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Abstract

Winter storms are the most costly natural hazard for European residential property. We
compare four distinct storm damage functions with respect to their forecast accuracy
and variability, with particular regard to the most severe winter storms. The analysis
focuses on daily loss estimates under differing spatial aggregation, ranging from district5

to country level. We discuss the broad and heavily skewed distribution of insured losses
posing difficulties on both the calibration and the evaluation of damage functions. From
theoretical considerations, we provide a synthesis between the frequently discussed
cubic damage-wind relationship and recent studies that report much steeper damage
functions for European winter storms. The performance of the storm loss models10

is evaluated for two wind data sources, direct observation by the German Weather
Service and ERA Interim reanalysis data. While the choice of wind data indicates little
impact for the evaluation of German storm loss, local variability exhibits dependence
between model and data choices. Based on our analysis, we favour the application of
two probabilistic approaches which fare best in terms of the accuracy of their expected15

value and overall exhibit the lowest amount of variability.

1 Introduction

As a major contribution to natural-hazard damages, windstorms are responsible for an
average of 39 % of world-wide economic losses during 1980–2011 (Munich Re, 2013).
Across Europe, losses from meteorological events are mainly caused by winter storms20

and comprise 68 % of total insured loss, with the largest event so far, winter storm
Lothar in 1999, totalling EUR 5.9 bn of insured loss and EUR 11.5 bn of economic loss
(Munich Re, 2011, 2013).

Recent climatological studies by Schwierz et al. (2010) and Held et al. (2013) indicate
that the severity of winter storm related loss is likely to increase markedly in the course25

of the 21st century. With this development in mind, it is questionable whether the
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anticipated damages will remain within the limits of insurability. Even though Held et al.
(2013) come to a positive conclusion for the German insurance market, such analyses
hinge on the choice and quality of the employed damage function.

A storm damage function describes the relation between the intensity of a storm and
the typical monetary damage caused. As the magnitude of large-scale catastrophic5

storm loss is highly sensitive to changes in wind speed, even small variations between
potential damage functions could lead to severe implications for the reliability of loss
estimates and their validity for economic and political decision making. The work
in hand tackles this issue by providing a model intercomparison of storm damage
functions for the residential sector in the context of European winter storms.10

While the storm severity, or destructive potential, is conventionally described by
a cubic dependence on wind speed derived from kinetic energy considerations (e.g.
Lamb, 1991; Emanuel, 2005), recent studies on storm damage functions (Heneka
and Ruck, 2008; Prahl et al., 2012) suggest a much steeper increase of loss when
considering portfolio loss of homeowner’s insurances. We reason that the apparent15

contradiction results from the negligence of a potential loss threshold due to insurance
deductibles or similar economic effects. Thus, we schematically demonstrate the
transition from very steep loss increase to a more modest cubic power-law.

The comparison of storm damage models is generally impeded by inconsistencies
for reasons of (i) differing temporal or spatial resolution of meteorological data, (ii)20

deviating building codes and enforcement practices, and (iii) differing insurance policies
and claims settlement practices (Walker, 2011).

In order to circumvent such inconsistencies, three recently developed damage
functions (Klawa and Ulbrich, 2003; Heneka and Ruck, 2008; Prahl et al., 2012) are
applied to a common dataset of wind speed and insurance loss data for Germany.25

These damage functions are complemented by a simple exponential model inspired
by recent US hurricane loss models (Huang et al., 2001; Murnane and Elsner, 2012),
yielding four mathematically distinct modelling approaches. For simple referencing, we
assign the acronyms X and K to the deterministic exponential model and the model by
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Klawa and Ulbrich (2003), respectively. The probabilistic models by Prahl et al. (2012)
and by Heneka and Ruck (2008) are referred to via the letters P and H, respectively.

Theoretical foundations and implications of each model are discussed in order
to mainstream terminology and conceptual structure of storm damage functions.
Quantitative results are obtained from numerical estimation and allow a direct5

comparison of model performance under varied spatial aggregation, relating to either
daily loss or particular major storms. During summer months, the employed loss
data inseparably includes both wind and hail damages. Since the employed damage
functions concern wind damage only, we limit the work in hand to days within the winter
half-year (abbreviated as WH), comprising the months October through March.10

The analysis of daily insurance loss data of the winter half-year reveals an extremely
broad and strongly skewed loss distribution. Relating loss and wind speed data,
a pronounced heteroskedasticity is revealed (c.f. Fig. 6 in Heneka and Ruck, 2008),
with uncertainty resembling a multiplicative error (Prahl et al., 2012). In conjunction
with such pronounced heteroskedasticity, the scarcity of extreme events in the tail of the15

distribution may cause a bias of traditional regression methods, such as least squares,
towards singular extremes present in the training data. While a data transformation,
such as the logarithm, may reduce skew and heteroskedasticity, it would put stronger
weight on smaller loss events and hence counteract the focus on extremes. In practice,
potential data transformation and curve fitting methods are dependent on the specific20

damage model and are hence discussed in conjunction. Calibration issues that arise
from the properties of the loss distribution are discussed alongside the mathematical
model concepts in Appendix A.

The broadness and skew of the loss distribution also play a significant role for the
validation of model estimates, as they have significant impact on the applicability of25

evaluation metrics. Heteroskedastic dependence between prediction error and loss
magnitude invalidates traditional moment-based metrics, such as R2 or, equivalently,
Pearson’s ρ. In particular, very extreme events may attain the character of singularities
and dominate absolute performance metrics. Alternatively, relative metrics such as
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mean percentage error (MPE) or mean absolute percentage error (MAPE) may be
employed over well-defined loss ranges (Hyndman and Koehler, 2006). However, these
metrics fail if predictions comprise both days with and days without loss, which is
often the case for daily resolved data. Moreover, such zero values prevent the use of
common transformations (e.g. power transformations such as Box Cox Transformation,5

see Box and Cox, 1964) to increase the normality of the loss distribution required for
most statistical metrics.

We address the validation of countrywide loss estimates by applying a novel pair-
wise binomial test metric in conjunction with the relative metrics MPE and MAPE.
Furthermore, a coefficient of variation is employed to assess the predictive uncertainty10

on district level at daily resolution.
The overall model estimation is based on annual cross validation, an iterative

procedure for the sampling of the training data, safeguarding that loss estimates
within any given year are obtained from independent training samples. We furthermore
assess model robustness by employing a jackknife method for the systematic15

resampling of training data, where by exclusion of different parts of the training sample
the dependence of model estimates on the training data is assessed. Probabilistic
model results are obtained from a Monte Carlo simulation based on a sampling size of
1000.

In the following section we give overviews of the employed wind and insurance20

datasets and of the model estimation procedure. In Sect. 3 a brief introduction of storm
damage functions is followed by a detailed view on each of the compared models. The
numerical modelling results are discussed in Sect. 4. In Sect. 5 we attempt a synthesis
between a cubic wind-damage relation and the considerably steeper damage functions
reported for German winter storms. The concluding synopsis and discussion of the25

theoretical and numerical aspects of the impact model intercomparison are given in
Sect. 6.
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2 Data and methods

2.1 Insurance data

In this work, the employed damage functions are calibrated against detailed insurance
loss data obtained for storm damages to residential buildings. The German Insurance
Association (GDV) provided loss data relating to the “comprehensive insurance on5

buildings” line of business resolved for 439 German administrative districts (as of 2006).
The dataset comprises the magnitude of absolute losses and insured values as well

as the number of claims for the years 1997 to 2007 on a daily basis. With its high spatio-
temporal resolution and countrywide coverage, the GDV dataset has been successfully
applied for the calibration of different damage functions, e.g. Donat et al. (2011b); Prahl10

et al. (2012); Gerstengarbe et al. (2013).
In order to eliminate price effects and time-varying insurance market penetration, we

consider relative figures for the amount of loss and claims throughout. The following
definitions are applied:

Loss ratio (LR): the amount of insured loss per day and district, divided by the15

corresponding sum of insured value.

