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Abstract

This paper is the second part in a series of two articles, which aims at presenting a
data-driven modeling strategy for forecasting wildfire spread scenarios based on the
assimilation of observed fire front location and on the sequential correction of model
parameters or model state. This model relies on an estimation of the local rate of fire5

spread (ROS) as a function of environmental conditions based on Rothermel’s ROS
formulation, in order to propagate the fire front with a level-set-based front-tracking
simulator. In Part I, a data assimilation system based on an ensemble Kalman filter
(EnKF) was implemented to provide a spatially-uniform correction of biomass fuel and
wind parameters and thereby, produce an improved forecast of the wildfire behavior10

(addressing uncertainties in the input parameters of the ROS model only). In Part II,
the objective of the EnKF algorithm is to sequentially update the two-dimensional co-
ordinates of the markers along the discretized fire front, in order to provide a spatially-
distributed correction of the fire front location and thereby, a more reliable initial con-
dition for further model time-integration (addressing all sources of uncertainties in the15

ROS model). The resulting prototype data-driven wildfire spread simulator is first eval-
uated in a series of verification tests using synthetically-generated observations; tests
include representative cases with spatially-varying biomass properties and temporally-
varying wind conditions. In order to properly account for uncertainties during the EnKF
update step and to accurately represent error correlations along the fireline, it is shown20

that members of the EnKF ensemble must be generated through variations in esti-
mates of the fire initial location as well as through variations in the parameters of the
ROS model. The performance of the prototype simulator based on state estimation or
parameter estimation is then evaluated by comparison with data taken from a controlled
grassland fire experiment. Results indicate that data-driven simulations are capable of25

correcting inaccurate predictions of the fire front location and of subsequently providing
an optimized forecast of the wildfire behavior at future lead-times. The complementary
benefits of both parameter estimation and state estimation approaches, in terms of
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analysis and forecast performance, are also emphasized. In particular, it is found that
the size of the assimilation window must be specified adequately with the persistence
of the model initial condition and/or with the temporal and spatial variability of the envi-
ronmental conditions in order to track sudden changes in wildfire behavior.

1 Introduction5

Wildfires generally feature a front-like geometry and may be described at regional
scales (i.e., at scales ranging from a few tens of meters up to several kilometers) as
a thin flame zone that self-propagates normal to itself into unburnt vegetation. The
local propagation speed is commonly referred to as the rate of spread (ROS) and is
defined as the speed of the flame with respect to a fixed observer. Thus, the ROS can10

be regarded as the displacement rate of the flame surface separating the burning zone
and the unburnt vegetation; it directly results from multi-scale multi-physics interactions
between biomass pyrolysis, combustion and flow dynamics, radiation and convection
heat transfer, as well as atmospheric dynamics and chemistry.

For early warning of potential wildfire danger, operational systems have been de-15

signed worldwide by national civil defense authorities to identify geographical areas
that are subject to possibly extreme wildfire behavior. Fire danger is a generic term
referring to the assessment of both constant and variable fire precursor factors af-
fecting the ignition, spread, intensity and suppression capability of wildfires (Chandler
et al., 1983). Current operational fire danger rating systems adopt a regional-scale20

viewpoint based on empirical ROS modeling approaches and integrate remote sensing
data (i.e., meteorological, terrain topography and biomass fuel information) into a re-
duced set of macroscopic qualitative and/or numerical indices such as the Fire Weather
Index (FWI) in Canada and in Europe (Van Wagner, 1987; Hirsch, 1996), the Forest
Fire Danger Index (FFDI) in Australia (Noble et al., 1980; Dowdy et al., 2009) or the25

National Fire Danger Rating System (NFDRS) in the USA (Burgan, 1988). These fire
danger rating systems mainly rely on meteorological information. Thus, the evaluation
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of fire danger could be improved through a more detailed wildfire spread modeling and
a more accurate forecast of the potential ROS, accounting for the spatial and temporal
variability of environmental conditions.

A wide range of wildfire spread modeling approaches has emerged over the last
decade to describe the physical processes at flame scale as well as the interactions5

between the fire and the atmosphere. On the one hand, physics-based computational
fluid dynamics (CFD) modeling approaches provide detailed numerical simulations of
the combustion-related processes that control the fire spread. Due to the high computa-
tional cost of flame-scale CFD and due to the lack of knowledge in environmental con-
ditions, the use of CFD-based detailed modeling approaches such as FIRETEC (Linn10

et al., 2002), WFDS (Mell et al., 2007) or AVBP-PRISSMA-PYROWO (Rochoux,
2014) is currently restricted to research projects and is not compatible with opera-
tional applications. On the other hand, regional-scale fire spread models such as FAR-
SITE (Finney, 1998), FOREFIRE (Filippi et al., 2009) or PHOENIX RapidFire (Chong
et al., 2013) use a semi-empirical model that treats the ROS as a parametric function of15

biomass fuel properties, terrain topography and meteorological conditions; for instance,
FARSITE uses a model due to Rothermel (1972); a detailed review of empirical and
semi-empirical ROS models is provided in Sullivan (2009). One recent strategy to bet-
ter account for time-varying weather conditions at regional scales consists in coupling
a front-tracking simulator for surface fires with a meso-scale CFD atmospheric model20

for fire-induced atmospheric dynamics, see for instance WRF-Fire (Kochanski et al.,
2013) or FOREFIRE-MESONH (Filippi et al., 2013). Still, many uncertainties remain
due to simplifications in the description of the physics and to knowledge gaps in the
description of environmental conditions and yet, errors in the properties of the biomass
fuel or in the flame/wind interactions induce strong changes in the heat transfer from the25

flame to the vegetation and in the biomass fuel pyrolysis for instance. Thus, modeling
errors as well as errors in the boundary conditions (e.g., biomass fuel properties, me-
teorological conditions and terrain topography) and initial conditions inevitably translate
into errors in the simulated and forecast positions of the fire front.
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For the wildfire spread simulation to be predictive and compatible with operational
applications, the uncertainties in the ROS semi-empirical model must be quantified
and reduced through a data assimilation (DA) methodology. The uncertainties inherent
in wildfire spread modeling suggest the use of ensemble-based DA. Ensemble fore-
casts stochastically characterize the non-linear response of models to variations in the5

input data (Finney et al., 2011). Furthermore, DA integrates available fire sensor ob-
servations into a computer modeling tool to correct and optimize the model outputs
and to thereby, produce improved forecast capabilities. Since sharp variations of the
wind direction can lead to significant spatial deformations of the propagating fireline
and since a canyon terrain can lead to eruptive fire behavior with strong acceleration10

in the steepest upslope directions, a spatially-distributed correction along the fireline is
required to be able to track the time-evolving location of the fire front.

This study is an extension of our previous work presented in Rochoux et al. (2012,
2013a, b, 2014), in which a prototype data-driven wildfire simulator was developed.
The initial prototype featured the following main components: a level-set-based fire15

propagation solver combined with a model description of the local ROS proposed by
Rothermel (1972); an assumed series of airborne or possibly spaceborne observa-
tions of the fire front location; and a DA algorithm relying on parameter estimation.
The DA prototype based on an ensemble Kalman filter (EnKF) was successfully eval-
uated in the context of a controlled grassland fire experiment (Paugam et al., 2013)20

when applied for estimating the input parameters used in the Rothermel-based ROS
model (e.g., the fuel moisture content, the fuel particle surface-to-volume ratio, the
wind direction and magnitude), see for instance Rochoux et al. (2014). It was found
that data-driven simulations are capable of correcting inaccurate predictions of the fire
front location and of providing an optimized forecast of the wildfire behavior; the quality25

of the forecast prediction capability being dependent on the temporal variability of the
errors in the ROS model parameters. While these studies confirmed the potential of
a DA strategy for improved wildfire spread predictions, the choice of a spatially-uniform
parameter estimation approach is considered questionable. While well-suited for statis-
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tically spatially-homogeneous problems (i.e., problems in which corrections to the pa-
rameters of the ROS model can be applied uniformly), this choice is no longer adapted
to more general wildfire problems in which biomass fuel, topographical and possibly
meteorological properties exhibit arbitrary spatial variations. In order to provide a spa-
tial correction along the fireline, one could foresee the extension to the estimation of5

spatially-distributed biomass, topographical, and wind ROS model parameters. As this
solution would be computationally prohibitive in the context of real-time forecast of wild-
fire behavior and inconsistent with the actual knowledge of environmental conditions,
an alternative solution is proposed here.

