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We thank the reviewer for his/her time and effort in commenting our manuscript. Our
response:

Major comments

RC1: For the main part, Section 3 on the Methodology needs revision. This concerns
the concept of surrogate variables which is mentioned as an important feature of
Decision Trees to cope with the problem of missing values and therefore should be
explained. How many cases in the data base are affected?
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AC1: Lines 15–16 on page 2275 needs revisions. Not only because of the valid point
the reviewer is making, but also because the paragraph incorrectly describes how we
(finally) dealt with missing data. The use of surrogate splits to impute missing data is
a common approach in decision tree learning (see e.g. Breiman et al. (1984)). Initially,
we applied this approach to our study. In the course of the research, however, we re-
alised that it was not the most suitable approach given our data. In our case, the main
source of missing data is rainfall data. Because (obviously) rainfall-related variables
do not correlate well with any of the other explanatory variables, none of explanatory
variables can act as a proper surrogate when rainfall data is missing. (Note that if
rainfall data is missing, none of rainfall-related variables are available, thus they cannot
substitute each other.) Alternatively, we discarded the cases without rainfall data. Orig-
inally, missing socioeconomic data was an issue, but after we discarded cases where
the number of policyholders was less than 100 (line 19–20, page 2269), none of the
records contained missing values for socioeconomic variables.

We would, therefore, like to rewrite this paragraph as follows: “The main source of
missing data was rainfall data, due to weather radars not being operational. To deal
with missing data, a common approach in decision tree learning is to impute missing
data using surrogate variables Breiman et al. (1984). Surrogate variables are variables
that would split data into two groups similar to the split by the original, or primary,
splitting variable. This method is, however, not appropriate for missing rainfall data,
because none of the other explanatory variable considered in present study can act
as a suitable surrogate. Alternatively, we discarded the cases without rainfall data
(8–11% of the cases). Still, surrogate variables were recorded at each node for the
purpose of calculating variable importance (see Sect. 3.2).”

RC2: Further, please explain what is meant with ’training data’ in comparison to cross
validation data. Is training date the complete data set?
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AC2: Training data indeed refers to the complete data set. To clarify this, we will
add the following after line 24 at page 2273 “(...) until a large tree is learned. Trees
are trained based on the complete data set.” The remainder of the paragraph will be
moved to Sect. 3.2. Section 3.2 will then start as follows: “The large tree is trimmed
back to a simpler tree that still contains most of the predictive power of the large tree.
The right size of tree is determined using 10-fold cross-validation. The following (...)”.
Moreover, line 13–15 on page 2278 will be changed into: “The tree explains 32 % of
the variance in training data (i.e., R2 = 1− sumofdevianceatterminalnodes

devianceofundivideddata ) and, on average,
26 % of the variance in the cross-validation data sets (Fig. 8).”

RC3: Why is global regression only conducted for claim frequency and not for claim
size? Please add a description of Poisson regression models.

AC3: Our primary focus was on a global regression model for claim frequency, because
only trees could be derived for claim frequency and not for claim size. We agree with
the reviewer (see also RC5) that it is good scientific practice to also report claim size
results. Section 3.3 will be rewritten as follows: “Results of decision tree analysis
were compared to results of global multiple regression analysis. A Poisson regression
model was used to explain claim frequency as a function of various combinations of
explanatory variables, which yields:

log(ki) = log(Ki) + β0 + β1x1i + . . .+ βnxni, (1)

where ki is the number of claims observed for case i, Ki is the number of insured
households for case i and β0, , βn the regression coefficients. Regression coefficients
are estimated using maximum likelihood estimation. A linear regression model was
used to explain claim size, using a log-transformed response variable:
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log(yi) = β0 + β1x1i + . . .+ βnxni + εi, (2)

where yi is the average claim size for case i and εi the error term of case i. Tree
models and global regression models were compared in terms of variance explained
by the models.” Table 7 is updated with “claim size results”. (Updated tables can be
found at the end of the document; updates figures can be found in the supplement to
this document.)

