::::
from

::
20

:::::::::
automated

::::::::::
rain-gauges

::::::::
recording

::::::::::
precipitation

::::::
every

::::
hour

:::::
were

::::::::
collected

::::
for

:::::::::::
25OCT2011,

::::
while

::::
60

::::::::::
rain-gauges

::::::
were

::::::::
collected

::::
for

::::::::::::
18MAR2013.750

::::::::
Locations

::
of

:::::::::::
rain-gauges

:::
are

::::::
shown

::
in

::::::
figure

::
3.

::::
For

::::
each

:::::::::
rain-gauge

::::::::
locations,

::
we

::::::::
extracted

:::
the

::::::::
predicted

:::::
values

::
of
:::
the

::::::::
numerical

:::::::::
simulation

:::
and

:::::::::
compared

::::
them

:::::
with

:::
the

:::::::
observed

::::::
rainfall

:::::::
amounts

::::::::
registered

::
in
::
a
::
24

::::
hour

:::::::
period,

::::::
namely

::::
from

::
00

:::::
UTC

::::
25th

:::::::
October

::::
2011

::
to

:::
00

::::
UTC

:::
26

:::::::
October

::::
2011

:::
for755

::::::::::
25OCT2011

:::
and

:::::
from

::
00

:::::
UTC

::::
18th

::::::
March

::::
2013

::
to

:::
00

::::
UTC

::
19

::::::
March

:::::
2013

:::
for

:::::::::::
18MAR2013.

::::
The

::::::
ability

::
of
::::

the
:::::
model

::
to

:::::::
simulate

::::
the

:::::::::::
precipitation

:::::::
amounts

::::
was

::::::::
analyzed

:::::
using

::
the

:::::::::::
contingency

::::::
tables

::::::::::::::
(Wilks, 2011) for

:::::::
selected

::::::::
rainfall’s

::::::::
thresholds

:::
and

:::::
using

::::::::::
quantitative

:::::::
indexes,

::::::
namely

::::
Root

:::::
Mean760

::::::
Square

::::
Error

::::::::
(RMSE)

:::
and

:::::::::::
multiplicative

:::::
bias.

2.4 Description of the statistical modeling of landslide
hazard

For the two rainfall events under exam, we developed

::::::::::
implemented

::
a landslide hazard modeling based on a765

quantitative indirect statistical model (Carrara et al., 1991;
Guzzetti et al., 1999). In other words, using separately the
GLM model and the RF classifier, we construct a statistical
functional relationship between instability factors (such
as geological, geomorphological, climatological thematic770

layers and NWP outputs) with the distribution of landslides
as obtained from the event inventory maps. A consequence
of this approach is the mapping unit which is forced to be
grid-cells. It is important to underline again that no statistical
downscaling is performed to nudge

:::
was

:::::::::
performed

:::
to775

::::::::
resample,

:::::::::::::
geo-statistically,

:
the NWP outputs (

::::::::
produced

::
at 3

km of horizontal resolution) to the resolution of the static in-
stability factors (

:::::::
produced

::
at

:
30 m of horizontal resolution).

::
As

:::::
stated

::
in

::::::
section

::
1,
::::
this

:::
has

::::
been

::::
done

:::::::
because

:::
we

::::
want

::
to

:::::::
preserve

:::
and

:::::::
evaluate

:::
the

::::::::::
information

:::::::
provided

:::
by

:::::
NWP

:::
data780

:::::::
produced

:::
at

::::
their

:::::
native

:::::
scale

:::::::
(meso-γ

::::::
scale)

::
in

:
a
::::::::

landslide

:::::::::::
susceptibility

:::::::::
framework.

:
The final result of the modeling is

a map showing the classification of the area of interest into
domains of different hazard degree ranging between 0 (stable
slopes) to 1 (unstable slopes). In bibliography

:::
the

:::::::
literature785

::::::::::::::::::::::::::::::::::::::::::::::::::
(Carrara et al., 1999; Guzzetti et al., 1999; Catani et al., 2005) this
type of map is also referred as landslide hazard map.
Schematically a flow chart of the forecasting chain of the
statistical modeling is sketched in figure ??. Summarizing,
we developed, implemented and tested two different790

statistical models: one is based on the GLM model, the other
is based on Breiman’s RF.
The GLM was chosen because it is widely known and
acknowledged in landslide susceptibility mapping (see
below for references)

::::
LSM

::::::::::::::::
(Brenning, 2005) . The RF795

classifier was chosen because it is very flexible, re-
cently used in landslide susceptibility mapping

::::
LSM

::::::::::::::::::::::::::::::::::::::
(Stumpf and Kerle, 2011b; Catani et al., 2013) and has
interesting and useful diagnostics (see below). No
interactions were implemented between the two models.800

::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(Brenning, 2005; Stumpf and Kerle, 2011a,b; Vorpahl et al., 2012; Catani et al., 2013) .



Capecchi et al.: Statistical modeling of shallow landslides using static predictors and NWP data 9

The GLM model (McCullagh, 1984; McCullagh and
Nelder, 1989) is a statistical technique used to model the
relation between a response variable L and a set of ex-805

planatory variables {Xi}, i= 1, . . . ,n. In the present case,
L is the presence/absence of landslide, while the {Xi}
variables are the static parameters detailed in section 2.2
and the NWP outputs detailed in section 2.3. The GLM
with a logit link function is one of the most frequently810

used techniques in landslide susceptibility modeling and it
has been largely and successfully applied; see for example
the review paper by Brenning (2005) . .

::::
See

::::
the

::::::
review

:::::
article

:::
by

:::::::::::::::::
Brenning (2005) and

:::::::::
references

::::::
therein

::::
for

:
a
:::
list

::
of

:::::
works

::::::
using

::::::
logistic

::::::::::
regression.

:::
To

:::
our

::::::::
purposes

:::::
GLM815

:
is
::::::::::

appropriate
::::::::

because
:::
(a)

::
it

:::::::
handles

::::
both

::::::::::
categorical

:::
and

:::::::::
continuous

::::::::
predictor

:::::::::
variables,

:::
(b)

::
it
:::::

does
::::
not

::::::
assume

::
a

::::::
specific

::::::::::
distribution

:::
of

:::::::::
predictors.

:
In the present

::::
study

:::
the

::::
GLM

::
is
:::::
taken

::::
into

:::::::
account

::::::
because

::
it
::
is

:::::::::
considered

::
a

:::
sort

::
of

:::::::::
benchmark

:::
for

:::::
LSM.

::
A

::::::::
drawback

:::
of

:::::
GLM

::
is

:::
the

::::::::
incapacity820

::
to

:::::
model

:::::::
potential

::::::::::::
non-linearities

::
in
:::
the

::::::::::
relationship

:::::::
between

:::::::
response

:::
and

::::::::::
explanatory

:::::::::
variables.

::
In

:::
the

::::::
present

:
work, lo-

gistic regression is performed after applying an automatic
stepwise backward

::::::
forward

:
variable selection based on the

Akaike Information Criterion (AIC).
::::
The

:::::
GLM

::
is

:::::::
available825

::
in

:::
R’s

:::::
‘stats’

::::::::
package.

The RF classifier (Breiman, 2001) belongs to the family
of machine learning algorithms. It is based on classification
trees (Breiman et al., 1984) and on the idea of bagging
(i.e. bootstrap-aggregation) predictors (Breiman, 1996). A830

RF is an ensemble of classification trees, where each tree
is constructed from a random subset of the observations
(i.e. the dependent variable) and at each node of the tree
only a random subset of the predictors (i.e. the independent
variables) is used. The data not chosen to construct the tree835

(‘out-of-bag’) is used to asses the predictive skill of the tree.
The most common classification among all the tree is the
prediction of the RF.
Schematically some

::::::::::::::::::::::::::::::::::
Dı́az-Uriarte and De Andres (2006) stress

::::
some

:::
of

:::
the

:
features and advantages of the RF technique840

are
:::
RF

::::
in

:::::::::::::::
bio-informatics

::::::::::::::
classification

::::::::::
problems.

:::::::::::
Schematically

::::
RF: a) it handles both continuous and

categorical predictors naturally, b) no formal distribu-
tions of variable’s predictors is assumed, c) it has an
automatic variable selectionand handles missing values,845

d) it does not need a cross-validation of the results but
has a built-in estimate of model’s accuracy, e) there is
little need to fine-tune parametersto achieve excellent
performances, f) it incorporates highly non-linear interac-
tions among predictorsand g) it is designed to work with850

‘wide’ data, i. e. when the cardinality of the predictors
is much larger than the cardinality of the variable to
be predicted (Dı́az-Uriarte and De Andres, 2006) . To
our purposes, an important feature of the RF algorithm
is the variable importance, which is a natural output855

of the procedure and measures the deterioration of the
predictive ability of the model when each predictor is

replaced in turn by random noise. .
::

This method has
been extensively used in bibliography

::
the

:::::::::
literature

:
in

a variety of applications ranging from bioinformatics860

(Dı́az-Uriarte and De Andres, 2006) to remote sensing
(Pal, 2005; Gislason et al., 2006; Ghimire et al., 2010) and
ecology (Cutler et al., 2007; Peters et al., 2007; Moriondo et al., 2008)

:::::::::::::::::::::::::
(Pal, 2005; Brenning, 2009) and

::::::
ecology

:::::::::::::::::::
(Cutler et al., 2007) just to mention an, in-

complete, list of application fields. For what concerns865

mapping of landslides, this method was used by
Stumpf and Kerle (2011a,b) , who used the RF technique
to implement an automatic landslide inventory mapping on
the basis of very high resolution remote sensing imagery.
Vorpahl et al. (2012) used the RF classifier (and several870

other statistical methods) to analyze the driving factors of
natural landslides. They took into account, as predictors,
the terrain attributes derived from a digital elevation
model and trained the RF model on a set of five historical
landslide inventories. Brenning (2005) applied the RF875

classifier to produce susceptivity maps in Ecuador using
geomorphometric attributes and information on land-use.
Recently,

::
In

:::::::::::::::::
landslide

:::::::::::::::::
mapping

::::::::::::
or

:::::::::::::::
geomorphological

:::::::::
context

:::::
it
:::::::

was
:::::::

used
:::::

in880

::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
Brenning (2009); Stumpf and Kerle (2011a,b); Vorpahl et al. (2012); Catani et al. (2013) .

::
In

::::::::
particular

:
Catani et al. (2013) applied the RF algorithm

to produce landslide susceptibility maps for the Arno
river basin (about 9100 km2) at different mapping unit
ranging from 10 m to 500 m. They considered a variety885

of predisposing factors mainly related to the lithology,
the land use, the geomorphology, the structural and
anthropogenic constrains.

:::::
found

::::
that

:::
the

:::
RF

::
is

:::::::
feasible

:::
and

:::::
robust

::::::::
provided

::::
that

:
a
::::::::::

preliminary
:::::::::

procedure
::
is
:::::::::

performed

:::::
aimed

:::
at

::::::::
assessing

::::
the

::::::::
optimal

:::::::
number

:::
of

:::::
trees

:::
of

::
a890

:::::
single

::::::::::
realization

:::
of

::::
RF.

:::::::::::::::::
Brenning (2009) in

::::
his

:::::
study

::
on

:::
an

:::::::::
automatic

:::::
rock

::::::
glacier

:::::::::
detection

:::::::::
procedure

:::::
using

::::::::::
multispectral

:::::::
remote

::::::
sensed

:::::
data,

:::::
found

::::
that

::::
RF

:::::
tends

::
to

:::::
overfit

::
to
::::

the
:::::::
training

::::
data,

:::::::::
achieving

:::::::::::
unsatisfactory

::::::
results

::
in

::::::::::::::
cross-validation.

::::::::::::::::::::::::
Marmion et al. (2008) found

:::::
that

:::
RF895

:::::::
provides

:::
low

::::::::::::
classification

:::::::
accuracy

:::
in

:
a
:::::::::::::::
geomorphological

:::::::::
application

::
if
:::::::::

compared
:::

to
:::::

other
:::::::::

statistical
:::::::::

methods.
::
In

::
the

::::::
paper

::
by

:::::::::::::::
Brenning (2005) ,

::::
the

:::::
author

:::::::
discuss

::::
how

:::
RF

::::::::
prediction

::
is
:::::::::::

problematic
:::::::

outside
:::
the

::::::::
training

:::
set

::::
and

::
in

::::::
general

:::
RF

:::
was

::::::
found

::
to

::
be

:::::
prone

::
to

:::::::::
overfitting.

:
900

Apart from the literature survey in RF area, we stress the fact
that we applied the RF method in a “black box” approach
and further work is needed to properly use this powerful
and easy-to-use tool. This especially for what concerns the
choice of the predictors and the choice of the number of905

input variable tried at each split of the classification tree.
Nevertheless, as it is shown in section 3.2 and discussed
in section 4, this method provided interesting results
and gave hints for meaningful discussions.

::::::
Beyond

:::::
these

::::::::::::
disadvantages,

::
to

::::
our

::::::::
purposes,

::::
one

:::
of

:::
the

:::::
main

:::::::
features910

::
of

:::
the

:::
RF

:::::::::
algorithm

::
is
::::

the
:::::::
variable

::::::::::
importance

::::::
output.

