Tables:

Variable	r ^a	n
Evaluation - subscale risk map ^b	.319***	361
Risk awareness – subscale perception ^b	.318***	459
Risk awareness - subscale relevance ^b	.278***	455
Information need	.308***	445
Readiness to seek flood-related information in different media ^b	.276***	434
Reason not to implement measures: cost-benefit	267***	460
Number of reasons not to implement measures	222***	460
Evaluation - subscale mail information ^b	.245***	347
Sex (female=1, male=2)	214***	445
Preference to invent in flood protection (against keeping public debt & regulation low)	.203***	439
Perceived responsibility politics	.181***	421
General intention to renovate property	.178***	448
Self-assessed ability to prevent flood damage	.177**	445
Perceived risk of house fire	.164**	459
Perceived risk of industrial accident	.163**	457
Intensity of attention paid to the information material	.162**	450
Perceived responsibility of civil protection organizations	.163**	393
Perceived responsibility of other actors	.574**	28
Perceived under-estimation of flood risks in public discourse	.156**	427
Perceived responsibility of insurance companies	.153**	401
Would access special website for hazard information	.140*	441
Perceived under-estimation of nuclear energy in public discourse	.140*	435
Professional or voluntary background related to natural hazards	.138*	460
Talked to nobody about flood	135*	460
Owner of a house	132*	264
Assumption that flood damage will increase in future	.116*	455
Length of time spent on consulting the online risk map	115*	451
Talked about floods with friends and acquaintance	.111*	460
Highest level of education: university	108*	460
Priority of flood protection vs. public green space	.109*	432
Property use: live there	102*	460
General risk-aversion	.101*	448
Trust in authorities	.100 (p=.054)	432
Owner of business offices	.098 (p=.055)	63
Perceived risk area (1=low risk, 2= medium risk, 3=high risk)	.110 (p=.056)	350

***p<.001; **p<.010; *p<.050
Notes:
^a The coefficient given in the table represents Pearson's correlation for interval scaled variables, and Spearman's rank correlation for ordinal scaled variables.
^b Scales are highlighted in bold.

	Model 1	Model 2	Model 3		
Model summary	R ² =.244, F(6, 320)=18.116, p<.001	R ² =.256 F(6, 317)=19.142, p<.001	R ² =.269, F(7, 309)=17.611, p<.001		
Independent variables	Stand. Beta (SE)	Stand. Beta (SE)	Stand. Beta (SE)		
Evaluation	.187*** (.079)	.238*** (.062)	.195***(.065)		
Information need	excluded	.221***(.046)	.186***(.047)		
Risk awareness	.186** (.066)	excluded	.141*(.081)		
Cost-benefit evaluation of protection measures	168** (.094)	188***(.092)	164**(.093)		
Priority of security	.163** (.050)	.148**(.050)	.133**(.049)		
Sex	158** (.097)	133*(.097)	135**(.097)		
Reconstruction intention	.167** (.062)	.153(.062)	.150**(.061)		
***p<.001; **p<.010; *p<.050					

Table 2: Predictors of preparedness (future intention)

Model summary	Dependent variable
Independent variables	R ² =.132, F(6, 392)=10.915, p<.001.
Cost-benefit evaluation	200 (0.88)***
Risk acceptance (evacuation)	.170 (0.40)***
Self-assessed knowledge	.134 (0.40)**
Professional or voluntary background in natural hazards	.131 (1.38)**
General risk aversion	.129 (0.58)**
Duration of residence	.092 (0.27), p=.075

APPENDIX Table A 1.1

Scale name	Items used for construction	N	M (Range)	SD	a
Preparedness	Intend to: - install building flood-proof equipment - adopt temporary measures (e.g. mobile barrier) - inform tenants - work out emergency plan - not use certain rooms (e.g. cellar)	405	2.20 (1 to 5)	.952	.877
Risk awareness	All items	459	-0.20 (-1 to 1.5) ¹	.676	.836
	 Subscale 'risk perception': perceived risk in Zurich perceived risk for own building probability of experiencing a flood in Zurich worry about flood risk 		035 (-1 to 1.5)	.744	.748
	 Subscale 'relevance': interest in natural hazards flood is relevant topic followed flood-related information followed specific flood-related information in Zurich 	455	3.00	.919	.803
Risk acceptance	 All items Subscale 'risk acceptance city': interruption of water and electricity supply water and electricity supply disturbed restoration of public and private buildings distruction of central infrastructure 	447	2.92	.895	.841
	 economic life stands still Subscale 'risk acceptance own property': interior has to be partly replaced building equipment has to be replaced building temporarily not usable building has to be destroyed psychological or physical damage 	443	2.62	1.012	.912
Perception of flood risk compared to other risks	Own property: - perceived flood risk City area: - perceived flood risk				
Evaluation of the information material	All items Print material (letter, brochure) is: - useful - comprehensible - knowledge-gain	370 347	3.64 3.75	.760 .730	.887 .753
	 Risk-map (online) is: useful comprehensible comprehensive helpful for decision making knowledge-gain makes me think 	361	3.57	.884	.863