RC4: For the evaluation of model performance it could be interesting to include
additional performance criteria which represent the precision of model predictions
(e.g. mean bias, root mean square error) or which also reflect the complexity of the
model (e.g. BIC, AIC).

AC4: The performance indices the reviewer mentions can be useful, particularly
when the aim is to develop reliable models and various model structures have to be
compared (in terms of precision/complexity). The focus of this study is, however, on
the identification of the important factors that influence claim frequency and size and
less on model development. Therefore, we have limited ourselves to evaluation of R2

and the variable importance index.

RC5: Further, the discussion of results should be more detailed concerning the failure
to derive models for claim size. It is likewise important to understand why the model
approaches did not work for the data at hand and to identify possible approaches to
overcome these problems.

AC5: Good point. We will elaborate on this a bit more in discussion. Line 23–25
on page 2281 will be moved to line 11, page 2282 (starting a new paragraph) and
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rewritten as follows: “There can be a number of explanations for the failure to derive
tree models for average claim size. First, the costs to clean and dry walls and goods
may be independent of the amount of rainwater that enters a building, i.e., a wet
carpet has to replaced anyway, independently of the flood depth. Thus, rainfall-related
variables may be less informative in this context. Second, damage assessments are
inherently uncertain, because of interpretation errors of insured and damage experts,
which are difficult to capture in a model. Third, claim size directly relates to the value
of the damaged materials and goods. This type of information will be lost when
aggregating data to a district level.”

Minor comments

RC6: p. 2265, line 14: a total number would make the comparison to the above numer
easier.

AC6: Good suggestion. The line will be changed to: “Recent figures from Nordic
insurance industry show that damage to residential buildings due to heavy rainfall was
around 300 million euros per year in Denmark, for the years 2009–2011 (Garne et al.,
2013).”

RC7: p. 2267, line 24: given all buildings being insured, is there room for expanding
the data base by including mor than included witin the 22% coverage of households?

AC7: Not without much efforts. The database used has not been built for the purpose
of this study. The Dutch Association of Insurers uses the database for general
insurance statistics (e.g. yearly reports for Dutch insurance industry). For that purpose
a coverage of 22% is sufficient. To extent the database, many more, often small-sized
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companies have to be reached. Not only is the data that can potentially be gained
from these companies small, it requires much manual work to standardize various
data formats insurers use. Ideally, data steams from insurers should be automated,
standardized and centrally stored, but that, of course, requires huge investments.

RC8: p. 2268, line 5: the term ’damages’ refers to compensation. Please use ’damage’
if you refer to the adverse consequences (also in the remainder of the paper).

AC8: Good point by the reviewer. In this example, however, we do refer to ad-
verse consequences of water intrusion/flooding. To clarify this, we will rephrase the
sentence as follows: “Damage to building structure and content can have a wide
range of causes, (...)”. We will change “damage” to “compensation” where appropriate.”

RC9: p. 2269, line 19: reference not clear

AC9: The “> 0.1” means “a claim frequency of more than 1 per 10 policyholders”. This
value remains an arbitrary choice, but most cases associated with claim frequency
above this threshold could not be explained by rainfall and are likely related to data
errors that could not be solved during the preprocessing of the data.

RC10: p. 2270, line 3: to improve readability it would be good to state all the variables
also in the text, not only in table 2.

AC10: OK. We will change the first paragraph of Sect. 2.3.1 to: “For each case in the
subset, rainfall volume, rainfall duration, maximum rainfall intensity and mean rainfall
intensity were extracted from weather radar data. Definitions of these variables can be
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found in Table 2. (...) The rainfall-related variables were obtained using the following
steps, as is also described in Spekkers et al., (2013b).”

RC11: p. 2270, line 13–15: What is the reasoning behind this assumption? What
about event and drainage system specific differences? Please cite an appropriate
reference to substantiate this assumption.