::
It

:::::::
measures

::::
the

::::::::::
importance

:::
of

:::::
each

:::::::
variable

:::
to

:::::::
perform

::
a
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::::::
correct

:::::::::::
classification

::
in

:::
the

:::
tree

:::::
when

:::
the

::::::
model

::
is

:::::::
validated

::
on

:::
the

::::::
OOB

::::::::::
(out-of-bag)

:::::
data.

::::::::::::
Alternatively

:::
its

:::::::
measure

:
is
::::::

based
:::
on

:::
the

::::::::
decrease

:::
of

:::::::::::
classification

::::::::
accuracy

:::::
when915

::
the

:::::::::
variables

::
in

::
a
:::::
node

::
of

::
a
::::
tree

:::
are

:::::::::
permuted

::::::::
randomly

::::::::::::::
(Breiman, 2001) .

:::::::::
Variable’s

:::::::::::
importance

:::
can

:::
be

::::::::
assessed

::
by

::::::
mean

::
of

:::::
two

::::::::
different

:::::::::
measures:

:::::
mean

:::::::::
decrease

::
in

:::::::
accuracy

::::
and

:::::
mean

::::::::
decrease

::
in
:::::

node
::::::::

impurity.
::::

We
:::::
chose

::
the

::::::
mean

:::::::
decrease

::
in
::::::::

accuracy
::::::

which
::
is

::::::::::
meaningful

::
in

:::
the920

::::::
present

:::::::
context

:::::
since

:::::
AUC

::
is

::::::
chosen

:::
as

:::
the

:::::::::::
performance

:::::::
measure

::
of

:::
the

:::::::::
predictive

:::::
skill

::
of

:::
the

:::::::
model.

:::
As

:::::
done

::
by

:::::::::::::::::
Brenning (2009) and

::::::::::::::::::
Catani et al. (2013) the

:::::::
number

::
of

::::
trees

::::
used

::
in

:::
this

:::::
study

::
is

::::
200.

In the present work, we used the R translation925

:::::::::::::
implementation

:
(Liaw and Wiener, 2002) of the origi-

nal RF code developed by L. Breiman and A. Cutler.
In both statistical methods,

::::
order

::::
to

::::::::
remove

::::::::::::
methodological

::::::::::
limitations

:::
due

::
to

:::
the

::::
lack

::
of

::
a
::::::::::
performance

::::::::
estimation

:::
of

:::
the

::::::
results

::
on

:::
an

::::::::::
independent

::::
test

:::
set,

:::
we

:::
ran930

::::
both

::::::::
statistical

::::::
models

:
(GLM and RF, we used, as predictors,

the same set of layers detailed in section 2.2 and 2.3 and
summarized in table 1.

:
)
:::
for

::::
both

::::::
study

:::::
cases

:::::::::::
(25OCT2011

::::
and

::::::::::::
18MAR2013)

:::::::
dividing

:::::::::
randomly

::::
each

::::::
event

:::::::::
inventory

::::::
dataset

:::
in

::::
two935

::::::
groups:

:
a
:::::::

training
:::
set

::::
and

:
a
:::::::::
validation

:::
set.

::::
The

:::
first

:::::
group

::
is

::::
70%

::
of

::::
each

:::::
event

::::::::
inventory

:::::::
dataset,

:::::::
whereas

:::
the

::::::::
validation

::
set

:::
is

:::
the

:::::::::
remaining

::::::
30%.

::::
The

:::::::
relative

::::
size

:::
of

:::
the

::::
two

:::::
groups

::::::
(70%

:::
and

::::::
30%)

::
is

:::::
based

:::
on

::::::::::::::::::
Carrara et al. (2008) .

:::
For

::::::::
modeling

::::::
fitting,

:::
the

:::::::
number

::
of

::::::::::::
non-landslide

:::::::
locations940

:::::
equals

::::
the

:::::::
number

:::
of

:::::::::
landslide

::::::::
locations

::::::::::
according

::
to

:::::::::::::::::
Brenning (2005) and

::::::::::::::::
Goetz et al. (2011) .

::::
The

:::::::::::
non-landslide

:::::::
locations

:::::
were

::::::
selected

:::::::::
randomly

::
in

::
the

::::
two

::::
areas

:::
of

::::::
interest.

:::
Due

::
to

:::
the

:::::
small

:::::::
number

::
of

:::::::
elements

::
in

:::
the

::::::::
resulting

::::::
training945

:::
sets

:::
(in

::::::::
particular

:::
for

:::::::::::::
18MAR2013),

:::::::::
overfitting

::::
may

:::::
occur

::
in

:::::::::
predictive

::::::::::
relationship

:::
of

:::
the

::::::::
models.

:::
So

:::
we

:::::::
decided

::
to

:::::::
perform

:::::::
multiple

:::::
runs

::
of

:::
the

::::::
model

:::::
(100

::::
runs

:::
for

::::
each

::::
study

::::::
case),

::::
with

::::::::
different

:::::::
random

::::::
choice

:::
of

:::
the

:::::::
training

:::
and

:::
test

::::
sets,

:::::
since

:::::::::::::::::::::::::::
Stumpf and Kerle (2011b) found

:::
that

:::
RF950

::::::
variable

::::::::::
importance

::
is

::::::
almost

:::::
stable

:::::
when

:::::::
running

:::::::
multiple

::::::::::
classification

:::::
runs.

3 Results

Since one of the crucial points to properly forecast the
rainfall-triggered landslides is an accurate prediction of spa-955

tial patterns and temporal intensity of rainfall (Crozier,
1999), in section 3.1 we briefly present the validation

::::
show

::
the

:::::::::::
verification

:
of the WRF predictions for the selected

dates
::::
using

::::::::::
rain-gauge

::::::::::
observations

:::
as

::::::
ground

:::::
truth. In sec-

tion 3.2 we present the landslide hazard maps for the two960

events along with their accuracy
:::::::
accuracy

::
of

:::
the

::::::::
landslide

:::::::::::
susceptibility

:::::
maps in terms of ROC plots and

:::::
curves

:::
and

::
of

:
the corresponding underlying area.

::
In

::::::
section

::::
3.3

:::
we

::::
show

:::
the

::::::::
variable

:::::::::
importance

:::::::
outputs

::::::::
provided

:::
by

:::
the

:::
RF

::::::::
algorithm.

:
965

3.1 Evaluation of the forecasting skills of NWP outputs

Using the remotely automated weather station network
operated by the National Civil Protection Department, we
were able to evaluate the predictive skills of the WRF
model in terms of quantitative precipitation forecast (QPF).970

Considering the rainfall occurred during the
::
To

::::
have

:::
an

::::::::
indication

::
of

:::
the

::::::::::
precipitation

:::::::
patterns

::::::::
simulated

:::
by

:::
the

::::
WRF

:::::
model

:::
for

:
25OCT2011event (from 00 UTC 25th October

2011 to 00 UTC 26 October 2011), it was possible to
collect 20 rain-gauges recording precipitation every hour975

(see the locations of the rain-gauges in figure 3). For ,
::
in

:::::
figure

:
4
:::

we
:::::

show
:
a visual comparison between the rainfall

data simulated by the WRF forecast with the observed
rainfall data collected in the 20 rain-gauges see figure
4,

::
of

:::
the

:::::::
rainfall

::::::::
amounts

::::::::
predicted

:::
by

::::
the

:::::
model

::
(panel980

(a)for WRF data and panel (b) for observations. The ability
of the model to simulate the precipitation’s amount was
analyzed using the contingency tables (Wilks, 2011) for
selected rainfall’s thresholds. For each rain-gauge locations,
we extracted the predicted values of the numerical simulation985

and compared them with the observed rainfall amounts
(24-hour accumulated precipitation). In figure 5, we show
the False Alarm Rate and Probability of Detection for
selected rainfall thresholds. In table 3 )

::::
and

:::
the

::::::::
observed

:::
data

::::::
(panel

::::
(b)).

:::
In

:::::
table

:
3
:::::

(top), we show the descriptive990

statistics (average values and percentiles) of the observed
and modelled rainfall datafor the selected

:::::::
modeled

::::::
rainfall

::::
data.

::
To

:::::::
evaluate

:::
the

::::::::::::::
under-estimation

:::
of

:::
the

::::::::
numerical

::::
data,

::
we

:::::::::
calculated

:::
the

:::::
False

::::::
Alarm

::::
Rate

::::::
(FAR)

::::
and

:::::::::
Probability

::
of

:::::::::
Detection

::::::
(POD)

:::
for

::::::::
selected

:::::::
rainfall

:::::::::
thresholds

::::
(see995

:::::
figure

:::
5).

:::
To

::::::::
estimate

:::::
errors

::::
and

:::::
bias,

:::
we

:::::::::
computed

:::
the

::::::
RMSE,

:::
the

:::::::::::
multiplicative

::::
bias

:::
and

:::
the

:::::::::
correlation

:::::::::
coefficient:

::
the

:::::::
RMSE

::
is
::::::

about
::::
150

::::
mm

::::
and

:::
the

::::::::::::
multiplicative

::::
bias

:
is
::::::

about
::::
0.49,

::::::::
whereas

:::
the

::::::::::
correlation

:::::::::
coefficient

::
is

:::::
about

::::
0.19.

:::
To

:::::::::
understand

:
if
::::::::::::
displacement

:::::
errors

:::::
occur

::
in

:::
the

::::
WRF1000

:::::::::
simulation,

:::
we

:::::::::
calculated

:::::::::
descriptive

::::::::
statistics

:::
not

::::
only

:::
for

::
the

:::::::::
numerical

::::
data

::::::::
extracted

:::
for

:
rain-gauge locations. From

the analysis of the previous plot and table, it is quite clear
how the model largely underestimates the rainfall amounts
for high thresholds (greater than 50 mm) and overestimates1005

precipitation for low thresholds (roughly precipitations
below 50 mm or similarly below the 1st quantile of observed
data). Nevertheless if we extract the modelled data in the

::::::::
locations,

:::
but

::::
also

:::
for

:::
all

:::
the

::::::::
numerical

:::::
data

::::::::
extracted

::
in

:
a

larger area affected by the 25OCT2011 event (see the in-1010

set rectangle in the picture in the left side of figure 1), we
can see from table 3 the shift of the predicted data towards
higher values. This can be addressed to a lack of the model
in predicting the exact locations of the deep convection
processes. On the other hand, we can state that the model1015

is able to capture the characteristics of heavy rainfall event
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in the area of interest. In particular the maximum value
obtained in the model data (218 mm 24h−1) is similar to
that one obtained by Buzzi et al. (2014) , who analyzed the
same rainfall event with the ISAC convection-permitting1020

MOLOCH model (Buzzi et al., 2004) . In their paper, the
authors found a maximum rainfall amount of 286 mm24h−1.
It has to be noticed, nevertheless, that they used the
ECMWF-IFS analysis at 12 UTC 24th October 2011 (instead
of 00 UTC 24th October 2011 as done here)and that their1025

model horizontal resolution is 1.5 km (instead of 3 km as
setup here). .

::::::::::
Descriptive

:::::::
statistics

:::
of

::::
these

::::
data

:::
are

:::::::
reported

::
in

::::
table

:
3
:::::
(top).

:

For the 25OCT2011 event
::::
Since

:::
in

:::
the

::::::::::
rain-gauges

::::::
dataset

::
we

::::::::
observed

::::
high

:::::::
rainfall

:::::::::
intensities

:::
(up

::
to

:::
67

:::::
mm/h

::
in

:::
the1030

:::::::::
Pontremoli

:::::::::
rain-gauge

::::::
station), a special regard was devoted

to the verification of the
::::::::
maximum

:
rainfall intensities (mm/h)

predicted by the model. In the rain-gauges dataset we can
observe very high rainfall intensities (up to 67 mm/h in
the Pontremoli rain-gauge station). On average, over the 201035

rain-gauges considered, the Root Mean Square Error (RMSE
) of modelled

:::::
RMSE

:::
of

::::::
rainfall

::::::::
intensity

:
data is around

6
::
19

:
mm/h (summary

:::
and

:::
the

::::::::::::
multiplicative

::::
bias

::
is

:::::
about

::::
0.68.

:::::::::
Summary

:::::::::
descriptive

:
statistics of both observed and

modelled
:::::::
modeled

:
1-hour rainfall amounts

::::::::
intensities

:
are1040

shown in table 4).
For the 18MAR2013 eventit was possible to collect60

rain-gauges recording precipitation every hour (see the
locations of the rain-gauges in figure 3). As shown for
the 25OCT2011 case, for

:
,
::
to
:::::

have
:::
an

::::
idea

:::
of

::::::::
simulated1045

::::::
rainfall

:::::::
patterns,

:::
we

::::
show

::
in
::::::
figure

:
4 a visual comparison be-

tween the rainfall data simulated by the WRF forecast with
the observed rainfall data collected in the 60 rain-gauges
see figure 4,

:::::
model

:
(panel (c)for WRF data and )

::::
and

:::
the

:::::::
observed

:::::::
rainfall

::::
data

::
(panel (d)for observations. Beside1050

the visual comparison, here we show the results obtained
when validating the modelled data, output of the WRF
simulation, with respect to these observed data. Considering
the rainfall registered by the rain-gauges during the event
(from 00 UTC 18th March 2013 to 00 UTC 19 March 2013),1055

the distribution, in terms of percentiles, of the model data
and of the observed data is summarized

::
).

