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Dear Referee #1,

We would like to express our gratitude to you for the insightful comments, which we
have answered point-by-point. We think that these comments contributed to improve
the quality of our manuscript. All the suggested corrections will be included into the
final manuscript version.

Comment 1:

In introduction, the authors introduced about MM5 model and abruptly adverted to WRF
model. There are lots of similar studies conducted using WRF model, which should be
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sufficiently reviewed in this article.

Response:

The paper has mentioned some studies related to its aims, but regarding to the com-
ment, following studies will be added to the last version of the paper: Ardie et al. (2012)
performed four types of cumulus parameterization schemes in the WRF model for simu-
lating three events of intense precipitation over the southern peninsular Malaysia in the
winter monsoon of 2006-2007. The results were compared with the 3-hourly satellite
data using a confirmation method named the acuity–fidelity. The four different schemes
were the new Kain–Fritsch (KF2), the BMJ, the Grell–Devenyi ensemble (GD) and the
older Kain–Fritsch (KF1). While the BMJ scheme indicated good achievement in the
second and third events, it showed high errors in the first event. The GD, KF2, and KF1
schemes executed weakly, and the BMJ and GD schemes simulated higher values for
rainfall. In general, they stated that although the BMJ scheme had good results, its
feeble performance for the first event suggested that appropriateness of the cumulus
parameterization scheme might be case dependent.

Li (2013) studied the effect of different cumulus schemes in simulating typhoon track
and intensity. The simulation of 20 typhoon cases from 2003 to 2008 represented that
cumulus schemes were really effective on the typhoon track and intensity. It was found
that KF scheme obtained the most severe typhoon, while GD and BMJ schemes sim-
ulated weaker typhoons. Those differences were due to variation in precipitation com-
putations. Different cumulus schemes caused dissimilar typhoon tracks in the case
of large-scale circulations simulating. The results also indicated that different atmo-
sphere vertical heating created different typhoon intensity. Those variations led to dif-
ferent convections that create several LHF and cumulus precipitation. The KF scheme
simulated the most severe vertical convection, higher cumulus precipitation, and supe-
rior intensity, while the GD and BMJ schemes generated more feeble convection, low
cumulus precipitation and less intensity
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Comment 2:

There is no statement that which version of WRF model is used in this study.

Response:

The WRF (version 3.3.1) was utilized in this study.

Comment 3:

In page 290, Wang et al. (2010) is not included in the reference list.

Response:

Done.

Comment 4:

In page 291, full name of CFSR is omitted in the content.

Response:

Done. It was just mentioned in the abstract.

Comment 5:

In Table 1, each scheme has corresponding reference paper, which should be citied in
this paper.

Response:

All corresponding references (as follows) will be added under the Table 1 in the last
version of this paper.

WRF single Moment 3-class (Hong et al., 2004); Eta (Rogers et al., 2001); New Thomp-
son (Thompson et al., 2008); Stony Brook University (Lin and Colle, 2011); Lin et al
(1983); RRTM and RRTMG (Mlawer et al., 1997); GFDL (Rahmstorf, 1993); New God-
dard (Tao et al., 2008); Goddard (Tao and Simpson, 1993); Dudhia (Dudhia, 1989);
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MM5 (Menendez et al., 2011); Pleim Xiu (Gilliam and Pleim, 2010); TEMF (Wang et
al., 2010); Noah, 5-layer thermal diffusion, RUC (Wang et al., 2010); Yonsei University
(Hong et al., 2006); Mellor Yamada Janjic (Janjic, 1994); ACM2 (Pleim, 2007); Kain
Fritsch (Kain, 2004); Betts Miller Janjic (Betts and Miller, 1986; Janjic, 1994); New Sim-
plified Arakawa-Schubert (Han and Pan, 2011); Tiedtke (Tiedtke, 1989; Zhang et al.,
2011)

Complementary explanations as follow can be added to the paper to clarify and illus-
trate the value of findings:

The spotlight of simulation 6 was the amount of temperature and moisture in the differ-
ent atmospheric layers that were connected (Liu et al., 1997).This combination could
predict SST satisfactorily comparing to the other groups in this paper.

The simulation number 5 could estimate both SHF and precipitation rate better than
the other sets. This combination has considered convection, mass flux, and cloud
effects. Furthermore, Li (2013) demonstrated that the KF cumulus parameterization
could create the most severe vertical convection.

On the other hand, the simulation number 1 has focused on the different water phases
in clouds. Phase changing in the different layers can affect the amount of LHF (Zhu
and Zhang, 2006).

Simulation number 4 for wind speed prediction is focusing on mixed phase and multi-
band efficiency along with the temperature and the turbulent kinetic energy played a
significant role in forecasting wind speed. According to Draxl et al. (2010), turbulent
kinetic energy can perform well in predicting wind speed.

With these changes all following references will be added to the last version of the
paper:

Ardie, W. A., Sow, K. S., T Tangang, F., Hussin, A. G., Mahmud, M. & Juneng, L.
2012. The performance of different cumulus parameterization schemes in simulating
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Please also note the supplement to this comment:
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