AC11: Due to the flatness of the country, storage in urban drainage systems (below
the level of the overflow weir) is important. The time it takes for an urban drainage
system to restore to equilibrium (i.e., a state with only dry weather flow) depends on
the static storage capacity of the system and the pump overcapacity (i.e., capacity
installed at the treatment plant minus average dry weather flow). For Dutch sewers
systems, design criteria are available that state that urban drainage systems should
restore to an equilibrium state in around 10 to 24 hours (Stichting RIONED., 2008).
We agree with the reviewer that drainage system properties may vary from location
to location. For practical reasons (i.e., data on system properties not being available
at a nationwide scale), we have selected a fixed time of 12 hours. We will add the
aforementioned reference to the text after line 15 on page 2270.

RC12: p. 2271, line 2: what is the basic resolution of the DEM?

AC12: It is not entirely clear what the reviewer means with “basic resolution”. The data
we have been using was available at a 5 m x 5 m spatial resolution, see line 7 on page
2271 and Table 1.

RC13: p. 2272, line 12–15: how many cases are lost due to the privacy restrictions?
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AC13: See also AC1. Although privacy regulations mentioned in line 12–15 did affect
the collection of “raw” data, none of the cases in the subset that was used for tree
building contained missing socioeconomic data. Therefore, line 12–15 might as well
be removed.

RC14: p. 2273, line 18: what defines a best split? insert the explanations given below
here.

AC14: We have rewritten the paragraph (starting at line 17 on page 2273) to integrate
RC14 and RC15. We have avoided the term “homogeneity” and used the more
common statistical term “variance” instead: “The philosophy of this approach is to
learn a tree by finding an explanatory variable that splits the data into two groups, or
nodes, such that variance of the response variable is minimized. A data set is split
into two groups by a chosen reference value of an explanatory variable: a group for
which values are lower than the chosen reference value and a group for which values
are higher than or equal to the chosen reference value. From all possible splits of all
explanatory variables, the one that minimizes the variance of the response variable in
the resulting groups, is selected.”

RC15: p. 2273, line 22: homogeneity in terms of?

AC15: See AC14.

RC16: p. 2273, line 24 to p. 2274, line 2: move sentences to sec. 3.2

AC16: See AC2.
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RC17: p. 2274, line 25: what is meant by rate data?

AC17: We mean event rate data, data that report how often events occur within a
certain unit of time or space. We will add “event” before “rate” to be more precise.

RC18: p. 2276, line 17: why?

AC18: See AC3.

RC19: p. 2276–2277, section 4.1: claim size related results are not discussed! please
comment on data given in Table 5

AC19: The following will be changed in Sect 4.1: line 4–6 on page 2277 (“Moreover,
there are a large number of significant links between explanatory variables and claim
frequency than between explanatory variables and average claims size.”) will be
moved to the end of line 15. After that, we will add the following lines: “In general,
relationships between explanatory variables and average claim size were weak or non-
existent. Maximum and mean rainfall intensity (and rainfall volume for content-related
claims) were significant rainfall-related variables. Moreover, education and ownership
structure were significantly correlated with average claim size, for property-related and
content-related claims.”

RC20: p. 2278, line 13–15: these values should be marked in Figure 8. Explain better
the reasoning behind the intersection of horizontal line and tree results. Why not
also include results for content related claim frequency? What are the corresponding

C1376

optimum tree structures in Figures 6 and 9?

AC20: Good suggestion to improve visualisation of Fig. 8. A new version of Fig. 8 can
be found in the supplement to this document. The caption of the figure now contains a
better explanation of how tree size was selected.

The figure is just to illustrate the 10-fold cross-validation process. Adding the figure
for content claim frequency does not add much to this explanation. They more or less
show the same thing.