:::
The

::::::::::
quantitative

::::::::
evaluation

:::
of

:::::::::
forecasting

:::::
skill

:::::::
reported

::
a
::::::
RMSE

::::::
about

::
45

::::
mm,

:::::::
whereas

::::
the

::::::::::::
multiplicative

:::::
bias

::
is

::::::
about

::::
0.59

::::
and

::
the

::::::::::
correlation

::::::::::
coefficient

::
is

:::::
about

:::::
0.63.

:::
To

::::::::
evaluate

:::
the1060

::::::::::
distributions

:::
of

::::
both

:::::::::
numerical

::::
data

::::
and

:::::::::::
observations

:::
we

::::
show

:
in table 3 . The RMSE is 40 mm 24h−1 and the

correlation coefficient is 0.63. The False Alarm Rate and
Probability of Detection plots are shown in figure 6

:::::::
(bottom)

::
the

::::::::::
descriptive

::::::::
statistics.

:::
To

:::::::
evaluate

::::::::::::::::::
over/under-estimation1065

::
we

:::::::::
computed

:::
the

::::
FAR

::::
and

:::::
POD

::::
skill

:::::
scores

::::
(see

::::::
figure

::
6),

where FAR and POD skill scores
:::::
values

:
are computed and

plotted against selected thresholds ranging from the rounded
minimum (10 mm) to the rounded maximum (130 mm) of
the modelled data.1070

3.2 Evaluation of landslide hazard maps

Considering the extent of the areas of interest,
:::::::
modeled

::::
data.

::
To

::::::::
evaluate

:::
the

:::::::::
feasibility

:::
of

::
an

:::::
early

::::::::
warning

::::::
system

::
for

::::::::::::::
rainfall-induced

:::::::
shallow

::::::::
landslide

:::::
based

:::
on

:::::
NWP

::::
data,1075

::
we

::::::::
reported

:::
the

::::::::::::
computational

:::::
time

:::::::
required

:::
by

:::
the

:::::
WRF

:::::::::
simulation.

::::::::::
Considering

::::
the

:::::
extent

:::::::
outlined

:::
in

:::::
figure

::
1

:::
and

the resolution of both static predictors and NWP outputs and
considering the statistical models adopted, landslide hazard
maps were produced requiring less than 10 minutes of CPU1080

time on a HPC multi-core
:::
grid

::::::
spacing

::
of

::
3
:::
km,

:::
the

::::
CPU

::::
time

:
is
::::::::::::
approximately

::
2
:::::
hours

:::
on

:
a
::
8
:::::::::
processors

:::::::::
Quad-core

::::
HPC

Linux server.

3.2
:::::::::
Evaluation

::
of

::::::::
landslide

:::::::
hazard

:::::
maps

::
To

::::::::
visualize

::::
the

:::::::::
modeling

::::::
effects

::::
and

:::
to

::::::
enable

::
a
::::

few1085

::::::::::::
considerations,

:::::::
outputs

::
of

::::
the

:::::
model

:::::::::
prediction

:::::
have

::::
been

::::::::
provided.

::
In

::::::
figures

:
7
:::
and

::
8

::
we

:::::
show

:
a
::::::
single

::::::
output,

::
for

::::
each

::::
study

:::::
case,

::::::
among

:::
the

::::
100

::::
runs

::::::::::
performed. The results for

the study case 25OCT2011 are shown in figure 7(a) for the
GLM model and 7(b) for the RF model. While the

:::
The results1090

for the study case 18MAR2013 are shown in figure 8(a) for
the GLM model and 8(b) for the RF model. In the maps, we
subjectively masked out the pixels where slope is below 6%.
Corresponding ROC plots are shown with the values of the
AUC for each curve. In the maps, values range from 0 (green1095

color) indicating pixels classified as stable slopes to 1 (light
gray color) indicating pixels classified as unstable slopes.
For the study case 25OCT2011 AUC value is 0.909 for the
GLM model, whereas it is 0.968 for the RF classifier. For
the 18MAR2013 study case, AUC values are lower: 0.8331100

for GLM , 0.764 for RF . As outlined previously in section
2.4, one of the main features of

::
To

:::::::
evaluate

:::
the

::::::::
accuracy

::
of

:::::::
landslide

::::::
hazard

:::::
maps,

:::
we

:::::::::
calculated

:::::
ROC

:::
and

:::::
AUC

:::::
values

::
of

:::
the

:::
100

::::
runs

:::::::::
performed

::
on

:::
the

:::
test

::::
sets.

::::::::
Summary

:::::::
statistics

::
of

:::
the

::::
AUC

::::::
values

:::::::
achieved

:::
by

:::
the

:::::
GLM

:::
and

:::
RF

:::::
model

::::
runs1105

::
are

::::::::
reported

::
in

::::
table

::
5.

:

::
To

::::::::
evaluate

:::
the

:::::::::
feasibility

::
of

:::
an

:::::
early

:::::::
warning

:::::::
system,

:::::
based

::
on

::::
the

:::::::::
forecasting

::::::
chain

::::::::
proposed,

::::
we

:::::::
reported

:::
the

::::
CPU

::::
time

:::::::
required

:::
by

:::::
GLM

:::
and

::::
RF.

::::::::::
Considering

:::
the

:::::
extent

::
of

:
the RF algorithm is the variable importance output. It1110

measures the importance of each variable to perform a
correct classification in the tree when the model is validated
on the OOB (out-of-bag)data. Alternatively its measure
is based on the decrease of classification accuracy when
the variables in a node of a tree are permuted randomly1115

(Breiman, 2001) . Among the four different measures of
variable importance implemented in the code, we chose the
default one: increased node purity (IncNodePurity) , see
RF’s manual (Breiman, 2002) for details. Figure ?? shows
the variables importance for the two study cases:

:::
two

::::
areas

::
of1120

::::::
interest

::::
(see

:::::
figure

::
1),

:::
the

:::::::::
resolution

::
of

::::
both

:::::
static

::::::::
predictors

:::
and

:::::
NWP

:::::::
outputs

::::
and

:::::::::::
considering

:::
the

:::::::::
statistical

::::::
models
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:::::::
adopted,

:::::::
landslide

::::::
hazard

:::::
maps

::::
were

::::::::
produced

::::::::
requiring

:::
less

:::
than

:::
10

:::::::
minutes

::
of

:::::
CPU

::::
time

:::
on

:
a
::

8
:::::::::
processors

:::::::::
Quad-core

::::
HPC

:::::
Linux

::::::
server.1125

3.3
:::::::::
Evaluation

::
of

::::::::::
importance

::
of

:::::::::
predictor

::::::::
variables

:::
The

::::::::::
optimability

::
of

:::
the

:::::::::
parameter

::
set

::
is

::::::::
evaluated

::
on

:::
the

::::
basis

::
of

:::
the

:::::::::
out-of-bag

::::
error

:::
as

::::::::
explained

::
in

:::::::::::::::::
Catani et al. (2013) .

:::
Out

:::
of

::::
the

:::
34

::::::::::
parameters

::::::::::
considered

:::
in

::::
the

::::::::
analysis,

:
a
:::::::::::

combination
::::

of
:::

22
:::::::::::

parameters
:::::::::

represents
:::::

the
::::

best1130

:::::::::::
configuration

:::
for 25OCT2011

::
on

:::::::
average

::::
over

:::
the

::::
100

:::
RF

:::
runs

::::::::::
performed,

:::::::
whereas

:
a
:::::::::::
combination

::
12

::::::::::
parameters

:
is
:::
the

:::
best

:::
set,

:::
on

:::::::
average,

:::
for

::
the

::::::::::::
18MAR2013.

:::::
Since

::
in

::::
both

::::
cases

::
the

:::::::::
cardinality

:::
of

:::
the

::::::
optimal

:::
set

::
is

::::
quite

::::
high

::::
with

::::::
respect

::
to

::
the

:::::
total

::::::
number

:::
of

:::::::::
predictors,

::
as

::::::::
indicators

:::
for

:::
the

:::::::
stability1135

::
of

:::
the

::::::
variable

::::::::::
importance

:::
we

:::::::
decided,

::::::::::
subjectively,

::
to

:::::
report

::
(i)

:::::
which

:::
is

:::
the

::::::
average

::::::::
position

::
of

::::
each

::::::::
predictor

:::::::
variable

:::
and

:::
(ii)

::::
how

::::::
many

:::::
times

:::
(in

:::
%)

::
a
::::::::
predictor

:::::::
variable

::::
was

:::::::
classified

:::
as

::::::::::
“important”

::
in

:::
the

::::
first

:::
ten

:::::
(five)

::::::
places

::
of

:::
the

::::::
ranking

:::
for

:::::::::::
25OCT2011 (top) and 18MAR2013(bottom).

:
).1140

::
In

:::::
other

::::::
words,

:::
we

:::::::
decided

:::
to

::::::
restrict

::::
the

:::::::
optimal

:::
set

::
of

:::::::
predictor

::::::::
variables

::::::::
classified

::
as

:::::::::
important

::
to

:::
the

::::
first

::
10

:::
(5)

:::::::
positions

::::
and

:::::
count

:::
the

:::::::
average

:::::::
position

:::
of

::::
each

::::::::
predictor

:::::
among

:::
the

::::
100

:::
RF

::::
runs.

:

For 25OCT2011 the total number of important (e.g effective)1145

variables is 23. Ten of them are related to the dynamical
NWP predictors, namely: mean and maximum hourly rainfall
intensity and mean and maximum

::::::::::
25OCT2011

::::::::
elevation,

:::::::
distance

:::::
from

:::::
main

::::::::
tectonic

::::::::
features,

:::::::::
vegetation

::::::
index,

::::::::
maximum

:
soil moisture in the four layers 0-10 cm, 10-401150

cm,
::::
layer

:
40-100 cm,

:::::
total

::::::
NWP

:::::::
rainfall

:::::::
amount

::::
and

::::
mean

::::::
NWP

:::::::
rainfall

:::::::
hourly

::::::::
intensity

::::
are

:::
the

::::
six

:::::
most

:::::::
frequent

::::::::
variables

:::::
with

:::::::
average

:::::
rank

::::
4.5,

::::
3.7,

::::
3.4,

::::
6.2,

:::
2.6 and 100-200 cm below ground. Four of the variables
are geomorphology-related predictors, namely: elevation,1155

topography factor, slope, concavity/convexity of the land
parallel to aspect. Also geology-related predictors are four,
namely: geological continuum, soil permeability, distance
from main tectonic features and landslides main scarps.
Three of the variables are climate-related predictors, namely:1160

the precipitation amounts with a returning period of
::
2.6

::::::::::
respectively.

:::::::
Altitude

:::::
above

:::::::
channel

:::::::
network,

:::::::::
maximum

:::
soil

:::::::
moisture

::
in

:::
the

:::::
layer

:::::
10-40

:::
cm

:::
and

:::::::::
maximum

:::::
NWP

::::::
rainfall

:::::
hourly

::::::::
intensity

::::
are

:::
the

:::::
next

:::::
most

:::::::
frequent

:::::::::
variables

::
in

::
the

::::
first

:::
10

::::::::
positions

:::
for

::::::::::::
25OCT2011.

:::
The

:::::
other

::::::::
variables1165

::::::::::::
approximately

:::::
occur

::
in

:::
the

::::
first

::
10

::::::::
positions

:::
of

:::
the

::::::
optimal

:::
set,

::
in

::
no

:::::
more

::::
than

:::
one

::::
third

:::
of

:::
the 100 years and occurring

in 12 h, 48 h and 96 h. Finally, two are hydrology-related
predictors, namely: time of concentration and Topography
Wetness Index. All these layers are highlighted in table 11170

with the ⋆ symbol. For
::
RF

::::
runs

:::::::::
performed.

:

::::::::
Regarding

:
18MAR2013 , nine predictors are classified as

important by the RF algorithm. Two are dynamical NWP
predictors, namely mean and

::
the

:::::
most

:::::::
frequent

:::::::
variable

::
is

::::::::
elevation,

::::::
which

::
is

::::::
always

:::::::::
classified

::
in

:::
the

::::
first

::::::::
position,1175

:::::::
followed

:::
by

:::::::
altitude

::::::
above

::::::::
channel

::::::::
network,

:
maximum

soil moisture in the layer 0-10 cmbelow ground. Two
are geomorphological predictors (e.g. elevation and the
altitude above channel network), one is the climatological
precipitation amounts of a rainfall event occurring in 241180

hours and having a returning period of
:
,
:::::
slope

::::::::
structural

:::::
setting

::::
and

::::::::::
land-cover,

::::
each

::::
one

:::::::::
occurring

::
in

:::
the

:::::::
optimal

::
set

:::
in

:::
at

:::::
least

::::
half

:::
of

::::
the

:
100 year, one is the time

of concentration (hydrology-related predictor), one is the
euclidean distance from the main tectonic features and the1185

last two are the vegetation index and the land cover. All these
layers are highlighted in table 1 with the • symbol.