The objective of the present study is to remove some of the main limitations in the ini-10

tial design of our prototype data-driven wildfire simulator with an extension to the case
of spatially-varying biomass fuel and meteorological conditions (the effect of terrain to-
pography is outside the scope of the present study and a flat terrain is assumed). This
extension is based on a change from a parameter estimation (PE) approach to a state
estimation (SE) approach that consists in sequentially updating the model state using15

complete or incomplete observations of the fire front (see Fig. 1). This correction of
the fire front location at the observation time provides a more reliable initial condition
to the fire spread model, and allows to produce ensemble-based forecasts of the fire
front location that are more consistent with the actual fire behavior. In contrast to the
PE approach that only addresses uncertainties in the ROS model parameters, the SE20

approach accounts for multiple sources of uncertainties that are difficult to distinguish
but that contribute to the uncertainties in the fire front location, i.e., uncertainties in the
ROS model parameters but also in the ROS parameterization itself noted f in Eq. (1):

ROS ≡ f (wind conditions, biomass fuel properties). (1)
25

The uncertainties in the function f are partly due to simplifications in the physics of
propagating fires when building the relation between ROS and environmental condi-
tions (e.g., heat transfer to biomass fuels, steady-state assumption, non-local effects).
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This change to a SE approach was inspired in part by previous studies by Mandel
and Beezley (2007) and Mandel et al. (2008, 2011) in which the control variable is the
temperature state variable and is characterized by a bimodal probability density func-
tion (PDF) in the fire region (i.e., burning state or non-burning state). In order to satisfy
the Gaussian assumption in the EnKF, the idea of morphing from image processing
was introduced (Mandel and Beezley, 2007); however, this choice led to technical diffi-5

culties in the EnKF implementation. In the present study, the fire front is represented as
a finite number of front markers, which are equally-spaced along the fireline that is pro-
jected onto a horizontal plane. Thus, the control vector includes the two-dimensional
coordinates of each simulated front marker and is characterized by an approximate
Gaussian PDF, which allows for a straightforward application of the EnKF. To obtain an10

efficient correction on the location of these front markers from a local observation, it is
of primary importance to estimate reliable error correlations in the forecast error covari-
ance matrix. Reliable means that these error correlations must be consistent with the
actual spatial correlations of the errors in the fire spread model. For this purpose, an
ensemble that accurately accounts for all sources of uncertainties must be generated15

during the EnKF prediction step.
The paper is organized as follows. The fire front observations and the wildfire spread

model (called FIREFLY) are presented in Sect. 2. The EnKF algorithm is presented
in Sect. 3. The performance of the resulting data-driven wildfire simulator is evaluated
using first, academic tests in which observations are synthetically-generated in Sect. 3;20

the focus is on the impact of ensemble generation on the representation of error corre-
lations and on the resulting shape of the corrected fireline. The simulator performance
is evaluated using second, a validation test in which observations are taken from a con-
trolled grassland fire experiment in Sect. 4; a comparative study of the SE approach
with the PE approach is also provided to highlight the benefits and drawbacks of each25

approach, in terms of update and forecast performances.
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2 Information on wildfires at regional-scales: observations and forward model

2.1 Observations of the fire front location

We assume in the present study that observations of the fire front location are avail-
able and that these observations can be made at different relevant times with a low
measurement error. There is a growing body of literature on recent technological devel-5

opments for geo-referenced wildfire front tracking (Riggan and Robert, 2009; Wooster
et al., 2013), see Rochoux et al. (2014) for a comprehensive review.

In the following, the observation vector noted y
o
t contains the two-dimensional coor-

dinates (xo
i ,yo

i ) of the front markers at time t, with i varying between 1 and No
fr. The

coordinates of the fire front markers are assumed to have independent Gaussian-like10

random errors ε
o with zero mean and with standard deviation (STD) noted σo. Two

types of experiments are presented in this work: observation system simulation exper-
iments (OSSE), in which observations are synthetically-generated using a reference
(true) solution of the FIREFLY model that is modified by random observation errors ε

o

(see Sect. 3); and a controlled grassland fire experiment, in which the observations are15

reconstructed from measured temperature maps and using a definition of the fire front
as the 600 K iso-temperature contour (see Sect. 4).

2.2 The fire spread model (the forward model)

The fire spread model FIREFLY tracks the time-evolving location of the fire front using
the following three components: (1) the Rothermel-based ROS model:20

Γ ≡ Γ
(
δv,Mv,Mv, ext,Σv,m′′

v ,ρp,∆hc,uw
)

, (2)

where the nomenclature for the input parameters are summarized in Table 1; (2) a level-
set-based solver for the fire front propagation equation that computes the spatio-
temporal variations of the progress variable c introduced as a flame marker with c = 025

in the unburnt vegetation, c = 1 in the burnt vegetation, and where the flame front is
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identified as the isoline cfr = 0.5; (3) an iso-contour algorithm for the reconstruction of
the fire front that discretizes the flame contour cfr = 0.5 with Nfr markers, (xi , yi ) repre-
senting the two-dimensional coordinates of the i th marker. Note that the wind velocity
magnitude uw is defined by the projection of the wind velocity vector (defined by its
magnitude, u∗

w [m s−1], and direction angle, α∗
w [◦]) along the (local) normal direction to

the fire front, see Rochoux et al. (2014) for further details.5

3 Data assimilation algorithm: specificities of the state estimation approach

3.1 Formulation of the ensemble Kalman filter

We present here the ensemble Kalman filter (EnKF) algorithm applied, in the context
of SE, for one assimilation cycle between time (t−1) and time t.

3.1.1 Control space and observation space10

The DA algorithm uses a discretization of both the simulated and observed fire fronts,
called SFF and OFF, respectively. The discretization of SFF is a set of Nfr markers; the
control vector xt, also called the state vector, contains the two-dimensional coordinates
of the Nfr front markers at time t:

xt = [(x1,y1), (x2,y2) . . . , (xNfr
,yNfr

)],15

such that the size of xt is n = 2Nfr.
Similarly, the discretization of OFF is a set of No

fr markers; the observation vector yo
t

of size 2No
fr is defined as:

yo
t =

[(
xo

1,yo
1

)
,
(
xo

2,yo
2

)
, . . . ,

(
xo
No

fr

,yo
No

fr

)]
.20
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Observations of the fire front location are likely to be provided with a coarse resolution;
in addition, observations may be incomplete and cover only a fraction of the fire front
perimeter. Thus, we may expect No

fr to be much lower than Nfr. In the following, we
assume for simplicity that No

fr = (Nfr/r), where r is an integer taking values (much)
larger than 1.

3.1.2 Observation operator

In order to pair a subset of No
fr markers along SFF with the No

fr markers along OFF,
an observation operator Gt is introduced. Within the framework of SE, Gt is reduced5

to a selection operator Ht taking 1 out of every r = (Nfr/N
o
fr) markers along SFF at the

observation time t. The model counterparts of the observation quantities, noted yt and
of size 2No

fr, read:

yt = Gt(xt) =Ht(xt), (3)
10

associating each marker of OFF with its closest neighbor along SFF.

3.1.3 Sequential estimation

The EnKF algorithm is sequentially applied; each assimilation cycle [t−1,t] consists in
two successive steps for each member of the ensemble indexed by the exponent k as
illustrated in Fig. 2:15

1. a prediction step (forecast), in which the system is evolved from time (t−1)
to time t (t being the next observation time) through an integration of FIREFLY
to forecast the fire front location xt given some uncertainty ranges in the ROS
model parameters and in the fire ignition location (xign,yign). This step leads to an
ensemble of Ne fire front positions at time t designated as:20

xf
t =

[
x

f,(1)
t , · · · ,xf,(k)

t , · · · ,xf,(Ne)
t

]
,
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used to stochastically describe the error covariance matrix Pf
t ∈R2Nfr×2Nfr that is

expressed as:

Pf
t =

Ne∑
k=1

(
x

f,(k)
t −xf

t

) (
x

f,(k)
t −xf

t

)T

Ne −1
, (4)

where the overline denotes the mean value over the ensemble. The structure of
Pf
t is as follows:5

– The first diagonal block (of size Nfr ×Nfr) represents the error covariances of
the marker x-coordinates (univariate error covariances): each diagonal term
represents the error variance of one marker x-coordinate, while off-diagonal
terms represent the covariances of the error in one marker x-coordinate with
the errors in the other marker x-coordinates;10

– The second diagonal block (of size Nfr×Nfr) represents the error covariances
of the y-coordinates (univariate error covariances): each diagonal term repre-
sents the error variance of one marker y-coordinate, while off-diagonal terms
represent the covariances of the error in one marker y-coordinate with the
errors in the other marker y-coordinates;15

– Cross-diagonal blocks (of size Nfr ×Nfr) represent the (symmetric) multi-
variate error crossed-covariances between the x- and y-coordinates of the
Nfr simulated fire front markers (multi-variate error covariances).