Figure 6 and 9 already show the optimum, or pruned, tree structure. To be more clear
on this, we will add the term “pruned” to the captions: “Pruned poisson tree explaining
(...)”. Since we have not defined the term “pruned” yet, we will add the following to line
9 on page 2276: “This tree is referred to as the pruned tree.”

RC21: p. 2279, line 6: What are the reasons for this? It is likewise important to
understand why the model approaches did not work for the data at hand and to identify
possible approaches to overcome these problems.

AC21: See AC5.

RC22: p. 2279, line 20–22: it is not shown which variables are used for surrogates
where in the decision trees.

AC22: See first AC1. Surrogate variables were not used to split data. All splits
that are shown in the decision trees are primary splits. Surrogates were used,
however, for the calculation of variable importance (Table 6). That is why mean rain-
fall intensity is still reported in Table 6, although it does not appear in the decision trees.
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RC23: p. 2280, line 2: the methodology of Possion regression modesl is not described.

AC23: Good point. In AC3 we propose a better description of the global models.
The lines 4–8 on page 2280 (“Note that the categorical variable (...) the explanatory
variables.”) will be moved to section 3.3.

RC24: p. 2280, line 12–14: For clarity it would be helpful to compile all results in one
table and not to provide them distributed over text, figures and tables.

AC24: Helpful suggestion. We generated a new table that includes all results, see
Table 7 at the end of the document, replacing the original Table 7. The new table also
takes into account RC3. Note that caption has been changed too.

RC25: p. 2280, line 22: Actually in this paper two different damage pathways are
jointly considered: direct impact of rainfall and pluvial damage. Could a separation of
the data base according to damage pathway provide an improvement? I would expect
that the different factors will be of varying importance in each case.

AC25: The reviewer makes an interesting point here. We also expect improved rela-
tionships when the two damage mechanisms are analysed separately. Unfortunately,
the database lacks information on these mechanisms. So, we cannot make separate
analyses. In fact, we are working in another study on a much more detailed insurance
database. This database contains communication transcripts of calls and reports
between insurer, client and damage experts, which allows us to study individual
damage mechanisms.
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RC26: p. 2282, line 16: what are zero counts? please be more detailed

AC26: It is an uncommon term and should therefore be corrected. The term can
be avoided by slightly rephrasing line 14–16 on page 2282: “The Poisson deviance
function that was used allows responses to be zero (i.e., no claim); however, only
cases with claims were considered in this study. A splitting criterion based on
a deviance function of a distribution that does not allow the response value to be zero,
such as the truncated Poisson distribution, can probably give a better description of
the within-node deviance.”

RC27: p. 2283, line 11–12: please name some examples

AC27: To the best of our knowledge, literature on splitting criteria for event rate data is
very limited, and no examples were found of an alternative splitting criterion. The one
we used is based on the Poisson distribution, which is a commonly used distribution
to model count data. Other distributions for count data that are commonly used are
the binomial and negative binomial distributions. Similarly to the splitting criteria that is
based on the Poisson distribution, splitting criteria may be developed based on other
distributions for count data. We would like to extend line 11–12 on page 2283: “There
may be more appropriate splitting criteria for rate data than the ones tested in present
paper, for example, splitting criteria based on other distributions for count data, such
as the binomial or the negative binomial distribution.”

RC28: p. 2284, line 10–12: or rather need further investigation? What about the size
of the underlying data set? Expanding the data base could help to carve out non-linear
and/or local relationships.
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AC28: This comment also related to RC15 by Bouwer. We agree with both reviewers
that there may be more reasons that explain the poor relationships with claim size
as found in this study. We would, therefore, like to change line 10–12 on page 2284
and line 21–23 on page 2264 (abstract) to: “It was not possible to develop statistically
acceptable trees for average claim size. It is recommended to investigate explanations
for the failure to derive models. This includes the inclusion of other explanatory factors
that were not used in present study, an investigation of the variability in average claim
size at different spatial scales and the collection of more detailed insurance data that
allows to distinguish between the effects of various damage mechanisms to claim
size.” We think that the size of the data set will not matter that much as it is already
considerably large. Larger sample size (getting closer to actual population size) will
probably result in more significant relationships, however, their effect size may not
have any importance in a practical context.