::
RF

:::::
runs.

::::::::
Complete

::::::
results

::::
for

:::::::::::
25OCT2011

::::
and

::::::::::::
18MAR2013

:::
are

:::::::
reported

::
in

::::
table

::
6.

:
1190

4 Discussions

We developed a statistical framework for the modeling
and prediction of shallow landslides triggered by heavy
precipitations. We considered as input predictors both static
thematic layers such as geomorphology, hydrology, geology1195

and climate related predisposing factors and dynamical
information provided by NWP short term forecast, namely
precipitation amounts and soil water content. We combined
these predictors together by means of two different statistical
models: the well known and widely used Generalized Linear1200

Model and Breiman’s Random Forest
::
In

::
an

:::::
effort

::
to

:::::::
elucidate

::
the

::::::
impact

:::
of

:::::
NWP

::::
data

::
in

:::::
LSM,

:::
we

:::::::::::
implemented

:
a
::::::

simple

::::::::
statistical

:::::::
method

:::
by

:::::
using

:::::::
variable

::::::::::
importance

::::::::
provided

::
by

::::
the

::::
RF

:::::::::
algorithm. In the procedure implemented,

the two models have no interactions between each other1205

and are tested separately (see figure ?? for a schematic
flowchart of the modeling). We chose the GLM model
because it has be proven (see references cited in section
2.4) to provide reliable results in landslides susceptibility
assessment, while the RF algorithm has been recently and1210

successfully applied in landslide research and applications
(Stumpf and Kerle, 2011b; Catani et al., 2013) . We tested
the whole procedure for two study cases occurred in Tuscany
region (central Italy) in the recent past. The two events
were characterized by heavy precipitations that induced1215

several shallow landslide and debris flows as reported by
after-event field surveys and inventory maps (see figure 1).
The statistical modeling produced landslide hazard maps, i.e.
a partition of the territory in different degrees of landslide
susceptibility ranging from stable slopes to high unstable1220

slopes. More specifically,
::::::::
following

::::
we

::::::
discuss

:::::
how

:::
the

:::::
major

:::::::
findings

::
of
::::

the
:::::
work

::::::::::
demonstrate

::::
the

:::::::::
usefulness

::
of

::::
NWP

:::
in
::::::
LSM.

::
In

::::
spite

:::
the

::::
main

:::
aim

:::
of

::
the

:::::
work,

::
a
:::
few

::::::::::
discussions

::::
need

:::
also

::
to

::
be

::::::::
addressed

::::::::
regarding

:::
(i) the study is aimed at testing and1225

evaluating the information content provided by numerical
weather predictions in landslide assessment. This aim is
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justified by the fact that recently NWP data are arising as a
promising and reliable source of information for real-time
forecasting chain of rainfall induced shallow landslides1230

(Schmidt et al., 2008; Segoni et al., 2009; Mercogliano et al., 2013b) .
The use of NWP data is justified in

::::::::
reliability

::
of

:::::
NWP

::::
data

::::
used

:::
and

::::
(ii) the setting up of landslides warning systems

over large areas (i.e. basin scale) and when both a spatial
and a temporal forecasting of shallow landslide occurrence1235

is desirable. In the above cited bibliography, NWP data were
basically considered only for what concerns precipitation
amounts. Schmidt et al. (2008) used a regional model
assimilating NWP data to feed a physically-based model to
simulate basin hydrology on the basis of rainfall forecast1240

forcing. Segoni et al. (2009) combined both rainfall fields
observed from meteorological ground-based radar and high
resolution rainfall forecast, statistically downscaled, to feed
hydro-geological models to yield a factor of safety for

:::::::
accuracy

:::
of

:::
the

::::::::
landslide

:::::::::::
susceptibility

:::::
maps

:::::::::
produced

::
by1245

::
the

:::
RF

::::
and

:::
the

:::::
GLM,

::::
this

:::
last

:::::
being

:
a
::::
sort

::
of

::::::::::
benchmark

::
for

:::::
LSM.

4.1
::::::::
Reliability

:::
of

:::::
NWP

::::
data

:::
For

::::
what

::::::::
concerns

:::::::::::
25OCT2011,

:::::
from

:::
the

:::::::
analysis

::
of

:::::
figure

:
5
::::
and

::::
table

::
3
:::::
(top),

::
it

::
is

:::::
quite

::::
clear

::::
how

:::
the

::::::
model

::::::
largely1250

:::::::::::::
under-estimates

:::
the

:::::::
rainfall

::::::::
amounts

:::
for

:::::
high

:::::::::
thresholds

:::::::
(broadly

::::::
greater

::::
than

:::
60

:::::
mm).

:::::
This

:::
fact

::
is
::::

also
:::::::::

confirmed

::
by

::::::::::::
multiplicative

:::::
bias,

::::::
RMSE

::::
and

::::::::::
correlation

:::::::::
coefficient

:::::::
achieved

::::::
(0.49,

:::
150

::::
mm

::::
and

:::::
0.19

:::::::::::
respectively).

::::
The

::::
lack

::
of

:::
the

::::::
model

::
in

:::::::::
predicting

:::
the

:::::
exact

::::::::
locations

:::
of

:::
the

::::
deep1255

:::::::::
convection

::::::::
processes

:::
can

::::
also

:::
be

:::::::
visually

::::::::::
appreciated

::::
from

:::::
figure

::
4,

::::::
panels

:::
(a)

::::
and

:::
(b).

::::
The

:::::::
general

::::::::::::::
under-estimation

::
of

:::::
NWP

:::::
model

:::::::
forecast

:::
in

::::::::
predicting

:::::::::::
precipitation

:::::::
maxima

:::::
during

:::::::
intense

:::::::::::
precipitation

::::::
events

::
is

::
a
::::
well

::::::
known

:::::
issue

:::
and

::::
was

:::::::
recently

:::::::::
addressed

:::
for

::::
this

:::::::
specific

::::::
rainfall

:::::
event1260

::
by

:::::::::::::::::
Buzzi et al. (2014) .

:::
On

::::
the

:::::
other

:::::
hand,

:::::
from

:::::
table

::
3

::::
(top),

::::
we

:::
can

:::::
state

::::
that

:::
the

::::::
model

::
is
:::::

able
::
to

:::::::
capture

:::
the

:::::::::::
characteristics

:::
of

:::::
heavy

::::::
rainfall

:::::
event

::
in

:
the area of interest.

Mercogliano et al. (2013b) presented a similar forecasting
chain composed by a downscaling procedure of NWP rainfall1265

data to feed a geo-technical model to gain a factor of
safety on a pixel-by-pixel basis. Our study differs from the
above mentioned because: i) we consider not only NWP
rainfall amounts but also NWP hourly rainfall intensities
and NWP soil moisture in four layers below ground,1270

ii) we don’t perform any statistical downscaling of the
NWP data towards the mapping unit and iii) we combine
both static predictors and NWP data into a “black-box”
statistical model . As described in sections 2.1.1 and
2.1.2, the study cases selected show different features:

:
In1275

::::::::
particular

:::
the

:::::::::
maximum

:::::
value

::::::::
achieved

:::
by

::::
the

::::::
model

::
in

::
the

::::::
whole

::::
area

:::
of

:::::::
interest

::::
(218

::::
mm

:::::::
24h−1)

::
is
:::::::

similar
::
to

:::
that

::::
one

:::::::
obtained

:::
by

::::::::::::::::
Buzzi et al. (2014) ,

::::
who

::::::::
analyzed

:::
the

::::
same

:::::::
rainfall

:::::
event

:::::
with

:::
the

::::::
ISAC

::::::::::::::::::
convection-permitting

:::::::::
MOLOCH

::::::
model

:::::::::::::::::
(Buzzi et al., 2004) .

:::
In

::::
their

::::::
paper,

:::
the1280

::::::
authors

::::::
found

::
a
:::::::::
maximum

:::::::
rainfall

:::::::
amount

:::
of

::::
286

::::
mm

::::::
24h−1.

::
It

:::
has

:::
to

:::
be

:::::::
noticed,

:::::::::::
nevertheless,

::::
that

:::::
they

::::
used

::
the

::::::::::::
ECMWF-IFS

::::::::
analysis

::
at

:::
12

:::::
UTC

::::
24th

:::::::
October

:::::
2011

::::::
(instead

:::
of

:::
00

::::
UTC

:::::
24th

:::::::
October

:::::
2011

::
as

:::::
done

:::::
here)

:::
and

:::
that

:::::
their

::::::
model

:::::::::
horizontal

:::::::::
resolution

::
is

::::
1.5

:::
km

:::::::
(instead1285

::
of

::
3

:::
km

:::
as

:::::
setup

:::::
here).

:::::::::
Similarly,

:::::
from

:::::
table

::
4,
::::

we
:::
can

:::::
assess

::::
that

:::
the

::::::
model

::
is

::::
also

::::
able

::
to

:::::::::
reproduce

:::::::::
adequately

::
the

::::::
hourly

:::::::
rainfall

:::::::::
intensities

:::::::
yielding

::::::::
moderate

::::::
RMSE

:::
(19

:::::
mm/h)

::::
and

:
a
::::::::::::
multiplicative

:::
bias

::::::
around

:::::
0.68.

::::::
Overall

:::
we

:::
can

:::::::
conclude

::::
that

::::::
despite

::::
the

::::::::::::::
under-estimation

::
of
:::::::::::

precipitation1290

::::::
maxima

:::
on

:
a
::::::::::::
point-to-point

::::::::::
verification,

::
for

:
25OCT2011 was

characterized by deep atmospheric convection and heavy
precipitations cumulated over a short time interval and
in a, relatively, small area (hundred of km2) , while

::
the

::::::::
numerical

:::::::
weather

::::::
model

:::::::
provide

::::::
results

::
as

::::::
much

::::::
reliable1295

::
as

:::::::
possible

:::::::::::
considering

:::
the

:::::
time

:::
of

::::::::::
integration

::::
and

:::
the

::::::::
resolution

:::::::
adopted.

:

::::::
Similar

::::::::::::
considerations

:::
can

:::
be

:::::::
assessed

:::
for

:::
the

:::::::::
verification

::
of 18MAR2013 was characterized by a weather storm with
precipitation spread over a 24-hour period and affecting1300

a larger area (thousand of km2). Considering the area
under the Receiver Operating Characteristics curve (AUC
area) as a good representative index of the accuracy of
landslide probabilistic forecast (Frattini et al., 2010) , results
here achieved are similar to those find in recent bibliography.1305

For the 25OCT2011 study case, the AUC values obtained
are quite high both for the GLM model (AUC=0.909) and
, even better, for the RF classifier (AUC=0.968). For the
18MAR2013 case AUC values are lower: 0.833 for the GLM
model and 0.761 for the RF classifier. Rossi et al. (2010) in1310

an area with an extension about 100 km2 applied four
different statistical methods for landslide susceptibility
zonation in central Italy . In the validation set (i.e. observed
landslides were divided into a training set to tune the models
and into a validation set to validate the models themselves)1315

the authors obtained AUC values around 0.74, whereas in
the training set AUC values were higher (from 0.84 for the
linear discriminant model to 0.99 for the neural network
model). In this latter study the mapping unit was “slope
unit” which is not comparable to that one adopted in the1320

present study. Frattini et al. (2010) applied five debris-flow
susceptibility models (both statistical and physically based)
in an area extending for about 300 km2 in the north of Italy
and with a grid cells resolution of 10 m. They obtained
AUC values ranging from 0.64 for a physically based1325

model to 0.84 for a discriminant model. For what concerns
studies regarding small areas of interest (below basin scale
with an extension around 10 km2), Mondini et al. (2011) in
their study regarding a semi-automatic mapping of rainfall
induced shallow landslides using optical satellite images,1330

obtained AUC values around 0.87 in the training area and
around 0.82 in the validation area. They used four different
statistical methods(linear discriminant analysis, quadratic
discriminant analysis, logistic regression and a combined
regression model) with a quite high mapping resolution (0.61335
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m) and their study area was located in south Italy (Sicily).
More recently,

::::::
rainfall

:::::::
forecast.

:::::
Table

::
3
::::::::
(bottom)

:::
and

:::::
figure

:
6
:::::
show

:::
the

::::::::::::::
over-estimation

::
of

:::::
WRF

:::::::
rainfall

::::
data

::::
for

:::
low

::::::::
thresholds

::::
and

::::::::::::::
under-estimation

::::
for

::::
high

::::::::::
thresholds.

::::
This

:
is
::

a
::::::
feature

:::
of

:::
the

::::::
model

:::::
which

::::
was

::::
also

::::::
found

::
in

::::::
similar1340

::::::
studies

::
in
:::::

Italy
:::::::::::::::::::

(Oberto et al., 2012) .
:::::::::

However
:::
for

::::
this

:::::
event,

::::::::::
quantitative

:::::::::
forecasting

:::::
skills

::::::::::::
(multiplicative

::::
bias

:::
and

::::::
RMSE)

:::
are

:::::
better

:::::
than

::::
those

::::::
found

::
in

:::::::::::::::::
Oberto et al. (2012) .

