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Abstract  

Run-up of long wave on a beach consisting of three pieces of constant but different slopes 

is studied. Linear shallow–water theory is used for incoming impulse evolution and non-

linear corrections are obtained for the run-up stage. It is demonstrated that bottom profile 

influences the run-up characteristics and can lead to the resonance effects: increasing of 

wave height, particle velocity, and number of oscillations. Simple parameterization of 

tsunami source through an earthquake magnitude is used to calculate the run-up height 

versus earthquake magnitude. It is shown that resonance effects lead to the sufficient 

increasing of run-up heights for weakest earthquakes and tsunami wave does not break on 

chosen bottom relief if the earthquake magnitude does not exceed 7.8.  

Keywords: Tsunami, Nonlinear shallow-water theory, Resonance 

phenomena 

1. Introduction 

The resonance phenomena play significant role in the run-up amplification and 

lead to different physical effects for waves in coastal zone:  long duration of water 

oscillations, later arrival of wave with maximal amplitude comparing with leading 

waves, group structure of waves. Meanwhile, usually these effects are neglected 

when the run-up processes are studied. The most part of theoretical results for run-

up stage are based on rigorous analytical solutions of the shallow-water theory for 

waves climbing on the beach of constant slope. This approach was suggested in 

the pioneer work by Carrier and Greenspan (1958). They applied the hodograph 
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transformation to the nonlinear system of shallow-water equations and obtained 

the linear wave equation for an auxiliary function; all physical variables (free 

surface displacement, depth-averaged velocity, offshore coordinate and time) 

were explicitly expressed using this function and its partial derivatives. The main 

advantage of  wave equation for an auxiliary function having a form of cylindrical 

wave equation is that it has to be solved on semi-axis with given boundary 

conditions while the initial equations have to be solved in domain with unknown 

moving boundary (shoreline). Meanwhile, the explicit form of the analytical 

solution generally requires the numerical manipulations to present physical 

variables in the wave field. That is why various shapes of the incident solitary 

wave  have been specially analyzed: soliton (Pedersen et Gjevik, 1983; Synolakis, 

1987), sine pulse (Mazova et al., 1991), Lorentz pulse (Pelinovsky et Mazova, 

1992), Gaussian pulse (Carrier et al., 2003; Kânoğlu, 2004; Kânoğlu et Synolakis, 

2006), N-waves (Tadepalli et Synolakis, 1994; Kânoğlu, 2004), some specific 

localized disturbances (Tinti et Tonini, 2005; Pritchard et Dickinson, 2007; 

Dobrokhotov et Tirozzi, 2010). It should be noted that  different formulas for 

maximum run-up of solitary waves of various shapes can be provided   in terms of 

wave amplitude and significant wave length describing  practically important 

cases with good accuracy (Didenkulova et al., 2008; Didenkulova & Pelinovsky, 

2008, Antuono & Brocchini, 2010). Various shapes of the periodic incident wave 

trains such as the sine wave (Carrier et Greenspan, 1958; Madsen et Fuhrman, 

2008), cnoidal wave (Synolakis et al., 1988; Synolakis, 1991) and nonlinear 

deformed periodic wave (Didenkulova et al., 2006; 2007) have been also studied 

to obtain the run-up characteristics. It is important to mention that the run-up 

height is higher if periodic incident wave is cnoidal or nonlinear deformed wave 

compared with a simple sine wave of the same amplitude and period. Some results 

are obtained for irregular incident waves modeled by the Fourier superposition of 

the sine waves with random phases  (Didenkulova et al., 2010; 2011) or the 

random set of solitons (Brocchini et Gentile, 2001). 