Claim ratio (CR): the number of affected insurance contracts per day and district,
divided by the corresponding total number of insurance contracts.

These definitions are based on the assumption that insured buildings are randomly
distributed in each district and are representative of the overall residential building20

stock. With data coverage of up to 13.4 million insured buildings and in excess of 90 %
market coverage (GDV, 2013) we expect the assumptions to hold.

The highly skewed and heavy-tailed distribution of daily losses during the winter
half-year is illustrated in Fig. 1. More than 50 % of total loss is recorded for the top
6 out of 2000 loss days. The shaded area in Fig. 1 highlights the upper 10 % of loss25

days, comprising in excess of 90 % of total loss. For economic relevance, our work
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focusses on this loss segment, with a sub-division into 3 distinct loss classes, as shown
in Table 1.

The vast number of days exhibiting negligible insured loss appears to be due to
a random scattering of small losses across time and districts. Supporting the attribution
to noise, Prahl et al. (2012) found a direct proportionality between the magnitude of the5

temporally scattered losses and the number of insured contracts in a given district.

2.2 Wind data

Two sets of meteorological data were employed. The first set comprises daily maxima
of the 3 s wind gust measured by the German weather service DWD1 (Deutscher
Wetterdienst). Applicable meteorological stations were selected according to the10

following criteria:

1. missing values may not exceed 20 days for each year,

2. average missing days per year may not exceed 10 for the period 1996 to 2008,

3. exclude mountainous stations above 1400 m a.s.l..

Based on the selection criteria, 85 meteorological stations were selected.15

Measurements obtained at anemometer heights other than 10 m were adjusted using
the simple wind profile power law

v(10) =
(

10
h

)λ
v(h), (1)

with wind velocity v , anemometer height h, and an exponent λ = 1/7 as discussed in20

Wan et al. (2010).
Inhomogeneities in meteorological times-series can be identified by finding an

optimal solution to the multiple breakpoint problem. Standard methods are available, in
1 Data available at http://www.dwd.de/webwerdis
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particular, for finding inhomogeneities in monthly climatic time series (Venema et al.,
2012). Application to daily time series is however subject to ongoing research (e.g.
Wang, 2008; Mestre et al., 2011).

In the case of daily block maxima of climatic data, the relatively small change
at the breakpoint as compared to the data’s variance and the presence of long-5

term persistence adversely affect the capacity to identify breakpoints correctly. With
a low signal-to-noise ratio, the presence of long-term correlation can lead to false
identification of breakpoints (Rybski and Neumann, 2011; Bernaola-Galván et al.,
2012).

We attempt to avoid over-detection by applying a conservative testing scheme10

based on multiple cross-comparison of neighbouring stations and the examination
of meta data, e.g. about relocation of stations. The testing scheme employs the R
implementation of the PMFred algorithm developed by Wang (2008) to identify potential
breakpoints in time series of differences between daily gust-speed maxima of any
pair of meteorological stations. We reduced the skew of the gust-speed distribution15

by applying a logarithmic transformation and hence improved the normality of the data,
which constitutes a basic assumption of the PMFred algorithm.

To begin with, we chose a control group of 39 stations whose individual time series
showed no significant inhomogeneities in the test algorithm. Subsequently, we paired
each of the 85 stations with the 10 closest of the control group and performed20

the PMFred algorithm on the time series of their differences. If, within a 60 day
window, at least 3 pairwise tests indicated a breakpoint that could be backed by meta
data, the inhomogeneity was corrected. Furthermore, if all 10 pairwise comparisons
suggested a significant and otherwise undocumented breakpoint it was also corrected.
All corrections were performed using a quantile-matching algorithm (Wang et al., 2010).25

Overall, we took a conservative stance on artificial manipulations of the raw time
series and corrected only 3 significant breakpoints in total, 2 of which were documented
in meta data.
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The second wind dataset was obtained from the ERA Interim reanalysis project2

(Dee et al., 2011). We use the daily maxima of the 3 h values of the 10 m wind gust.
Both sets of wind data, DWD and ERA Interim, require a downscaling to match

the resolution of the insurance data. Prahl et al. (2012) demonstrate that wind gust
observations from neighbouring meteorological stations provide sufficient information5

for the calibration of a storm damage function. Higher precision may be attained via
the use of mesoscale climate models for the computation of detailed and physically
valid wind fields from reanalysis or observational data (Heneka et al., 2006; Huttenlau
and Stötter, 2011). As this is clearly beyond the scope of our work, we limit ourselves
to a simple inverse-distance interpolation scheme applied to both DWD and ERA10

Interim data sources. The wind field was interpolated at the centroids of each district,
taking into account all locations (stations or grid points) within a certain radius of
interaction. Employing leave-one-out cross validation, i.e. iteratively excluding each
individual location from the interpolated dataset, we calculated the average correlation
between empirical and interpolated values at varying radii of interaction. The optimal15

radius of interaction was chosen as the value at which the average correlation reached
its maximum.

2.3 Model estimation procedure

As damage functions are typically employed as predictive models, it is of key
importance how accurately they perform in practice. In addition to choosing the optimal20

model, there is the risk of overfitting to a training data set, which may not represent the
high variability of weather extremes. In order to assess the predictive performance of
the employed models, a k-fold cross validation scheme (Kohavi, 1995) is employed in
conjunction with a jackknife procedure (Miller, 1974).

For annual cross validation, the 11 year dataset is partitioned into annual25

subsamples. Iteratively, each individual subsample is retained for evaluation, while the

2 ERA Interim data was obtained from http://data-portal.ecmwf.int/data/d/interim_full_daily
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model is trained on the 10 yr remaining. This process ensures that each year is used
exactly once for evaluation.

The employed cross validation enables out-of-sample prediction for each day and
allows for the assessment of the model fit with regard to the range of frequently
occurring losses.5

In contrast, the evaluation of model robustness for very scarce extreme events,
often occurring only once or twice during the observation period, requires additional
resampling of the training data. The resampling is performed via a jackknife procedure,
where each individual annual subsample is excluded consecutively from the 10 year
training sample.10

For the joint analysis of deterministic and probabilistic models, two different schemes
for loss aggregation are employed. Generally, we consider the daily district-wise loss
estimates as independent random variables dependent only on wind speed. In the case
of deterministic models, the model estimates are interpreted as expected values and
were simply summed up over time or space. For the probabilistic models, we employed15

a Monte Carlo approach, where results of 1000 independent random realizations
were aggregated independently. The expected value and distribution quantiles were
then calculated from the distribution of Monte Carlo estimates at the desired level of
aggregation.

3 Storm-damage models20

A damage function describes the relation between the intensity of a specific hazard
and the typical monetary damage caused with respect to either a single structure
(microscale) or a portfolio of structures (macroscale).

Microscale models can be empirical (i.e. statistically derived from data), engineering-
based, or a mixture of both. On the macro scale, damages may be either aggregated25

from microscale models or obtained from statistical relationships based on empirical
data (cf. Merz et al., 2010).

5844

http://www.nat-hazards-earth-syst-sci-discuss.net
http://www.nat-hazards-earth-syst-sci-discuss.net/2/5835/2014/nhessd-2-5835-2014-print.pdf
http://www.nat-hazards-earth-syst-sci-discuss.net/2/5835/2014/nhessd-2-5835-2014-discussion.html
http://creativecommons.org/licenses/by/3.0/


NHESSD
2, 5835–5887, 2014

Performance of storm
damage functions

B. F. Prahl et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

Due to the minimum resolution of our data (i.e. districts), our analysis is constrained
to the macroscale models of the latter kind. Nonetheless, some of the damage
functions under scrutiny contain assumptions on the nature of microscale damage.
As there are no publicly available engineering-based models for our region of interest,
only statistical models are considered and calibrated on identical datasets.5

For a general overview of modelling approaches, both statistical and engineering-
based, we refer the reader to Walker (2011) and, with a focus on hurricane damage,
to Pita et al. (2013). In the following, we present each of the four employed damage
functions.