 $^{^{1}}$ The variable was z-transformed due to different scale-width of items.

Value of safety (compared with other values)	 priority of safety vs. public debt priority of safety vs. regulation 				
Trust in public risk	All items	432	4.14	.855	.929
management	Local authorities (City of Zurich)				
	 take my interests seriously are competent in flood protection provide safety 	422	4.16	.908	.883
	Cantonal authorities				
	 take my interests seriously are competent in flood protection provide safety 	413	4.13	.865	.889
Perceived	Own responsibility				
responsibility	perceived responsibility of property ownersperceived responsibility of citizens	392	4.15	1.14	.878
	Responsibility of the authorities				
	 local authorities cantonal authorities federal authorities 	421	4.85	.900	.876
	Responsibility of emergency agencies				
	civil protection agenciesfire brigade	393	4.14	1.31	.915
Attachment	 length of occupancy of building attachment to the object attachment to the city 	425	3.42	1.17	.701

Table A 1.2

Table A 1.2				Range
Items	N	M ²	SD	(interpretation of values: 0=don't know, 1=applies least highest value = applies most)
Perceived fire risk of fire to own property	491	2.02	0.837	0-5
Perceived risk of industrial accidents in the City of Zurich	491	2.01	0.794	0-5
Perception of public discourse: underestimation of risks (industrial accident, nuclear energy, ozone in air)	471	3.2939	0.81967	1-5
Self-assessed knowledge about flood risks (feel well informed)	456	3.33	1.092	1-5
Self-assessed knowledge about flood risks before the campaign	487	2.60	0.995	1-5
Prefer to bear the costs of flood damage than invest in mitigation	480	2.47	1.136	1-5
Ability to implement prevention measures	479	2.50	1.196	1-5
Perceived location in a risk area (red, blue, yellow, yellow-white)	350	"don't know"	1.107	0-4
General risk-aversion	448	3.30	0.881	1-6
Priority of safety vs. green spaces	465	2.87	1.279	1-5
Perceived responsibility of insurance companies	401	4.1	1.371	1-6
Read printed information material	480	0.73	0.444	0-1
Accessed online risk map	485	0.31	0.461	0-1
Average time taken to study print material (minutes)	491	11.44	16.809	0-210
Average time taken to study online risk map (minutes)	492	4.87	16.336	0-300

 $^2\mathrm{For}$ the categorical variables, the median category is given instead of the mean value.

Intensity of studying the material	483	1.43	0.975	0-4
Information need	477	2.77	1.064	1-5
Preference for information sources (media) other than information letters	30	2.6556	0.97176	1-5
Talked about the topic in private circles	460	0.41	0.493	0-1 (no-yes)
Talked about the topic to experts	460	0.08	0.276	0-1 (no-yes)
Number of flats owned	489	6.57	36.899	0-600 ³
Number of houses owned	264	2.16	4.498	0-50
Number of offices owned	92	3.26	7.785	0-50
Live in own property	491	0.66	0.474	0-1
Sex	477	1.65	0.478	1-2 (1=female, 2=male)
Number of objects (flats, houses)	492	18.87	143	0-2091
Age	394	61.44	13.576	23-102
Highest level of education	451	University degree (32%)	1.32	1-5
Household size	393	2.45	1.137	1-7
Have children	483	"yes" (75%)	0.439	0-1
Number of already implemented measures	428	0.64	0.944	0-6
Could imagine selling the property	456	2.05	1.284	1-5
Feeling of responsibility for the object	460	4.09	1.242	1-5
Floods in the city of Zurich can reliably be predicted	458	3.03	1.137	1-5
Flood damage will occur more frequently in future	488	3.46	1.165	1-5
The printed information material motivates me to take precautionary measures	368	2.31	1.158	1-5

³ Apart from private property owners, the sample included non-private owners like companies or housing associations (number of non-private owners in the sample: n=48). Private respondents owned 19 objects (houses, flats, office rooms) on average. (Remark: here, the term 'private' is not used in contrast to 'public' or 'governmental', but in contrast to organizations).