In all studies mentioned above the rigorous analytical solutions are obtained if the 

wave propagates on a plane beach of constant slope. Really, such plane can 

approximate the face-shore bathymetry only, and then it has to be matched with 

horizontal bottom profile. In fact, the rigorous analytical solutions can be obtained 

here in the linear theory only   (Synolakis, 1987; Pelinovsky, 1996; 2006; Madsen 
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et Fuhrman, 2008). If the bottom slope in face-shore area is small, the extreme 

run-up characteristics weakly differ from a case when the bottom has constant 

slope everywhere. Non-linearity leads to the correction of obtained results. First 

of all, there is nonlinear wave deformation in the region where inclination of 

bottom changes. This effect is thoroughly investigated with use of boundary value 

approach for pulse-like and periodic input including  waves  propogating over 

different kinds of  non-planar bathymetries  in (Brocchini, 2001), (Antuono et 

Brocchini, 2007; 2008; 2010).   In this case the wave evolution seems to be 

enaffected by the bottom peturbations. The second one is that a wave moving on 

horizontal bottom nonlinearly deformed within nonlinear shallow-water equations 

as Riemann wave and its shape in the entry of plane beach differs from an initial 

shape (Didenkulova et al., 2006; 2007). It should be noted that both factors 

amplify the run-up heights. A new effect appeared for the wave run-up on a plane 

beach matched with horizontal bottom is the influence of the bottom slope on the 

shape of water oscillations on the shore. If the incident wave has a bell-shape, the 

water oscillations on the shore repeat its shape if the bottom slope is big (limiting 

case is a vertical wall), and accompanied by the negative second oscillation if the 

bottom slope is small. Such behavior is explained by the resonance effects which 

are weak for such geometry – from physical point of view it is an open resonator1 

(Pelinovsky, 1996; 2006; Madsen et Fuhrman, 2008). If the bottom slope differs 

relatively small from the uniform value, the changes of run-up height are also 

small (Soldini et al., 2013).  

For more complicated geometry of coastal zone consisting of several pieces with 

different slopes, the solutions for each region of constant slope are matched 

(Kânoğlu and Synolakis, 1998, Didenkulova, 2009). Simplified solutions in the 

form of a product of such elementary solutions can be given if the incident wave 

length is less than a bottom piece length. For general ratio between these different 

lengths, as it is known, the resonances appear due to multi-reflection from 

matching points and interference between such waves. Some allusion on possible 

resonances for wave run-up can be found in (Kajiura, 1977; Mazova, 1985). They 

investigated linear approximation of the run-up characteristics due to sine incident 

wave.  The resonance phenomena are important for tsunami waves (LeBlond and 

                                                 
1  If the wave maker located near the shore, of course, the resonant effects are big 
(Stefanakis et al., 2011; Ezersky et al., 2013). 
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Mysak, 1981; Massel, 1989; Mei, 1983; Neu and Shaw, 1987 ). Photos of tsunami 

wave trains in different coastal locations are well-known after the 2004 

Indonesian and 2011 Japanese tsunamis. Usually appearance of resonance effects 

is connected with a complicated two-dimensional bathymetry of bays and jagged 

coastal line. In the present paper we aim to investigate run-up resonance 

phenomena for one dimensional case of wave propagation. We intend to show 

that for certain frequencies depending on bottom profile, run-up amplification 

may be high even for very simple bathymetry and it influences the shape of the 

water oscillations on the coast. 

The paper is organized as follows. In the second section we describe our model of 

bottom profile and present the results for run-up amplification versus the 

frequency of linear harmonic incident wave. In the section 3 results of 

calculations of the run-up characteristics caused by Gaussian impulse and N-wave 

impulse are presented. Section 4 is devoted to non-linear effects appearing in run-

up. Discussion of result applicability for natural hazard description and some 

conclusions are given in section 5.  

2. Theoretical model and run-up due to linear 
harmonic wave 

Long wave run-up on a long beach is described by 1D nonlinear shallow water 

equation:  

 0u uu g
t x x

η∂ ∂ ∂
+ + =

∂ ∂ ∂
  (1) 

 ( ) 0u h
t x
η η∂ ∂
+ + =⎡ ⎤⎣ ⎦∂ ∂

  (2) 

where u is the depth-averaged velocity, h=h(x) is the unperturbed water depth, 

η=η(x,t) is the free surface displacement, g is the acceleration of gravity. In the 

linear approximation the system (1)-(2) is transformed into one equation 
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2 0g h
t x x
η η∂ ∂ ∂⎡ ⎤− =⎢ ⎥∂ ∂ ∂⎣ ⎦