3.1 Generic exponential damage function [X]10

The choice for an exponential damage function is motivated by empirical observation,
showing quasi-linear increase of the logarithm of the loss ratio versus maximum gust
speed over a wide range of wind speeds (e.g. Prettenthaler et al., 2012; Murnane and
Elsner, 2012).

It is a non-physical damage function in the sense that it does not saturate at rising15

wind speeds and thus ignores an upper limit of physical damage. However, loss levels
reached during European winter storms typically range below or around a few tenths
of a percent of insured value, such that loss saturation does not become an issue.

The damage function relates the loss ratio L to the exponential of the wind speed v ,

LX ∝ eX1v . (2)20

The absolute wind speed is rescaled via a linear transformation governed by parameter
X1. Primarily, the parameter reflects the particular vulnerability to wind damage.
Additionally, rescaling of wind observations may be required for reasons such as:

– variations of scale due to mismatches in altitude or location of the geographical25

reference of the wind data and the building portfolio,
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– loss being dependent on a differing wind predictor with approximate
proportionality to the maximum wind gust,

– systematic bias caused by the interpolation of wind speeds.

The exponential damage functions focuses on wind-dependent losses only. Typically,
these are large losses within the upper tail of the loss distribution. For the employed5

insurance data, small losses that occurred at days with maximum wind speed beneath
the 95th percentile show a predominantly random behaviour not captured by Eq. (2)
and were hence neglected during calibration. This aspect is also seen exemplarily in
Fig. 2, showing the independently trained damage function in the context of empirical
loss data.10

Further details about the calibration of the damage function are given in Sect. A1.

3.2 Probabilistic power law damage function [P]

In the literature, there are several proponents for power law based storm damage
functions, e.g. Dorland et al. (1999), Nordhaus (2010), and Bouwer and Wouter Botzen
(2011).15

For winter storms affecting Germany, Prahl et al. (2012) developed a macroscopic
damage function based on the presumption of a power law based sigmoid curve.
Considering the typical loss range of winter storms, the sigmoid curve can be
approximated by a simple power law term. For the general case, their damage function
comprises two key components. The first component describes the probability for the20

occurrence of damage within the portfolio, while the second component models the
intensity of loss if a damage has occurred. In conjunction with the introduction of a noise
constant, this two-part structure enables the modelling of the entire range of damages,
thus not excluding information from the bulk of small losses that may provide additional
support for the calibration of the damage function.25

For an arbitrary district, Fig. 2 shows the curve fits for both components of the
damage function as well as the resulting expected value for storm loss. The left-
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hand panel demonstrates that the predicted 95% confidence bounds encompass the
majority of loss observations and the right-hand panel shows how the probability of
occurrence is inferred from the empirical occurrence rate (training data).

The model can be simplified for large wind speeds. In this case, the expected value
of loss L is approximately proportional to the wind speed v raised to the power P1,5

E[LP] ∝ vP1 . (3)

The exponent P1 is the key parameter and expresses the vulnerability of the building
portfolio. Additional important parameters adjust the scale of the employed wind speed
and control the spread of the loss probability distribution. Concerning the scale of the10

employed wind, the observations may not be directly applicable and require a rescaling
to relative wind speeds (c.f. Sect. 3.1).

The original model published by Prahl et al. (2012) incorporates correlations between
district losses caused by the same storm event. Due to the complexity of the employed
modelling scheme, it was not feasible to include these correlations in this paper.15

However, the effect of correlations is perceived as minor to the overall performance
of the damage function and their inclusion would lead primarily to a widening of
confidence intervals.

Please refer to Sect. A2 for further details of the mathematical derivations and of the
fitting procedure.20

3.3 Cubic excess-over-threshold damage function [K]

Klawa and Ulbrich (2003) proposed a macroscopic damage function for German storm
loss based on the hypothesis that storm damages grow with wind speed in excess of
a specific threshold. The approach has since been applied to other European locations
(e.g. Leckebusch et al., 2007; Etienne and Beniston, 2012; Cusack, 2013) and was25

recently refined to the scale of German districts by Donat et al. (2011b).
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At the core of the damage function is the definition of a damage proxy D based on
the regional wind speed v and its 98th percentile,

D =
(
v − v98

v98

)3

. (4)

The damage function is calibrated by performing a linear regression of loss5

observations against the damage proxy, thus involving two regression parameters
(a scaling coefficient and an offset). In the upper limit, the damage function increases
without bounds and hence ignores damage saturation at high wind speeds.

The scaled damage proxy is shown exemplarily for an arbitrary district in Fig. 2.
Since the additive offset parameter rather describes the bulk of loss that may occur10

below the 98th wind percentile, it is not directly attributable to any specific event and
hence indicated via a dotted line in Fig. 2.

The employed wind percentile was empirically found by Klawa and Ulbrich (2003)
and may be considered as a third parameter. Since the introduction of the European
Standard EN 1991-1-4 describing the wind action on land structures, the 98th wind15

percentile has become a crucial factor for the reinforcement of buildings against wind
damage. Even before its legal implementation during the first decade of the 21st
century, it may be reasonable to presume an autonomous adaptation3 to the wind
climate and hence argue for the applicability of a wind percentile as a proxy for such
adaptation.20

The cubic relationship of the damage function has been repeatedly put into context
with the advection of kinetic energy (Leckebusch et al., 2007; Pinto et al., 2007; Cusack,
2013). As a matter of fact, this line of reasoning is problematic due to the subtraction
of the 98th percentile threshold value, and hence the resulting damage function is
inconsistent with the purely cubic dependence on wind speed. As a consequence,25

3I.e. structural damage at relatively low wind speeds is likely to be fixed to withstand similar
stress, while preparing for extremes may be too costly. A balance between the individually
perceived (monetary) risk and tolerable adaptation cost is maintained.
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the gradient of the damage function is much steeper than that of a simple cubic wind
dependence for the entire range of historical wind speeds. Only in the upper asymptotic
limit, as the wind speed approaches infinity, does the damage function converge to the
simple cubic wind dependence.

In Sect. A3, we demonstrate that on the basis of the employed data the increase5

of the loss curve for extreme winter storms is comparable to that of a power law with
a steep exponent of approximately 10. This behaviour is also in good agreement with
the approximate power law for macroscale loss shown in Fig. 6.

Although Klawa and Ulbrich (2003) developed their damage function for winter
storms, the function may be applied to the entire loss range, in which case the10

regression offset parameter serves as baseline loss resulting from winds beneath the
defined percentile threshold. Figure 6 illustrates that there is a strong relation between
loss and wind below the 98th wind percentile, suggesting that the damage function
could potentially utilize a lower wind percentile. Further mathematical details and the
fitting procedure are described in Sect. A3.15

3.4 Probabilistic claim-based damage function [H]

Heneka et al. (2006) put forward an integrated approach for modelling storm loss,
combining a probabilistic description of affected buildings with a microscale damage
relationship.

Within their generalized mathematical framework, a building damage occurs if20

a critical wind speed particular to that building is exceeded. A continuous probability
density function is employed to describe the probability of critical wind speeds within
the overall building stock. For modelling purposes, Heneka et al. (2006) assumed
a Gaussian distribution for critical wind speeds, which is non-physical in a sense as
it yields finite probability for negative wind speeds. The claim ratio follows naturally as25

the cumulative distribution function of critical wind speeds, describing the fraction of
buildings for which wind speed exceeds the critical threshold.
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If an individual building is affected, the damage Di is assumed to raise as the square
of the wind exceedance above threshold. Heneka et al. (2006) (see also Heneka and
Ruck, 2008; Heneka and Hofherr, 2011) argue that the square term of their microscale
damage relationship,

Di =
(
v − vc

H1

)2

, (5)5

corresponds to proportionality between damage and wind force. Repeating the
reasoning given in Sect. 3.3, we argue that such proportionality is violated due to the
inclusion of the critical threshold vc, which is inconsistent with the wind force being
proportional to the square of the untranslated wind speed (e.g. Simiu and Scanlan,10

1996).
In contrast to the other discussed damage functions, model fitting and loss estimation

requires numerical integration, which makes the application of the damage function
computationally more demanding. It was found that the model could not be reliably
calibrated on loss data only, necessitating the use of additional data for the number15

of claims per region and day. Given the additional information from claims data, the
damage function would be expected to perform as well or better than the competing
models.