::::
This

::::::
mainly

:::::::
because

::::
this

:::::
event

::::
was

::::
not

:::::::::::
characterized

:::
by

::::
deep

:::::::::
convection

::::::::
processes

::::::::::::::::::::::::
(Regione Toscana, 2013) and

:::
thus1345

::::::::
fine-scale

::::::::
variability

::
is
::::::::::
represented

::::
more

::::::::::
adequately.

:

::::::::::
Considering

::::
that

::::::::::::
high-intensity

::::::
rainfall

::::::
events

:::
are

:::::
often

:::::::
spatially

:::::
very

::::::::
variable,

:::::::::
fine-scale

:::::::::
variability

:::::::
cannot

:::
be

:::::::
properly

:::::::
modeled

:::
by

::::
the

:::::
WRF

::::::::::
simulations

::::::::
produced

::::
with

:::
grid

:::::
point

:::::
about

:
3
::::
km.

:::::::
Previous

:::::::
similar

::::::
studies,

::
in

::::::::
particular1350

::::::::::::::::::::::
Mercogliano et al. (2013b) ,

::::::
used

::::::::::
statistical

::::::::::
techniques

::
to

:::::::::
resample,

:::::
from

::::::::
meso-γ

:::
to

::::::::
micro-γ

::::::
scale,

:::::::
rainfall

:::
data

:::::::::
produced

:::
by

::::::
NWP

::::::
model.

:::
In

:::::::
general

:::::::::::
downscaling

::::::::
statistical

::::::::
methods,

:::
by

::::::::::::
construction,

:::::::::
introduce

::
a
::::::

source

::
of

::::::::::
uncertainty

:::::::
because

:::::
they

:::::::::
dependent

:::::
upon

::::
the

::::::
choice1355

::
of

:::::::::
predictors

:::::::
(mainly

:::::::::::::
topographical

:::::::::
variables)

::::
and

::::
they

::::::
suppose

:::::
the

:::::::::::
stationarity

::::
in

::::
the

::::::::::::::::::
predictor-predictand

:::::::::
relationship

:::::::::::::::::::
(Fowler et al., 2007) .

:::::
On

::::
the

::::::
other

:::::
hand

::::::::
regarding

:::::::::::
downscaling

::::::::::
dynamical

:::::::::
methods,

:::
it

::
is
:::::

well

:::::
known

::::
that

:::::::::
increasing

:::::::::
horizontal

:::::::::
resolution

::::::::
produces

::::
more1360

::::::
skillful

::::::::
forecasts

::::::::::::::::::
(Buzzi et al., 2014) .

::::::::::
Hopefully,

:::
in

:::
the

:::
near

::::::
future

::::::::::
operational

:::::
NWP

:::::
data

::::
will

:::
be

::::::::
produced

::::
with

:::
grid

:::::
point

:::::::
spacing

:::::
about

::
1
::::

km
::::::::::::::::
(Schwartz, 2014) or

::::::
below.

::::::::
Moreover,

:::
it
:::

is
::::::::::

commonly
:::::::::

accepted
:::::

that
::::::::::

predictions

::
of

:::::::::
intensive

:::::::::::::
precipitation

:::::::::
episodes

::::
of

:::::::::::
convective1365

:::::
origin

:::::::
should

:::
be

:::::::::
improved

::::::::
through

:::::
data

:::::::::::
assimilation

:::::::::
techniques

::::::::::::::::::::::::::::::
(Schwitalla and Wulfmeyer, 2014) .

::::
For

:::::
these

::::::::::::
considerations,

::
at

:::
the

::::::
present

:::::
stage

::
of

:::
the

:::::
work,

:::
we

:::::::
preferred

::
to

:::::::
preserve

:::
the

::::::::::
information

::::::
content

::
of

:::::
NWP

:::::
output

::::::::
produced

:
at
:::::::

meso-γ
:::::

scale
::::

and
:::

to
:::::::
evaluate

:::::
their

:::::
value

::::
and

:::::::
possible1370

::::::
positive

:::::::
impacts

::
on

:::::::::
landslides

:::::::::
modeling.

4.2
::::::::
Accuracy

::
of

::::::::
landslide

::::::::::::
susceptibility

:::::
maps

::::::::
Although

::::
AUC

::::::
values,

::
in

:::::::
general,

:::
are

:::
not

:::::::::
comparable

::::::
among

::::::
studies

::
in

:::::::
different

:::::
study

:::::
areas,

:::
the

::::
area

::::::
under

:::
the

:::::::
Receiver

::::::::
Operating

:::::::::::::
Characteristics

:::::
curve

::::
was

::::::
found

:::
to

::
be

::
a
:::::

good1375

:::::::::::
representative

:::::
index

::
of

:::
the

:::::::
accuracy

::
of

::::::::
landslide

::::::::::
probabilistic

::::::
forecast

:::::::::::::::::::
(Frattini et al., 2010) .

:::::::
Results

::::
here

::::::::
achieved

::::
and

::::::::::
summarized

::
in

:::::
table

::
5
:::
are

:::::::
similar

::
to

:::::
those

::::
find

:::
in

:::::
recent

::::::::
literature,

::::::::::
considering

::
in

::::::::
particular

:::
that

:::
the

:::::
areas

:::::
under

::::
exam

:::
here

:::
do

:::
not

:::::::
contain

::::
large

::::::::::::::
“easy-to-predict”

::::::::
portions

:::
(i.e.

:::
flat1380

:::::
valley

:::::
floors

::
or

::::
less

:::::
steep

:::::::::
forelands). Catani et al. (2013) in

their study investigating the landslide susceptibility in Tus-
cany by using the RF technique, found AUC values ranging
from 0.74 to 0.97 when increasing the number of samples re-
quired to calibrate a model. The resolution of their study was1385

50 m, which is comparable to that one here adopted (30 m) .
In the susceptivity

:::
and

:::
the

::::::::::
performance

:::::::::
estimation

::::::::
technique

:
is
:::
the

::::::
same.

::
In

:::
the

::::::
present

::::::
study,

:::
for

:::
the

::::::::::
25OCT2011

:::::
study

::::
case,

::::
the

:::::
AUC

::::::
values

::::::::
obtained

:::
are

::::::
quite

::::
high

:::::
both

:::
for

::
the

::::::
GLM

::::
and,

:::::
even

::::::
better,

:::
for

::::
the

:::
RF

::::::::
classifier

::::
and

:::
are1390

:::::::::
comparable

:::
to

:::::
those

:::::
found

:::
in

:::::::::::::::::
Catani et al. (2013) .

:::
On

:::
the

::::
other

:::::
hand,

:::
for

:::
the

:::::::::::
18MAR2013

:::::
case,

:::::::
average

:::::
AUC

:::::
values

::
are

::::::
lower

:::
for

:::::
both

:::::::
models.

::::
This

::::
fact

::::::
might

:::
be

::::::
related

::
to

::
the

::::::::
potential

:::::::::::::
incompleteness

::
of

:::
the

::::::::
inventory

::::
map

::::::::
produced

:::::
which

::
is

:
a
::::
limit

:::
of

::
the

:::::
study

:::::
case.1395

::
In

:::
the

:::::::::::
susceptibility maps produced (see figure 7 (a)and (b)

in particular)
:
a
::::::
sample

::::::
output

::
in

:::::
figure

::
7), the pixelated shape

of some areas is due to the fact that no downscaling is per-
formed to the NWP outputs (produced at 3 km of horizontal
resolution) towards the resolution of the static thematic lay-1400

ers (30 m of horizontal resolution). Nevertheless this coarse
approximation is not affecting dramatically the results as
demonstrated by the AUC values achieved. Summarizing,
from the comparison with recent state-of-art studies we can
conclude that our findings are encouraging and justify the1405

statistical models adopted for the area under exam.
However, as stated in

::
As

:::
a

:::::::
limiting

::::::
factor

::::
of

:::
the

:::::
study,

::
it

:::
has

:::
to

::
be

::::::
stated

::::
that,

:::
in

:::
the

:::::::
context

::
of

::::::::
landslide

:::::::::
prediction,

:::
the

:::::::::
relevance

::
of

:
the introduction, the aim of

this work was also to establish the , possible, positive1410

impact of NWP predictions on landslide susceptibility
assessment. Following the variable importance provided
by the RF technique, from figure ?? we state that NWP
information is crucial for the 25OCT2011 event and
marginal, even if not null, for the 18MAR2013 event. In1415

fact for 25OCT2011 10 out of 23 relevant predisposing
factors were derived from NWP contents, see table ?? for
a list of such predictors in decreasing order of importance.
Not surprisingly the total amount of precipitation over
the rainfall event is not occurring in the list, whereas the1420

mean and the maximum hourly rainfall intensity are ranked
in the top list, since, as described in section 2.1.1 and
in references cited, the 25OCT2011 was characterized
by deep convection activity with high precipitation rates.
For what concerns the 18MAR2013, the impact of NWP1425

factors are marginal. The soil moisture content in the first
10 cm below ground is

::::
maps

::::::::
produced

:::
is

::::::
limited

:::
by

:::
the

:::
fact

::::
that

:
the only variable occurring in the importance

ranking (see figure ?? in the bottom).This result confirms
the findings of recent studies investigating the strong1430

linkage between soil moisture and landslide occurrence
(Ray and Jacobs, 2007; Ray et al., 2010) . In particular
Ponziani et al. (2012) in analyzing the role of antecedent
soil moisture conditions at regional scale, assessed the soil
moisture content to be as important as rainfall intensity1435

for the triggering of landslides. Our study presents the
opportunity to integrate NWP soil moisture forecast
information content into a statistical method to take account
of the relationship between rainfall, soil moisture and
landslide movement. The rainfall forecast here produced are1440

validated in section 3.1, for what concerns the ability of a
numerical regional model to estimate soil moisture content,
the reader is referred to Schneider et al. (2014) .
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As stated in the previous section,
:::::
models

:::::
were

:::::
fitted

::
to

::
an

:::::
event

::::::::
landslide

:::::::::
inventory

::::
and

::
to

:::::
NWP

:::::
data

::::::::
simulated1445

::
for

::::
the

:::::
same

::::
date.

:::
In

:
the statistical framework developed

and the predisposing factors considered were able to
model the shallow landslide occurrence triggered by heavy
precipitations at basin scale (at least for

::::
next

::::::
future

:::
and

:::::::::::
operationally,

:
the

:::
idea

::
is
:::

to
:::::::
calibrate

::::
the

::::::
models

:::
for

:::::
some1450

::::
study

:::::
cases

::::
(i.e.

::
at

::::
least

:::::
10-15

::::::
rainfall

::::::
events)

::::
and

:::
then

:::::
apply

::
the

:::::::
models

::
to

:::::
other

::::::::::
independent

::::::
cases,

::
or,

:::
on

::
a

::::
daily

:::::
basis,

:::
feed

:::
the

:::::::
models

::::
with

:::::
NWP

::::
data

:::
and

:::
get

:::
the

:::::::
forecast

:::
for

:::
the

::::::::
following

:::
day.

::
In

::::
this

:::::::::
preliminary

:::::
stage,

::
it
:::
was

:::
not

:::::::
possible

::
to

:::::::
consider

::::::::
additional

:::::
study

::::::
cases,

:::::::
because

:
it
::::
was

:::
not

:::::::
possible1455

::
to

::::::
collect

:::::::
enough

::::::::
observed

::::::::::
landslides.

:::::::::
Moreover,

:::
in

:::
the

::::::
present

:::::
work,

:::
we

:::
did

:::
not

::::::
trained

:::
the

::::::
models

:::
for

::::::::::
25OCT2011

:::
and

::::
then

:::::::
applied

:::::
them

:::
for

::::::::::::
18MAR2013,

:::::::
because

::::
the two

study cases considered). Results obtained are encouraging
and are similar to those find in recent studies. We assessed1460

the relative importance of NWP content information (not
downscaled statistically) and we concluded that the benefits
might be relevant in particular in rainfall events characterized
by high precipitation rates (25OCT2011 in this study). We
therefore tried to bridge the gap between the micro-γ scale1465

(≤ 20 m), which is
::::
show

:::::::
different

:::::::::::::
characteristics

:::::
from

:
a

::::::::::::
meteorological

:::::
point

:::
of

::::
view

:::::::::::
(convective

:::::::::::
precipitation

::
vs

::::::::
stratiform

:::::::::::
precipitation)

:::
and

:::::::
because

:::
the

:::
two

::::::
events

:::::::
occurred

::
in

::::
two

:::::::
different

:::::
areas

:::::
even

::
if
:::::::::::::

geographically
::::::::::

contiguous.

