
 1 

Randomly distributed unit sources to enhance optimization 1 

in tsunami waveform inversion 2 

I. E. Mulia and T. Asano  3 

{Department of Ocean and Civil Engineering, Kagoshima University, Kagoshima, Japan} 4 

Corresponding author: I. E. Mulia (k2501920@kadai.jp) 5 

 6 

Abstract 7 

In tsunami waveform inversion using the conventional Green’s function technique, an optimal 8 

solution is sometimes difficult to obtain because of various factors. This study proposes a new 9 

method to both optimize the determination of the unknown parameters and introduce a global 10 

optimization method for tsunami waveform inversion. We utilize a genetic algorithm that 11 

further enhanced by a pattern search method to find an optimal distribution of unit source 12 

locations prior to the inversion. Unlike the conventional method that characterized by 13 

equidistant unit sources, our method generates a random spatial distribution of unit sources 14 

inside the inverse region. This leads to a better approximation of the initial profile of a tsunami. 15 

The method has been tested using an artificial tsunami source with real bathymetry data. 16 

Comparison results demonstrate that the proposed method has considerably outperformed the 17 

conventional one in terms of model accuracy.  18 

 19 

1 Introduction 20 

Direct observation of sea surface deformation after the occurrence of an earthquake is still 21 

difficult to obtain; therefore, its estimation is often performed by consideration of relevant 22 

seismic information or the hydrodynamic response of the sea determined from recorded tsunami 23 

waveforms. Determination of sea surface deformation generated by earthquakes is crucial to 24 

the success of tsunami modeling. One of the most frequently used methods for determining sea 25 

surface deformation is to presume it from a fault model (Mansinha and Smylie, 1971; Okada, 26 

1985). A more realistic approach was first proposed by Satake (1987) who analyzed recorded 27 

waveforms to infer earthquake source parameters or particularly, coseismic slip, using the 28 

Green’s function technique. Even though the fault model is still required, the division of a fault 29 
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into smaller sub-faults allows the slip to be estimated in a heterogeneous manner, which leads 1 

to better approximation of sea surface deformation. A simpler method was actually introduced 2 

earlier by Aida (1972) for which no prior assumption of a fault model was needed. This study 3 

is in line with that of Aida because we are more interested in estimating sea surface deformation 4 

than a slip on the fault plane. The motivation behind this is that tsunami excitation can 5 

sometimes occur as a result of various factors that are independent of the associated seismic 6 

characteristics (Geist, 2002). 7 

More recently, several studies using tsunami waveform inversion to estimate sea surface 8 

deformation without fault model assumptions have been widely developed. The basic premise 9 

is to replace the fault model by an auxiliary basis function on unit sources, which is equivalent 10 

to the sub-fault approach by Satake (1987). For instances, Baba et al. (2005) used a simplified 11 

fault model by disregarding actual earthquake parameters to produce the initial profile on each 12 

unit source, whereas Satake et al. (2005) proposed a more direct approximation using a 13 

pyramidal shape with a flat top. Other studies by Liu and Wang (2008) and Saito et al. (2010) 14 

demonstrated attempts to use Gaussian function, whereas Wu and Ho (2011) adopted a top-hat 15 

small unit source to represent the initial profile. The same approach was proposed by Tsushima 16 

et al. (2011) and Yasuda and Mase (2013) for the more practical purpose of a tsunami early 17 

warning system. However, this inversion method for tsunami waveforms possesses a limitation, 18 

in that the inverse matrix does not always exist because of the non-uniqueness of the solution. 19 

In addition to the large number of unknown parameters, which might produce many local 20 

optima on the misfit function measure, the search towards optimality is confined by the uniform 21 

distance of unit sources used in the regular Green’s function. 22 

Tsunami waveform inversion sometimes falls into an ill-posed problem, in which small errors 23 

in the observed waveforms are exceptionally amplified in the solution. Therefore, both the 24 

uniqueness and the stability of solutions are sometimes difficult to attain without appropriate 25 

treatments. The most frequently employed techniques to maintain a stable solution is to use a 26 

smoothing constraint (Gusman et al., 2010; Saito et al., 2010; Gusman et al., 2013). Other than 27 

that, Koike et al. (2003) suggested reducing the unknown parameters using the wavelet base to 28 

guarantee the uniqueness of the solution. However, they found later that the selection of the 29 

wavelet base was not straightforward. Another effort to overcome the issue was discussed by 30 