Due to its probabilistic description of the building stock, the damage function naturally
incorporates an upper limit to the claim and loss ratio and may be applicable to a wide20

range of losses.
The model requires the calibration of four parameters, describing the wind speed

at which half of the building stock is damaged and its associated standard deviation,
the standard deviation of critical wind speeds, and the wind range over which building
damages reach complete destruction. Further description of the mathematical details25

and the three-step calibration procedure is given in Sect. A4.
For an exemplary district, Fig. 2 shows the expected value and 95% confidence

bounds of the damage function. For better comparison with the probabilistic power
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law damage function, we further decomposed the damage function into the implied
components for the occurrence probability and the loss intensity, both shown in Fig. 2.

4 Comparison results

Bringing together the four different models, the two wind sources, and the modelling
procedure (Sect. 2.3), model predictions were obtained for 2004 days (consisting of5

the winter-half of 11 yr) and for each of the 439 administrative districts.
Due to the high level of detail, the presentation of results is focused on 3 distinct

aggregation levels: (i) daily loss per district, (ii) daily countrywide losses, and (iii)
countrywide losses caused by the six most severe storm events during their entire
passage duration.10

In case of models K and H, different setups for model calibration were possible (cf.
Appendix A). For greater clarity, only those results that relate to the best-performing
setup are reported, while additional results are provided in the Supplement.

The circumstances of comparing two deterministic and two probabilistic models
require the choice of a common metric. The output of the deterministic models is hence15

considered equivalent to an expected value obtained from the probabilistic models and
forms the basis of the model intercomparison.

4.1 Daily loss per district

While temporal or spatial aggregation generally leads to a convergence of model
estimates and observations, strong variability is expected for daily storm loss estimates20

on the fine district scale.
On the basis of root-mean-square error, we define a coefficient of variation

CVRMSE =
1
x̄

(
1
n

n∑
i=1

(xi − x̂i )
2

) 1
2

, (6)

5851

http://www.nat-hazards-earth-syst-sci-discuss.net
http://www.nat-hazards-earth-syst-sci-discuss.net/2/5835/2014/nhessd-2-5835-2014-print.pdf
http://www.nat-hazards-earth-syst-sci-discuss.net/2/5835/2014/nhessd-2-5835-2014-discussion.html
http://creativecommons.org/licenses/by/3.0/


NHESSD
2, 5835–5887, 2014

Performance of storm
damage functions

B. F. Prahl et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

where, for n samples, x and x̂ denote the observations and estimates of the expected
value, respectively. Values are normalised to the mean of the observations x̄.

Table 2 shows regional averages of CVRMSE for each of the four competing models.
These results highlight the interdependence between model and wind choice. While
model H mostly outperforms the competing models for DWD wind data, it appears5

less suited for ERA Interim wind data, whose distribution properties are distinctly
different from those of the DWD data. Of particular interest is the fact that, irrespective
of the wind data source, model H performs best across southern Germany. With
relatively complex terrain and less frequent storm events, this region poses the greatest
challenge to the damage models, resulting in a wide spread of coefficient values10

between different models. In contrast, model K appears to be least reliable in the south.
While the exponential model X fares worst overall, it scores best for DWD wind data
over northern Germany. It may be assumed that in this region the probability distribution
of the DWD wind data is most favourable for the steep exponential model. Overall,
models H and P show the least variation throughout. While model K performs well,15

with the exception of southern Germany, the exponential model consistently generates
the largest amount of variation and, hence, modelling error.

Due to the fact that the district resolution exceeds the resolution of sampling points of
the wind field, a strong influence of the choice of wind data is expected. Figure 3 shows
a baseline CVRMSE estimated as the minimum value found for any of the four competing20

models. The DWD based values show relatively small variation across north-western
Germany, while exhibiting stronger variation in southern Germany. East Germany
shows a prominent streak of high variability, strongly related to the winter storm “Kyrill”.
In contrast to the DWD based values, ERA Interim based CVRMSE estimates show
a marked increase of variation from east to west. The origin of this effect, however,25

remains unclear.
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4.2 Countrywide daily loss

Our second appraisal of the model performance is based upon countrywide daily
losses. The spatial aggregation has the beneficial effects of reducing loss variability
and yielding a high number of otherwise spatially separated loss events.

Figure 4 shows the model predictions for the countrywide loss ratio plotted against5

the observations from insurance data. Focusing the initial examination onto results
based on DWD wind observations (Fig. 4a), several important aspects are revealed.

First of all, the loss predictions from all models exhibit a very high variability in the
range of few orders of magnitude. Since the variability cannot be significantly reduced
by model choice, it may be a consequence of other aspects, such as the stochastic10

nature of the building damage, measurement error of wind speed, or the omission of
further explanatory parameters.

Additionally, the residuals of the model estimates follow a broadly skewed
distribution, with the effect that some observations may drastically exceed expected
values drawn from simulation.15

Two models, K and P, show a lower bound for the expected value of predicted loss. In
the case of K this is a direct consequence of model design, which involves a constant
baseline loss that accounts for any loss beneath the local 98th wind percentile. For
model P, a similar lower bound exists, which reflects the expected value of the noise
level present in the loss data at any wind speed.20

When considering the binned loss ratios (black circles) in Fig. 4a, both models
X and H exhibit an underestimation of small losses, which is more pronounced for
model H. A comparison with Fig. 2 shows that this behaviour is in line with the rapid
convergence to zero of the damage curve for model H. Unsurprisingly, model P shows
good agreement of binned loss ratios over a wide range of loss due to the fact that25

this model is the only one specifically designed to match also the low and medium loss
ranges. In comparison, model K maps a considerably larger fraction of losses onto its
lower bound (baseline loss) and seems to underestimate losses especially in the region
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around 10−6. This behaviour is a likely outcome of the wind threshold fixed to the 98th
wind percentile. Losses near or below this threshold may be strongly underestimated,
an effect that plays a larger role for small-scale storms than for extreme large-scale
storm events.

For ERA Interim driven simulations, Fig. 4b shows a similar overall behaviour as for5

DWD wind data. Comparison indicates a stronger variability of model results for ERA
Interim. Likely causes for this effect are the reduced spatial resolution of ERA Interim
grid cells compared to the spatial distribution of DWD climate stations and the lack of
precise geographical allocation of wind gust values attributable only to entire grid cells.

The similarity of results drawn from DWD and ERA Interim wind data prevails for10

all further model results and we hence focus the subsequent discussion on DWD
based model estimates. The quality (performance) of wind data in the context of storm
damages is beyond the scope of the work in hand. For special interest we provide
results corresponding to ERA Interim in the Supplement.

It is evident from an economic (or insurance) point of view that the performance for15

small and mid-range damages should be disregarded in case better performance is
achieved for large loss events. In our further analysis we accommodate for this aspect
by applying the loss categories defined in Table 1.

