
1 

 

Flood Frequency Analysis supported by the largest historical flood. 1 

 2 

W. G. Strupczewski1, K. Kochanek1 & E. Bogdanowicz2 3 

1) Institute of Geophysics Polish Academy of Sciences, Ksiecia Janusza 64; 01-452 Warsaw, Poland,  4 
e-mails: wgs@igf.edu.pl, kochanek@igf.edu.pl 5 

2) Institute of Meteorology and Water Management, Podlesna 61, 01-673 Warsaw, Poland,  6 
e-mail: ewa.bogdanowicz@imgw.pl 7 

 8 

ABSTRACT 9 

The use of non-systematic flood data for statistical purposes depends on reliability of assessment both flood magnitudes and 10 
their return period. The earliest known extreme flood year is usually the beginning of the historical record. Even if one 11 
properly assess the magnitudes of historic floods, the problem of their return periods remains unsolved. The matter in hand is 12 
that only the largest flood (XM) is known during whole historical period and its occurrence marks the beginning of the 13 
historical period and defines its length (L). It is common practice to use the earliest known flood year as the beginning of the 14 
record. It means that the L value selected is an empirical estimate of the lower bound on the effective historical length M. The 15 
estimation of the return period of XM based on its occurrence (L), i.e. M̂ L , gives severe upward bias. The problem arises 16 
that to estimate the time period (M) representative of the largest observed flood XM. 17 
From the discrete uniform distribution with support 1,2,.., M of the probability of the L position of XM one gets ˆ 2L M . 18 

Therefore ˆ 2M L  has been taken as the return period of XM and as the effective historical record length as well this time. 19 

As in the systematic period (N) all its elements are smaller than XM, one can get  ˆ 2M L N  . 20 

The efficiency of using the largest historical flood (XM) for large quantile estimation (i.e.. one with return period T = 100 21 
years) has been assessed using the ML method with various length of systematic record (N) and various estimates of 22 
historical period length M̂  comparing accuracy with the case when systematic records alone (N) are used only. The 23 
simulation procedure used for the purpose incorporates N systematic record and one largest historic flood (XMi) in the 24 
period M which appeared in the Li year backward from the end of historical period. The simulation results for selected 25 
distributions, values of their parameters, different N and M values are presented in terms of bias and RMSE of the quantile of 26 
interest are more widely discussed.  27 
 28 
Keywords: Flood frequency analysis; Historical information; Error analysis, Maximum Likelihood, Monte Carlo 29 
simulations. 30 

1. INTRODUCTION  31 

Flood engineering usually deals with the determination of the flood of a given return period T years, i.e. the 32 
flood quantile XT or the design flood. The problems with the assessment of these parameters result from short 33 
time series (N < T), unknown probability distribution function of annual peaks, error corrupted data, the 34 
simplifying assumptions as of identical independently distributed (i.i.d.) data and, in particular, the assumption 35 
of stationarity of relatively long data series. All these account for high uncertainty of the upper quantile estimate. 36 
The effect of sample size is widely documented for various distribution models and estimation methods, thus, it 37 
is obvious that due to a short sample the confidence interval of the design flood estimate is already very broad. In 38 
addition to Flood Frequency Analysis (FFA) other sources of error would result in increasing uncertainty in the 39 
design flood estimate. This feature is not appreciated by the designers as they want to have only one value for 40 
designing flood related structures. Conversely, efforts to improve the accuracy of estimates of the hydrologic 41 
design value by specifying the various sources of uncertainty and incorporating them in the analysis produce the 42 
opposite effect from the one intended.  43 

To improve the accuracy of estimates of upper quantiles all possible sources of additional information and 44 
‘statistical tricks’ are used, such as: independent peaks above the threshold, seasonal approach, regional analysis, 45 
record augmentation by correlation with longer nearby records and, finally, augmentation of the systematic 46 
records by historical and paleo-flood data. 47 