Voronina (2011). The study promoted a method to control numerical stability for the ill-posed 31 

problem in tsunami waveform inversion by means of singular value decomposition and r-32 
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solutions techniques. In this paper, we proposed a new approach to tackle the same problem by 1 

determining the optimal position or spatial distribution of unit sources located around the 2 

tsunami source or epicenter. A Genetic Algorithm (GA) as a global optimization method, 3 

combined with a Pattern Search (PS) method, is employed to search the mentioned positions 4 

prior to the inversion. As the selected positions are probably located in between the initial unit 5 

sources, interpolations are performed during the optimization. Therefore, the Green’s function 6 

evolves dynamically at each generation of the GA and PS iteration. 7 

 8 

2 Inversion method 9 

Generally, the characteristics of tsunami propagation in deep water are linear. According to 10 

Satake (1987), even in shallow coastal areas, the first leading waves recorded at coastal tide 11 

gauges are still well simulated by the linear long wave model. Therefore, a typical linear non-12 

dispersive shallow water equation is used in the forward modeling to compute time histories of 13 

sea surface elevation at the specified observation points: 14 
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where   is the water elevation of the tsunami,  ,u vV  is the depth-averaged horizontal fluid 16 

velocity vector, d  is the water depth, and g  is gravitational acceleration. Equation (1) is 17 

completed with two types of boundary conditions, as follows: 18 
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where c gh  is the wave speed and n  is the unit vector normal to the boundary. The upper 20 

and lower expression in Eq. (2) represent open and closed boundary respectively. 21 

The Green’s function  , ,iG x y t  indicating the recorded synthetic waveforms at a location 22 

 ,x y  corresponding to the i-th unit sources is then constructed. This tsunami Green’s function 23 

is derived from 2D linear shallow water equation, Eq. (1), solved using numerical method with 24 
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specified bathymetry resolutions. The total sea surface fluctuations at  , ,x y t  can be expressed 1 

as: 2 
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where iw  is the weighting factor for each unit source or the unknown parameters to be 4 

determined by the inversion and N  is the number of the unit source. Equation (3) is developed 5 

based on the assumption of linear superposition considering the nonlinearity for tsunamis in 6 

ocean basins to be small, such that it can be neglected (Liu and Wang, 2008). In vector notation, 7 

Eq. (3) can be reformulated as: 8 

η = wG .          (4) 9 

Based on the least squares method, the vector of the unknown parameters w  can be acquired 10 

by solving the following inverse equation: 11 

 
-1

T T
w = G G G η .         (5) 12 

In this study, we assume that the generation of the initial profile of the tsunami occur 13 

instantaneously. Therefore, incorporating the time variation or transient deformation of the 14 

water surface is unnecessary.  15 

 16 

3 Global optimization method  17 

The ultimate purpose of a global optimization method is to find the extreme value of a given 18 

non-convex function in a certain feasible region. Following the growth of computer science, 19 

new types of optimization based on natural processes and artificial intelligence have been 20 

developed extensively and used by scientific and engineering communities. The reason for this 21 

is that the new optimization methods possess the interesting feature of being able to avoid local 22 

optimum solutions, which is something classical methods fail to do. 23 

The use of global optimization methods in tsunami waveform inversion is not new, relevant 24 

discussions can be found in Piatanesi and Lorito (2007) and Romano et al. (2010). They used a 25 

simulated annealing technique to solve the inverse problems. Here, we proposed a different 26 

algorithm based on a hybrid optimization of GA and PS. The hybrid technique is preferred 27 
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because global optimization methods, such as GA, are capable of exploring broader search 1 

space, but not as good in fine tuning the approximation of the expected solution. Therefore, PS 2 

is employed as a local search algorithm to locate other nearby solutions that could possibly be 3 

better than the result of the previous search by GA (Payne and Eppstein, 2005; Costa et al., 4 