In order to eliminate the effects of scale of the loss distribution for model comparison,
we propose a simple pairwise statistical test based on binomial statistics. The null-20

hypothesis is that both models have equal predictive skill and, hence, that their
predictions are equally likely to be closest to the true observations. Successes (i.e.
closer prediction) can be represented by independent Bernoulli trials with probability
0.5. In a one-tailed test, the binomial distribution then expresses the probability for
a given success rate.25

For each pair of models, Table 3 provides the share of predictions where one or
the other comes closer to the observation. Significance is obtained from the binomial
distribution with probability 0.5 and n independent trials, where n equals the total
number of loss days for each loss class.
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As the binomial test itself does not disclose why any specific model outperforms
a competitor, we interpret the results of each model in conjunction with traditional
relative metrics relating to a multiplicative error. Figure 4 shows a variability that is
approximately symmetric on the log-scale, and hence the assumption of a multiplicative
error seems viable.5

The employed metrics are the mean absolute percentage error (MAPE, i.e. the mean
of the moduli of deviations between model estimates and observations in percent)
and the mean percentage error (MPE, i.e. the mean of the deviations between model
estimates and observations in percent). While MAPE gives an estimate of the variability
of model results, MPE provides an indication for systematic bias. Table 4 summarises10

the results both for MAPE and MPE.
For extreme losses in loss class I the binomial test gives prevalence to the model P,

whose estimates exhibit the lowest MAPE. There appears to be indifference between
models H and P, although MPE shows that model H tends to overestimate extreme
losses, while model P shows a small downward bias. Model K exhibits the least bias15

and yields the lowest MPE.
Considering loss class II, all models show a strong tendency to overestimate large

losses. Here, the smallest bias is produced by H with an MPE of 16%. Results from
P exhibit the least variability of the four models, so that the model can outperform the
competitors in the binomial test.20

In contrast, moderate losses in class III illustrate a completely different behaviour.
The biggest change arises for K, which converts from significant overestimation to
strong underestimation indicated by a negative bias of −51%. While the upward bias of
P increases for moderate losses, models X and H exhibit only small bias and generally
the smallest MAPE.25

All above metrics were based on model estimates obtained from DWD winds (cf.
Fig. 4a). Tables related to ERA Interim winds generally show the same tendencies and
are given in the Supplement. There, we also provide an additional diagram showing
results of the binomial test for small and minor losses below the 0.9 quantile.
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4.3 Most severe storm events

Having so far considered only single loss days, Fig. 5 shows the aggregated loss ratios
for the six most severe winter storms during the observation period. The daily loss
estimates were accumulated for the entire passage duration of the respective cyclones,
whose start and end dates are given in Table 5.5

In addition to the expected value obtained from the full training sample, estimates
of the expected value obtained from the jackknife resampling give an indication of the
robustness of the model fit. A large spread of jackknife estimates, e.g. as seen for the
model X, indicates a strong dependence on the training sample.

Robustness is of particular concern, since the short training period may not10

always contain very severe storms and, hence, the storm damage function must
reliably extrapolate beyond its support. Empirically, this aspect is illustrated most
prominently for winter storms Jeanett and Kyrill, both affecting approximately the same
geographical region.

In the case of model K, the outliers of the jackknife estimates for these storms relate15

to a training sample containing neither one as benchmark. It becomes apparent that
the linear regression employed for model K straps the otherwise highly constrained
damage function to the maximum level of losses present in the training sample.

With the exception of winter storm Lothar, model P exhibits the least spread of
expected values. Even though there are no constraints on the exponent of the damage20

function as for model K, the model demonstrates robustness due to its larger support
from the entire range of observed losses.

A similarly robust behaviour is shown by model H, albeit there appears to be some
sensitivity to the training sample for winter storms Jeanett and Kyrill. In contrast to
model P, the robustness of model H is likely to originate from the strong constraints25

imposed on the damage function by the choice of distribution function for the critical
wind speed.
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The least constrained model X appears not only to be sensitive to the training sample
used, but also generates significant overestimation for the three most severe winter
storms. Although a verdict may not be based on three events only, the exponential
approach appears less reliable for extreme winter storms than the competing models.

Finally, Fig. 5 also shows the probability density contours for the probabilistic models5

P and H derived from Monte Carlo calculations, convolving all 10 jackknife model fits
with 1000 realizations each. While a judgement on the adequacy of the distributions
cannot be made due to the scarcity of extreme events, some observations can be
made. Model P, which assumes a log-normal uncertainty distribution with constant
scale parameter generates heavily skewed loss distributions that by inspection seem10

too wide. In contrast the less skewed loss distribution produced by H appears more
reasonable. In general, both models yield loss distributions that encompass empirical
observations.

5 Towards a synthesis of storm damage functions

In the discussion of macroscale storm damage functions it is often assumed that15

loss should increase as the square or cube of the maximum wind speed. These
presumptions originate from:

– the consideration of wind loads, which are approximately proportional to the wind
pressure and, hence, to the square of the wind speed (e.g. Simiu and Scanlan,
1996),20

– the concept of proportionality between structural damage and the dissipation rate
of the wind kinetic energy that scales with the third power of wind speed (recently:
Emanuel, 2005; Powell and Reinhold, 2007; Kantha, 2008).

In particular, the notion of a cubic relationship is backed by empirical analysis of
insurance records, which appear to exhibit cubic or quaternary behaviour depending25

on the storms under scrutiny (Munich Re, 1993, 2001).
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However, recent literature provides evidence for a much stronger increase of insured
storm loss with wind speed (Huang et al., 2001; Heneka and Ruck, 2008). For the
insurance dataset that we employ here, Prahl et al. (2012) found a power law loss
increase with exponents ranging between approximately 8 and 12. In line with these
results, Fig. 6a shows the average loss increase obtained when superimposing data5

from all German districts. Visual comparison with the power law guiding lines suggests
that both the LR and the CR curves increase approximately proportional to the 10th
power of maximum wind speed.

Based on fundamental considerations we establish a hypothesis how the strong
increase seen in Fig. 6 and the concept of cubic wind dependence may be reconciled.10

The average LR of affected buildings (i.e. those for which an insurance claim was filed)
remains approximately constant over a wide range of wind speed (Fig. 6a). This implies
a minimum loss threshold for damage compensation to be claimed. Such a threshold
is likely to be caused by insurance deductibles, but may also arise from small damages
that either go unnoticed or are fixed autonomously.15

We further argue that the steep loss increase that is observed from the GDV
data may be a consequence of the presence of such a loss threshold. Figure 6b
shows schematically the effect of a loss threshold on the expected LR obtained from
a simple cubic loss-wind relationship. Assuming a log-normal uncertainty distribution,
all potential losses below the critical threshold are truncated. As a result, for low wind20

speed the LR of affected buildings converges to the threshold value, while the overall
LR steeply declines. The noise level of the GDV data however prevents decline below
a minimum loss level, approximately corresponding to a single damaged building per
district portfolio.

To be consistent, the LR curves given in Fig. 6, both for all and for affected buildings,25

must converge as wind speed increases. However, at these wind speeds damages are
unlikely to follow an idealized square or cubic relationship, especially with cascading
effects in case of a breach of the building envelope and additional damage caused
by flying debris. Sparks and Bhinderwala (1994) show that at extreme wind speeds
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a minor fraction of overall loss is comprised by direct wind damage, while the majority
of loss results from interior or non-wind damage that are not captured by the physical
considerations above.

6 Discussion and concluding remarks

The non-linear processes behind wind and non-wind damage, as well as the effects5

of cascading failure of structural components, entail that reduced-form approaches
as discussed here may only approximate the actual storm damage characteristics.
In order to assess the robustness and quality of macroscale storm damage functions,
we have analyzed and compared the results of four different models applicable to the
European winter storm season.10

It is of great importance to acknowledge the effect of deductibles on the shape
of damage functions derived from insurance data. Care must be taken as to what
extent physical damage concepts, such as cubic wind-damage relations, may be
applied to insured storm loss. We have demonstrated how a simple loss threshold may
significantly alter the steepness of a damage function for losses beneath or around15

the threshold. Especially for European winter storms, often characterized by a large
number of minor roof damages, threshold effects should be accounted for.

Generally, storm-related insured losses exhibit a very broad distribution with a high
dynamic range that spans several orders of magnitude. The loss distribution is highly
skewed with very few extreme loss events dominating total annual loss. These two20

aspects pose severe difficulties for both the calibration and the evaluation of damage
functions.