:::::::
However

:::
the

:::::
work

::::
here

:::::::::
presented

::
is

:::
not

::::::
strictly

::
a
:::::::
hindcast1470

::::::
exercise

:::::
since

:::
the

:::::
NWP

::::
data

:::
are

:::
not

:
a
:::::::::
numerical

:::::::::
description

::
of

:
the characteristic scale of landslide occurring at basin

scale, with the meso-γ, which isthe typical scale of the
NWP forecast. Results here shown, demonstrate that this
gap could be filled also thanks to the help of black-box1475

statistical modelling.
::::::
rainfall

:::::::
occurred

:::::
(that

::
is,

::::
we

:::
did

:::
not

:::
use

::::::::
reanalysis

:::::
data

::
as

:::::
initial

::::
and

::::::::
boundary

:::::::::::
conditions),

::
on

::
the

::::::::
contrary

:::::
NWP

:::::
were

:::::::
obtained

:::
by

:::::::::
numerical

:::::::::
integration

::::
using

::::::
global

:::::::
analysis

:::
and

:::::::
forecast.

:

In spite of the simplicity of such
:::
the statistical approach,1480

the
::::::
another

:
drawback of the method

:::::::
methods

:
proposed is

that, being data-driven, a model built up for one region and
for one particular event, cannot be applied, without any re-
calibration, to a neighboring areaor for a similar rainfall
event. Moreover, it .

:
1485

:
It
:
has to be kept in mind that these results were achieved

without any algorithm or model calibrations. A possible tun-
ing of the whole forecasting system may rely on the improve-
ment of NWP performances. For example, since antecedent
soil condition is one of the crucial factor for determining1490

landslide-triggering rainfall thresholds (Glade et al., 2000),
the NWP’s initial soil moisture could be better estimated by
means of the assimilation of remote sensed data at regional
scale (Schneider et al., 2014)

::::::::::::::::::::::::
(Capecchi and Brocca, 2014) .

On the other hand, nowadays, global models have sophis-1495

ticated assimilation algorithms to ingest observed soil wa-
ter content estimates and to produce ‘warm’ analysis of soil
conditions (Dharssi et al., 2011; de Rosnay et al., 2013).

As pointed out by Segoni et al. (2009), in order to gain a
more accurate temporal and spatial knowledge of the trig-1500

gering rainfall, EPS (Ensemble Prediction Systems) or RUC
(Rapid Updated Cycle) numerical forecasting chains could
be adopted. This latter methodology could be further im-
proved by means of the assimilation of radar data (Segoni
et al., 2009) to keep antecedent soil moisture conditions as1505

close to reality as possible.
Before the setting-up of

:::
The

::::
total

::::
time

:::::::
required

::
to
:::::::
produce

:
a
::::::

single
::::::::
landslide

::::::::::::
susceptibility

:::::
map

::
is

:::::::
around

::
2

:::::
hours

:::
and

:::
10

::::::::
minutes.

:::::
From

:::
an

::::::::
operative

:::::
point

:::
of

:::::
view,

:::::
since

:::::
global

::::::
NWP

:::::::
forecast

:::
are

:::::::::
available

::::
each

::::
day

:::
at

:::::
about

::
71510

::::
UTC

::::::
(when

:::
the

::::::::
analysis

::::
time

:::
is

:::
00

::::::
UTC),

::::::
there’s

:::::
room

::
for

:::::
short

:::::
term

:::::::
regional

:::::::
weather

:::::::
forecast

::::
and

::::::
GLM

::
or

:::
RF

::::
runs,

:::::
since

:::::::
regional

::::
daily

:::::::::
assessment

::
of
::::::::
landslide

::::
risk

::
for

:::
the

::::::::
following

:::
day

::::::
needs

::
to

:::
be

:::::
issued

:::::::::::::
approximately

::::::
before

::
12

:::::
UTC.

:::::::::
Obviously,

:::
this

:::::
CPU

::::
time

::::
can

::
be

:::::::
further

:::::::
reduced

::
by1515

::::
using

:::::::::
additional

::
or

:::::
more

::::::
recent

:::::::::
processors

::
to

:::::
meet

::::::
specific

:::::
needs

:::
(for

:::::::
example

:::::
larger

:::::
areas

::
of

:::::::
interest)

::
of

:::
the

:::::::::
end-users.

4.3
:::::::::
Importance

:::
of

:::::
NWP

::::::::
predictor

:::::::::
variables

:::
Our

::::::
study

:::
is

:::::::
mainly

::::::
aimed

:::
at

::::::
testing

:::::
and

:::::::::
evaluating

::
the

:::::::::::
information

:::::::
content

::::::::
provided

::::
by

:::::::::
numerical

:::::::
weather1520

:::::::::
predictions

::
in
:::::::::

landslide
::::::::::
assessment.

:::::
This

::::
aim

::
is

:::::::
justified

::
by

::::
the

::::
fact

::::
that

::::::::
recently

::::::
NWP

:::::
data

:::
are

:::::::
arising

:::
as

::
a

::::::::
promising

::::
and

:::::::
reliable

::::::
source

::
of

::::::::::
information

:::
for

::::::::
real-time

:::::::::
forecasting

:::::
chain

:::
of

:::::::
rainfall

::::::::
induced

:::::::
shallow

:::::::::
landslides

::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(Schmidt et al., 2008; Segoni et al., 2009; Mercogliano et al., 2013b) .1525

::
To

:::
our

::::::::::
knowledge,

:::
so

:::
far

:::::
there’s

:::
no

::::::::
literature

::::::::
regarding

:::
the

::::::::
evaluation

:::
of

:::
the

::::::::::
importance

:::
of

:::::
NWP

::::
data

:::
on

:::::
LSM.

::::
The

::::::
present

:::::
study

:::::::
differs

:::::
from

:::
the

:::::
cited

:::::::
papers

::::::::
because:

::
i)

::
we

::::::::
consider

::::
not

:::::
only

::::::
NWP

:::::::
rainfall

::::::::
amounts

::::
but

::::
also

::::
NWP

:::::::
hourly

::::::
rainfall

:::::::::
intensities

::::
and

::::
soil

::::::::
moisture

::
in

::::
four1530

:::::
layers

::::::
below

:::::::
ground,

::
ii)

::::
we

:::::
don’t

:::::::
perform

::::
any

::::::::
statistical

::::::::::
downscaling

:::
of

:::
the

:::::
NWP

::::
data

:::::::
towards

::::
the

:::::
LSM

::::
unit

:::
and

::
iii)

:::
we

::::::::
combine

::::
both

:::::
static

:::::::::
predictors

:::
and

:::::
NWP

::::
data

::::
into

:
a

::::::::::
“black-box”

::::::::
statistical

::::::
model

::::::
instead

:::
of

:::::
using

:
a
:::::::::

physically

:::::
based

::::::
model.

::
In
:::::::::

particular
::::
this

:::::
latter

::::::
feature

::::::
allows

:::
us

::
to1535

:::::
assess

::::::::::
objectively

:::::
(with

:::
the

::::::::::
limitations

:::::::::
associated

::
to

::::
RF)

::
the

:::::::
impact

:::
of

:::::
NWP

::::
data

:::
on

:::::
LSM

:::
by

::::::
using

:::
the

:::::::
variable

:::::::::
importance

:::::::::
parameter.

:::::
From

::::
table

::
6

::
we

::::
can

:::::
assess

:::
that

:::::
NWP

:::::::::
information

:::
is

::::::
crucial

:::
for

:::
the

:::::::::::
25OCT2011

::::::
event,

:::::::
whereas

:::
has

:
a
:::::

more
:::::::

limited
::::::
impact

:::
for

::::
the

:::::::::::
18MAR2013

::::::
event.

::
In1540

::::::::
particular

:::
for

:::::::::::
25OCT2011,

::
it

::
is

:::::
worth

::::::
noting

::::
that

:::
not

::::
only

::
the

:::::
total

:::::
NWP

::::::
rainfall

:::::::
amount

::
is

:::::
found

:::::::::
important,

:::
but

::::
also

::
the

::::::
mean,

::::
and

::
to

:::::
some

::::::
extent

:::
the

:::::::::
maximum,

::::::
hourly

:::::
NWP

::::::
rainfall

:::::::::
intensities

:::
are

:::::
often

:::::::
ranked

:::
in

:::
the

::::
first

::::::::
positions

:::::
among

:::
the

::::
100

:::
RF

:::::
runs.

::
In

::::::::
particular

:::
the

:::::::
positive

::::::
impact

::
of1545

:::::
hourly

:::::::
rainfall

:::::::::
intensities,

::
is

::
a
::::::::
relatively

:::::::::
innovative

::::::
finding

:::
and

::::
here

::
it
:::

is
:::::
found

:::::
that,

:::
as

::
a

:::::::::::
predisposing

::::::
factor,

::
it
::

is

::
as

:::::
much

:::::::::
important

::
as

::::
the

::::
total

:::::::
rainfall

:::::::
amount.

:::
In

:::::
recent

::::::::
literature,

::::
only

:::::::::::::::::::::
Segoni et al. (2009) used

::::
the

:::::
radar

::::
data

::
to

:::::::::
extrapolate

::::::
hourly

:::
or

::::::::::
sub-hourly

:::::::
rainfall

::::::::::
intensities

:::
for1550

::::
LSM

:::::::::
purposes.

:::
On

::::
the

::::::::
contrary,

::::::::
regarding

::::::::::::
18MAR2013,
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::::
NWP

:::::::
rainfall

::::
data

:::
are

:::::::::::
occasionally

::::::::
classified

:::
as

::::::::
important

::
in

:::
RF

::::
runs.

:::
In

::::
fact,

:::::::::::
18MAR2013

::::
was

:::::::::::
characterized

::::::
mainly

::
by

:::::::::
stratiform

:::::::::::
precipitation

::::
and

:::
the

::::
role

:::
of

:::
the

:::::::::
prolonged

:::::::::
antecedent

:::::::::::
precipitations

::::::
played

:
a
:::::::
relevant

:::
role

::
in

:::::::::
landsliding1555

::::::
activity.

::::
Not

:::::::::::
surprisingly,

:::
for

::::
this

:::::
event

:::
the

:::::::::
maximum

:::
soil

:::::::
moisture

::
in
::::

the
::::
first

:::
10

:::
cm

::::::
below

::::::
ground

::
is
:::::::::

classified
::
as

::::::::
important

::
in

::::::
almost

:::::
75%

::
of

:::
the

::::
runs

:::::
with

::
an

:::::::
average

::::
rank

::
of

::
3.

:::::
This

:::::
result

::::::::
confirms

::::
the

:::::::
findings

:::
of

::::::
recent

::::::
studies

::::::::::
investigating

::::
the

::::::
strong

::::::::
linkage

::::::::
between

::::
soil

::::::::
moisture1560

:::
and

::::::::
landslide

::::::::::
occurrence

::::::::::::::::
(Ray et al., 2010) .

:::
In

::::::::
particular

:::::::::::::::::::
Ponziani et al. (2012) in

:::::::::
analyzing

::::
the

::::
role

:::
of

:::::::::
antecedent

:::
soil

::::::::
moisture

:::::::::
conditions

::
at

:::::::
regional

:::::
scale,

::::::::
assessed

:::
the

:::
soil

:::::::
moisture

:::::::
content

:::
to

::
be

:::
as

:::::::::
important

:::
as

:::::::
rainfall

:::::::
amounts

::
for

::::
the

:::::::::
triggering

::
of

::::::::::
landslides.

:::
In

::::::::
addition,

::::
this

::::::
finding1565

:::::::
suggests

:::
the

::::::::
possible

:::
use

:::
of

:::::
NWP

::::
soil

::::::::
moisture

:::::::
contents

::
for

::::
the

:::::::::::
initialization

:::
of

:::::::::::
hydrological

::::::
states

::
in

:::::::::
modeling,

::::::
instead

::
of

:::::
using

::::::
NWP

::::::
rainfall

:::::
data

::
as

:::
the

:::::
main

::::::
driver

::
of

:::
soil

::::::::
moisture

::::::::
patterns

::::::::::::::::::::
(Schmidt et al., 2008) .

::
It
:::

is
::::

also

:::::
worth

::::::
noting

::::
how

:::
for

::::
this

:::::::
rainfall

:::::
event,

::::::
NWP

::::::::
root-zone1570

:::
soil

::::::::
moisture

:::::::
contents

::::::::
(namely

:::::
water

:::::::
content

::
in

::::
the

::::
layer

:::::::
100-200

:::
cm

:::::
below

:::::::
ground)

:
is
::::::::
classified

:::
as

::::::::
important

::
in

::::
more

:::
than

:::::
25%

::
of

:::
the

::::
100

:::
RF

:::::
runs.

:::
On

:::
can

:::::
argue

::::
that

:::
this

::
is
:::
the

:::::
effect

::
of

:::
the

:::::::::
prolonged

:::::::::
antecedent

::::::::::::
precipitation.

::::::::
Similarly,

::
for

::::::::::::
25OCT2011,

:::::
NWP

::::
soil

::::::::
moisture

:::
in

:::
the

::::::
layers

:::::
10-401575

::
cm

::::
and

::::::
40-100

:::
cm

::::::
below

::::::
ground

:::
are

:::::
found

::
to
:::

be
::::::::
important

::
in

::::
67%

::::
and

:::::
90%

::
of
::::

the
:::
RF

::::::
cases.