 (3) 

To demonstrate the resonance effects in the run-up characteristics, we use three 

pieces-wise profile of unperturbed depth which are typical for real ocean bottom: 

(A) continental shelf 00 x x≤ ≤ ,  (B) continental slope 2 0x x< < , (C) constant 
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depth ocean 2x x<  (see Fig. 1). Such topography was used in numerous papers on 

tsunami run-up. We would like to emphasize that in some cases such simple 

model of bottom profile describes very precisely natural conditions. For instance, 

exactly such model was used to prepare numerical simulations of tsunami near the 

Indian coast (Neetu et al., 2011). 

The wave field in zone of constant depth (C) is presented as a sum of incident and 

reflected harmonic waves with constant amplitude iA  and rA :  

 ( )( )00( )) ik x xik x x i t
i rAe A e e ωη −− − −= +   (4) 

 In zone (B) with a constant bottom slope tan β  (continental slope), we seek a 

harmonic solution of the form:   

 ( ) i tA x e ωη −=   (5) 

where ω   is the frequency and ( )A x  is an amplitude function. By inserting  (5) in 

(3), the amplitude equation for harmonic wave is represented as:  

 ( )( ) ( )
2

2
1 2tan tan 0A Ag x x g A

x x
β β ω∂ ∂

− − + =
∂ ∂

  (6) 

After introducing the variable transformation  

 12
tan

x x
g

σ ω
β

−
=    (7) 

the equation (6) can be simplified to the Bessel equation of the first kind  
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2 0A A Aσ σ
σ σ
∂ ∂

+ + =
∂ ∂

  (8) 

Its solution may be expressed as a sum of the zeroth order Bessel functions of the 

first 0J and second 0Y kinds with two constants C1 and C2:    

 1
1 0 2 0            ( ) ( ), 2

tan
x xA C J C Y

g
σ σ σ ω

β
−

= + =   (9)   

In the near-shore zone (A) the solution for wave amplitude is also presented in 

Bessel functions. Taking into account that the wave field should be limited at the 

shore ( 0x x= ), the wave amplitude is described by:  

 0
0        ( ), 2

tan
   x xA R J

g
σ σ ω

α
−

= =   (10) 

where R is also constant (in general, complex constant). It is evident that R 

describes the amplitude of the water level oscillation on unmoved shoreline 
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(linear run-up height). If the bottom has the constant slope everywhere the value f 

|R| computed in the linear theory coincides with run-up height in nonlinear theory 

(Synolakis, 1987; Pelinovsky et Mazova, 1992). For more complicated geometry 

this statement is not proved and we will discuss this later.  

Using continuity conditions for horizontal velocity and free surface displacement 

for x = 0 and x= x2, one can match solutions in different segments at this 

transition points and obtain the following system: 

For x = 0: 

 ( ) ( ) ( )0 0 0 0 2 0 01RJ C J C Yσ σ σ= +   (11) 

 ( ) ( ) ( )1 1 10 0 2 01RJ C J C Yσ σ σ= +   (12) 

For x = x2: 

 ( ) ( ) ( )0 20 2
1 2

( )
0 1 0 1

ik x xik x x
i rC J C Y Ae A eσ σ −− −+ = +   (13) 

 ( ) ( ) ( )0 20 2
1 1 2

( )
1 1 1

ik x xik x x
i rC J iC Y iAe A eσ σ −− − −+ = −   (14) 

where 0 ( 0)xσ σ= = , 0 ( 0)xσ σ= = , 1 2( )x xσ σ= = , 1J and 1Y the first order 

Bessel functions of first and second kinds. 