With a focus on the level of extreme losses, least-squares curve fitting has often
been employed to calibrate damage curves to loss data. The combination of skewed
loss distribution and heteroskedastic variance seen for the case of GDV data suggests25

a violation of the basic assumption for least-squares fitting and potentially leads to
biased results. Due to the high dynamic range even temporally or spatially aggregated
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loss figures, as used in the cubic excess-over-threshold damage function by Klawa
and Ulbrich (2003) [model K], are subject to this effect as they are still dominated by
extreme losses.

The optimal curve fitting procedure remains a matter of discussion. Relying on
the assumption of general damage relation valid for a large range of losses, the5

probabilistic power law damage function by Prahl et al. (2012) [model P] puts equal
weight on all data points. In contrast, the fitting procedure for the probabilistic claim-
based damage function by Heneka and Ruck (2008) [model H] has given greater weight
to extremes by using averages of binned losses. The comparison between model H
and the simple exponential damage function [model X], both of which are calibrated10

in the same manner, shows that effective calibration relies on a combination of model
constraints and curve fitting.

As was seen in Fig. 5, model H attains greater robustness against jackknife variations
of the training sample due to the presumption of a specific claims distribution. Following
a different philosophy, model P achieves robustness by rooting the damage function in15

the entire range of loss.
Transferability is one of the biggest challenges of empirical damage functions. All

of the discussed damage functions require substantial calibration to loss data. On the
one hand, Heneka and Hofherr (2011) applied their damage function to Germany by
employing a static parametrisation originally obtained for the federal state of Baden-20

Württemberg. Donat et al. (2011a), on the other hand, assume the same vulnerability
for nation-wide building stock. In both cases, spatial extension of the model comes at
cost of blurring regional vulnerability.

From a practical point of view, model K is most easily calibrated since only a scaling
of an otherwise robust raw damage term is required. More elaborate are the calibration25

procedures for models X and P, which both require detailed loss data. Mathematically,
calibration of model H is most demanding and also requires additional data for the
number of loss claims.
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Generally, the obtained results were irrespective of either DWD or ERA Interim
wind speeds. Not surprising, ERA Interim based results showed greater variance than
those based on direct wind observations. Interestingly, on district level, the estimated
coefficients of variation reveal a marked increase of model variance from the west to
the east of Germany.5

Further analysis of the coefficient of variation emphasized the importance of the
interplay between damage function and the particular wind distribution (from either
DWD or ERA Interim). Strong inter-dependence was seen for model H, performing
best with DWD data, and for model K, which showed best results for ERA Interim data.
While model P showed low variability throughout and appeared most flexible to the10

different data sources, model X showed the greatest error variance overall.
In order to assess the countrywide performance of the different models, a simple

binomial test was devised. In conjunction with the more traditional metrics MAPE and
MPE it was shown that models H and P generally perform best, with some advantage
for model P in the large loss class. Most interestingly, the behaviour for extreme losses15

is indecisive. Model P shows the least variability in terms of MAPE, while model K
exhibits the least bias. In terms of the closest model predictions, the binomial test is
indecisive between models H and P, whereas both are preferred to models K and X.

The applicability of model K appears to be focused on extreme losses. Its further
behaviour turns from a positive bias for large losses into a strong negative bias for the20

moderate loss class. In Sect. A3 we showed that for extreme wind speeds, model K
exhibits steepness similar to model P. However the model reaches a lower bound at
the 98th wind percentile and hence appears to understate losses at wind speeds in the
proximity of this threshold.

Overall, similar behaviour is found for ERA Interim based results which are given in25

the Supplement. A peculiar difference is that for the class of extreme loss days model K
performs best in terms of deviation and bias, but fares worse when regarding the losses
accumulated for the six largest storms. These contradictory findings can be explained
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by the imprecise representation of major storms in ERA Interim data, especially with
regard to the temporal wind profile.

It would not be meaningful to draw a unique conclusion for the suitability of each
model as its performance may crucially depend on the purpose for which it is applied.
For example, when appraising changes in future loss patterns caused by climate5

change, a relative perspective on expected loss may be beneficial due to the significant
uncertainties incorporated in climate models.

With this perspective in mind, the exponential modelling approach was found less
adequate for the modelling of extremes. In contrast, model K showed its best results
for extreme losses, albeit with a calibration procedure that appears less robust than10

those of models H and P. Both of these models provided good results over a wide range
of loss, with their model differences being much smaller than the general variability of
losses.

From a risk perspective focusing on absolute loss figures, probabilistic models should
generally be preferred. Again, models H and P exhibited comparable results, with15

a slight preference for model P in terms of robustness. However, uncertainty estimates
for extreme loss remain a concern and should be subject to further research.

Appendix A: Mathematical model description and calibration setup

A1 Generic exponential damage function [X]

The assumption of an exponential damage relationship is not uncommon in the related20

literature (Huang et al., 2001; Prettenthaler et al., 2012; Murnane and Elsner, 2012)
and such models are characterized by a steeper increase than comparable power law
models.
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Mathematically, the damage function is comprised of a simple exponential term for
the loss ratio,

LX(v) = eX1(v−X2), (A1)

where coefficient X1 rescales the wind, and offset X2 adjusts the estimates of the5

exponential term to the observed loss figures.
Due to the high dynamic range of the loss data and their inherent heteroskedasticity,

the damage function cannot be calibrated directly via least-squares. Similarly to the
approach for model H, training data was truncated below the 95th wind percentile in
order to discard the noisy lower end of the loss spectrum that would otherwise distort10

the damage function. According to wind speed, the remaining loss data was averaged
in 10 equally spaced bins with a minimum of 5 losses each. Thus the relative weight of
the few extremes compared to the abundance of small losses was increased. Finally,
a logarithmic transformation of the loss averages was employed to reduce the dynamic
range of loss and Eq. (A1) was fitted via least squares regression.15

A2 Probabilistic power law damage function [P]

Prahl et al. (2012) advocate a probabilistic damage function based on a power law
approximation to a more general sigmoid curve. The backbone of the damage function
is given by the relationship for the median of the loss magnitude M (i.e. the loss ratio,
given at least one loss claim),20

M̃v ≈
(

v
P2

)P1

+P3 , (A2)

where in addition to the power law scaling P2 and exponent P1 a constant noise level
P3 is included. Based on the observation that for given wind speed v the dispersion
of insured losses approximately followed a log-normal distribution, LN (µ,σ), the25
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stochastic loss magnitude was described as a random variable

Mv ∼ LN ( ln(M̃v),P4 ). (A3)

The location parameter of the log-normal distribution is related to the median by µ =
ln(M̃v). The scale parameter σ = P4 describes both the variability due to imprecise wind5

observation and the aleatory uncertainty regarding the damage caused.
Complementary to the loss magnitude, the probability of loss occurrence (i.e. of

receiving one or more loss claims) is given by the relationship

p(v) = 1−
P5

1+eP7(v−P6)
. (A4)

10

The turning point P6 relates to the transition from the noisy regime to the regime of
physically driven damages. P7 determines the sharpness of the transition and P5 the
noise level. Loss occurrence is described stochastically as a random variable

Ov :=

{
1 if P ≤ p(v)

0 if P > p(v)
, (A5)

15

where random variable P is drawn from the standard uniform distribution, P ∼ U(0,1).
In conjunction, loss occurrence and loss magnitude yield the stochastic expression

for the loss ratio

LP = OvMv, (A6)
20

with an expected value given by

E[LP]v = E[Ov] E[Mv]

= p(v) eµ+ σ2

2

= p(v) e
P2

4
2 M̃v.

(A7)
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For high wind speeds v �P6, e.g. beyond the 95th percentile, the noise level
becomes negligible and the expression for the expected value of loss simplifies to

E[LP](v�P6) ≈ e
P2

4
2

(
v
P2

)P1

. (A8)

Equation (A8) demonstrates that for high wind speeds the expected value of the5

damage function is approximately proportional to the wind speed raised to the power
P1.

