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Rebuttal for NHESS Discussion Manuscript 
 

Towards predictive data-driven simulations of wildfire spread – Part I: Reduced-cost 
Ensemble Kalman Filter based on a Polynomial Chaos surrogate model for parameter 
estimation by M.C. Rochoux et al. 
 

 
We appreciate the positive and constructive comments made by the Reviewer. Detailed 
answers are given below. 
 
➀ “An introductory sentence concerning the fact that this is a feasibility study could 
be appreciated by readers” 
▶ Consistently with the Reviewer’s comment, we propose to add a sentence in the 
Introduction section (p. 3297): In this paper, we present a hybrid PC-EnKF DA algorithm 
that improves wildfire spread modeling by reducing uncertainty in the vegetation 
properties used as inputs of the Rothermel-based rate of spread (ROS) model. The 
objective of this study is to show the feasibility of this approach for wildfire spread 
forecasting under several assumptions, i.e., a minimalist treatment of the fire front 
(idealized as an interface and consistent with the limited knowledge on the 
environmental conditions); a semi-empirical formulation of the ROS; Gaussianity of the 
errors on the input parameters and on the observations; the prior values for the control 
parameters are specified based on user-defined mean and error standard deviation. 
 
➁ “a brief description of results obtained and discussed in the second part of the 
paper [would be valuable] to give a more comprehensive presentation of the 
research.” 
▶ Consistently with the Reviewer’s comment, we propose to add a sentence in the 
Introduction section to summarize the objective of the second part with respect to this 
first part (p. 3297): For this purpose […] (Birolleau et al., 2014). In this first part, both the 
EnKF and PC-EnKF algorithms are limited to the estimation of spatially-uniform 
parameters of the rate of spread model due to computational cost constraints and a 
lack of high-resolution data on the environmental conditions. In contrast, in the second 
part of this series of two articles (reference), a state estimation strategy is designed to 
address anisotropy uncertainties in wildfire spread and to correct the shape of the fire 
front for forecast initialization. Thus, parameter estimation and state estimation are 
complementary approaches that are valuable for wildfire behavior forecasting; it is 
therefore important to discuss their benefits and drawbacks for tests with increasing 
complexity.   
 
➂ “the explanation of some chosen values of parameters can also be given.” 
▶ We agree with the Reviewer that it is important to clarify how the setting of a data 
assimilation experiment is done. That is why we propose to add a generic comment in 
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Section 3.1.2 (p. 3310) about the modeling of the error statistics of the input 
parameters: As shown in Fig. 4, the forecast control parameters are stochastically 
represented at time t […] with k varying between 1 and Ne. These realizations are 
randomly-generated based on mean and error standard deviations according to user-
defined confidence interval for each control parameter over the first assimilation cycle 
and to previous analysis results for next assimilation cycles.  
 
➃ “a longer explanation of figure 9 and also of chosen values xt = 0.4 1/s and 
xf = 0.2 1/s” 
▶ We agree with the Reviewer that it is important to clarify the meaning of xt and xf in a 
synthetic data assimilation experiment such as those reported in Section 4.1, but we 
feel that figure 9 is fully described by the paragraph in Section 4.1.3, p. 3321-3322. 
With regards to the comment on xt and xf, we propose to add the following sentence at 
the beginning of Section 4.1 (p. 3318-3319): The ensemble of prior values is drawn 
from a Gaussian distribution centered in xf = 0.2 1/s with an error STD σf = 0.05 1/s 

(assumed constant along the assimilation cycles). Note that the true value of the control 
parameter xt is at the tail of the Gaussian PDF associated with the forecast estimates. 
This case is chosen on purpose, in order to evaluate the capability of the parameter 
estimation approaches to retrieve accurate values of the control parameter, even 
though the prior value is far from the true control parameter and its uncertainty (with 
respect to the observation uncertainty) is high.  
 
➄ I wonder if there is the possibility of an automatic best selection of some 
parameters while the code runs. 
▶ From one assimilation cycle to the next, there is indeed the possibility to change the 
parameters that are included in the control vector according to the level of information 
available (the uncertainties in the surface wind or in the biomass fuel properties are not 
time-invariant). Automatic sensibility tests could be performed, a priori or along the 
assimilation cycles, to modify the control vector if required. We propose to add a 
comment in the Conclusion section on this point.  
 
➅ “Authors could briefly discuss analogies and differences with this approach [the 
approach proposed by Pagnini et al.]” 
▶ We agree with the Reviewer that the proposed approach only addresses uncertainties 
in the input parameters of the forward model. In addition, Kalman filters are designed to 
specifically address Gaussian error statistics since the Kalman update equation (see 
Eq. 20) is obtained by assuming Gaussian error statistics for the control variables. One 
advantage of the ensemble Kalman filter over the classical or extended Kalman filter is 
that it is able to account for non-linearities in the forward model via the ensemble of 
forward model integrations to generate the members. Still, it relies on the assumption of 
Gaussian error statistics. In order to evaluate the impact of this assumption on the filter 
results, a recent study by da Silva et al. (paper under revision) was performed with 
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particle filters applied to FIREFLY, showing very similar results between the ensemble 
Kalman filter and particle filters. Thus, the assumption of Gaussian error statistics seems 
valid in the present study.  
 