Frequency analysis of flood data arising from systematic, historical, and paleo-flood records has been 48 
proposed by several investigators (a review Stedinger and Baker, 1987, Frances et al. 1994, MacDonald, 2013). 49 
The use of non-systematic flood data for statistical purposes depends on reliability of assessment both flood 50 
magnitudes and their return period. If the historical record is available, the information about the floods larger 51 
than prevailing majority of floods reported in the systematic record can be introduced to the datasets and, if we 52 
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are lucky, the unique information about the largest reported floods. Serious difficulties relate to the 53 
(un)availability and (not-) exhaustiveness of historical information, the (low) quality and (in)accuracy of 54 
historical sources. As if it was not enough, depending on the number of parameters and their method of 55 
estimation, the estimates of high quantiles are more or less sensitive to the largest observed floods. 56 

The earliest and simplest procedures for employing historical and paleo-flood data were based on plotting 57 
positions and graphical concepts (Zhang, 1982, 1985, Bernieur et al., 1986, Wang and Adams, 1984, Hirsch, 58 
1985, Cohn, 1986). The PWM method and L-moment method were introduced by Ding & Yang (1988), Wang 59 
(1990, 1996) and Hosking (1995). To deal with historical and paleo-floods Hosking and Wallis (1986 a, b) 60 
applied the maximum likelihood (ML) as the estimation method. Recently the Bayesian estimation paradigm has 61 
been incorporated (Vigilione et al., 2013, Parent and Bernier, 2003, Reis and Stedinger, 2005). It takes into 62 
account that the historical floods are known with uncertainty, for instance with lower and upper bounds (in fact 63 
the effect of corrupted historical flood magnitudes was investigated by Hosking and Wallis via MLE mentioned 64 
as early as in 1986 a, b) The subject of historical floods currently constitutes one of the main scientific threads in 65 
flood frequency analysis (MacDonald, 2013, Payrastre et al., 2011, 2013). It is important to add, that the 66 
inclusion of historical information is recommended in a number of national and international policy documents 67 
e.g. EU Flood Directive. The log Gumbel, Weibull and Gamma distributions together with maximum likelihood 68 
method were considered by Frances et al. (1994) to tackle systematic and historical or paleo-flood data in FFA. 69 
To assess the potential statistical derived from historical information the asymptotic variances of the quantile 70 
estimates from the systematic records alone and the combined time-series were compared by means of computer 71 
simulation experiments. The study performed to define the length (M) of historical period indicate that value of 72 
historical data for estimating flood quantiles can vary depending on only three factors: the relative magnitudes of 73 
the length of the systematic record (N) and the length of the historical period (M); the return period (T) of the 74 
flood quantile of interest; and the probability threshold defining the historical floods.  75 

Most often it is the first historical large flood that is the most remembered (and described in historical 76 
sources) and, therefore, it is usually not considered as important (or simply not known) what had happened 77 
before (Girguś and Strupczewski, 1965). In other words, only the largest (paleo-)historical flood is usually 78 
known for either it was best remembered (and thus recorded) because of its destructive character and taking a 79 
toll on many lives or, in case of pre-historical time, the largest inundation swept away any evidence of smaller 80 
floods that occurred earlier. The date of the first recorded historical flood is taken as the historical memory 81 
length L, i.e. L becomes the duration of non-systematic period commencing on the large flood. Even if one 82 
properly assess the magnitudes of historic floods, the problem of their return periods remains unsolved. In most 83 
literature examples (specially Benson, 1950, Dalrymple, 1960, IACWD, 1982, Zhang, 1982 and NERC, 1975, 84 
p.177) one reads that effective length of historical record M used for frequency analysis is always taken to be the 85 
period from the first extraordinary flood to the beginning of the systematic record, i.e. L.  86 

The matter in hand is that only the largest flood (XM) is known during the whole historical period and its 87 
occurrence marks the beginning of the historical period and defines its length (L) (Fig.1). That is because the 88 
beginning of the historical period was somehow forced by the appearance of the largest flood (XM) but in fact its 89 
unusual magnitude corresponds rather to a longer return period than L (or, if in systematic record all 90 
observations are smaller than XM, to (L+N)-period) , i.e. the probability that the actual return period of XM is 91 
longer than the L is greater than fifty percent.  92 