RC29: p. 2291, table 2: separate columns for property and content claims for improved
readability

AC29: We have updated Table 2, see end of the document.

RC30: p. 2291, table 2: has education level a continuous scale?

AC30: Education level is not continuous with respect to individuals. There are seven
main levels, defined on an ordinal scale. Here, we have, for practical reasons, aggre-
gated levels to districts by averaging the levels, assuming equal intervals between the
scales.
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RC31: p. 2291, table 2: why mean and not median?

AC31: No significant differences were found between the two. We, therefore, only
reported one of them.

RC32: p. 2293, table 4: with which objective?

AC32: Good point. The bottom right cell of the table will be replaced by: “λ̂ using
maximum likelihood estimation” We will also add the following footnote to the table:
“h−1(x) needs to be calculated numerically, which is inconvenient for decision tree
learning where deviance needs to be evaluated for every split.”

RC33: p. 2295, table 6: some of them are not significant as given in Table 5

AC33: Table 5 and 6 should be treated separately. Table 5 presents global regression
results. Non-significant variables in this table can still be significant in the tree
approach (e.g., because a variable may be significant in a certain node).

RC34: p. 2299, figure 3: hard to read!

AC34: See updated Fig. 3 in the supplement to this document.

RC35: p. 2304, figure 8: I think a non-parametric approach to quantify variation in
results is more reasonable, e.g. IQR. What about uncertainty in the DT based on
training data?
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AC35: The reviewer proposes an interesting alternative to calculate standard errors.
The approach we have been using, where standard errors are calculated using a set of
cross-validation results, is, however, a well-established approach in the field of decision
tree learning, which we therefore prefer.

The main use of the standard errors here is to select an appropriate tree size. Tree
size selection is only based on the set of cross-validation trees and therefore standard
errors were not derived for training data.

RC36: p. 2305, figure 9: combine Figures 6 and 9 in one multi panel Figure. Indicate
the nodes and splits included in optimum pruned trees.

AC36: We will leave this suggestion to the editor. It is a good idea to combine figures,
but is should fit the layout of the journal too. Would it be possible to make the figures
spanning two columns? The trees in Fig 6 and 9 are already the optimal/pruned
versions, see also AC20.
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Table 2. Model variables and variable definitions. Value ranges (column 3) are related to
subsets of property and content claim data respectively.

Variable name Definition Min – Max (Median) Min – Max (Median) Source
Property data Content data

Response variables

Claim frequency (cf) Number of claims per day per district divided by number of policyholders per
district

0.0007–0.0933 (0.0039) 0.0006–0.0812
(0.0026)

1

Average claim size (acs) Total damage per day per district divided by number of claims per day per
district (Euro)

43–80 520 (1024) 12–28 282 (674) 1

Rainfall-related variables

Maximum rainfall intensity (rmax) Maximum intensity of rainfall event at the building-weighted centroid of a dis-
trict, using an 1 h moving time window (mm h−1)

0–97 (4) 0–97 (8) 2

Mean rainfall intensity (rmean) Mean intensity of rainfall event at the building-weighted centroid of a district
(mm h−1)

0–38 (1) 0–46 (1) 2

Rainfall volume (rvol) Volume of rainfall event at the building-weighted centroid of a district (mm) 0–149 (12) 0–154 (17) 2
Rainfall duration (rdur) Duration of rainfall event at the building-weighted centroid of a district (h) 0–48 (10) 0–48 (11) 2
Socio-economic variables

Household income (inc) Median disposable household income per district, adjusted for inflation accord-
ing to Table 3 and classified in 10-percentile groups: 1= lowest 10 % of data,
10= highest 10 % of data