Both components of the damage function are calibrated separately. The log-normally
distributed loss magnitude is fitted via maximum likelihood to the empirical loss. A least-
squares approach is used to fit the loss occurrence term against empirical occurrence10

rates derived from binned data, enforcing parameter constraints such that the loss
occurrence probability is bound within the interval [0,1].

A3 Cubic excess-over-threshold damage function [K]

Klawa and Ulbrich (2003) developed a simple storm damage function that was
subsequently refined for regional application and calibrated to GDV data (Donat et al.,15

2011a, b). At the heart of the damage function is a cubed power law term as a proxy
for storm damage. The damage function

LK(v) =

K1

(
v
v98

−1
)3

+K2 if v ≥ v
98

0 if v < v
98

(A9)

is calibrated against loss data via linear regression, where constants K1 and K2 are20

the regression coefficients.
Keeping in mind the high dynamic range of loss claims with few dominating extreme

losses, the linear regression implicitly puts a strong emphasis on extreme losses
ensuring that these are closely matched (cf. Fig. 2).
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The shape of the damage function is determined by the power law term, which is
influenced only by the 98th wind percentile. We chose to determine the 98th percentile
from the same training sample as used for calibration of the remaining parameters.

The value of this threshold is of particular interest, as it controls the shape and with
it the steepness of the damage function. To clarify this statement, we relate the cubed5

power law term of the damage function with a tangent based on a simple wind power
law without threshold. For every wind speed v , the tangency condition requires equality
of the function values

c1

(
v
v98

−1
)3

=
(

v
c2

)γ
(A10)

10

and equality of the first derivatives

3c1

v98

(
v
v98

−1
)2

=
γ

cγ
2

vγ−1. (A11)

Solving Eqs. (A10) and (A11) for the exponent γ yields the simple relationship

γ = 3
v
v98

(
v
v98

−1
)−1

≡
3η
η−1

.

(A12)15

Equation (A12) shows that the local steepness of the cubed excess-over-threshold
term depends on the ratio η = v/v98 of the wind speed to its 98th percentile. For the
employed DWD data, the average ratio over all districts of the maximum measured
wind speed to the 98th percentile is η̄max ≈ 1.50, implying that for extreme losses20

the damage curve increases approximately as a power law with exponent γ ≈ 9.0.
Repeating the calculation for ERA Interim data, we estimated η̄max ≈ 1.41 and a local
power law exponent γ ≈ 10.3.
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Hence, the steepness of the model is dependent on the wind source, which may have
a potential impact on the portability of the damage function. Additionally, the high local
exponents around 10 indicate a similarity with other models, e.g. Prahl et al. (2012)
report exponents of a similar magnitude.

In physical terms, the two regression coefficients K1 and K2 are interpreted,5

respectively, as a scaling constant and a base loss for losses occurring at winds
beneath the threshold. As such, K2 must be constrained to be strictly non-negative.

Finally, Donat et al. (2011a) perform the regression against annual loss aggregates,
while Donat et al. (2011b) demonstrate calibration against a selected sample of the
34 most loss-intensive storm passages. We find that the former calibration method10

produces better results. However, for reference, results from both calibration methods
are given in the Supplement.

A4 Probabilistic claim-based damage function [H]

Heneka et al. (2006) provide a theoretical framework for the modelling of storm loss.
Making some simple assumptions for basic terms, their model was applied first to15

the federal state of Baden-Württemberg and subsequently to Germany (Heneka and
Hofherr, 2011). Maintaining the key assumptions made by Heneka et al. (2006) as far
as possible, the intercomparison was based on the following considerations for model
design and calibration.

The fundamental concept of model H is the idea that buildings sustain damage only20

above a critical wind threshold vc. The damage sustained by individual buildings is
hence dependent on the specific value of the critical threshold and is formalized by
a microscale damage relationship for the fractional damage g,

g(v ,vc) =


0 , vc > v(
v−vc
H1

)2
, vc ≤ v ≤ (vc +H1)

1 , v > (vc +H1) ,

(A13)

25
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reaching complete destruction at a wind increase of H1 above the critical threshold.
For a portfolio of buildings, each with individual critical threshold, a specific density

distribution for vc may be assumed or otherwise estimated. For simplicity, Heneka et al.
(2006) idealized the density distribution of vc by the density of the normal distribution
f (vc,µc,H2), with mean µc and standard deviation H2. It follows that the claim ratio5

CH(v), i.e. the relative share of affected buildings, is given by the integral

CH(v) =

v∫
−∞

f (vc,µc,H2)dvc. (A14)

The loss ratio LH(v) is then obtained by solving the convolution integral

LH(v) =

v∫
−∞

g(v ,vc)f (vc,µc,H2)dvc, (A15)10

combining the density distribution of vc with the microscale damage function g(v ,vc).
Finally, uncertainty is introduced by assuming a Gaussian distribution f (µc,H4,H3)

for the mean critical wind speed µc, with mean H4 and standard deviation H3. Putting
all components together, we obtain an expression for the expected value of the loss15

ratio

E[LH] =

1∫
0

Lf (µ(L),H4,H3)
dµ(L)

dL
dL, (A16)

where we define µc = µ(L) as the inverse function of Eq. (A15) with respect to µc.
For calibration, Heneka et al. (2006) used least-squares fitting of claims and loss20

data that was pooled for the entire state of Baden-Württemberg. However, fitting the
damage function to individual districts, it was found that least-squares curve fitting was
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yielding poor results due to frequent overfitting to the few number of “outlying” extreme
events and the generally high dynamic range of the data. Furthermore, the model was
developed on strong winds and could not deal with the noise present in the GDV data
at low wind speeds.

For the work in hand, these problems were solved via a three-step fitting procedure.5

In order to exclude the effect of noise, data below the 95th wind percentile were
discarded during the fitting procedure.

In the first step, Eq. (A14) was fitted to claims data. To overcome the problem of the
high dynamic range, claims data were logarithmically transformed. To counteract the
downside of the transformation, namely the increased weight of the abundant small10

damages as compared to the few extremes, the data was binned into 10 equally
spaced bins, each containing a minimum of 5 data points. Using the method of least
squares the curve was fitted to the mean values of each bin. In this step, we made the
implicit assumption of a multiplicative error term, relating to a symmetric distribution
around the mean of the log-transformed claims data (i.e. the geometric mean of the15

absolute numbers). This assumption is backed by actuarial practice for describing
insurance damage claim distributions by log-symmetric distribution such as the log-
normal distribution (Lawrence, 1988).

In the second step, the above described fitting procedure is used to calibrate
Eq. (A15) to the loss ratio data.20

Thirdly, the parameters of the normal distribution describing by the random
fluctuation of µc are determined via log-likelihood optimization based on loss data at
full detail.

Due to the strong deviation from the original least-squares fitting employed by
Heneka et al. (2006), it was necessary to validate the parameters obtained from the25

GDV dataset. For this purpose, we pooled the GDV data for all districts in the state
of Baden-Württemberg and compared the obtained model parameters against those
values published by Heneka and Ruck (2008). The results presented in Table 6 show
good agreement of the individual parameters across the different sources. As the wind
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sources are not directly comparable, the parameters shown in brackets were rescaled
according to H4. Regarding these values, only H2, which represents the wind range
from beginning to total destruction, shows a significant difference of approximately
−15% as compared to the original values.

While we report only those results that relate to the best performing model setup,5

results from applying the Baden-Württemberg calibration to entire Germany (similarly
to Heneka and Hofherr, 2011) are included in the Supplement for special interest.

The Supplement related to this article is available online at
doi:10.5194/nhessd-2-5835-2014-supplement.
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Table 1. The three loss classes defined for the winter half-year.