2. an update step (analysis), in which new observations y
o
t are considered at the

analysis time t and in which the kth ensemble member is updated consistently20
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with the observations, based on the following EnKF update equation:

x
a,(k)
t = x

f,(k)
t +Ke

t

(
yo
t + ξo,(k) −Ht

(
x

f,(k)
t

))
, (5)

Ke
t = Pf

tH
T
t

(
HtP

f
tH

T
t +R

)−1
, (6)

where, as for the PE approach (see Rochoux et al., 2014), the innovation vector25

d
(k)
t is simply defined as the vector formed by the directed distances between the

paired SFF-OFF markers for the kth ensemble member:

d
(k)
t = yo

t + ξo,(k) −yf
t = yo

t + ξo,(k) −Ht

(
x

f,(k)
t

)
, (7)

with an additional noise ξ
o,(k) added to the observation vector to avoid ensemble

collapse (Burgers et al., 1998). The EnKF update in Eqs. (5) and (6) provides
corrected positions x

a
t for the Nfr simulated markers along the fireline at time t,5

but there is no feedback on the ROS model parameters and/or on the fire initial
location used to generate variability in the ensemble of forecasts. Note that in
the context of SE, the selection operator Ht is straightforward to compute, mean-
ing that a selection of lines and columns of Pf

t is sufficient to estimate the term
(HtP

f
tH

T
t ). Note also that in the present study as in Rochoux et al. (2014), ob-10

servation errors are assumed uncorrelated, i.e., the observation error covariance
matrix R is treated as a diagonal matrix, in which each diagonal term is the error
variance (σo)2 associated with the x- or y-coordinate of the No

fr markers along
OFF.

3.2 Ensemble generation15

The generation of the forecast ensemble is of primary importance in the performance
of the EnKF forecast/update steps since it directly impacts how uncertainties are repre-
sented in the forecast error covariance matrix Pf

t. To allow for reliable error covariance
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modeling, all possible sources of uncertainties must be accounted for during this fore-
cast step.20

Different techniques can be considered to generate the ensemble of forecasts. If
each fire front marker is perturbed separately (meaning that the error of one marker is
uncorrelated to the errors of its neighbors along the fireline), the resulting fire front does
not exhibit coherent features. This ensemble generation is therefore conflicting with
the physical processes underlying wildfire spread. An alternative and more physically-25

consistent strategy is to generate an ensemble of simulated fire fronts by (1) randomly
perturbing the input parameters of the Rothermel-based ROS model (e.g., wind mag-
nitude u∗

w and direction angle α∗
w, fuel moisture content Mv) as well as the fire initial

location (xign, yign), and by (2) integrating FIREFLY using the PALM-PARASOL func-

tionality in Open-PALM1 (Fouilloux et al., 1999; Lagarde et al., 2001; Buis et al., 2006)
for each set of parameters as in the PE approach, see Rochoux et al. (2014) for de-5

tails on PALM-PARASOL. This leads to an ensemble of Ne fire front locations at time t
designated as x

f
t and used to describe the forecast error covariance matrix Pf

t.
A series of OSSE tests cases is presented here to highlight the key aspects of the

proposed SE approach. The focus is on the impact of ensemble generation on the
stochastic estimation of the spatial correlations of the marker location errors in Pf

t and10

the resulting correction of the fireline. Observation errors are assumed to be small
with respect to the fireline perimeter (with the observation error STD taken equal to
σo = 1m); the SE-based EnKF performance is evaluated by its ability to track the time-
evolving location of the observed fire front.

3.2.1 Isotropic case15

An isotropic case corresponding to a 200m×200m domain with uniform biomass fuel
properties and no wind is considered first. The ROS Γ is constant, uniform and taken
equal to 0.2 m s−1. The true fire is ignited at (xign, yign) = (100m, 100m) as a circular

1http://www.cerfacs.fr/globc/PALM_WEB/
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front with a radius of 5 m. Using a 1 m computational grid resolution along the x- and
y-directions and a 0.5 s temporal resolution, FIREFLY is first integrated over the time20

window [0; 200 s] in order to produce at the analysis time (chosen to be t = 200s) the
true location of the fire front. A forecast ensemble of Ne = 25 members is then pro-
duced based on spatial variations of the fire initial location (xign, yign) around a mean
value (97 m, 103 m) and with an error STD along both x- and y-directions taken equal
to σf = 10m, see Fig. 3a. In this test, uncertainties in the forecast ensemble are only25

due to errors in the initial location of the fire front. The observed fire front is described
by a stand-alone marker (No

fr = 1), while simulated fire fronts are discretized using
Nfr = 100 markers (i.e., r = Nfr/N

o
fr = 100).

Figure 3a presents a comparison between the true and forecast fire front positions
at time t = 200s (i.e., the observation time). This figure shows that due to uncertainties
in the initial location of the fire front at initial time (0s), the predicted fire front locations
are scattered over a large area at observation time. Since in this test, uncertainties in
the distribution of the biomass fuel properties are not accounted for in the ensemble5

generation, the propagation of the fire front is isotropic (simulated fire fronts remain
circular).

Figure 4 presents the spatial correlation of the error in the location of the marker
indexed by m in Fig. 3a. Note that the error correlation associated with the marker m
represents how the error in the location of this simulated marker is correlated to the10

errors in the location of its neighbors along the fireline (this, in order to characterize the
fire front as a coherent feature given by the FIREFLY forward model). Figure 4 shows
that univariate correlations are almost equal to one, while multi-variate correlations are
nearly zero. As a consequence, errors in the position of the Nfr simulated front markers
are highly correlated within the ensemble due to the isotropic propagation. As a result,15

the DA algorithm translates the information observed at one marker into a uniform
correction along the fireline.

Figure 3b presents the comparison between the true and analysis fire front positions
at the observation time t = 200s. The analysis ensemble corresponds here to the up-
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dated fire front locations that are produced through the EnKF update step. As expected,20

the analysis estimates of the fire front locations feature a much reduced scatter around
the true location of the fire front, and the EnKF correction is isotropic due to high error
correlations along the fireline (i.e., each analysis estimate within the ensemble is a cir-
cular front). With this uniform definition of the forecast ensemble, deforming the shape
of the fire front through the ensemble-based analysis is therefore impossible.25

3.2.2 Anisotropic case

To be able to stochastically represent more complex front shapes that are represen-
tative of all sources of uncertainties in the wildfire spread model and of their spatial
variability, it is of primary importance to consider non-uniform environmental conditions
when generating the ensemble of forecasts.