2010). 5 

The hybrid algorithm proposed in this study works by simply treating the output of the GA 6 

optimization result as the initial condition for the PS optimization. The technique is proven 7 

effective even though more fitness function evaluation is required; hence, it costs extra 8 

computational efforts. However, parallelization of either GA or PS can be easily implemented 9 

to expedite the computing time and gain substantial performance enhancement. 10 

The formulation of an optimization problem can be expressed as: 11 

 min
x X

f x


,          (6) 12 

where x X  is the vector of design parameters, :f X R  is the cost function, and 
nX R  13 

is the constraint set or bounds that can be defined as: 14 

  , 1,...,n i i iX x l x u i n    R ,      (7) 15 

with 
i il u    , for all  1,...,i n , where l  and u  are the lower and upper bounds, 16 

respectively. 17 

3.1 Genetic algorithm 18 

GA is an optimization method that searches for an optimal value of a complex function by 19 

adopting the process of natural evolution (Goldberg, 1989). It can be categorized as a type of 20 

stochastic optimization method and as a part of artificial intelligence. In GA, the model 21 

parameters or decision variables in the optimization are first transformed into a chromosome-22 

like data structure that later evolves to form a better individual. The most common 23 

representation of design parameters in GA, as used in this study, is their encoding into a binary 24 

string. There are three basic genetic operators in GA: selection, crossover, and mutation. 25 

In our experiment, we develop a GA model with two different design parameters. First, we use 26 

GA to search the water elevation of each unit source without including a search of the optimum 27 

locations, i.e., similar to that of the ordinary least squares method. The lower ( l ) and upper ( u28 
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) bounds of X  are set to finite, specified, plausible values of subsidence and uplift of the water 1 

surface, respectively. Second, we use GA to search the optimal location of unit sources, while 2 

the initial water elevation is calculated using the least squares inversion. The area is bounded 3 

according to the spatial distribution of the initial unit sources or the inverse region used for the 4 

Green’s function construction. Accordingly, having   as the constraint or the inverse region, 5 

all X  are computational grids of the forward model that is an element of X . 6 

We denote kN  as the generation number, AN  as the population size, k Ax X  as the A  7 

individuals in the k-th generation, k AB   as the binary representation of kx , and ,k i  denotes 8 

the i-th element of k  for  1,...,i A , which is a binary representation of an individual in 
n

R9 

. The step-by-step operation of the GA is described in the following (Wetter and Wright, 2003): 10 

Step (1): Randomize the initial population 0 AB   of A  randomly generated individuals. Set 11 

B  to contain all elements of X . Then, evaluate all kx  according to the specified cost 12 

function; thus, a fitness function : A
AB  N R  computes a fitness value of

 kx .  13 

Step (2): Select a pair of individuals with the selection function 2: AB B  N . Individuals 14 

with better fitness values have a higher probability of being selected. 15 

Step (3): Swap the bits (genes) between the selected individuals (chromosomes) to produce 16 

new offspring,  2 2: 0,1B B   N  with the crossover probability  0,1rp  . 17 

Step (4): The final genetic operation is termed mutation and aims to maintain genetic diversity. 18 

The mutation function  : 0,1B B   N  alters a bit on individuals from its initial state.  19 

3.2 Pattern Search 20 

Similar to GA, PS is an optimization method that does not require the gradient (derivative-free) 21 

of the problem to be optimized. The method was first introduced by Hooke and Jeeves (1961). 22 

Later, Torczon (1997) conducted studies to prove the convergence of PS using the theory of 23 

positive bases. The algorithm of PS used in this study is similar to that of Wetter and Write 24 