Basic, F., Cartwright, W. and Handmer, J.: Geographic Visualization Tools for Communication the risk of floods, 2033-2044, 2009.

Bicherd, E., and Kazmierczak, A.: Are homeowners willing to adapt to and mitigate the effects of climate change? Climatic Change, 112, 633–654, doi 10.1007/s10584-011-0257-8, 2012

Botzen W. J. W., Aerts J. C. J. H., and van den Bergh, J. C. J. M.: Dependence of flood risk perceptions on socioeconomic and objective risk factors. Water Resource Research, 45, doi:10.1029/2009WR007743, 2009a.

Botzen, W.J.W., Aerts J.C.J.H., and van den Bergh, J.C.J.M. : Willingness of homeowners to mitigate climate risk through insurance. Ecological Economics, 68, 2265–2277, *doi*: 10.1016/j.ecolecon.2009.02.019, 2009b.

Bradford, R.A., O'Sullivan, J.J., van der Craats, I.M., Krywkow, J., Rotko, P., Aaltonen, J., Bonaiuto, M., and S. De Dominicis, K. W., and K. Schelfaut: Risk perception – issues for flood management in Europe, Natural Hazards and Earth System Science, 12, 2299–2309, 10.5194/nhess-12-2299-2012, 2012.

Bubeck, P., Botzen, W. J. W., and Aerts, J. C. J. H.: A Review of Risk Perceptions and Other Factors that Influence Flood Mitigation Behavior. Risk Analysis, 32, 1481-1495, doi: 10.1111/j.1539-6924.2011.01783.x, 2012.

Burningham K, Fielding J, Thrush D.: 'It'll never happen to me': understanding public awareness of local flood risk.Disasters, 32, 216-38, doi: 10.1111/j.1467-7717.2007.01036.x, 2008.

De Moel, H., van Alphen, J., and Aerts J. C. J. H.: Flood maps in Europe – methods, availability and use. Natural Hazards and Earth System Science, 9, 289–301, *doi*:10.5194/nhess-9-289-2009, 2009.

Demeritt, D.; Nobert, S., Buchecker, M.: Models of 'good' risk communication for flooding and other water-related hazards: a critical review, Report for WP5 of KULTURisk ENV.2010.1.3.2–1., 2011 [Available online at http://www.kulturisk.eu/].

Douglas, M. and Wildavsky, A. B.: Risk and Culture: An Essay on the Selection of Technical and Environmental Dangers. Berkeley: University of California Press, 1982.

Eiser, J.R., Bostrom A., Burton, I., Johnston, D.M., McClure, J., Paton, D., van der Pligt, J., and White, M.P.: Risk interpretation and action: A conceptual framework for responses to natural hazards. International Journal of Disaster Risk Reduction, 1, 5-16, 2012. doi:10.1016/j.ijdrr.2012.05.002

Fischhoff, B.: Risk perception and communication unplugged: Twenty years of process. Risk Analysis, 15, 137-45, 1995.

Floyd D. L., Prentice-Dunn S., and Rogers R. W.: A meta-analysis of research on protection motivation theory. Journal of Applied Social Psychology, 30, 407–429, *doi*: 10.1111/j.1559-1816.2000.tb02323.x, 2000.

Ge Y., Xu W., Gu Z.H., Zhang Y.C., Chen L.: Risk perception and hazard mitigation in the Yangtze River Delta region, China. Nat Hazards, 56, 633–648, 2011.

Griffin, R.J., Neuwirth, K., Dunwoody, S., and Giese, J.: Information sufficiency and risk communication. Media Psychology, 6, 23–61, doi:10.1207/s1532785xmep0601_2,2004

Grothmann, T., and Reusswig, F.: People at risk of flooding: Why some residents take precautionary action while others do not. Natural Hazards, 38, 101–20, doi: 10.1007%2Fs11069-005-8604-6, 2006.

Harries, T.: Why most "at-risk" homeowners do not protect their homes from flooding. In: Lamond, Jessica, Booth, Colin, Hammond, Felix and Proverbs, David, (eds.) Flood hazards: impacts and responses for the built environment. Boca Raton, Florida, U.S. : CRC Press., 327-341, 2012.