An anisotropic case of wildfire spread subject to spatially-varying vegetation proper-
ties and wind-aided propagation is now considered. An ensemble of Ne = 20 forecasts
is produced over the time window [0; 150 s], based on assumed uncertainties in the5

fire ignition location (xign, yign) at initial time (0 s) as well as in a subset of ROS model
parameters, specifically in the fuel layer depth δv, the fuel moisture content Mv, the fuel
particle surface-to-volume ratio Σv and the wind properties (magnitude u∗

w and direction
angle α∗

w). In addition, the fuel depth δv is assumed to be spatially-varying, taking dif-
ferent values in the four quadrants of the square-shaped 700m×700m computational10

domain. Thus, uncertainties in the forecast ensemble are due to variations in 10 pa-
rameters, whose mean and STD values are presented in Table 2. Simulated fire fronts
are discretized using Nfr = 100 markers; the impact of spatial error correlations on the
EnKF-based analysis estimates is studied here for varying number of observed front
markers No

fr.15

Figure 5a presents a comparison between the true and forecast fire front positions
at observation time t = 150s. Due to uncertainties in the ROS model parameters and
not only uncertainties in the fire initial location, the propagation is now anisotropic:
the forecast fire fronts are characterized by stronger irregularities and more complex
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shapes than results presented in Fig. 3a, due to the presence of wind and to the spatial20

variations in fuel depth. Figure 5b presents a similar comparison between the true
and analysis fire front positions at time t = 150s; the observed fire front is described
by No

fr = 20 uniformly-distributed markers (i.e., r = 5). As expected, the ensemble of
analyses features a much reduced scatter (in terms of front shapes) around the true
location of the fire front.25

While Fig. 5a–b shows that the direct observation of the fire front location can over-
come various uncertainties in the ROS model parameters, Fig. 5c illustrates that the
spatial distribution of the observations along the fireline has a significant impact on the
analysis. This figure considers a practically-relevant situation in which the observations
are limited to a certain section of the fireline (i.e., the informed section, possibly due to
the opacity of the thermal plume) and therefore, provide an incomplete picture. In this
situation, while the EnKF algorithm produces an analysis that is close to the true state in
the informed section, the benefits of DA are reduced in the non-informed sections. How-
ever, in spite of a reduced level of performance, the EnKF algorithm remains capable5

of a significant improved performance compared to a stand-alone forecast (in terms of
front shapes and locations). This improved performance is due to the spatial correlation
of the errors in the location of the simulated markers. Since the anisotropy of wildfire
spread is now represented by a wide range of uncertainties in the forecast ensemble,
the error in the location of one observed marker is correlated with the error in the loca-10

tion of its adjacent markers along the fireline as shown in Fig. 6 for the marker indexed
by m in Fig. 5a. Stated differently, the estimation problem translates the information
coming from one observation marker into a local correction restricted to the closest
neighbors only. The distance over which the observation marker affects the correction
of the simulated front marker locations is referred to as correlation length-scale (Daley,15

1991; Pannekoucke et al., 2013). This length-scale depends on the spatial variability
of the errors in the ensemble generation and on the consistency of these statistics with
the model errors statistics. For instance, Fig. 6 shows that the length-scale associated
with the univariate error correlations of the marker x-coordinate typically takes values
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on the order of 15 m on both sides of the considered simulated marker. This means20

that if this marker is assimilated, the correction of its location subsequently modifies
the shape of the fire front over a distance of 15 m on both sides of this marker. This fig-
ure also shows that the errors in the marker y-coordinates are anti-correlated on both
sides of the marker m: due to its particular location on the fireline (i.e., at the bound-
ary between the flank and the back side of the fire), variations in the wind conditions25

induce significant changes in the fire front shape in the vicinity of marker m (markers
can move from the flank to the back side of the fire or from the back side to the flank by
modification of the wind direction for instance). As a consequence, when several obser-
vations are available, a non-uniform correction is obtained and the DA algorithm is able
to change the shape of the analysis fronts and more easily match the observations.

Figure 7 examines the influence of the number of uniformly-distributed markers along
the observed fire front No

fr on the EnKF performance. This figure presents the root
mean square (RMS) distance between the true and the forecast fire front positions as
well as between the true and the analysis fire front positions as a function of No

fr. The5

figure shows that when No
fr is large (see Fig. 5b with No

fr = 20), the EnKF algorithm
successfully drives the analysis ensemble towards the true state; in contrast, when No

fr
is small, the EnKF algorithm has reduced effects and the analysis estimates remain
close to the forecast estimates. Stated differently, the performance of the DA algorithm
and its ability to capture the high-resolution features of wildfire spread depend strongly10

on the density of the observation network.
Furthermore, even though accounting for a wide range of uncertainties in the ROS

parameters provides a wide range of possible fire front shapes, sampling errors can
degrade the representation of the error statistics during the EnKF prediction step (if
the number of members Ne in the ensemble is not large enough) and thereby, the15

analysis solution. Figure 8 examines the impact of Ne on the EnKF performance, in
terms of the RMS distance between the true and forecast fire front positions as well
as between the true and analysis fire front positions. These results show that for the
present anisotropic case, Ne = 20 members are sufficient to obtain converged error
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statistics; below this threshold value, sampling noise induces significant errors in the20

representation of error covariances.

3.3 Sequential model state estimation

3.3.1 Principle and algorithm

To apply successive assimilations (i.e., perform regular EnKF updates), the ensemble
of analysis fire fronts must be used as initial conditions and evolved to future times.25

However, to restart the FIREFLY front-tracking simulator, a two-dimensional progress
variable field c is required (see Sect. 2.2). The field c(k) ≡ c(x,y ,t)(k) associated
with the kth ensemble member x

a,(k)
t (k varying between 1 and Ne) is therefore re-

constructed and used as initial condition for the next assimilation cycle [t,t+1]. This
reconstruction is performed through a binarization process, i.e., c(k) = 0 in the unburnt
vegetation and c(k) = 1 in the burnt area.5

For each member k in the ensemble, the reconstruction algorithm applied to each
mesh node (xN ,yN ) of the computational domain is as follows (see Fig. 9):

1. Pair the mesh node (xN ,yN ) with the closest simulated front marker noted (xA,yA)
(computation of the minimal distance to the fire front);

2. Determine the closest neighbor of (xA,yA) along the fireline noted (xB,yB);10

3. Compute the normal vector to the fireline (orthogonal to segment [AB]) passing
through the node (xN ,yN ), and determine their intersection noted (xO,yO) (by lin-
ear algebra);

4. Calculate the two-dimensional inner product between the vector
−−→
ON and the out-

ward normal vector to the front at node (xA,yA) noted
−→
nA: the sign of the inner15

product determines if the mesh node (xN ,yN ) is inside or outside the burnt area:
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– if the inner product (
−−→
ON ·−→nA) is positive, the mesh node (xN ,yN ) is outside the

burnt area;

– if (
−−→
ON · −→nA) is negative, the mesh node (xN ,yN ) is within the burnt area;

– if (
−−→
ON · −→nA) takes a zero value, the mesh node (xN ,yN ) is on the fireline.20

5. Determine the corresponding value of the progress variable c at mesh node
(xN ,yN ); a smoothing hyperbolic tangent function is applied when the mesh node
(xN ,yN ) is near the fire front.

The reconstructed progress variable field c(k) can be used to integrate FIREFLY over
the next forecast period [t;t+1]. A schematic of the sequential SE approach for the
kth ensemble member is presented in Fig. 10; the reconstruction procedure must be
performed for all members (Ne) in the ensemble.

3.3.2 Sequential assimilation for the anisotropic case5

Multiple assimilation cycles for the OSSE anisotropic case (presented in Sect. 3.2.2)
are now considered based on the previously-described multi-cycle algorithm. The qual-
ity of the forecast (measured by its ability to track the location of the true fire front) is
examined over the time window [0; 600 s] with observations taken at 150 s time inter-
vals, at times t1 = 150s, t2 = 300s, t3 = 450s and t4 = 600s. Thus, the EnKF update10

is performed over 4 successive assimilation cycles; each assimilation cycle [tn−1;tn]
includes a prediction step that integrates FIREFLY from tn−1 until tn and an update
step that corrects the location of the simulated fire front at time tn (n = 1, · · · ,4). The
propagation of the true fire front is simulated for time-varying wind conditions (but with
assumed constant wind velocity and direction over each assimilation cycle) presented15

in Table 3, while the forecast ensemble is simulated for constant wind conditions us-
ing the ROS model parameters presented in Table 2. Note that the perturbation of the
fire ignition location (xign, yign) is only introduced during the first assimilation cycle (as
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a means to account for uncertainties in the fire initial location before remote sensing
detection).20

The quality of the forecast is expected to deteriorate at increasing lead-times
(i.e., when the time delay between the actual forecast time and the previous analysis
time increases) for two reasons. First, because the impact of the fire front correction
applied at a given analysis time decreases with time (i.e., when the forecast lead-
time increases). Second, because the present implementation of the SE-based EnKF25

does not provide any correction for ROS modeling errors or for ROS model parame-
ters (including the incorrect assumption of a constant wind); such correction may be
addressed through a PE approach, see Rochoux et al. (2014).