It is correct that the ensemble Kalman filter and the stochastic approach proposed by 
Pagnini and Mentrelli (2013)* are complementary and could be combined to address 
both epistemic and aleatoric errors. We propose to mention this study in the 
introduction to complete the literature review: Model uncertainties are a combination of 
epistemic errors that express an imperfect knowledge of the input parameters of the 
ROS model (that could in theory be removed), and of aleatoric errors that result from 
natural and unpredictable stochastic variabilities of the physical system (that can be 
addressed by stochastic models, see for instance Pagnini and Mentrelli, 2013, that 
relies on a stochastic component to represent the transport of firebrands).  
 

While very interesting, the comparison between the two approaches is not further 
discussed since the authors believe that the paper is already rich in complex concepts 
with the development of the polynomial chaos strategy and with the objective to detail 
different techniques to address uncertainties in environmental conditions. Furthermore, 
the second part of this series of two papers addresses a state estimation approach that 
it is able to account for all the possible sources of uncertainty in FIREFLY, i.e., in the 
input parameters of the rate of spread model as well as in the parameterization of the 
rate of spread. To summarize the key aspects of all this discussion, we propose to add 
the following comment at the end of the Conclusion section: There is also a need to 
address all possible sources of uncertainty in the fire spread model, not only in the input 
parameters of the rate of spread model but also in the parameterization of the rate of 
spread that is limited in scope due to a lack of physical modeling (e.g., steady-state 
assumption, transport of firebrands). It is worth mentioning that the second part of this 
series of two papers is dedicated to the evaluation of a state estimation approach that 
is able to account for both anisotropic uncertainties and modeling uncertainties. While 
out of the scope of this series of two papers, a proper representation of the model 
errors could be performed by introducing a model error covariance matrix in the 
ensemble Kalman filter (Trémolet, 2007☆); a stochastic model such as introduced by 
Pagnini and Mentrelli (2013)* could be useful to describe this model error covariance 
matrix.  
 
*Pagnini G., Mentrelli A., Modelling wildland fire propagation by tracking random fronts. 
Nat. Hazards Earth Syst. Sci. Discuss. 1, 6521–6557 (2013). 

☆Trémolet, Y. (2007b). Model-error estimation in 4D-Var. Quarterly Journal of the Royal 
Meteorological Society 133, 1267–1280. 
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➆ “I think that a better explanation of [the parameter r] should be given” 
▶ The role of the parameter r is explained in Section 2.2.3 entitled Reconstruction of the 
simulated fire front and comparison with the observed fire front (p. 3305-3306). Let me 
first summarize the main ideas behind this parameter r. 
Within the framework of data assimilation, there is a need to compute the distance 
between the simulated fire front and the observed fire front. In the present study, we 
assume that the observed fire front is discretized with a finite number of segments. 
Furthermore, as mentioned in the paper, it is expected that the observed fire front is 
provided with a much coarser resolution than the simulated fire front. Multiple synthetic 
cases reported in the PhD thesis of the first author (Rochoux, 2014) showed that a 
simple selection algorithm provides a reasonable answer to this problem by comparison 
to a projection algorithm. Thus, the computation of the distance between simulated and 
observed fire fronts relies on the following steps: 
 

1) to discretize the simulated contour line cfr = 0.5 with a finite number of 
markers according to the model resolution (Nfr), see Eq. 8 

2) to discretize the observed fire front with a finite number of markers according 
to the observation resolution (Nfr

o), see Eq. 9 
3) to identify to which simulated markers the observed fire front markers can be 

paired through the selection procedure: 1 out of r = Nfr/ Nfr
o markers is taken 

along the simulated fire front. The resulting Nfr
o markers selected along the 

simulated fire front correspond to the closest neighbors of the observed front 
markers along their trajectory over time.  
 

The authors propose to summarize the main steps of this algorithm at the end of 
Section 2.2.3 (p. 3305-3306) to clarify this selection procedure and to mention the 
assumptions/limitations underlying the current selection procedure:  
 

• [In the following, we assume for simplicity that …, where r is an integer taking 
values much larger than 1]. In this context, the global parameter r represents the 
difference in resolution between the simulated fire front and the observed fire 
front that is crucial to pair the simulated and observed markers. 
 

• One of the advantages of this representation of the simulated and observed fire 
fronts is that it provides a local information on the discrepancies between 
simulated and observed fire fronts and not only a global information such as the 
difference in the burnt area or in the fireline perimeter. This local information is 
efficient at representing the anisotropy in wildfire spread. Still, the topology of the 
fire front can be complex in real-world wildfire spread cases, and/or only a 
section of the fire front can be observed due to the opacity of the fire-induced 
thermal plume or due to a limited monitoring. Thus, the pairing between 
simulated markers and observed markers becomes more challenging for 
complex fire front topologies. The generalization of this treatment to complex fire 
front topology will be revisited in future work. Projection schemes reported in 
Rochoux (2014) are expected to provide a valuable answer to this issue and 
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could be integrated to the proposed data assimilation algorithms. However, this 
issue is out of the scope of this study that aims at showing the feasibility of data 
assimilation for wildfire spread forecasting.  

 
To conclude, the minor comments pointed out by the Reviewer will be taken into 
account in the new version of the manuscript except for the comment no. 2: the 
notations for the simulated fire front (Eq. 8) and the notations for the observed fire front 
(Eq. 9) are different on purpose. The objective is to distinguish the model outputs (the 
front with Nfr markers) to the model counterparts of the observations (the front with Nfr

o 
markers) to avoid confusion in the description of the filter. 