(2003), while the design parameters are identical to the GA optimization. 25 
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For the same optimization problem as formulated in Eq. (6), the algorithm searches a lower cost 1 

function value than  kf x , where kx X  denotes the current iterate and kN  denotes the 2 

iteration number. The search takes place on the points in the set 3 

  , 1,...,i
k k k ix X x x s e i n      ,       (8) 4 

where 0k   is the mesh size factor, nsR  is a fixed parameter to scale the design 5 

parameters, and e  is the unknown approximation error. The rule to select a finite number of 6 

points in X  on a mesh can be defined by: 7 

    0 , 1,..., ,i
k k ix x m s e i n m     M Z ,      (9) 8 

where 0x X  is the initial iterate. 9 

The overall procedures of PS optimization can be elaborated as follows: 10 

Step (1): Initialize 0x X  and 0 0  , for which in our case, 0x  is obtained from the GA’s 11 

output.  12 

Step (2): If    ' kf x f x  for some  0' , kx x  , then set 1 'kx x   and 1k k   .  13 

Step (3): If    ' kf x f x , test all points in k  with kx  as a minimizer by setting 1k kx x   14 

and
 

1
2

k
k


  . 15 

The search should continue until the mesh size is small enough or equal to the user-specified 16 

threshold. 17 

 18 

4 Numerical experiments 19 

We have conducted numerical experiments using an artificial tsunami source propagated on an 20 

actual bathymetry profile. An area extending from 140–145°E and 35–41°N is chosen as the 21 

domain of interest. The selected domain resembles that used in most studies of tsunami 22 

waveform inversion for the 2011 Tohoku tsunami. The resolution of the numerical model is 1 23 

arc minute, which is consistent with the resolution of the bathymetry data obtained from the 24 

ETOPO1. ETOPO1 is a global relief model of the earth’s surface, which includes ocean 25 
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bathymetry, available from the National Geophysical Data Center of the National Oceanic and 1 

Atmospheric Administration (Amante and Eakins, 2009). There are eight artificial observation 2 

stations associated with the actual location of gauges within the study area. The tsunami source 3 

is divided into 28 unit sources that are distributed uniformly around the actual epicenter of the 4 

2011 Tohoku tsunami (Fig. 1). 5 

4.1 Cost function 6 

The selection of a cost function or misfit function is essential because it directs the fate of the 7 

optimization towards the optimal solution. Here, we use a combination of root mean square 8 

error (RMSE) and Pearson correlation coefficient (r). While the RMSE is sensitive to amplitude 9 

matching, the correlation coefficient is more sensitive to phasing between the compared series 10 

(Barnston, 1992). The RMSE serves to aggregate the individual differences of data points into 11 

a single measure of predictive power, which is defined as: 12 
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  ,        (10) 13 

where y  is the predicted value by the model, d  is the measurement data for each i-th data 14 

point, or in our case, the waveform generated by the artificial tsunami source, and n  is the total 15 

number of data. The Pearson correlation coefficient is defined as a division of the covariance 16 

of the two variables by the product of their standard deviations: 17 
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where d  and y  represent the means of d  and y , respectively. The correlation or relevance of 19 

the data is measured using the value  0.5 1R r   to avoid negative values in the case of a 20 

decreasing linear relationship between the compared series. 21 

The fitness evaluation is subject to noise from various factors that might lead the optimization 22 

towards unexpected solutions. The easiest technique to overcome such problems is by means 23 

of explicit averaging over a number of samples to smooth the cost function (Jin and Branke, 24 

2005). As the best solution or closest fit is indicated by 0RMSE   and 1R , the final cost 25 



 9 

function is a summation of the mean of the t-th sample over the time window T  of Eqs. (10) 1 

and (11), which can be written as: 2 

 
1 1
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  ,       (12) 3 

where k denotes the respective time window and N  is the total number of windows. 4 

4.2 Basis function 5 

A Gaussian shape with 1-m amplitude is used as the basis function for each unit source (Liu 6 

and Wang, 2008). Providing ia  as the amplitude of the a unit source with the centroid positions 7 

of ix  and iy , the basis function can be written as: 8 
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,      (13) 9 

where  ,iz x y  is the initial water surface corresponding to the i-th unit source, x  and y  are 10 

the locations of computational grids, and   is the spread of the blob with a length of 40 km 11 