If the incident wave amplitude iA  is known, the linear run-up height R can be 

evaluated by solving the last system (11)-(14):  

 ( ) ( ) ( ) ( )( )
( ) ( )( ) ( ) ( )( )

0 20 0 1 0 1 0 0 0 ( )

0 1 1 1 0 1 1 1

( ) ,

2
( ) ik x x

i

J Y J Y
K e

W Y iY N J i

R K

J

Aω

σ σ σ σ
σ σ

ω
σ σ

− −−
=

− − −

=

  (15) 

where 

0 0 1 0 0 0 1 0( ) ( ) ( ) ( )W J J J Jσ σ σ σ= − , 0 0 1 0 0 0 1 0( ) ( ) ( ) ( )N Y J J Yσ σ σ σ= − . 

Term in  numerator of (15) may be simplified using Wronskian (Abramovich & 

Stegun, 1964) as presented in Kânoglu & Synolakis 1998: 

                                  
0

00010100
2)()()()(
σπ

σσσσ −=− YJYJ . 

Fig. 2 represents run-up amplification / iR A  for three different sets of bottom 

slopes characterized roughly for the Indian coast bathymetry (Neetu et al., 2011) 

where the Makran tsunami was observed on 27 November 1945. If the bottom 

slopes in zones A and B are the same the resonance effects are very weak (dash-

point curve in Fig. 2), and this coincides with known results (Pelinovsky, 1996; 
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2006; Madsen et Fuhrman, 2008). But in the case of different bottom slopes in 

zones A and B resonance effects are clearly visible (solid and dashed lines in Fig. 

2). Several resonant modes with frequencies (ω1, ω2,…) may be excited in the 

coastal zone and the amplification coefficient can reach values of 10-20 times.  

Characteristic period of the first resonant peak T=2π/ω1 is roughly 2 hr that 

coincide with observed tsunami record in this area (1.5–3 hr) according to (Neetu 

et al., 2011). 

3. Run-up due of solitary bell and N impulses 

Resonance curves given in the previous section show a substantial increase of run-

up heights for certain frequencies of harmonic incident waves. Whereas run-up 

height for harmonic wave is given by (15), the oscillations of water level on the 

shore (linear run-up) generated by solitary tsunami wave may be presented using 

the Fourier transformations:  

 ( )1( ) ( ) ( )
2

i tR t K S e dωω ω ω
π

−= ∫   (16) 

where S is the Fourier transformation of incident wave 

 ( )( ) ( ) i tS t e dtωω η= ∫   (17) 

Usually the shape of the incident tsunami wave is unknown and it is characterized 

by different functions, see for instance (Didenkulova et al., 2008). We chose here 

two characteristic and qualitatively different cases: the initial displacement of the 

free surface of one sign and alternating displacement with zero averaged value. In 

the first case it is a Gaussian pulse, and in the second one so-called N pulse: 

 
2

0( ( / ) )
0

t
in G

e τη η −=   (18) 

 
2

0( ( / ) )
0

0

t
in N

t e τη η
τ

−⎛ ⎞
= ⎜ ⎟

⎝ ⎠
  (19) 

Both pulses are characterized by two parameters: the duration and amplitude. 

Within linear theory, the value of wave amplitude is not important and can be 

used for scaling of run-up characteristics. The second parameter, wave duration τ0 

plays an important role due to resonance effects.  

Meanwhile, in tsunami practice, both parameters (amplitude and duration) of the 

incident wave are not independent and are determined by the parameters of 
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tsunami source. Here we apply our theoretical results to tsunamis generated by the 

underwater earthquakes. Now, the characteristics of tsunami source are calculated 

using the Okada solution (Okada, 1985), and they depend on the several fault 

parameters. For simplified estimates it is more convenient to have the relations 

between tsunami source parameters and earthquake magnitude. Such relations are 

known in seismology (Sato, 1979; Wells et Coppersmith, 1994). Similar relations 

are given for parameters of tsunami source (Pelinovsky, 1996; 2006; Bolshakova 

et Nosov, 2011). Here we will use the following relations between the 

displacement amplitude of the free water surface η0 and the characteristic size of 

tsunami source L with the earthquake magnitude M (Pelinovsky, 1996; 2006). 

 0log( ) 0.8 5.6Mη = −   (20)    

 log( ) 0.5 2.2L M= −   (21) 

In the shallow-water approximation the duration of tsunami waves going out the 

source is 0 /L ghτ = , where h is water depth in the tsunami source. Of course, 

the formulas (20) and (21) are very approximated and may use only for simplified 

estimations.  

