Interactive comment on "Identification of storm surge events over the German Bight from atmospheric reanalysis and climate model data" by D. J. Befort et al.

Anonymous Referee \#1

Received and published: 18 June 2014
Review of
Identification of storm surge events over the German Bight from

Full Screen / Esc

```
Printer-friendly Version
```

Interactive Discussion

Recommendation

Major Revisons.

Synopsis

A statistical relation between storm surges in Cuxhaven and wind characteristics on the North Sea is constructed, and this relation is used to investigate possible changes in surge frequency due to climate change. A combination of strong winds from west-north-west $\left(295^{\circ}\right)$ and the presence of a large-scale wind storm field over the North Sea is found to be a pre-requisite for storm surges in Cuxhaven. Having established this relation from observations (with ERA-40 as pseudo-observations of wind), the relation is applied to the output of a climate model (ECHAM5/MPI-OM) forced by historic + A1b GHG concentrations. Three runs are available. The number of potential surgegenerating weather situations is found to increase, but their severity (max. intensity) stays the same. The increasing number is mainly due to relatively modest events with return periods of less than 10 years. Furthermore, the increase is statistically significant only in one of the three runs, which is due to the large inter-annual and inter-decadal variability of the number of potentially surge-generating situations.

Discussion

The paper addresses an important question (will the number of storm surges change due to global warming?) and attempts to solve it by identifying potentially dangerous weather situations, thus avoiding to run costly surge models, and count their number. The simplicity of this approach is, however, the main weakness of the paper. There

NHESSD

2, C1122-C1128, 2014

Interactive
Comment

Full Screen / Esc

Printer-friendly Version

Interactive Discussion
are 82 surge events in the observational (= ERA-40) period, but these only constitute 5.5% of all weather situations that potentially (high wind + large-scale wind field) lead to a surge. In other words, the rate of false positives is larger than 94% ! So the big question is: What does an increase of potentially surge-generating events say about the actual number of surges, if the false-positive rate is so large?
Taking the low significance of the found increase into account, and adding the uncertainty originating from the high false-positive rate (can that be quantified?), I doubt that any firm conclusions can be drawn about changes of the actual number of surges. This aspect needs to be discussed in the revised paper.
There are some other methodological problems that need to be addressed. They are detailed below under Major Remarks.

Major remarks

The first number denotes the page, the second one the line.
general Sterl et al. (2009) (referenced in the present paper) use winds from the same model (ECHAM5/MPI-OM) as used here to drive a surge model. They find no change of storm surges in Cuxhaven (their Fig. 7). So what is the value of the present paper?

3938, 16-20 De Winter et al. (2012) also find no increase in more extreme wave heights (up to return period of 1000 years, see their Figs. 8 and 11). However, they do not consider the German Bight. Note that they drove their wave model with winds from the same model as used in this paper (ECHMA5/MPI-OM).

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

Discussion Paper

NHESSD

2, C1122-C1128, 2014

Interactive
Comment
sect. 3.1 This definition of $U_{\text {eff }}$ suggests that you look at winds coming from WNW, which is reasonable. However, later (Fig. 2) it appears that there are also events
with a negative $\mathrm{U}_{\text {eff }}$, which are probably winds from ESE (and thus do not project on 295°, but on 115°). First, this is a contradictio in terminis, as by definition

NHESSD

2, C1122-C1128, 2014

Interactive
Comment

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

Minor points

The first number denotes the page, the second one the line.

3936, 22 over \rightarrow at
3937/38, 28/1,2 raise \rightarrow rise; not either - all these effects contribute; mean sea level change does not contribute to the rise of the water level during a surge (it is far too slow), but it contributes to the water level reached during a storm. Please reformulate this sentence.

3938, 25 Reference for CMIP5 needed.
3938,27/28 GCM IPCC-AR4 ECHAM5/MPI-OM - what's this?
3940, 9 comprising \rightarrow taking into account
3941, 1 and 3 subcluster \rightarrow sub-clusters
3941, 7/8 Please reformulate. Hard to understand.
3941, 8 Eventually \rightarrow Finally
3941, 22 their \rightarrow its
3942, 24 deviated \rightarrow derived

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

3943, 10/11 What does the ratio of 3.7% mean? No interpretation is given. To me it suggests that the method is useless (see major remark).

NHESSD

```
2, C1122-C1128, 2014
```

3943, 4-7 Sentence too long. Please reformulate.

3943, 2nd para Here you come with the North Sea argument (see also major remark). That all those storms that do not enter the North Sea are irrelevant for Cuxhaven NHESSD could have been anticipated.

```
2, C1122-C1128, 2014
```

Interactive
3944, 20 comma needed after surge
3944/45, 27-2 Please reformulate. Clumsy sentence.
3946, $29.84>9.45$, but you employed the percentile-correction because you expected that winds in ECHAM5 would be lower than those in ERA-40. Explanation? Comment? Do your results depend on the correction? Do you need it at all?

3946, 7 significant \rightarrow significantly
3946, 22+23 statistical \rightarrow statistically
3946, 27 what do you mean by "and for whose mean values"?
3947, 1 As well \rightarrow Furthermore
3947, 4 of \rightarrow over
3947, 5/6 from its \rightarrow of their
Full Screen / Esc
3947, 4-17 In this para you use absolute wind speeds and exceedence wind speeds at the same time. This is extremely confusing! Please reformulate, using only one measure of speed, and stick to it. This also applies to Fig. 5.

Printer-friendly Version

Interactive Discussion

3847, 15-17 Is this statement true for $\mathrm{U}_{\text {exceed }}>14 \mathrm{~m} / \mathrm{s}$, or for the whole distribution?
3948, 12 comma needed after as

3948, 27 amount \rightarrow number
3939, 7 bigger \rightarrow larger
3950, 7-10 Not to follow. Please reformulate.
3953, 15 KÅllberg \rightarrow Kållberg
3958, 1 amount \rightarrow number
3961 caption says numbers, y-axis label says percentage. Presumably, numbers is correct.

3962, 4 of the exceeding what?

NHESSD

2, C1122-C1128, 2014

Interactive
Comment