Figure 11 presents the successive comparison between the mean free run
(i.e., stand-alone FIREFLY simulation without DA in green dashed-dotted line), the
mean fire front location related to the forecast estimates (blue dashed line) and to the
analysis estimates (red solid line) as well as the observations (black crosses) at times
t1, t2, t3 and t4. It is found that the free run simulation does not accurately estimate the
rate and direction of the fire spread due to imperfect knowledge in the ROS model pa-5

rameters and in the fire initial location. As for the forecast, it provides a more accurate
prediction of the fire front location and a more physically-consistent front shape than the
free run at each assimilation time. Still, the analysis estimates exhibit a much reduced
scatter due to the EnKF update and the information gain obtained by the observations:
the distance between the analysis fire front and the observations is largely reduced at10

the analysis time and the shape of the analysis fire front is much more consistent with
the observed fire front.

The performance of the EnKF update is confirmed by the error statistics presented in
Fig. 12a, which presents the time-evolution of the deviations of FIREFLY model predic-
tions from observations. It is shown that the benefits from the EnKF update decrease15

as the forecast lead-time increases. For instance, the RMS distance to the true front is
significantly reduced by the EnKF update, from 30 m for the free run (FR) to less than
1 m for the analysis (A1) during the first assimilation cycle [0; 150s]. Starting again
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from the analysis estimates at time 150s, FIREFLY simulates the forecast fire evolu-
tion in time but, without additional observations, the distance between the true state20

and the forecast (F1) significantly increases, to 20m at time t2 = 300s up to approxi-
mately 80 m at time t5 = 750s. By repeating the EnKF update at 150s time intervals,
the distance between the true state and the simulated fire front remains below 10 m.
EnKF-based data-driven simulations bring valuable information on the wildfire spread
behavior, even when DA is not applied systematically. This is illustrated in Fig. 12b,25

which presents a comparison of different fire front forecasts at time t4 = 600s using
FIREFLY, with or without DA. The closer the assimilation time to t4 = 600s, the bet-
ter the forecast prediction: consistently, the free run (FR) provides the less accurate
prediction with a mean distance to the observations approximately equal to 70 m; in
contrast, this mean distance is reduced by a factor of nearly 2 for (F2) and by a factor
of 70 for (A4).

In summary, these results on OSSE test cases show that in a SE approach, EnKF
updates provide valuable information and lead to accurate forecasts on wildfire behav-5

ior at short lead-times, the definition of short being dependent on the persistence of
the model initial condition. Accordingly, the EnKF update must be performed at regular
time intervals to efficiently track the actual wildfire propagation.

4 Application to a controlled grassland fire experiment

The EnKF-FIREFLY data-driven simulator is now evaluated in a validation study cor-10

responding to a controlled grassland fire experiment (a case in which the true control
vector is not known and may not exist if the model is not sufficiently representative).
The experimental configuration corresponds to a small (4m×4m), flat and and hori-
zontal, open-field grassland lot burning under moderate wind conditions in which the
ROS takes values on the order of 1 cm s−1 (with a maximum value reaching 5 cm s−1

15

in the wind direction).
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The properties of the grass are (approximately) known: δv = 8cm (field measure-
ment), Mv = 22% (field measurement) and Σv = 11500m−1 (Rothermel’s fuel database
for short grass); the wind conditions are also approximately known: the magnitude and
direction angle of the wind are constant and equal to u∗

w = 1m s−1 and α∗
w = 307◦. The20

fire spread is recorded using a thermal-infrared camera; the thermal maps are post-
processed (the fire front is defined at the 600 K iso-temperature contour) and thereby,
provide full fire contours. The study considers 4 successive, 14 s-long, assimilation
cycles with initialization at time t0 = 50s and successive updates at times t1 = 64s,
t2 = 78s, t3 = 92s and t4 = 106s. Based on the spatial resolution of the camera, the25

estimated STD of the measurement error is σo = 0.05m.

4.1 Performance of state estimation

To generate the ensemble of forecasts, the mean values of the ROS model parameters
are the (approximately) known short grass properties and wind conditions. Spatially-
uniform distributions for Mv, Σv, u∗

w and α∗
w are assumed; in addition, the grassland

lot is divided into 4 equally-sized rectangular-shaped sections and the fuel depth δv
is treated as different in each zone, 6, 8, 10 and 12 cm from east to west (noted δv,i ,5

with i = 1, · · · ,4, respectively). The uncertainty in the initial position of the fire at time t0
(along the x-direction) is also accounted for; the mean is the observed fire front location
taken from the experiment. The ensemble contains Ne = 50 members corresponding
to 9 different choices of the ROS model parameters and of the fire initial location, i.e.,
[δv,1,δv,2,δv,3,δv,4,Mv,Σv,u∗

w,α∗
w,xign]. The corresponding stochastic perturbations are10

characterized by relatively large levels as presented in Table 4. In these simulations,
Nfr = 100 markers are used to represent simulated fire fronts and No

fr = 50 markers are
considered for observations (i.e., r = 2).

Figure 13a presents a comparison between the mean (ensemble-average) forecast
estimate of the fire front location (as predicted by FIREFLY starting from time t0 = 50s),15

the observations and the mean analysis estimate at time t1 = 64s. It is seen that the
mean free forecast (without DA) significantly underestimates the observed ROS of the
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fire. In contrast, the predictions that are made after an EnKF update performed at time
t1 successfully reduce the distance between predictions and observations. In partic-
ular, the mean analysis estimate features a topology that is very consistent with the20

observed fire front, a result that requires an accurate and non-uniform correction of the
fire front location. Figure 14 presents the univariate error correlations associated with
the front marker indexed by m in Fig. 13a for the forecast (blue dashed line) and anal-
ysis (red solid line) estimates. The analysis estimates feature a much reduced length-
scale compared to the forecast estimates to allow for a spatially-distributed correction25

during the EnKF update.
Similar comparisons to Fig. 13a are presented in Fig. 13b–d at times t2, t3 and t4,

respectively. Note that the mean forecast estimate (blue dashed line) is initialized at the
previous observation time by the analysis produced by the DA cycle, while the free fore-
cast (green dashed-dotted line) is initialized at time t0 and does not use any analysis.
It is found that the mean distance to the observations is reduced by a factor of at least
5 over all assimilation cycles, by performing EnKF updates at 14 s time intervals. Thus,
the agreement between predicted and observed front positions is remarkable and sig-
nificantly better than the level of agreement that would be obtained in the absence of5

DA. However, in spite of the quality of the correction provided by the SE-based EnKF
algorithm, the performance of the forecast remains limited: for instance, Fig. 13b shows
that the mean forecast estimate (initialized by the analysis at time t1 and integrated un-
til time t2), while still significantly more accurate than the free forecast (initialized by
the initial conditions at time t0 and integrated until time t2), is not in good agreement10

with the observation (relatively to the mean analysis estimate). These results suggest
that in the present configuration, the persistence of the initial condition is limited to
short lead-times (i.e., shorter than 14 s) and the performance of the SE-based EnKF
forecast could be improved by more frequent assimilation.
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4.2 Comparison to parameter estimation15