Höppner, C., Buchecker, M., and Frick, J.,: What drives people's willingness to discuss local landscape development? Landscape Research, 33, 605-622, doi: 10.1080/01426390802013549, 2008.

Höppner, C., Whittle, R., Brundl, M., and Buchecker, M.: Linking social capacities and risk communication in Europe: a gap between theory and practice? Natural Hazards, 64, 1753-78, doi: 10.1007/s11069-012-0356-5, 2012.

Junker, B., Buchecker, M., and Müller-Böker, U.,: Objectives of public participation: Which actors should be involved in the decision making for river restorations. Water Resources Research, 43, 1-11, *doi*: 10.1029/2006WR005584, 2007.

Kahan D. M., Jenkins-Smith H., and Braman D.: Cultural cognition of scientific consensus. Journal of Risk Research 14, 147-74, doi: 10.1080/13669877.2010.511246, 2011.

Kellens, W., Terpstra, T., and De Maeyer, P.: Perception and Communication of Flood Risks: A Systematic Review of Empirical Research. Risk Analysis, 1-26, *doi*: 10.1111/j.1539-6924.2012.01844.x, 2012.

Kellens, W., Zaalberg, R., Neutens, T., Vanneuville, W., and De Maeyer, P.: An Analysis of the Public Perception of Flood Risk on the Belgian Coast. Risk Analysis, 31, *doi*: 10.1111/j.1539-6924.2010.01571.x, 2011.

Keller, C., Siegrist, M., and Gutscher, H.: The role of the affect and availability heuristics in risk communication. Risk Analysis, 26, 631–639, *DOI*: 10.1111/j.1539-6924.2006.00773.x, 2006.

Kievik M. and Gutteling J.: Yes, we can: Motivate Dutch citizens to engage in self-protective behavior with regard to flood risks. Natural Hazards, 59, 1475–1490, *doi:* 10.1007/s11069-011-9845-1, 2011.

Krasovskaia, I., Gottschalk, L., Sælthun, N.R., and Berg, H.: Perception of risk of flooding, case of 1995 flood in Norway. Hydrol. Sci. J, 46, 855-868, 2001.

Lin S.Y., Shaw D.G., and Ho M.C.: Why are flood and landslide victims less willing to take mitigation measures than the public? Natural Hazards, 44, 305–314, 2008.

Lindell M.K. and Perry R.W.: Communicating Environmental Risk in Multiethnic Communities. Thousand Oaks, CA: Sage Publications, *doi*: 10.4135/9781452229188, 2004.

Lindell, M. K., and Perry, R. W.: Household adjustement to earthquake hazard: A review of research. Environment and Behavior, 32, 461-500, *doi*: 10.1177/00139160021972621, 2000.

Lindell, M.K. and Hwang S.N.: Household's perceived personal risk and responses in a multihazard environment. Risk Analysis, 28, 539–556, *doi*: 10.1111/j.1539-6924.2008.01032.x, 2008.

Löfstedt, R.E. and Perri G.: What environmental and technological risk communication research and health risk research can learn from each other. Journal of Risk Research, 11, 141-167, *doi*: 10.1080/13669870701797137, 2008.

Martens, T., Garrelts, H., Grunenberg, H. Lange, H.: Taking the heterogeneity of citizens into account: flood risk communication in coastal cities – a case study of Bremen. Natural Hazards and Earth System Sciences, 9, 1931-1940, *doi*:10.5194/nhess-9-1931-2009, 2009.

Miceli R, Sotgiu I, Settanni M. Disaster preparedness and perception of flood risk: A study in an alpine valley in Italy. Journal of Environmental Psychology, 28, 164–173, 2008.

Mileti, D.S. and Darlington, J.D.: The role of searching in shaping reactions to earthquake risk information. Social Problems, 44, 89–103, 1997.

O'Sullivan, J. J., Bradford, R. A., Bonaiuto, M., De Dominicis, S., Rotko, P., Aaltonen, J., Waylen, K., and Langan, S. J.: Enhancing flood resilience through improved risk communications. Natural Hazards and Earth System Science, 12, 2271-2282, *doi*:10.5194/nhess-12-2271-2012, 2012.

Parker, D. J., Priest, S. J., Tapsell, S. M.: Understanding and enhancing the public's behavioural response to flood warning information. Meteorological Applications, 16, 103-114, 2009.

Paton, D., Johnston, D., Smith, L., and Millar, M.: Responding to hazard effects: Promoting resilience and adjustment adoption. Australian Journal of Emergency Management, 16, 47–52, 2001.