:::::
This

:::::
effect

::::::
needs

::
to

::
be

::::::
further

:::::::::::
investigated

::
to

::::::::::
understand

::
if
:::::

there
:::

is
:
a
::::::

causal

:::::::::
relationship

::::::::
between

::::::::::
sub-surface

:::
soil

::::::::
moisture

:::::::
contents

:::
and

:::
land

::::::::::
movements

::
or

::
if

:::
RF

:::::::::
overfitting

::::::
occurs.1580

::
In

:::::::
general,

:::
in

::::
spite

:::
of

:::
RF

:::::
ease

::
of

:::::
use,

:::
the

::::
fact

::::
that

:::
RF

::::::::
overfitting

:::::
may

::::::
occur

::
in

::::::::::::::::
geomorphological

:::::::::::
applications,

::::::::::::::::::::::::::::::::::::::::::::::
(Brenning, 2005; Marmion et al., 2008; Brenning, 2009) ,

:
is
::

a
:::::::
possible

:::::::::
drawback

::
of

:::
the

:::::::
present

:::::
study

::::
and

:::
any

:::::
result

::::::::
regarding

:::::::
predictor

::::::::
variables

::::::::::
importance

:::::
should

:::
be

:::::::
analyzed1585

::::
with

::::
care.

::::
For

::::
this

::::::
reason

::::
we

:::::
tried

::
to

::::::::
mitigate

:::::::
possible

::::::::
accidental

::::::
effects

::
in
::::

the
:::::::::::::::::
predictor/predictands

:::::::::::
relationships

::
by

::::::::::
performing

::::::::
multiple

::::
runs

:::
of

::::
the

:::::::
models

:::::::
varying

:::
the

:::::
choice

::
of

:::
the

:::::::
training

:::
and

::::
test

::::
sets.

:
A
::::
few

:::::::::
discussions

:::::
need

::
to

::
be

:::::::::
addressed

::
for

:::::
what

:::::::
concerns1590

::
the

:::::::::::
importance

::
of

::::
the

:::::
static

::::::::::
predictors.

::::
This

::::::
work

::::
does

:::
not

:::
add

::::::::
anything

:::::::::
innovative

:::
for

:::::
what

::::::::
concerns

:::
the

::::::
relative

:::::::::
importance

:::
of

::::
the

::::::
static

::::::
layers

:::
in

:::::
LSM

:::::
with

:::::::
respect

::
to

:::::
other

:::::::
similar

::::
and

::::::
recent

::::::
works

::::::::::::::::::
(Catani et al., 2013) .

:::
The

::::::::
common

::::::::
findings

:::::
with

::::
this

:::::
paper

::::
are:

:::::::::
elevation

::
is1595

::::::
always

:::
(or

:::::
very

:::::::
often)

:::::::
ranked

:::
in

::::
the

::::
first

:::::::::
positions,

::
(ii)

::::
the

:::::
slope

:::::::::
curvature

:::::::::
variables

:::
do

:::
not

::::::
seem

::
to
:::::

have

:::
any

:::::::::
influence

::::
on

:::::::::
landslide

:::::::::::::
susceptibility,

::::
(iii)

:::
it
:::

is

::::::::
confirmed

::::
the

:::::
lack

:::
of

::::::::::
importance

:::::
that

::::
the

:::::::::
prediction

:::::
model

:::::::
assigns

::
to
::::

the
:::::::::::::::

hydrology-related
::::::::

variable.
::::

On
:::
the1600

::::
other

::::::
hand,

:::::
some

::::::::::::
discrepancies

::::::
found

::::
are:

:::
(i)

::::
the

::::
land

::::
cover

::::
has

::
a

:::::::
relevant

::::::::
influence

:::
on

::::::::
landslide

:::::::::
assessment

:::
for

:::::::::::
18MAR2013,

:::::
while

::::::::::::::::::::::
Catani et al. (2013) found

::
a
::::::::
relatively

:::::::
marginal

:::::::
impact,

:::
(ii)

:::
the

:::::::::::::
climate-related

::::::::
predictor

:::::::
variables

::
in

:::::::::::::::::::
Catani et al. (2013) are

:::::
often

::::::::
classified

:::
as

:::::::::
important

::
in1605

::
the

::::
first

::::::::
positions

:::
at

::::::
several

::::::::
mapping

::::
unit,

::::::::
whereas

::
in

:::
the

::::::
present

:::::
paper

:::::
these

:::::::::
variables

:::
are

:::::::::
classified

:::
as

::::::::
important

::::
only

:::::::::::
occasionally.

::::::::::::
Nevertheless

::::
for

:::::
these

::::::::::
predictors

::
it

:
is
::::::::::

interesting
:::

to
:::::

stress
::::::

how:
:::
(i)

:::
for

::::::::::::
25OCT2011

:::::
(large

::::::::::
precipitation

:::::::
amount

::
in

:
a
::::::::
relatively

:::::
short

::::
time

::::::
period)

:::
the

::
121610

:::
and

:::
24

:::::
hours

:::::::
duration

:::
and

::::
100

:::::
years

:::::
return

::::::
period

:::::
occur

::
in

::
the

:::
RF

:::::
rank,

:::::
while

:::
(ii)

:::
for

::::::::::
18MR2013

:
the forecasting chain

here developed into a fully operative warning system, further

::
48

:::
and

:::
96

:::::
hours

:::::::
duration

::::
and

:::
100

:::::
years

:::::
return

::::::
period

:::::
occur,

:::::
taking

::::
into

::::::
account

:::
the

:::::::
attitude

::
of

:::
the

:::::::
territory

::
to

::
be

:::::::
affected1615

::
by

::::::::::
long-lasting

:::
and

:::::::::
prolonged

::::::::::::
precipitations.

5 Conclusions

:::
Our

::::::
study

::::::::
presents

::::
the

::::::::::
opportunity

:::
to

:::::::::
integrate

:::::
NWP

:::::::::
information

:::::::
content

::::
into

:
a
::::::::
statistical

:::::::
method

::
to

::::
take

::::::
account

::
in

:::::::
advance

::
of

:::
the

::::::::::
relationship

:::::::
between

::::::
rainfall,

::::
soil

:::::::
moisture1620

:::
and

::::::::
landslide

:::::::::::
movements.

::::
The

::::::
relative

::::::::::
importance

:::
of

:::
the

::::
NWP

:::::
data

::
is
::::::::

assessed
::::

by
:::::
using

::::
RF

::::::::::
diagnostics

::::
and

::
it

:
is
::::::

found
::::

that
:::::::

rainfall
::::::::
amounts

::::
and

::::::
hourly

:::::::::
intensities

:::
are

::::::
relevant

:::
for

:::
the

:::::::::
convective

::::::::::
precipitation

:::::
case,

:::::::
whereas

:::
for

::
the

::::::::
prolonged

:::::::::
antecedent

:::::::::::
precipitation

:::::
case,

::::
the

:::::
NWP

::::::
surface1625

:::
soil

:::::::
moisture

::
is

::
as

:::::
much

::::::::
important

::
as

:::::::::::::::::::
geomorphology-related

::::::::
predictors.

::::
We

::::::::
therefore

::::
tried

::
to

::::::
bridge

:::
the

:::
gap

:::::::
between

:::
the

::::::
micro-γ

:::::
scale

:::
(≤

::
20

::::
m),

:::::
which

::
is
:::
the

::::::::::::
characteristic

::::
scale

::
of

:::::::::::::
geomorphology,

:::::::::
hydrology

:::
and

:::::::
climate

::::::
related

::::::::::
information,

::::
with

:::
the

::::::
meso-γ

:::::
scale,

::::::
which

::
is

:::
the

::::::
current

::::::
typical

:::::
scale

::
of1630

::
the

:::::
NWP

::::::::
forecast.

:::
The

::::
final

::::::
output

::
of

::
the

::::::::
statistical

::::::::
modeling

:::
has

::::
been

::::::::
evaluated

:::
by

::::::::
dividing

:::
the

:::::
event

::::::::
inventory

::::
map

::
in

::::::
training

::::
sets

::::
and

:::
test

::::
sets

::::
and

:::
the

::::::
results

:::
are

:::::::::
estimated

::
by

::::
using

:::
the

:::::
AUC

::::::
values.

:::
To

::::::
account

:::
for

:::::::
possible

:::::::::
overfitting

::
in

:::::
model

:::::::::
estimates,

::
or,

::
in

:::::
other

::::::
words,

::
to

:::::::
evaluate

:::
the

:::::::
stability1635

::
of

:::::::
variable

::::::::::
importance,

:::
an

::::::::::
“ensemble”

::
of

:::::::
model’s

::::
run

:::
was

:::::::::
performed.

:
A
::::::
deeper

:::::::::::
interpretation

:::
of

:::
the

:::::::::
preliminary

::::::
results

:::::::
obtained

:
is
:::
an

:::::::
ongoing

::::
task.

:::::::
Further well-documented severe rainfall

events need to be addressed and the results have
::::
need

:
to1640

be validated with ground observations.
::::::::::
independent

::::::
ground

::::::::::
observations

::
to
:::::

take
:::::::
account

::
of

::::::::
possible

:::::::::
overfitting

::
in

:::
the

:::::::::
procedures

:::
and

::
to

::::::::
calibrate

:::::::
properly

:::
the

::::::
model.
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RF’s variable importance for classification of landslide
occurrence in the 25OCT2011 study case (top) and in
the 18MAR2013 study case (bottom). The meaning of the
variables on the y-axis is reported in table 1, while extended
descriptions are reported in sections 2.2 and 2.3.2085

Basic options of the numerical WRF simulationsVariable
Value projection Lambertrows×columns 440×400vertical
levels 35horizontal resolution 3 km time step 18 s cumulus
convection explicit (no parameterization) micro-physics
option Thompson (Thompson et al., 2008) boundary-layer2090

option Yonsei University (Hong et al., 2006) land-surface
option Unified Noah model (Chen et al., 1996)

Statistics of the observed and modelled 24-hour rainfall
amounts for both study cases25OCT2011 Min 1st Qu
Median Mean 3rd Qu Max Observed data 21.4 68.6 105.02095

153.3 176.8 374.8 Modelled data 40.9 50.8 61.1 63.5 69.3
112.1 Modelled data 18.2 43.8 59.3 70.4 90.7 218.9 (whole
area) 18MAR2013 Min 1st Qu Median Mean 3rd Qu Max
Observed data 0.0 49.9 64.6 73.0 85.0 284.8 Modelled data
13.6 21.0 38.0 43.7 59.6 127.62100

Statistics of the observed and modelled 1-hour rainfall
amounts for both study cases25OCT2011 Min 1st Qu
Median Mean 3rd Qu Max Observed data 6.4 26.0 28.6
31.7 33.2 67.2 Modelled data 10.716.4 18.9 21.7 26.5
41.8 18MAR2013 Min 1st Qu Median Mean 3rd Qu Max2105

Observed data 0.2 6.6 8.7 9.3 10.5 30.6 Modelled data 2.1
3.9 6.2 6.9 8.1 20.7
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Fig. 1. Italy domain with the two areas of interest: in the inset figure on the left side, it is shown the Lunigiana area belonging to the
administrative province of Massa-Carrara. This area was interested by the event 25OCT2011. In the inset figure on the right, it is shown the
Garfagnana area belonging to the administrative province of Lucca. This area was interested by the event 18MAR2013. In both inset figures
it is depicted the extent (rectangular shaped area

::::
black

::::::::
rectangles) where the statistical models were implemented and tested, while .

:::::
Outer

::::
black

:::::::
rectangle

::::::::
represents the cross signs represent

::::::
domain

:
of
:

the observed landslides
::::
WRF

::::::::
simulations.

5e−05 5e−04 5e−03 5e−02

1e
−

04
5e

−
04

5e
−

03
5e

−
02

Probability density, p(AL)
 as a function of landslide area AL

Landslides Area (Al)(Km2)

P
ro

ba
bi

lit
y 

D
en

si
ty

 o
f A

l

Fig. 2. Area
::::::::
Probability

:::::::
density

::
as

::
a
:::::::

function
:

of the WRF
simulations. The horizontal spatial resolution

:::::::
landslides

::::
area of the

model’s run is 3 km
:::::::
inventory

::::
map

::
for

::::::::::
25OCT2011.
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Table 1. List of the predictors taken into account in both GLM model and RF classifier for landslide hazard mapping. Using the RF’s variable
importance parameter, predictors relevant for the 25OCT2011 rainfall event have a ⋆ symbol, whereas those relevant for the 18MAR2013
event have a • symbol.