A PE approach based on the standard EnKF approach and validated in Rochoux et al.
(2014) is applied to the same controlled grassland fire experiment. While the SE ap-
proach leads to a direct adjustment of the fire front location, the PE approach works by
an adjustment of the ROS model parameters. In the PE approach, 4 parameters are
used as control variables: the fuel moisture content Mv and particle surface-to-volume20

ratio Σv as well as the wind magnitude u∗
w and direction angle α∗

w, i.e.,

x =
[
Mv,Σv,u∗

w,α∗
w
]
,

with n = 4 the size of the control vector. These parameters are perturbed around mean
values and with prescribed uncertainties (according to assumed levels of uncertainty25

presented in Table 4), but remain spatially-uniform for each ensemble member. The
EnKF ensemble contains Ne = 1000 members, meaning that during each assimilation
cycle, FIREFLY produces 1000 fire front trajectories associated with each set of control
parameters. Note that the size of the ensemble is drastically increased compared to the
SE approach, in order to retrieve accurate error statistics of the control parameters and
to avoid the equifinality problem (i.e., a problem in which multiple sets of parameters
provide the same simulated fire front), see Rochoux (2014) for further explanations on5

this equifinality problem.
Figure 15a compares the mean forecast estimate obtained at time t4 = 106s, using

the PE ensemble (blue dashed line) and the SE ensemble (blue solid line) as predicted
by FIREFLY integration and with an EnKF update performed at successive observa-
tion times t1 = 64s, t2 = 78s and t3 = 92s. Figure 15b compares the mean analysis10

estimate obtained at the same time t4 = 106s using a PE-based EnKF update (red
dashed line) and a SE-based EnKF update (red solid line). In both figures, predictions
are compared to observations (black crosses). It was found that for both PE and SE
approaches the analysis estimates provide more accurate fire front locations than the
forecast estimates. This point is also illustrated in Fig. 16, which presents the RMS15
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distance between the observations and the mean fire front location produced by the
forecast estimates (see Fig. 16a) and analysis estimates (see Fig. 16b) over the 4 suc-
cessive assimilation cycles: the mean distance to the observations is reduced by a fac-
tor 2 in the PE approach and by a factor of at least 5 in the SE approach. Additionally,
the performance of the SE-based analysis is significantly better than that of the PE-20

based analysis (relying on spatially-uniform distributions of ROS model parameters):
the mean distance between observed and SE-based simulated fire fronts remains be-
low 0.1 m for all assimilation cycles and the scatter of the SE-based analysis ensemble
is significantly less than that obtained through PE.

In spite of the overall quality of the correction provided by both EnKF estimation ap-25

proaches, the accuracy of the forecast, while still significantly better than that obtained
in the free run simulations, rapidly decreases over time. Some of the benefits of an
analysis are indeed lost in the forecast at time t4, due to the limited persistence of the
initial condition and/or due to the temporal variability of the errors in the environmen-
tal conditions. The improved forecast performance of the PE approach is illustrated in
Fig. 16a; the adjustment of the ROS model parameters allows for a correction of in-
accuracies in initial guesses as well as an adaptation to time-dependent properties;
the statistical properties of the EnKF ensemble are dynamically-evolving. In contrast,
the statistical properties of the SE-based EnKF ensemble are constant. Figure 17 il-5

lustrates this point. In particular, this figure shows that the prior values of the moisture
content Mv and the fuel particle surface-to-volume ratio Σv are not adequate to effec-
tively track the actual fire propagation (in comparison, the estimated wind conditions
in the PE approach are contained in the support of the forecast PDFs). These values
are corrected in the PE approach: the mean (ensemble-average) value of Mv is de-10

creased from 22 % to approximately 10 %; the mean (ensemble-average) value of Σv

is increased from 11500m−1 to approximately 19000m−1. These values are not cor-
rected in the SE approach and therefore, induce a significant bias in wildfire spread
simulations.
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In this validation study, the assimilation needs to be renewed by frequent obser-15

vations with an assimilation frequency (i.e., frequency at which the EnKF update is
renewed by observations) that is high enough to track the temporal variability of the
errors in the ROS model parameters. Updating environmental conditions (the biomass
moisture content in particular) explains the bulk of the improved forecasts at future
lead-times.20

5 Conclusions

This study is the second part in a series of two articles, in which we propose and ex-
plore a new paradigm for producing optimized forecasts of the wildfire behavior based
on observations of the fire front location. The prototype data-driven simulator combines
a regional-scale wildfire spread model, FIREFLY, with a data assimilation algorithm25

based on an ensemble Kalman filter (EnKF); it features a choice between a parameter
estimation (PE) approach (in which the estimation targets are the parameters of the
rate of spread – ROS – model) and a state estimation (SE) approach (in which the
estimation targets are the time-evolving spatial coordinates of the fire front). The cor-
nerstone of this prototype data-driven simulator is to (1) explicitly account for the effects
of both measurement and modeling errors and thereby, overcome some of the current
limitations of regional-scale wildfire modeling; (2) account for non-linearities in the wild-5

fire behavior and for temporal variability of the errors in the environmental conditions;
and (3) forecast reliable wildfire spread scenarios at limited computational cost, consis-
tently with an operational framework for real-time monitoring of wildfire behavior. The
present study assumes that airborne and/or spaceborne observations of the fire front
location are available at frequent times but possibly provide an inaccurate and incom-10

plete description of the fire front due to the opacity of the fire-induced thermal plume
or due to a limited monitoring. The performance of both PE and SE approaches was
evaluated on synthetic cases of wildfire spread that are representative of real wildfire
conditions as well as on a controlled grassland burning experiment.
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Even though certain input parameters of the ROS model can be assumed constant15

over the fire duration (in particular, intrinsic properties of biomass fuels), other param-
eters exhibit a dynamic behavior due to the presence of the propagating wildfire. Wind
conditions change over time, partly due to the fire/atmosphere interactions and their
feedback on local atmospheric conditions (in terms of wind, air temperature and hu-
midity). In addition, the moisture content of biomass fuel also varies, in particular that20

of dead biomass, which can be considered in thermal equilibrium with the atmosphere.
A dynamic estimation of time-varying environmental parameters is therefore required to
produce accurate simulations of the wildfire behavior. For this purpose, a PE approach
was presented in Part I of this series of two articles, see Rochoux et al. (2014). This
PE approach was restricted to spatially-uniform parameters. Accounting for the de-25

tailed spatial variations of environmental conditions would indeed significantly increase
the computational cost, with no means of assessing the consistency of the EnKF up-
date to in-situ measurements (since those are usually provided with a coarse spatial
resolution).

Part II of this series of two articles demonstrated that to obtain a local correction of
the fire front location, the generation of the stochastic ensemble must represent the
anisotropy in wildfire spread. This anisotropy was implicitly introduced in the SE ap-
proach by selecting spatially-distributed biomass fuel properties and distinct wind con-
ditions between the different members in the ensemble. The SE approach was shown5

to be successful at retrieving at low computational cost (i.e., with a relatively small
number of members in the ensemble) the actual shape of the fire front in cases with
strong anisotropic propagation conditions. This approach was also found relevant for
observations made with significant errors and/or cases in which the observations are
incomplete (e.g., when only a section of the fireline is informed), in order to reconstruct10

a complete, reliable initial condition for FIREFLY restart.
Furthermore, it was demonstrated that for the present grassland controlled fire ex-

periment, the PE approach provides a more reliable forecast capability of the wildfire
behavior than the SE approach (due to improved knowledge in environmental condi-

3795

http://www.nat-hazards-earth-syst-sci-discuss.net
http://www.nat-hazards-earth-syst-sci-discuss.net/2/3769/2014/nhessd-2-3769-2014-print.pdf
http://www.nat-hazards-earth-syst-sci-discuss.net/2/3769/2014/nhessd-2-3769-2014-discussion.html
http://creativecommons.org/licenses/by/3.0/


NHESSD
2, 3769–3820, 2014

EnKF-based state
estimation

M. C. Rochoux et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

tions that are usually poorly assessed) at short lead-times (i.e., at 14 s time intervals).15

This ranking between PE and SE approaches remains, however, problem-dependent
and may not hold in cases where the assimilation cycle is longer (due to a lower obser-
vation frequency) and where the values of the environmental conditions strongly fluc-
tuate during an assimilation cycle. The duration of the assimilation cycle (i.e., a user-
defined variable) is therefore of primary importance in the success of the proposed20

data assimilation approaches; it must be specified consistently with the persistence of
the initial condition and/or with the temporal and spatial variability of the errors in the
environmental conditions.

This series of two articles emphasizes the potential of data assimilation to dramat-
ically increase wildfire simulation accuracy. While wildfire spread forecast capabilities25

are still at an early stage of development, it is envisioned that they will be similar to cur-
rent weather forecast capabilities and that they will provide real-time fire forecasts using
thermal-infrared imaging including a description of both wildfire dynamics and plume
emissions such as FOREFIRE-MESONH (Filippi et al., 2009, 2013). Thus, future plans
include the development of a dual SE/PE approach that could partly overcome the fore-
cast limitations illustrated in the present and past studies (the PE approach could be
extended to the case of weak spatial variations of the ROS model parameters). Future
plans also include the integration of the data assimilation algorithm into a meso-scale5

atmospheric model based on computational fluid dynamics. The issues related to data
assimilation for coupled physical systems were not addressed in this work. We pro-
pose here a data assimilation strategy that is suitable for surface wildfire spread, but
that would need further developments to deal with a land-surface–atmosphere model-
ing system.10
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Table 1. Input parameters of the Rothermel-based ROS sub-model.