Loss class Description No. Quantiles of daily losses Loss share

I Extreme 6 0.997–1.000 54.9 %
II Large 34 0.980–0.997 23.4 %
III Moderate 160 0.900–0.980 15.0 %
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Table 2. Spatial averages of the coefficient of variation (RMSE) for each model. For ease of
comparison, values are sorted in ascending order. The respective model is indicated by the
color code. The spatial extent is defined by the four geographic regions (north, east, south,
west) depicted in the map inset.

Table 2. Spatial averages of the coefficient of variation (RMSE) for each model. For ease of comparison, values

are sorted in ascending order. The respective model is indicated by the color code. The spatial extent is defined

by the four geographic regions (north, east, south, west) depicted in the map inset.

North East South West All

D
W

D

231 342 436 228 331

248 384 580 255 385

266 403 911 290 508

290 552 997 352 578

E
R

A
In

t.

356 327 417 286 376

401 333 469 299 387

515 342 738 305 458

842 580 745 527 665

Model color code

X H P K

N

W
E

S

Table 3. Results from a binomial test for prediction accuracy of the different models based on daily loss

estimates calculated from DWD wind data. The model of each column is tested against each row of competing

models and across loss classes (as defined in Tab. 1). Bold results indicate superiority of the tested model with

statistical significance greater than 95%.

Loss

class

Test

against

Share of closest loss estimates in % (p-value)

X P K H

I

X – 83 (0.02) 67 (0.11) 50 (0.34)

P 17 (0.89) – 17 (0.89) 67 (0.11)

K 33 (0.66) 83 (0.02) – 50 (0.34)

H 50 (0.34) 33 (0.66) 50 (0.34) –

II

X – 68 (0.01) 24 (1.00) 62 (0.06)

P 32 (0.97) – 24 (1.00) 35 (0.94)

K 76 (0.00) 76 (0.00) – 76 (0.00)

H 38 (0.89) 65 (0.03) 24 (1.00) –

III

X – 53 (0.24) 25 (1.00) 35 (1.00)

P 48 (0.71) – 35 (1.00) 47 (0.76)

K 75 (0.00) 65 (0.00) – 71 (0.00)

H 65 (0.00) 53 (0.19) 29 (1.00) –

36
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Table 3. Results from a binomial test for prediction accuracy of the different models based
on daily loss estimates calculated from DWD wind data. The model of each column is tested
against each row of competing models and across loss classes (as defined in Table 1). Bold
results indicate superiority of the tested model with statistical significance greater than 95 %.

Loss class Test against Share of closest loss estimates in % (p value)
X P K H

I

X – 83 (0.02) 67 (0.11) 50 (0.34)
P 17 (0.89) – 17 (0.89) 67 (0.11)
K 33 (0.66) 83 (0.02) – 50 (0.34)
H 50 (0.34) 33 (0.66) 50 (0.34) –

II

X – 68 (0.01) 24 (1.00) 62 (0.06)
P 32 (0.97) – 24 (1.00) 35 (0.94)
K 76 (0.00) 76 (0.00) – 76 (0.00)
H 38 (0.89) 65 (0.03) 24 (1.00) –

III

X – 53 (0.24) 25 (1.00) 35 (1.00)
P 48 (0.71) – 35 (1.00) 47 (0.76)
K 75 (0.00) 65 (0.00) – 71 (0.00)
H 65 (0.00) 53 (0.19) 29 (1.00) –
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Table 4. Estimates of the mean absolute percentage error (MAPE) and mean percentage error
(MPE) for each of the competing models and across loss classes (as defined in Table 1) based
on DWD wind data. Best values for each class are emphasized in bold.

Loss Model MAPE (MPE) both in %
class X P K H

I 56 (49) 17 (−5) 27 (–1) 26 (11)
II 67 (27) 51 (27) 79 (33) 55 (16)
III 75 (6) 97 (43) 85 (−51) 75 (–6)
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Table 5. Dates of the six most severe winter storms during the period 1997–2007 (Donat et al.,
2011b).

Storm Start date End date

Anatol 2 Dec 1999 5 Dec 1999
Lothar 24 Dec 1999 27 Dec 1999
Jennifer 25 Jan 2002 30 Jan 2002
Anna 25 Feb 2002 1 Mar 2002
Jeanett 26 Oct 2002 29 Oct 2002
Kyrill 17 Jan 2007 19 Jan 2007
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Table 6. Comparison of the parameter values obtained for the federal state of Baden-
Württemberg with those published by Heneka and Ruck (2008). Accordingly, relative wind
speed was normalised to the 98th wind percentile. For easier comparison, the values in
brackets are rescaled to match the published value of H4.

Source H4 H3 H2 H1

A
bs

ol
ut

e
w

in
d Heneka and Ruck (2008) 50.5 2.5 7.8 70.0

DWD 42.3 2.0 6.2 49.7
(50.5) (2.4) (7.4) (59.4)

ERA Interim 41.6 1.8 5.6 45.5
(50.5) (2.2) (6.8) (55.3)

R
el

at
iv

e
w

in
d Heneka and Ruck (2008) 1.31 0.04 0.20 1.85

DWD 2.28 0.09 0.32 2.67
(1.31) (0.05) (0.19) (1.54)

ERA Interim 2.17 0.10 0.29 2.43
(1.31) (0.06) (0.18) (1.47)
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Figure 1. Empirical cumulative distribution function of loss days in Germany during the winter
half-year. The observations comprise 2000 loss days, which exhibit a steep increase of loss
at the upper end of their distribution. The shaded area indicates the days within the upper 0.1
quantile, subdivided into the three loss classes defined in Table 1. The top scale shows the
share of total loss that is accumulated for all losses smaller than or equal to a specific loss
ratio.
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Figure 2. Example of model predictions for a single district obtained from DWD data for the
training period 1997–2006 and set in contrast to year 2007 empirical data, all limited to the
winter-half year. The four left-hand panels show the expectation values of the loss ratio versus
wind speed on a log-log scale, circles denote observed losses during 2007. For probabilistic
models P and H, the median and 95 % confidence bounds are given. Additionally, we show for
model P the median and confidence bounds of the curve fit to actual loss days and for model H
an analogous but implied curve. The rightmost panels show the fitted and implied occurrence
rate for models P and H, respectively. Year 2007 observed rates are indictaed by blue bars. For
model P, training data (shaded bars) is displayed as reference.
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Figure 3. Coefficients of variation of the root mean squared error per district, evaluated for the
entire 11 year modelling period. Depicted is the CVRMSE based on the minimum value found for
any of the four models. Panels (a) and (b) show results obtained from DWD and ERA Interim
wind gust data, respectively.
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Figure 4. On country level, the predicted daily loss ratio (expected value) for each model is
plotted versus observed losses using a double-logarithmic scale. Left-hand panel (a) shows
results based on DWD wind data, ERA Interim wind data is used in panel (b). The colors
indicate the 2-D histogram count. The black circles represent (linear) averages of 100 losses
each, binned by descending order of predicted loss. Black dashed lines have unity slope and
indicate equality of observation and prediction.
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Figure 5. Model estimates for the 6 most severe winter storms in the period 1997–2007 based
on DWD data. Red circles indicate the expected value obtained from models trained on the full
10 year data, while the red dots represent expected values from the 9 year resampled (jackknife)
training periods. For models P and H, the black contours represent the probability distribution
of predicted storm loss for the 10 year training data. Empirical insured loss is marked by green
dashed lines.
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Figure 6. Panel (a) shows the overall DWD wind dependence of the loss and claim ratio for all
buildings and the loss ratio only of affected (i.e. damaged) buildings. Shown on a log-log scale,
the solid curves represent expected values across all available districts and loss days, while the
shaded areas indicate an 80 % uncertainty interval for observations. The dashed lines provide
guides to the eye representing power laws with exponents 3 and 10. The upper scale indicates
the respective wind quantiles. Panel (b) shows schematically the decomposition of the loss
ratio of a cubic loss-wind relationship subject to a minimum loss threshold. With a lognormal
uncertainty distribution, indicated by the shaded 80 % uncertainty bounds, a picture similar to
Panel (a) arises.
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