1–10 (5) 1–10 (3) 3

Education of breadwinner (edu) Mean level of highest education obtained by main breadwinner per district, ac-
cording to Dutch education index: 1 = lowest: e.g., kindergarten, 7 = highest:
e.g., degree in medicine

2.6–5.3 (3.9) 2.6–5.2 (3.7)

Age of breadwinner (age1) Median age of main breadwinner per district (yr) 24–68 (51) 27–72 (50) 3
Fraction of homeowners (own) Number of owner-occupied buildings per district divided by the total number

of residential buildings per district
0.08–0.95 (0.62) 0–0.98 (0.52) 3

Building-related variables

Real estate value (rev) Median real estate value of residential buildings per district, adjusted for infla-
tion according to Table 3 (Euro)

39 371–1 068 136
(184 508)

34 132–773 468
(145 774)

3

Fraction of low-rise buildings (low) Number of residential addresses that have their entrance at ground level divided
by the total number of residential addresses per district

0–1 (0.91) 0–1 (0.85) 4

Building age (age2) Median age of residential buildings per district (yr) 2–251 (41) 1–253 (42) 4
Ground floor area (floor) Mean area of the ground floor of a building per district (m2) 7–385 (63) 17–263 (62) 4
Topographic variables

Slope (slope) Median slope at building pixels () per district, according to Horn (1981) 0.29–7.29 (0.62) 0.29–6.48 (0.65) 5
Position index, 25 m (tpi1) Median topographic position index at building pixels (m) per district, according

to Weiss (2001) using 25 m× 25 m window
−0.02–0.16 (0.04) −0.01–0.16 (0.04) 5

Position index, 255 m (tpi2) Median topographic position index at building pixels (m) per district, according
to Weiss (2001) using 255 m× 255 m window

−1.55–0.95 (0.11) −0.73–1.24 (0.11) 5

Position index, 1005 m (tpi3) Median topographic position index at building pixels (m) pre district, according
to Weiss (2001) using 1005 m× 1005 m window

−16.76–7.20 (0.14) −9.85–7.2 (0.12) 5

Others

Season (seas) Season of the year: winter = Dec–Feb, spring = Mar–May, summer = Jun–
Aug, autumn = Sep–Nov

NA NA NA
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Table 7. Results of global regression and decision tree analyses. Response variables are
modelled as a function of (1) the maximum rainfall intensity, (2) all rainfall-related variables, (3)
the variables actually used in the decision tree and (4) the variables with importance score>
0.02 (for claim frequency) or all variables (for claim size). For the global regression models,
the cross-validated coefficient of determination, r2cv, is calculated using a similar approach as
discussed in Sect. 3.2.

Global model Tree model
Response variable ∼ Explanatory variables r2 r2cv r2 r2cv

Property claim frequency ∼
1: rmax 0.18 0.09 - -
2: rmax + rmean + rvol + rdur 0.19 0.10 - -
3: rmax + rev + age2 + slope + seas + rvol + floor + inc 0.27 0.18 0.32 0.26
4: rmax + rmean + rvol + rev + seas + inc + age2 + slope + edu + rdur 0.28 0.18 - -
Content claim frequency ∼
1: rmax 0.19 0.08 - -
2: rmax + rmean + rvol + rdur 0.20 0.10 - -
3: rmax + own + floor + low 0.25 0.11 0.30 0.22
4: rmax + rmean + rvol + own + floor + low + inc + rev + edu 0.26 0.12 - -
Property claim size ∼
1: rmax 0.01 0.01 - -
2: rmax + rmean + rvol + rdur 0.01 0.01 - -
3: rev 0.02 0.02 0.02 0.00
4: all variables 0.04 0.03 - -
Content claim size ∼
1: rmax 0.02 0.02 - -
2: rmax + rmean + rvol + rdur 0.02 0.02 - -
4: all variables 0.05 0.05 - -
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