Name Symbol Unit

Fuel depth (vertical thickness of the vegetation layer) δv m
Fuel moisture (mass of water divided by mass of dry vegetation) Mv %
Fuel moisture at extinction Mv,ext %
Fuel particle surface-to-volume ratio Σv m−1

Fuel loading m
′′′
v kg m−2

Fuel particle mass density ρp kg m−3

Fuel heat of combustion ∆hc J kg−1

Wind velocity magnitude at mid-flame height (projected onto horizontal plane) uw m s−1
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Table 2. Properties of the ensemble forecast in the OSSE anisotropic case.

Random variable True value Ensemble mean Ensemble STD

(δv,1, δv,2, δv,3, δv,4) [m] (0.25, 1.25, 0.75, 1.75) (0.25, 1.25, 0.75, 1.75) (0.10, 0.10, 0.10, 0.10)
Mv [%] 20 20 10
Σv [m−1] 11 500 11 500 4000
(u∗

w,α∗
w) [m s−1, ◦] (1.0, 315) (0.75, 315) (0.15, 45)

xign [m] 350 350 20
yign [m] 350 350 20
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Table 3. Time-varying true wind conditions (in terms of magnitude u∗
w and direction angle α∗

w)
in the OSSE anisotropic case with multiple assimilation cycles, from 0 to 600 s, at 150 s time
intervals.

Assimilation cycle u∗
w [m s−1] α∗

w [◦]

1 1.0 315
2 0.75 290
3 0.83 257
4 1.20 232
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Table 4. Statistical properties of the forecast ensemble in the controlled grassland fire experi-
ment.

Random variable Ensemble mean Ensemble STD

Mv [%] 22 6
Σv [m−1] 11 500 4000
(u∗

w,α∗
w) [m s−1, ◦] (1, 307) (0.4, 45)

δv,1 [m] 0.06 0.04
δv,2 [m] 0.08 0.04
δv,3 [m] 0.10 0.04
δv,4 [m] 0.12 0.04
xign [m] 2 0.65
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Comparison
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Fig. 1. Data assimilation flowchart for PE and SE approaches over one assimilation cycle (control vari-
ables are colored in blue).
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Figure 1. Data assimilation flowchart for PE and SE approaches over one assimilation cycle
(control variables are colored in blue).
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Figure 2. Flowchart of the EnKF algorithm during the [t−1, t] assimilation cycle for a SE
approach.
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(a) Forecast estimates of the fire front lo-
cation.

60 70 80 90 100 110 120 130 140
60

70

80

90

100

110

120

130

140

x [m]
y 

[m
]

(b) Analysis estimates of the fire front lo-
cation.

Fig. 3. Spatially-uniform OSSE test with constant ROS but uncertain ignition location (xign, yign); one
assimilation cycle; all figures correspond to time t= 200 s. (a) Comparison between true (black solid
line) and forecast (blue dashed lines) fire front positions; the cross symbol is the only observation avail-
able. (b) Similar comparison between true (black solid line) and analysis (red dashed lines) fire front
positions.

36

Figure 3. Spatially-uniform OSSE test with constant ROS but uncertain ignition location
(xign, yign); one assimilation cycle; all figures correspond to time t = 200s. (a) Comparison
between true (black solid line) and forecast (blue dashed lines) fire front positions; the cross
symbol is the only observation available. (b) Similar comparison between true (black solid line)
and analysis (red dashed lines) fire front positions.
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(a) Univariate error correlations along the fireline.
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(b) Multi-variate error correlations along the fireline.

Fig. 4. Error correlation functions along the fire front associated to one marker location (the vertical bar
represents its reference location indexed by m in Fig. 3a) for the OSSE isotropic propagation test with
constant ROS but uncertain ignition location (xign, yign). (a) Univariate correlations: the dashed (solid)
line indicates the error correlation of the reference marker x-coordinate (y-coordinate) with respect to
the errors in the x-coordinates (y-coordinates) of the other markers along the fireline. (b) Multi-variate
correlations: the dashed (solid) line indicates the error correlation of the reference marker x-coordinate
(y-coordinate) with respect to the errors in the y-coordinates (x-coordinates) of the other markers along
the fireline.
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Figure 4. Error correlation functions along the fire front associated to one marker location (the
vertical bar represents its reference location indexed by m in Fig. 3a) for the OSSE isotropic
propagation test with constant ROS but uncertain ignition location (xign, yign). (a) Univariate
correlations: the dashed (solid) line indicates the error correlation of the reference marker x-
coordinate (y-coordinate) with respect to the errors in the x-coordinates (y-coordinates) of the
other markers along the fireline. (b) Multi-variate correlations: the dashed (solid) line indicates
the error correlation of the reference marker x-coordinate (y-coordinate) with respect to the
errors in the y-coordinates (x-coordinates) of the other markers along the fireline.
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(c) Analysis estimates of the fire
front location with No

fr = 12 for an
incomplete set of observations.

Fig. 5. Spatially-varying OSSE test with uncertain ROS model parameters and with uncertain ignition
location (xign, yign); one assimilation cycle; all figures correspond to time t= 150 s. (a) Comparison
between true (black solid line) and forecast (blue dashed lines) fire front positions. (b)-(c) Comparison
between true (black solid line) and analysis (red dashed lines) fire front positions. Black cross symbols
are the No

fr observed front markers.
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Figure 5. Spatially-varying OSSE test with uncertain ROS model parameters and with uncer-
tain ignition location (xign, yign); one assimilation cycle; all figures correspond to time t = 150s.
(a) Comparison between true (black solid line) and forecast (blue dashed lines) fire front po-
sitions. (b, c) Comparison between true (black solid line) and analysis (red dashed lines) fire
front positions. Black cross symbols are the No

fr observed front markers.
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(a) Univariate error correlations along the fireline.
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(b) Multi-variate error correlations along the fireline.

Fig. 6. See caption of Fig. 4. OSSE anisotropic case with uncertain ROS model parameters and with
uncertain ignition location (xign, yign); the vertical bar represents its reference location indexed by m in
Fig. 5a.
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Figure 6. See caption of Fig. 4. OSSE anisotropic case with uncertain ROS model parameters
and with uncertain ignition location (xign, yign); the vertical bar represents its reference location
indexed by m in Fig. 5a.
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Fig. 7. Average distance between the true and forecast fire front positions (blue circles) and between the
true and analysis fire front positions (red squares) at time 150 s as a function of the number of observed
markers No

fr ; OSSE anisotropic case. Error bars indicate the associated STD.

40

Figure 7. Average distance between the true and forecast fire front positions (blue circles) and
between the true and analysis fire front positions (red squares) at time 150 s as a function of the
number of observed markers No

fr ; OSSE anisotropic case. Error bars indicate the associated
STD.
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Fig. 8. Average distance between the true and forecast fire front positions (blue circles) and between the
true and analysis fire front positions (red squares) at time 150 s as a function of the number of members
Ne in the ensemble; OSSE anisotropic case. Error bars indicate the associated STD.
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Figure 8. Average distance between the true and forecast fire front positions (blue circles) and
between the true and analysis fire front positions (red squares) at time 150 s as a function of
the number of members Ne in the ensemble; OSSE anisotropic case. Error bars indicate the
associated STD.