Raaijmakers, R., Krywkow, J. R., and van der Veen, A.: Flood risk perceptions and spatial multi-criteria analysis: An exploratory research for hazard mitigation. Nat. Hazards, 46, 307–322, 2008.

Renn, O.: Risk governance: coping with uncertainty in a complex world, Earthscan,London, 2008.

Rogers, R. W. and Prentice-Dunn, S.: Protection motivation theory. In Gochman, D. S. (ed.), Handbook of Health Behavior Research. New York, Plenum, 113–132, 1997.

Scolobig, A., De Marchi, B., and Borga, M.: The missing link between flood risk awareness and preparedness: findings from case studies in an Alpine Region. Natural Hazards, 63, 499 - 520, doi: 10.1007/s11069-012-0161-1 2012.

Siegrist, M., and Gutscher, H.: Flooding risks: A comparison of lay people's perceptions and expert's assessments in Switzerland. Risk Analysis, 26, 971-979, doi: 10.1111/j.1539-6924.2006.00792.x 2006.

Siegrist, M.; Gutscher, H.: Natural Hazards and Motivation for Mitigation Behavior: People Cannot Predict the Affect Evoked by a Severe Flood. Risk Analysis, 28, 771-778, *doi*: 10.1111/j.1539-6924.2008.01049.x, 2008.

Slovic P., Finucane, M.L., Peters E., MacGregor D.G.: Risk as Analysis and Risk as Feelings: Some Thoughts about Affect, Reason, Risk, and Rationality. Risk Analysis, 24, 311-322, *doi*: 10.1111/j.0272-4332.2004.00433.x, 2004.

Slovic, P.: The Psychology of Risk, Saude e Sociedade, 19, 731-747, doi: 10.1590/S0104-12902010000400002, 2010.

Slovic, P.: Perception of risk. Science, 236, 280-285, doi: 10.1126/science.3563507, 1987.

Takao K, Motoyoshi T, Sato T, and Fukuzono T. Factors determining residents' preparedness for floods in modern megalopolises: The case of the Tokai flood disaster in Japan. Journal of Risk Research, 7, 775–787, 2004, doi: 10.1080/1366987031000075996.

Terpstra, T., Gutteling, J.M., Geldof, G.D., and Kappe, L.J.: The perception of flood risk and water nuisance. Water Science and Technology, 54, 431–439, doi: 10.1080/1366987031000075996, 2009.

Terpstra, T., Lindell, M.K., and Gutteling, J.M.: Does Communicating (Flood) Risk Affect (Flood) Risk Perceptions? Results of a Quasi-Experimental Study. Risk Analysis, 29, 1141-1155, *doi*: 10.1111/j.1539-6924.2009.01252.x 2009.

Terpstra, T.: Emotions, Trust, and Perceived Risk: Affective and Cognitive Routes to Flood Preparedness Behavior. Risk Analysis, 31, *doi*: 10.1111/j.1539-6924.2011.01616.x, 2011.

Thieken, A.H., Kreibich, H., Muller. M., and Merz, B.: Coping with floods: Preparedness, response and recovery of flood-affected residents in Germany in 2002. Hydrological Sciences Journal—Journal des Sciences Hydrologiques, 52, 1016–1037, *doi*: 10.1623/hysj.52.5.10162007.

Thomas Martens, B. E., Karen Ramm: Risikoverarbeitung und Risikoverhalten am Beispiel extremer Hochwasserereignisse. Bremen, Univ., 2008.

Tobin, G. A.: The Levee Love Affair: A Stormy Relationship. Water Resources Bulletin, 31, 359–367, 1995.

Veland, H. and *Aven*, T.: *Risk communication* in the light of different risk perspectives. Reliability Engineering & System Safety, 110, 34-40, 2013.

Visschers, V. H. M., Wiedemann, P. M., Gutscher, H., Kurzenhäuser, S., Seidl, R., Jardine, C. G., and Timmermans, D. R. M.: Affect-inducing risk communication: Current knowledge and future directions. Journal of Risk Research, 15, 257-271, doi: 10.1080/13669877.2011.634, 2012.

Zaalberg, R., Midden, C., Meijnders, A., and McCalley, T: Prevention, adaptation, and threat denial: Flooding experiences in the Netherlands. Risk Analysis, 29, 1759-1778, *doi*: 10.1111/j.1539-6924.2009.01316.x, 2009.