Thus, we can use magnitude of earthquake to describe solitary bell, or N wave. 

The results of calculations of linear run-up function R(t) for various values of the 

earthquake magnitude are presented below. 

values of the earthquake magnitude: 7.7 and 8.5. Duration of the incident tsunami 

waves decreases then magnitude decreases, and its spectrum width increases. It 

means that weakest earthquake induces more resonant modes in coastal zone than 

strongest earthquake. As a result, the number of water oscillations on the shore 

increases with magnitude decreasing. If the initial shape is N-wave, the number of 

oscillations is higher than for Gaussian input because its spectrum is narrower. It 

is important to mention that run-up height of N-wave is higher than for bell-wave 

and this was obtained firstly in (Tadepalli et Synolakis, 1994). 

The run-up amplification factor (R/Ai) decreases with increasing of earthquake 

magnitude up to M = 7, and then it remains almost constant (Fig. 4). Tsunami 

generated by strong earthquake has large wavelength and in this case as indicated 

above, the resonance effects are very weak. The weakest tsunamis having the 

shortest wavelength are amplified more due to resonance effects. Increasing of the 

bottom slope in zone B (tanβ) reduces the run-up height as it might be expected. 
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Maximal run-up height growths with earthquake magnitude increasing as it is 

shown in 

Fig. 5. It should be noted that resonance effects “lift up” the values of run-up 

height for weakest earthquake, where as run-up height weakly depends on the 

values the bottom slopes in given ranges under consideration. It is important to 

note that curves in Fig. 4 and 5 are obtained in the linear approximation. Criteria 

for applicability of the linear solution will be discussed in the next section.  

 

4. Estimations of non-linear effects  

Calculations of maximal run-up heights in sections 2 and 3 were done in linear 

approximation. As it is indicated above it is difficult to solve the nonlinear 

shallow-water equations for piece-wise bottom profile. Taking into account that 

bottom slope is changed on depth in 4000 m and 200 m, and wave amplitude does 

not exceed a few meters we may assume that all nonlinear effects are manifested 

on the last run-up stage. In this case we may use the rigorous solution of the 

nonlinear shallow-water equations for the long wave run-up on a beach of 

constant slope, which is very well developed, see references in Introduction. Here 
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follow to (Pelinovsky et Mazova, 1992) we convert obtained linear solution into 

“nonlinear” solution. According to this procedure, we should firstly find “linear” 

expression for horizontal velocity on the unmoved shoreline (x = 0) which is 

followed from kinematics 

 1( )
tan

dRU t
dtα

=   (22) 

where as earlier tanα is bottom face-slope. “Nonlinear” velocity of the moving 

shoreline, u(t) can be obtained from linear function U(t) by the Riemann 

transformation (Pelinovsky et Mazova, 1992) 

 
gtan

uu(t)= U t +
α

⎛ ⎞
⎜ ⎟
⎝ ⎠

  (23) 

It is evident that maximal values of “nonlinear” and “linear” velocities coincide.  

Vertical displacement of the moving shoreline, r(t) can be found from kinematic 

condition 

 
( )

( )
tan

u t dt
r t

α
= ∫   

And after substitution of (16) can be reduced to 

 
2 ( )

tan 2g
u tur(t)= R t +

α g
⎛ ⎞

−⎜ ⎟
⎝ ⎠

  (24) 

It should be noted that this is only true for the analytical structure of the solution, 

but the solution itself also depends on the data assignment as an initial value or a 

boundary value problem ( Antuono & Brocchini, 2007).  

The important conclusion from Eq. (24) is that extremes of the vertical 

displacement in the linear and nonlinear theories coincide (in this moment the 

horizontal velocity u=0), confirming the use of linear theory to predict extreme 

values. Therefore, the linear theory adequately describes the run-up height.  

Simple formulas of Riemann transformation from linear to nonlinear solutions 

allow us to obtain the wave breaking criterion. Strictly speaking, this criterion is 

found from zero condition for Jacobian of hodograph (Legendre) transformation.  