3811

http://www.nat-hazards-earth-syst-sci-discuss.net
http://www.nat-hazards-earth-syst-sci-discuss.net/2/3769/2014/nhessd-2-3769-2014-print.pdf
http://www.nat-hazards-earth-syst-sci-discuss.net/2/3769/2014/nhessd-2-3769-2014-discussion.html
http://creativecommons.org/licenses/by/3.0/


NHESSD
2, 3769–3820, 2014

EnKF-based state
estimation

M. C. Rochoux et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

(xN,yN)

(xA,yA)

(xB,yB)

(xO,yO)

c = 1

c = 0

nA

Mesh node

Analysis fire front xt
a,(k)  

(Nfr markers)

Figure 9. Schematic of the reconstruction algorithm for the FIREFLY initial condition. In this

example, the mesh node (xN ,yN ) is outside the burnt area, the inner product (
−−→
ON ·−→nA) is positive.
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Figure 10. Schematic of the sequential SE approach for each ensemble member k = 1, · · · ,Ne,
with a focus on the reconstruction of the two-dimensional progress variable c(k) posterior to
analysis over the time window [t−1,t] and prior to forecast over the time window [t,t+1].
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Fig. 11. OSSE anisotropic case over multiple assimilation cycles (from 0 to 600 s): comparison between
the free run (green dashed-dotted line), mean forecast estimate (blue dashed line), observations (black
crosses) and mean analysis estimate (red solid line) at 150 s time intervals, at times (a) t1 = 150 s (the
gray circle corresponds to the true initial location); (b) t2 = 300 s; (c) t3 = 450 s; and (d) t4 = 600 s.
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Figure 11. OSSE anisotropic case over multiple assimilation cycles (from 0 to 600 s): compar-
ison between the free run (green dashed-dotted line), mean forecast estimate (blue dashed
line), observations (black crosses) and mean analysis estimate (red solid line) at 150 s time
intervals, at times (a) t1 = 150s (the gray circle corresponds to the true initial location);
(b) t2 = 300s; (c) t3 = 450s; and (d) t4 = 600s.
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Fig. 12. OSSE anisotropic case over multiple assimilation cycles (from 0 to 600 s). (a) Average distance
between the true and forecast/analysis fire front location as a function of the assimilation cycle index:
green circles correspond to the free run (FR); triangles, crosses, diamonds and stars correspond to a
forecast with an EnKF update at t1 = 150 s (F1), t2 = 300 s (F2), t3 = 450 s (F3) and t4 = 600 s (F4),
respectively; square symbols correspond to an EnKF update performed at times t1 (A1), t2 (A2), t3 (A3),
t4 (A4) and t5 (A5). (b) Comparison at time t4 = 600 s between the free run (FR) in green dashed-dotted
line, the mean forecast estimate (F1, F2, F3) in dashed lines, observations in black crosses, and the mean
analysis estimate (A4) in red solid line.
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Figure 12. OSSE anisotropic case over multiple assimilation cycles (from 0 to 600 s). (a) Av-
erage distance between the true and forecast/analysis fire front location as a function of the
assimilation cycle index: green circles correspond to the free run (FR); triangles, crosses, di-
amonds and stars correspond to a forecast with an EnKF update at t1 = 150s (F1), t2 = 300s
(F2), t3 = 450s (F3) and t4 = 600s (F4), respectively; square symbols correspond to an EnKF
update performed at times t1 (A1), t2 (A2), t3 (A3), t4 (A4) and t5 (A5). (b) Comparison at time
t4 = 600s between the free run (FR) in green dashed-dotted line, the mean forecast estimate
(F1, F2, F3) in dashed lines, observations in black crosses, and the mean analysis estimate
(A4) in red solid line.
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(d) t4 = 106 s.

Fig. 13. Controlled grassland fire experiment with multiple assimilation cycles from t0 = 50 s to
t4 = 106 s. Black crosses correspond to observations, the gray solid line corresponds to the initial
condition of the assimilation cycle, the green dashed-dotted line corresponds to the free run (without
DA), the blue dashed line corresponds to the mean forecast estimate (without DA for the first observa-
tion time or with DA at the previous observation time), and the red solid line corresponds to the mean
analysis estimate (with a DA update at the current observation time). Times (a) t1 = 64 s; (b) t2 = 78 s;
(c) t3 = 92 s; and (d) t4 = 106 s.
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Figure 13. Controlled grassland fire experiment with multiple assimilation cycles from t0 = 50s
to t4 = 106s. Black crosses correspond to observations, the gray solid line corresponds to the
initial condition of the assimilation cycle, the green dashed-dotted line corresponds to the free
run (without DA), the blue dashed line corresponds to the mean forecast estimate (without DA
for the first observation time or with DA at the previous observation time), and the red solid line
corresponds to the mean analysis estimate (with a DA update at the current observation time).
Times (a) t1 = 64s; (b) t2 = 78s; (c) t3 = 92s; and (d) t4 = 106s.
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(b)

Fig. 14. Univariate error correlation functions along the fireline associated to one marker location (the
vertical bar represents its reference location indexed by m in Fig. 13a); controlled grassland fire exper-
iment over the assimilation cycle [50; 64 s]. (a) Error correlation of the reference marker x-coordinate
with respect to the errors in the x-coordinates of the other markers along the fireline: the blue dashed
(red solid) line corresponds to the mean forecast (analysis) estimate. (b) Error correlation of the refer-
ence marker y-coordinate with respect to the errors in the y-coordinates of the other markers along the
fireline: the blue dashed (red solid) line corresponds to the mean forecast (analysis) estimate.
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Figure 14. Univariate error correlation functions along the fireline associated to one marker
location (the vertical bar represents its reference location indexed by m in Fig. 13a); controlled
grassland fire experiment over the assimilation cycle [50; 64s]. (a) Error correlation of the ref-
erence marker x-coordinate with respect to the errors in the x-coordinates of the other markers
along the fireline: the blue dashed (red solid) line corresponds to the mean forecast (analysis)
estimate. (b) Error correlation of the reference marker y-coordinate with respect to the errors
in the y-coordinates of the other markers along the fireline: the blue dashed (red solid) line
corresponds to the mean forecast (analysis) estimate.
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(b) Analysis.

Fig. 15. Comparison between simulated (lines) and observed (symbols) front positions at time
t4 = 106 s in the controlled grassland burning experiment. The simulated front position is the mean
position calculated as the average of the EnKF ensemble; dashed lines (solid lines) correspond to the PE-
based (SE-based) simulations. (a) Forecast (with EnKF update at t3 = 92 s). (b) Analysis (with EnKF
update at t4 = 106 s).
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Figure 15. Comparison between simulated (lines) and observed (symbols) front positions at
time t4 = 106s in the controlled grassland burning experiment. The simulated front position
is the mean position calculated as the average of the EnKF ensemble; dashed lines (solid
lines) correspond to the PE-based (SE-based) simulations. (a) Forecast (with EnKF update at
t3 = 92s). (b) Analysis (with EnKF update at t4 = 106s).
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(a) Forecast RMS distance to observations.
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(b) Analysis RMS distance to observa-
tions.

Fig. 16. Evolution over 4 successive assimilation cycles of the average distance between the observations
and the mean fire front location produced by the (a) forecast estimates and the (b) analysis estimates at
times t1 = 64 s, t2 = 78 s, t3 = 92 s, and t4 = 106 s. Dashed (solid) lines represent PE (SE) results;
vertical bars indicate the STD in the forecast and analysis estimates.
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Figure 16. Evolution over 4 successive assimilation cycles of the average distance between the
observations and the mean fire front location produced by the (a) forecast estimates and the
(b) analysis estimates at times t1 = 64s, t2 = 78s, t3 = 92s, and t4 = 106s. Dashed (solid) lines
represent PE (SE) results; vertical bars indicate the STD in the forecast and analysis estimates.
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(d)

Fig. 17. Evolution of ROS model parameters at 4 successive analysis times; controlled grassland fire
experiment. PE-based ensemble: blue circle symbols (connected by a dashed line) indicate mean values
in the forecast ensemble; red square symbols (connected by a solid line) indicate mean values in the
analysis ensemble; vertical bars indicate the corresponding STD. SE-based ensemble: black horizontal
solid lines indicate mean values; black horizontal dashed lines indicate STD. (a) Biomass fuel mois-
ture content Mv [%]. (b) Biomass fuel particle surface-to-volume ratio Σv [m−1]. (c) Wind magnitude
u∗w [ms−1]. (d) Wind direction α∗w [◦].
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Figure 17. Evolution of ROS model parameters at 4 successive analysis times; controlled
grassland fire experiment. PE-based ensemble: blue circle symbols (connected by a dashed
line) indicate mean values in the forecast ensemble; red square symbols (connected by a solid
line) indicate mean values in the analysis ensemble; vertical bars indicate the corresponding
STD. SE-based ensemble: black horizontal solid lines indicate mean values; black horizontal
dashed lines indicate STD. (a) Biomass fuel moisture content Mv [%]. (b) Biomass fuel particle
surface-to-volume ratio Σv [m−1]. (c) Wind magnitude u∗

w [m s−1]. (d) Wind direction α∗
w [◦].
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