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Rebuttal for NHESS Discussion Manuscript 
 

Towards predictive data-driven simulations of wildfire spread – Part I: Reduced-cost 
Ensemble Kalman Filter based on a Polynomial Chaos surrogate model for parameter 
estimation by M.C. Rochoux et al. 
 

 
 
We thank the Reviewer for its frank reply; we appreciate his/her positive and 
constructive comments to improve the overall quality of the paper. Further explanations 
to the two main issues raised by the Reviewer are given below. We hope that these 
explanations are sufficiently detailed and clear to convince the Reviewer that the 
ensemble Kalman filter we used in the present study is correct and consistent with the 
literature in parameter estimation problems. 
 
 
(1) “level-set method?  

 
a. “c=0.5 does not even exist at the initial time” 
▶ As explained in Section 2.2.2, the prognostic variable of the FIREFLY simulator 

is the two-dimensional progress variable c = c(x,y,t); the location of the simulated fire 
front is a posteriori defined as the contour line cfr = 0.5. This implies that FIREFLY 
requires a two-dimensional field c = c(x,y,t-1) to initialize any assimilation cycle [t-1,t]. 
Note that this initial condition is constructed in FIREFLY such that the transition 
between c = 0 (unburnt area) and c = 1 (burnt area) is smooth; a tangent hyperbolic 
function is used to describe this transition. Still, this transition remains thin over all 
the model time-integration (a few mesh step sizes, with a step size Δx = Δy = 1 m 
for all synthetic cases). We propose to add a comment on this initialization, in 
Section 2.2.2 for the model and in Section 3.1.2 after Eq. (23) for the model restart 
after analysis, in order to clarify this aspect.  

 
b. “At first sight, it looks really unclear whether this approximation should 

converge to the solution of the propagation problem.” 
▶ Model diagnostics have been developed to ensure the correct numerical 

behavior of the FIREFLY front-tracking simulator. These diagnostics were not given 
in the paper since it is already rich in concepts. Still, these diagnostics were reported 
in a previous publication demonstrating the feasibility of an extended Kalman filter 
for wildfire spread forecasting (see Rochoux et al. 2013a). Furthermore, they are 
described in full detail and illustrated in a series of tests for different fire 
configurations (with/without wind, spatially-uniform/-distributed vegetation) in the 
Ph.D. thesis of the first author (see Section 6.4. in Rochoux, 2014). To summarize, 
these model diagnostics were derived from the Kolmogorov-Petrovsky-Piskounov 
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(KPP) analysis and were extended to heterogeneous fuel. These diagnostics check 
that the rate of change of the progress variable c matches the average rate of fire 
spread (average meaning average along the fireline) and also that the rate of spread 
at the head of the fire is consistent with the Rothermel’s 0-D formulation. In addition, 
they also verify that the front thickness, estimated as the average inverse of the 
maximum gradient of c, remains small and relatively constant over time. In all tests 
performed to date, these diagnostics have demonstrated the correct numerical 
behavior of FIREFLY consistently with the physics of the fire spread problem. This 
aspect is already mentioned in Section 2.2.2. The authors propose to emphasize 
the discussion and show the convergence of the solver by adding 2 examples of 
model performance, for a uniform case on the one hand, for a wind-aided case with 
randomly-distributed vegetation on the other hand. 

 
 

(2) “filter?” 
 

a. “There is a need for justification of the filter. The algorithm should retain 
some optimality property to be a filter. ” 
 

▶ First, let us summarize some important results about parameter estimation 
that are reported in the literature.  

Most parameter estimation techniques use an augmented state vector, which 
includes the control parameters in addition of the state vector. Still, it is not the only 
option. For instance, Pétron et al. (2002)1 and Peters et al. (2005)2 successfully 
performed a stand-alone parameter estimation strategy within the framework of 
atmospheric chemistry, the estimation targets are the species surface fluxes that 
can be considered as input parameters with regards to the atmospheric dynamical 
model (Peters et al., 2007)3. Furthermore, it has been shown in the literature 
(Moradkhani et al. 2005, Ruiz et al. 2013a3, Yang and DelSole 20094, Koyama and 
Watanabe 20105, Evensen 20086, Dechant and Moradkhani 20127) that the 
augmented state problem can be divided into two independent problems: one for 
the control state variable(s) and the other for the control parameters. Thus, the 
parameter estimation and state estimation approaches are performed sequentially 
and not instantaneously. Stated differently, the Kalman update equation is applied 
twice and independently:  

(1) for the control parameters similarly to the work proposed by the authors or by
 Durand et al. (2008);  

(2) for the state variables similarly to a classical state estimation approach. 

That is why the authors believe that the reference due to Moradkhani et al. (2005) is 
still relevant in the context of the present study. Currently, the two steps are 
performed separately in the series of two papers proposed by the authors. Future 
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plans include the extension of the algorithm to a dual or joint parameter-state 
estimation approach. Which is the most accurate and time-efficient approach 
between these 2 possibilities requires some further evaluations as highlighted in 
references by Ruiz et al. 2013a3 or Bocquet and Sakov, 20138.  

Koyama and Watanabe (2010)5 demonstrated that spatial localization is not 
necessary for the estimation of global parameters (i.e., spatially-uniform 
parameters). 

Even though the true control parameters are varying over time, they are usually 
assumed to be constant during the model integration. Thus, parameter values only 
change when moving to the next assimilation cycle (Ruiz et al. 2013a3). When 
performing an ensemble Kalman smoother (Bocquet and Sakov 20138; Evensen 
and van Leeuwen 20009; Hunt et al. 200410), the correction on the control 
parameters is performed on a time-window that includes several observation times. 
In the study presented by the authors, the assimilation is performed at each 
observation time; the latter corresponds to an ensemble Kalman filter (Evensen 
200311).  