(Fig. 2). The specified length should satisfy the long wave assumption  / 0.05h L  , i.e., the 12 

wavelength should be greater than 20 times the average water depth. 13 

4.3 Model development 14 

For the first design parameters, the optimization is performed merely to search the water 15 

elevation or initial amplitudes of each unit source. For this case, the Green’s function is 16 

constructed based on the initial 28 unit sources, separated by a uniform distance of 60 km, 17 

which is identical to that used in the least squares inversion. Hereafter, the first model will be 18 

termed the Genetic Algorithm Pattern Search for uniform source distribution (GAPSu). The 19 

purpose of this model is simply to compare the performance of the proposed global optimization 20 

method with the traditional least squares method in the same model design and environment. 21 

The second design parameters aim to find the optimal locations of unit sources that, at the initial 22 

state, are distributed randomly around the tsunami source. The second model will be termed the 23 

Genetic Algorithm Pattern Search for random source distribution (GAPSr). In the GAPSr 24 

model, the amplitudes are computed using the least squares inversion and therefore, the second 25 
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model is actually a combination of a deterministic and stochastic optimization. However, the 1 

selected source locations might not lay precisely in the initial 28 unit sources and thus, 2 

interpolation is required to produce the sea surface fluctuations at the observation stations. 3 

Consequently, in the GAPSr model, the Green’s function evolves during the optimization. 4 

Nearest neighbor-weighted interpolation is performed for estimating the phases and amplitudes 5 

of the waveforms originating from the selected locations based on the four nearest unit sources. 6 

An example of the interpolation results, complete with statistical evaluations in terms of RMSE 7 

and r, is shown in Fig. 3. Despite the satisfying results, based on the measure of fitness shown 8 

by the interpolation method (overall RMSE < 0.048 m and r > 0.966), the small errors might 9 

be amplified in the solution because of the ill-posed problem. Consequently, further 10 

improvements should be made to suppress the generated errors.  11 

An artificial tsunami source is used to test our method (Fig. 5a). It is generated from a 12 

superposition of 10 unit sources with random amplitudes and positions located inside the 13 

inverse region. For the regular Green’s function (first design parameter), using only 10 unit 14 

sources is insufficient to reconstruct the target profile. Consequently, the number of unit source 15 

should be increased. The decision of using 28 unit sources in both design parameters is for the 16 

purpose of model performance comparisons that will be further discussed in the Results and 17 

discussion section. The approximation of this initial profile is performed using unconstrained, 18 

traditional least squares inversion, GAPSu, and GAPSr. However, GAPSr is the most important 19 

part in this study and therefore, we focus our discussion on the GAPSr model. The development 20 

of the GAPSr model depicted in the flowchart (Fig. 4) can be summarized as follows: 21 

1. Construct the initial Green’s function.  22 

2. Initialize the GAPSr model by randomly distributing the unit source locations. The search 23 

of the optimal location is bounded by the area of the inverse region. 24 

3. Perform interpolation and update the Green’s function. 25 

4. Evaluate the fitness by performing the least squares inversion. 26 

5. After reaching the stopping criteria, the forward numerical modeling is run again for each 27 

of the optimized unit sources to avoid errors generated from the interpolation result. 28 

Subsequently, the inversion is performed for the final time.  29 

 30 
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5 Results and discussion 1 

Overall, all models can produce a relatively good estimation of the targeted sea surface 2 

deformation. This is likely because they are applied to an ideal case with artificial conditions 3 

and settings, except for bathymetry. For instance, the target source was generated from the same 4 

Gaussian shape as that used to construct the Green’s function. Therefore, the task is more 5 

straightforward as less complexities are encountered. In the real case, however, alternative 6 

distributions to represent the initial water height should be considered because the tsunami 7 

source does not always follow the Gaussian distribution. Nevertheless, in this study, the use of 8 

the ideal case has allowed us to assess the advantage of the proposed method in a more detailed 9 

manner.     10 

The GAPSu model yields a slightly better fit of waveforms compared with the least squares 11 

method (Table 1). This means that the global optimization method locates a better minimum 12 

value in the cost function, which is situated beyond the reach of the least squares method. 13 