Attempts to eliminate or lessen this error lead us to the estimation the time period (M) representative of the 93 
largest observed flood XM as accurately as possible. In order to do so, we will carry out the evaluation of the 94 
efficiency of using the largest historical flood (XM) for large quantile estimation and its comparison with the 95 
case when systematic records alone (N) are used. To keep and preserve the unspoiled genuine information 96 

contained in the observation (XM, L), the return period  M̂  of the largest observed historical flood (XM) should 97 

be assessed without data from the systematic record providing that it does not contain elements larger than XM 98 
values. 99 

It is obvious that the return period of the historical flood assessed on the base of the year of occurrence (L) 100 
represents just the lower limit of its real empirical return period (M). Of course, there is an upper  empirical limit 101 
as well, which however, can not be estimated unambiguously. This is so because, if the occurrence of a large 102 
flood was reported in a given year, for sure a similar or more serious flood a year before would have been also 103 
noted and commented in historical sources (Hirsch and Stedinger, 1987). The same can be stated for horizon of 104 
two, three, four, etc. years. If we could identify this time span, we would have determined the upper limit of the 105 
empirical return period. 106 

The estimation of M based on the date of the first extraordinary flood occurrence exacerbates an already  107 
severe imprecision. By defining as historical floods all floods during the M period above a given threshold and 108 
taking four different plotting position formulas, Hirsch and Stedinger (1987) calculated (with the use of Monte 109 
Carlo experiment) the magnitude of the upward bias of the plotting position of the largest sample elements 110 
occurring when L is taken as the beginning of the historical record. Doing so they noticed that L is a random 111 
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variable dependent on the flood-producing process itself; this would be a violation of the assumption of the 112 
plotting position formulas.  113 

Similarly, Hosking and Wallis (1986 a, b) use Monte Carlo (MC) computer simulation to assess whether a 114 
single paleo-flood estimate, when included in a single-site Maximum Likelihood (ML) flood frequency analysis 115 
procedures, gives a worthwhile increase in the accuracy of estimates of extreme floods. They found that the main 116 
factors affecting the utility of this kind of paleological information are the specification of the fitted flood 117 
frequency (whether it has two or three unknown parameters) and the size of the measurement error of paleo-118 
discharge estimates. Errors in estimating the date of the paleo-flood are considered to be of minor importance. 119 
For distributions with higher CV or skewness the difference between the effects of the errors of the magnitude of 120 
paleo-flood and its return period is smaller. 121 

Note that the randomness of the systematic records time series of i.i.d. variable can also be sometimes 122 
questioned and undermined, e.g. when the largest value XM of a time series intentionally terminates the N-123 
elements’ systematic record. Then the XM is the last element of the N-element time-series. Such a case may arise 124 
when a water gauge was swept away by a heavy flood (XM) and not restored, or the intentional movement of the 125 

hydrological station. As before, the use of such a series in FFA with M̂ N  will lead to an overestimation of 126 
large quantiles. 127 

2. PROBLEM FORMULATION 128 

The object of the paper is to assess by use of the maximum likelihood (ML) method whether there is any impact 129 
of the largest flood terminating the time series assuming its magnitude (XM) is known. Therefore, the case of 130 
systematic data completed by largest flood is compared with the case where records contain systematic data 131 
only. These two variants are examined by comparing the bias (B) and the root mean square error (RMSE) of 132 
flood quantiles. The two two-parameter distributions, namely Gumbel and Weibull were used when applying the 133 
simulation experiments. The emphasis is put on the effect of misspecification of the return period (M) of the 134 
largest historical (paleo-) flood (XM) and on the proper assessment of the M estimate on the basis of XM 135 
occurrence (L). So far, the results of such research has not been presented in the hydrological literature. 136 