These aspects highlight that parameter estimation can be successfully 
performed using an ensemble Kalman filter, even though the control vector does 
not include the state vector but only the control parameters (it corresponds to one 
step of a dual state-estimation approach with global parameters). Note that the 
control parameters are spatially-uniform in the present study and are therefore 
global. Note also that the control parameters are assumed constant over each 
assimilation cycle (one cycle corresponding here to a forecast and an analysis at a 
single observation time); subsequently, they are modified only when moving to the 
next assimilation cycle. Thus, the filtering algorithm proposed by the authors seems 
consistent with the literature.  
 
▶ From a mathematical viewpoint, the Kalman update equation can be applied 

to any quantity of interest, the state vector, the augmented state vector or the 
stand-alone control parameters. The type of control variables is independent of the 
filter optimality issue. From this perspective, the authors believe that the filter 
equation formulation used in this study does not need a specific justification.  

 
▶ To clarify these issues raised by the legitimate questions of the Reviewer, the 

authors propose to add a detailed comment in Section 3.1. (p. 3312), to provide a 
more extensive literature review on these aspects, to explicitly state that we are not 
in a case of augmented state vector and to justify this current choice of a stand-
alone parameter estimation.  
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b. “The observation operator depends on the front position (at t-1). Hence 
it is different from one member of the ensemble to the other. This is a 
fairly unusual setting […] consequence that the observation error and 
the parameter error are strongly correlated, which breaks a classical 
assumption for Kalman filtering”. 
 

▶ It is important to recall that for parameter estimation (stand-alone or dual), 
the observation operator always includes the integration of the forward model (to 
obtain the model state that is induced by a particular set of control parameters 
over the assimilation cycle) on top of a selection operator (that describes the 
interrelation between the model state and the model counterparts of the 
observations). Thus, it is not a novelty for parameter estimation that the 
observation operator depends on the model state at the previous analysis time.  

 

The definition of the observation operator is given in Section 3.1.1 (p. 3306-
3307). It is true that the selection operator Ht is time-dependent in the present 
study since the observation is dynamically-evolving: the selection procedure 
depends on the location and on the topology of the fire front at a given time. The 
authors propose to add in Section 3.1.1 a comment on this aspect that is 
specific to a tracking problem. Similar setting is used in Chen and Snyder 
(2007)12, where the observation operator provides the time-evolving vortex 
location for hurricane tracking. 

 

As in the references by Ruiz et al. (2013a)3 or by Peters et al. (2005)2, the 
uncertainty in the optimal parameters is assumed to be constant in time in the 
study proposed by the authors. The error standard deviation used in the random 
walk model (there is no physical model for the evolution of the parameters as it is 
common in parameter estimation problems) remains constant over all 
assimilation cycles (see Eq. 23, p. 3310). In Peters et al. (2005)2, p. 6., it is said 
that  In absence of a suitable dynamical model we couple forecasted CO2 fluxes 
to analyze CO2 fluxes through a simple form of persistence forecasting M = I, 
where I is the identity matrix. This means that we assume the background CO2 
fluxes for one time step to equal the once optimized fluxes of the previous time 
step. In this case presented by Peters et al. (2005)2,  they chose to specify the 
mean background for a given assimilation cycle using the mean of the analyzed 
fluxes obtained at the previous assimilation cycle. Then, they generated the 
ensemble of background surface fluxes by applying a standard deviation to this 
mean background. This technique is very similar to that used by the authors in 
the present study and the present filter can therefore be viewed as a 3d 
variational technique which also lacks the dynamic coupling between analyzed 
and background covariances (Peters et al. 20052). The authors propose to add a 
comment along with references (Peters et al. 20052, Ruiz et al. 2013b13) in 
Section 3.1.2., p. 3310, near to Eq. (23) to explain in more details the choice of 
the random walk model, which is a common feature in parameter estimation 
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problems. Also, a comment will be added to clearly state that the forecast 
members of the ensemble are generated based on perturbations in the control 
parameters and starting from the same initial condition (i.e., the two-dimensional 
progress variable field associated with the mean analysis estimate obtained 
during the previous assimilation cycle similarly to Peters et al. 20052).  

 

In this context, the authors do not understand how the observation error and 
the error in the control parameters could be strongly correlated; they are 
convinced that this assumption of the ensemble Kalman filter remains valid in the 
present study.  

 
c. “The reader may be under the impression that the algorithm was simply 

written by the analogy with a proper ensemble filter, without any 
mathematical justification.” 
 

▶ The questions asked by the Reviewer were legitimate and helped us to 
clarify the proposed methodology.  

 

• A parameter estimation approach can be considered by itself as an 
estimation problem and does not need to be combined with a state 
estimation approach to obtain an optimal ensemble Kalman filter;  
 

• In a parameter estimation approach, the observation operator includes 
the forward model integration over the assimilation cycle; this does not 
degrade the quality of the filter since the parameters are assumed global 
(i.e., spatially-uniform), constant over the assimilation cycle and their 
errors are assumed constant over the whole assimilation experiment.  

 

• In an ensemble Kalman filter, there is also a need for an evolution model 
for the parameters between the assimilation cycles. As no dynamical 
model usually exists to describe the time-varying behavior of the 
parameters, two techniques are reported in the literature: (1) inflation; or 
(2) random walk model (Ruiz et al. 2013b13). In the present study, the 
authors chose to rely on a random walk model.  

 

As mentioned above, additional references and comments will be included in 
the text to clarify the distinction with a state estimation approach (proposed in 
Part II of this series of two papers), in particular with regards to the definition of 
the classical variables for data assimilation, as well as to convince the readers 
that the proposed algorithm is a proper ensemble Kalman filter adapted for 
parameter estimation problems related to coherent features tracking.  
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