However, the slight refinement by the GAPSu model over the least squares method makes it 14 

difficult to gauge the benefits of employing the method. This should not be a surprise because 15 

the model is applied to determine the coefficients in a linear system, which is relatively easy to 16 

solve using a conventional method. Moreover, the waveforms used to invert the initial sea 17 

surface deformation are generated from an artificial tsunami source instead of real 18 

measurements. Therefore, the linearity is well conserved and thus, the use of more advanced 19 

methods becomes redundant and unnecessary. In the study by Piatanesi and Lorito (2007), a 20 

global optimization method was successfully promoted for the case of tsunami waveform 21 

inversion. This was because the optimization method was applied to a nonlinear inverse 22 

problem of actual measurement data. Accordingly, the appraisal of such a method can be clearly 23 

defined. 24 

Spurious uplifts and subsidence of the water surface profile are generated in both the least 25 

squares and GAPSu model results (see Fig. 5b and 5c). One may argue that the specified spatial 26 

resolution of the unit sources is too coarse to represent the complete form of the target source. 27 

A denser distribution of unit sources should improve the results; however, it might also 28 

introduce other problems. A large number of model parameters (unknown parameters), which 29 

are proportional to the degrees of freedom in the optimization, are liable to cause the solution 30 

to become easily entrapped in a local optimum. Without a smoothing constraint, the result of 31 

the tsunami waveform inversion might be bumpy and non-physical, especially for cases with 32 
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high spatial resolution (Wu and Ho, 2011). In other studies on tsunami waveform inversion by 1 

Baba et al. (2005) and Wu and Ho (2011), an equality constraint was imposed to maintain the 2 

smoothness of the inverted parameters to satisfy the long wave assumption, while by Saito et 3 

al. (2010) and Gusman et al. (2010) the constraint was used to obtain stable solutions. However, 4 

such constraint might restrict the exploration throughout the feasible search space and render 5 

the discovery of an optimum solution more difficult. Another plausible explanation for the 6 

unsatisfactory results of the least squares and GAPSu model is simply that the equidistant unit 7 

sources in the regular Green’s function confines the search for optimality. This can be proven 8 

by the result of the GAPSr model, for which the same number of model parameter (28 unit 9 

sources) with random locations yields a much better estimation.  10 

The different design parameters in the GAPSr model have considerably improved the inversion 11 

accuracy. For instance, at Gauge 1, where the best fit of the waveform is attained, the 12 

measurement of accuracy as RMSE is 0.0260, 0.0256, and 0.0094 m, and as r is 0.9973, 0.9974, 13 

0.9996, for the least squares, GAPSu, and GAPSr models, respectively (Table 1). For further 14 

qualitative or visual assessments, comparisons of time series of the waveforms at each gauge 15 

are presented in Fig. 6. In addition, statistical evaluation results for the waveforms at all gauges 16 

are shown by scatter plots in Fig. 7. Overall, the statistical analyses on the waveforms suggest 17 

that the GAPSr model shows very good agreement with the target. These results conform to the 18 

inverted sea surface deformation resulted by the GAPSr model, which can be seen in Fig. 5d. 19 

The random location of the unit sources allows the approximation to capture the exact profile 20 

of the target source. Other than this, despite no smoothing constraint being used, the inverted 21 

sea surface deformation remains smooth and coherent. 22 

The search for the optimal locations of the unit sources allows the least squares method to find 23 

the unique and optimal solution. Such an approach is difficult to achieve deterministically using 24 

conventional gradient methods, because there is the possibility that the constructed design 25 

parameters in the GAPSr model produce a discontinuous or non-differentiable error surface 26 

owing to the random characteristics exhibited by the artificial tsunami source (target source). 27 