Note that this transformation was used to obtain eq. (15) - (17). On the other hand, 

the solution for velocity (16) resembles the well know Riemann wave in nonlinear 

acoustics and hydrodynamics (the role of coordinate plays the inverse value of the 

g tanα). Such wave would overturn with increasing of amplitude. Exactly this fact 
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has been used in (Pelinovsky, 1966, 2006; Didenkulova, 2009) to find wave 

breaking criteria on the shore. From equation (16) it is easy to calculate the time 

derivative of the velocity in incident wave. 

 /
/1

tan

du dU dt= dU dtdt
g α

−
  (25) 

tends to the infinity when the denominator approaches zero. As follows from the 

theory of hyperbolic equations it leads to the gradient catastrophe identified and to 

the plunging breaking of the long water waves. In this case a water displacement 

contains the jump of its first derivative. This implies the condition of the first 

wave breaking  

 
2 2

2

max /max / 1
tan tan

(d R dt )(dU dt)Br = = =
α g α g

 (26) 

where the parameter Br has the sense of breaking parameters. Fig. 6 shows the 

temporal evolution of the breaking parameter, linear and nonlinear water level 

oscillations on the shore and shoreline velocities versus time for solitary impulse 

and N-wave impulse for magnitude M=.7.7.  It is clearly seen the difference 

between linear and nonlinear solutions for moving shoreline. It is important to 

mention that breaking parameter is less 1, so tsunami wave should climb on the 

shore without  breaking for chosen bottom geometry. It should be emphasized that 

for all results presented in Fig. 4 and 5 criterion Br<1 is satisfied.  

 

5. Discussion and conclusions. 

The run-up of tsunami waves on the coast is studied for following bottom 

geometry: ocean of constant depth, steep continental slope, beach of gentle 

constant slope. It is demonstrated that run-up characteristics are strongly depend 

on the frequency of the incident wave due to resonance effects. They are studied 

for conditions of the Indian coast where the 1945 Makran tsunami has been 

recorded. Amplification ratio can be higher in 10 times then for a case of the 

uniform averaged slope. The run-ups of solitary wave of bell or N shape are 

studied in details. It is found that run-up of N waves is higher than for solitary 

wave.  It is due to stronger manifestation of the resonance effects for N-wave than 

for bell shape wave. Using simple parameterization of tsunami source through an 
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earthquake magnitude the run-up heights are calculated versus earthquake 

magnitude. It is shown that the resonance effects can “lift up” the values of run-up 

heights for weakest magnitudes due to resonance amplification of shortest waves 

generated by weakest earthquake. Nonlinear correction of obtained results is 

given. It is shown that for typical conditions of the Indian coast where the 1945 

Makran tsunami was observed the breaking parameter is less than 1 and tsunami 

waves climb on a coast with no breaking.   
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Fig. 1 Schema of bottom profile. 

 
 
 
 

 

Fig. 2 Run-up amplifications for three sets of bottom slopes 
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Fig. 3 Incident wave and water oscillations on the shore for h0=4000 m, h1=200 m, tanα =0.005, 

tanβ=0.1, and different earthquake magnitude: a) M = 7.7 b) M = 8.5. 
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Fig. 4 Run-up amplification factor for Gaussian impulses and N-wave impulse (h0=4000m, 

h1=200m) for different inclinations of continental shelf and continental slope: (a) tanβ=0.1, (b) 

tanβ=0.5, (c ) tanβ=3. .  
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Fig. 5 Maximal run-up height versus the earthquake magnitude for Gaussian impulses and N-wave 

impulse, (h0=4000 m, h1=200 m) for different inclinations of continental shelf and continental 

slope: (a) tanβ=0.1, (b) tanβ=0.5, (c ) tanβ=3.  
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Fig. 6 Breaking parameter, linear and nonlinear variations of water level on shore and shoreline 

velocities versus time for h0=4000 m, h1=200 m, tanα =0.005, tanβ=0.1 and M=7.7: a) Gaussian 

wave, b) N-wave  

 

 
 