Geomorphology-related predictors
Variable/Code Short description Unit of measure

dem 30m topo/DEM ⋆• Digital elevation model m
h channel geo/AaCN • Altitude above channel network m
aspect topo/ASP Aspect −
slope topo/SLP ⋆ Slope −
ls factor geo/LSF ⋆ Topography factor from RUSLE −
plan curv geo/PLAC concavity

::::::::
Concavity/convexity of the land perpendicular to aspect h/m

prof curv geo/PRFC ⋆ concavity
::::::::
Concavity/convexity of the land parallel to aspect h/m

Hydrology-related predictors
Variable/Code Short description Unit of measure

conv index geo/COVI convergence
::::::::::
Convergence/divergence to overland flow −

tc geo/ToC • Time of concentration h
TWI geo/TWI ⋆ Topographic Wetness Index −
d aste fluvi geo/DfCN Euclidean distance from river network m

Geology-related predictors
Variable/Code Short description Unit of measure

d lineamenti tettonici geo/DfTF ⋆• Euclidean distance from main tectonic features m
litho geo int/BLT ⋆ Geological continuum of Tuscany Region categorical/16 classes
a distacco geo/LMS ⋆ Landslides main scarps boolean
pedopaesaggi int/SKST ⋆ Soil permeability categorical/7 classes
quaternario frane geo/LaSD Landslides and superficial deposits categorical/2 classes
assetto geo/SSS Slope Structural Setting categorical/7 classes

Climate-related predictors
Variable/Code Short description Unit of measure

p12h 100 clima/R12 ⋆ Rainfall 12 hours duration and 100 years return period mm
p24h 100 clima/R24 • Rainfall 24 hours duration and 100 years return period mm
p48h 100 clima/R48 ⋆ Rainfall 48 hours duration and 100 years return period mm
p96h 100 clima/R96 ⋆ Rainfall 96 hours duration and 100 years return period mm

Other predictors
Variable/Code Short description Unit of measure

corine c landscape/COR • Corine Land Use categorical
:
/8
::::::

classes
::
for

::::::::::
25OCT2011

::::::::::
categorical/10

::::::
classes

::
for

::::::::::
18MAR2013

evi media land/EVI • Vegetation Index −

NWP predictors
Variable/Code Short description Unit of measure

r
::::::
arw3km SOILW0 10cm ⋆• Soil moisture 0-10 cm below ground layer m3/m3

r
::::::
arw3km SOILW10 40cm ⋆ Soil moisture 10-40 cm below ground layer m3/m3

r
::::::
arw3km SOILW40 100cm ⋆ Soil moisture 40-100 cm below ground layer m3/m3

r
::::::
arw3km SOILW100 200cm ⋆ Soil moisture 100-200 cm below ground layer m3/m3

r
::::::
arw3km APCP Precipitation

::::
Total

:::::::::
precipitation

:
amounts mm/24h

r
::::::
arw3km APCP.RI ⋆ Precipitation

:::::
Hourly

:::::::::
precipitation

:
intensity mm/h
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Fig. 3. Locations of the rain-gauges (closed circles) for the two
study cases: 25OCT2011 in gray,

::::::
(closed

:::::
circles)

:::
and

:
18MAR2013

in black. Crosses indicate the location of the landslides for the two
study cases: 25OCT2011 in gray, 18MAR2013 in black.

::::::
(crosses)

Table 2. List
::::
Basic

:::::::
options

:
of the ten NWP input predictors

classified as “important” by the RF classifier for the 25OCT2011
event.

:::::::
numerical

:::::
WRF

:::::::::
simulations

Coded name
::::::
Variable Description

::::
Value

:::::::
projection

:
Importance (ranking)

::::::
Lambert

:::::::::::
rows×columns

: :::::::
440×400

::::::
vertical

::::
levels

: ::
35

:::::::
horizontal

::::::::
resolution

: :
3
:::
km

:::
time

::::
step

::
18

:
s
:

::::::
cumulus

:::::::::
convection

::::::
explicit

::
(no

::::::::::::::
parameterization)

::::::::::
micro-physics

:::::
option

: ::::::::
Thompson

::::::::::::::::::
(Thompson et al., 2008)

:::::::::::
boundary-layer

:::::
option

: :::::
Yonsei

::::::::
University

:::::::::::::::
(Hong et al., 2006)

:::::::::
land-surface

:::::
option

: ::::::
Unified

::::
Noah

:::::
model

::::::::::::::
(Chen et al., 1996)

Table 3.
:::::::::
Descriptive

::::::
statistics

::
of

:::
the

:::::::
observed

:::
and

::::::
modeled

::::::
24-hour

:::::
rainfall

:::::::
amounts

::
for

::::
both

::::
study

:::::
cases

:::
(unit

::
is
::::
mm)

:::::::::
25OCT2011

: :::
Min

: ::
1st

:::
Qu

::::::
Median

::::
Mean

: :::
3rd

::
Qu

: :::
Max

:

r.RI.mean
:::::::
Observed

:::
data

:
mean hourly rainfall intensity

::
21

::
68

:::
105

:::
153

:::
176

:::
374

:::::::
Modeled

:::
data

::
40

::
50

::
61

::
63

::
69

:::
112

:::::::
Modeled

:::
data

::
18

::
43

::
59

::
70

::
90

:::
218

:::::
(whole

::::
area)

:

::::::::::
18MAR2013

:::
Min

: ::
1st

:::
Qu

::::::
Median

::::
Mean

: :::
3rd

::
Qu

: :::
Max

:

:::::::
Observed

::::
data

:
0
: ::

49
::
64

::
73

::
85

:::
284

:::::::
Modeled

:::
data

::
13

::
21

::
38

::
43

::
59

:::
127

Table 4.
::::::::
Descriptive

:::::::
statistics

::
of

::
the

:::::::
observed

:::
and

:::::::
modeled

:::::
1-hour

:::::
rainfall

:::::
values

:::
for

:::::::::
25OCT2011

::::
(unit

::
is

::::
mm)

:::::::::
25OCT2011

: :::
Min

: ::
1st

:::
Qu

::::::
Median

::::
Mean

: :::
3rd

::
Qu

: :::
Max

:

:::::::
Observed

::::
data

:
6
: ::

26
::
28

::
31

::
33

::
67

:::::::
Modeled

:::
data

::
10

::
16

::
18

::
21

::
26

::
41

Table 5.
::::
AUC

:::::
values

:::::::
achieved

::
by

:::
the

::::
GLM

:::
and

:::
RF

:::::
models

:::
for

:::
both

::::
study

:::::
cases.

:::::::
Summary

:::::::
statistics

:::
are

:::::::
computed

:::::::::
considering

:::
the

:::
100

:::
runs

::::::::
performed

::
(δ

:::::
stands

::
for

:::::::
standard

::::::::
deviation)

:::::::::
25OCT2011

: :::
Min

: ::::
Mean

: :::
Max

: :
δ
:

::::
GLM

: :::
0.76

: :::
0.85

: :::
0.91

: ::::
0.031

:

::
RF

: :::
0.84

: :::
0.91

: :::
0.96

: ::::
0.022

:

::::::::::
18MAR2013

:::
Min

: ::::
Mean

: :::
Max

: :
δ
:

::::
GLM

: :::
0.53

: :::
0.69

: :::
0.82

: ::::
0.054

:

::
RF

: :::
0.59

: :::
0.71

: :::
0.83

: ::::
0.047

:



24 Capecchi et al.: Statistical modeling of shallow landslides using static predictors and NWP data

Fig. 4. Panels (a) and (b): modelled
::::::
modeled

:
and observed precipitation in mm accumulated in the 24h period starting at 00:00 UTC of 25th

October 2011. Panels (c) and (d): modelled
::::::

modeled and observed precipitation in mm accumulated in the 24h period starting at 00:00 UTC
of 18th March 2013.
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Table 6.
::
List

:::
of

:::::::
predictors

::::::::
classified

::
as

:::::::::
“important”

::
by

:::
the

:::
RF

:::::::
algorithm

:::
for

:::::::::
25OCT2011

::::
and

::::::::::
18MAR2013.

:::
The

::::::
average

:::::::
position

:::
and

:::
the

::::::::
percentage

::
of

:::::::::
occurrences

::
in

::
the

::::
first

::
ten

::::
(five)

:::::::
positions

::
in
::::::::::
25OCT2011

:::::::::::
(18MAR2013)

::::::
ranking

::
are

::::::::
computed

::::
over

::
the

:::
100

::::
runs

::
of

:::
RF.

::::::::::
Variable/Code

: :::::::::
25OCT2011

:::::::::
25OCT2011

: ::::::::::
18MAR2013

:::::::::
18MAR2013

:

::::::
Average

::::
rank

::::::::
Percentage

::
of

:::::::::
occurrences

: ::::::
Average

::::
rank

::::::::
Percentage

::
of

:::::::::
occurrences

:

::
in

::
the

:::
first

:::
ten

:::::::
positions

: :
in
:::
the

:::
first

:::
five

:::::::
positions

:

:::::::::::::::::::
Geomorphology-related

::::::::
predictors

:::
dem 30m topo

::::
/DEM

: ::
4.5

: :::
97%

: ::
1.0

: ::::
100%

:
h channel geo

:::::
/AaCN

::
7.1

: :::
62%

: ::
2.9

: :::
75%

:

:::::
aspect topo

:::
/ASP

: ::
7.6

: :::
36%

:
4
: :::

2%

::::
slope topo

:::
/SLP

: ::
8.6

: :::
6% 5

: :::
2%

:
ls factor geo

::::
/LSF

: ::
7.7

: :::
26%

: ::
4.1

: :::
18%

:

:::
plan curv geo

:::::
/PLAC

: ::
8.0

: :::
2%

:::
prof curv geo

:::::
/PRFC

:
4
:

1
::
%

::::::::::::::
Hydrology-related

:::::::::
predictors maximum soil moisture (100-200 cm below ground)

::::
conv index geo

:::::
/COVI

:

:
tc geo

:::
/ToC

:

::::
TWI geo

::::
/TWI

::
9.6

:
3
::
%

r.max
:
d aste fluvi geo

:::::
/DfCN

:
maximum soil moisture (40-100 cm below ground)

::::::::::::
Geology-related

:::::::::
predictors

:
d lineamenti tettonici geo

:::::
/DfTF

::
3.7

: :::
96%

:
4
: ::

5%

::::
litho geo int

::::
/BLT

:
8 6

::
%

::
4.2

: :::
24%

:

r.RI.max
:
a distacco geo

::::
/LMS max hourly rainfall intensity 11

r
::::::::::
pedopaesaggi int

:::::
/SKST

::::::::
quaternario frane geo

:::::
/LaSD

:::::
assetto geo

::::
/SSS

::
3.8

: :::
62%

:

::::::::::::
Climate-related

:::::::::
predictors

::::
p12h 100 clima

:::
/R12

: ::
7.8

: :::
12%

:

::::
p24h 100 clima

:::
/R24

: ::
7.3

: :::
36%

:

::::
p48h 100 clima

:::
/R48

: ::
4.5

: :::
4%

::::
p96h 100 clima

:::
/R96

: ::
4.1

: :::
9%

:::::
Other

::::::::
predictors

:::::
corine c landscape

::::
/COR

: ::
3.3

: :::
63%

:

::
evi media land

::::
/EVI

::
3.4

: :::
95%

: ::
3.4

: :::
5%

::::
NWP

:::::::::
predictors

::::::
arw3km SOILW0 10cm .max

::::
(max)

:
maximum soil moisture (0-10 cm below ground

::
8.3

: :::
36%

:
3
: :::

74%
:

::::::
arw3km SOILW0 10cm

:::::
(mean) 15

::
9.5

: :::
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::
3.5

: :::
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::::::
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:::::
(max) maximum soil moisture (10-40 cm below ground

::
7.8

:::
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:

::::::
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:::::
(mean) 16

::
9.2

: :::
18%

:
5
: :::

1%
r
::::::
arw3km SOILW40 100cm .mean mean soil moisture (40-100 cm below ground

::::
(max) 17

::
6.2

: :::
90%

:

r.mean
::::::
arw3km SOILW40 100cm

:::::
(mean)

:
mean soil moisture (10-40 cm below ground

::
9.4

: :::
5%

::::::
arw3km SOILW100 200cm

::::
(max) 19 4

: :::
2%

r.mean
::::::
arw3km SOILW100 200cm

:::::
(mean)

:
mean soil moisture (0-10 cm below ground

::
3.3

: :::
27%

:

::::::
arw3km APCP

:::
(total) 20

::
2.6

: ::::
100%

r.mean
:::::
arw3km APCP

::
.RI

:::::
(max) mean soil moisture (100-200 cm below ground

::
7.2

: :::
72%

: ::
3.7

: :::
9%

::::::
arw3km APCP

::
.RI

:::::
(mean) 22

::
2.6

: ::::
100%
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Fig. 5. Study case 25OCT2011: False Alarm Rate (top) and Prob-
ability of Detection (bottom) skills obtained when validating the
accumulated 24-h rainfall predicted by the WRF model with the
rainfall data observed at rain-gauge locations displayed in figure 3.
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Fig. 6. Study case 18MAR2013: False Alarm Rate (top) and Prob-
ability of Detection (bottom) skills obtained when validating the
accumulated 24-h rainfall predicted by the WRF model with the
rainfall data observed at rain-gauge locations displayed in figure 3.
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Fig. 7. 25OCT2011 landslide hazard mapsand corresponding Receiver Operating Characteristics Curves (ROC) with the values of the
underlying area (AUC). Results from the GLM model (a) and from the RF classifier (b). Crosses points are the event inventory maps
produced by field surveys a few days after the rainfall event.

Fig. 8. 18MAR2013 landslide hazard mapsand corresponding Receiver Operating Characteristics Curves (ROC) with the values of the
underlying area (AUC). Results from the GLM model (a) and from the RF classifier (b). Crosses points are the event inventory maps
produced by field surveys a few days after the rainfall event.