The same characteristic is very likely to occur in nature. A high degree of uncertainty has been 28 

observed in tsunami sources leading to significant variations in the nearshore tsunami amplitude 29 

(Geist, 2005). Therefore, the use of the model in real case applications is encouraged to reveal 30 

the underlying dynamics in tsunami generation. However, as with typical stochastic methods, 31 



 13 

the proposed model cannot ensure a constant optimization response time. The solution and 1 

convergence are strongly dependent on the random initial state. 2 

 3 

6 Conclusions 4 

Estimations of tsunami sea surface deformation using a global optimization method with a 5 

stochastic nature have been conducted. Our numerical experiments using the GAPSu model 6 

revealed that the use of such methods for a linear system with standard design parameters, as 7 

in ordinary tsunami waveform inversions, is redundant and promotes trivial improvements. In 8 

contrast, the different design parameters in our proposed method (GAPSr), which was applied 9 

to determine the optimum location of the unit sources prior to the inversion, demonstrated 10 

considerable improvements in the accuracy. The random location of unit sources permitted the 11 

inversion to produce a more precise approximation of the initial sea surface deformation 12 

without violating the general assumption of long wave theory.  13 

The involvement of stochastic processes in the optimization increased the ability to reveal 14 

uncertainties in the tsunami source, which are difficult to discern using deterministic 15 

approaches. However, as the signature of typical stochastic optimizations, the optimization 16 

response time is erratic because of the strong dependency on the initial state. Using a current 17 

standard desktop computer, the required computing time varied from 5 to 10 min. Thus, a more 18 

sophisticated computer would be needed to ensure the effectiveness of the method when applied 19 

in a real-time application. Nevertheless, the results have demonstrated the efficacy of the 20 

method for post-event studies of tsunamis, because it can provide better estimations of the 21 

coseismic sea surface deformation compared with traditional tsunami waveform inversion 22 

methods. 23 

 24 
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Table 1. Summary of statistical evaluations based of the proposed cost function. 1 

Station 

Least squares GAPSu GAPSr 

RMSE r RMSE r RMSE r 

Gauge 1 0.0260 0.9973 0.0256 0.9974 0.0094 0.9996 

Gauge 2 0.0375 0.9876 0.0375 0.9877 0.0099 0.9992 

Gauge 3 0.0822 0.9744 0.0792 0.9761 0.0250 0.9976 

Gauge 4 0.0646 0.9809 0.0643 0.9811 0.0203 0.9982 

Gauge 5 0.0600 0.9829 0.0591 0.9835 0.0180 0.9984 

Gauge 6 0.0659 0.9854 0.0653 0.9857 0.0241 0.9981 

Gauge 7 0.0937 0.9954 0.0940 0.9954 0.0417 0.9992 

Gauge 8 0.0354 0.9879 0.0346 0.9885 0.0114 0.9987 

  2 
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 1 

Figure 1. Study area and bathymetry profile. Red dots indicate unit sources located throughout 2 

the inverse region. Green triangles with numbers are artificial observation stations. 3 

  4 
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 1 

Figure 2. Gaussian basis function. 2 
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Figure 3. Waveform interpolation. Left-hand figure shows selected location of a unit source 1 

indicated by a black square. Blue dots represent the four nearest unit sources used in the 2 

interpolation. Right-hand figures are comparisons of waveforms between numerical model 3 

(solid black line) and interpolation (dashed red line) at the artificial gauges. 4 
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 1 

Figure 4. Flowchart of model development procedure. 2 
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Figure 5. Sea surface deformation. Gray dots indicate the centroid of unit sources. (a) Artificial 1 

tsunami source as the target to be approximated, (b) inverted source using least squares method, 2 

(c) GAPSu model, (d) GAPSr model. 3 
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 1 

Figure 6. Comparison of waveforms at Gauges. Gray bar above the time axis indicates the time 2 

range for the inversion. 3 
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 1 

Figure 7. Scatter plots of each inversion method with respect to the waveforms of the target 2 

source at all gauges. 3 
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