The theoretical framework of our research is based on Maximum Likelihood estimation which has been 137 
generally found to have desirable properties for combine systematic and historical information (Frances et al., 138 
1994, Stedinger and Cohn, 1986, Naulet et al., 2005). It is assumed that the annual maximum floods are 139 
independent and identically distributed. 140 

Assessment of the return period M of the XM flood 141 

Hirsch and Stedinger (1987) considered that the time of occurrence of the earliest documented historical flood L 142 
is the random variable defining a lower bound of the sample size used for computation of plotting positions. The 143 
position L of the largest in M period element (XM) (Fig. 1) is the random variable being discretely uniformly 144 
distributed in the M period, i.e. pt = 1/M for t = 1, 2…M. Obviously the magnitude of the largest element (XM) is 145 
also a random variable. It can correspond in the population to a smaller or larger value of the exceedance 146 
probability than 1/M defining the effective return period (MR) of XM, Therefore the difference (MR – L) is not 147 
restricted in sign. 148 

Assume that the return interval (M) of XM is known. As L is uniformly distributed variable in the M length 149 
time series with support L  [0,1,…,M], one gets E(L) = M/2 and V(L) = M2/12. In reality M is not known and its 150 
assessment is our goal. Taking the observed L value as the estimate of the expecting value, i.e. L = E(L) we get 151 

the M estimate equal ˆ 2M L . Because regardless of the estimation method the quantile estimators are not in 152 

general linear function of M̂ , the minimum bias of quantile    ˆˆ ˆ
p p pB x E x M x  

  
 does not necessarily 153 

correspond to the zero-bias of M̂ , i.e. to ˆ 2M L . If in the systematic period (N) all its elements are smaller 154 

than XM, one can get  ˆ 2M L N  . Note that usually N << L. 155 

3. SIMULATION PROCEDURE 156 

The simulation procedure incorporates N systematic record and one largest historic flood (XM) in the period M 157 
which appeared in the L year backward from the end of historical period (Fig. 1). Obviously, the systematic 158 
record and both magnitude (XM) and year of occurrence (L) randomly vary from simulation to simulation. As an 159 

estimate of the length of the historical period shall be successively ˆ , 2M L L  and the actual value M̂ M , i.e. 160 

the length of the period M in simulation experiment. 161 
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First, generate a gauged record x1, x2,…,xN of independent random variates from the assumed (two-162 
parameter) flood-like distribution [F(x)] with parameters chosen to give specified values of CV. Then generate 163 
historical series of the same distribution of the length M, i.e. y1, y2,…,yM, and find the maximum event (XM) of 164 
the historical series denoting the time (L) of its occurrence. Since the random variables (XM) and L are mutually 165 
independent the XM can be generated from the distribution of the largest element in a M-element series, i.e. 166 
F(M) = F1,M(y) = FM(y), while the corresponding time of its occurrence (L) from the discrete uniform distribution 167 
with support {1,2,…,M}. 168 

A flood frequency distribution fitted by the method of maximum likelihood has a distribution function F(x,) 169 
and a density function f(x,), where  is a vector of unknown parameters, then the likelihood function (L) is 170 
taken to be 171 

        
ˆ 1

1

; , ; ; ;

N
M
x x x i

i

x y F y XM f y XM f x



  
     

  
L θ θ θ θ , (1) 172 

i.e., the use of incomplete data likelihood, where ˆ , 2 and M L L M , and for systematic record only 173 

    
1

; ;

N

x i

i

x f x



L θ θ . (2) 174 

Calculate quantile estimates  1 ˆˆ 1 1 ;TX F T  θ  for ˆ , 2 and M L L M  and the systematic record (N) only 175 

(i.e. when ˆ 0M  ), where F–1 is the inverse distribution function of the fitted flood frequency distribution, θ̂  is 176 
the maximum likelihood estimate of , and T is the return period of interest. 177 

Repeat the above steps a large number of times (i) and calculate the mean and variance of ˆ
TX , and hence the 178 

relative bias RB and relative RMSE of ˆ
TX  taking ˆ ,2 and i i iM L L M and the systematic record (N) only 179 

( ˆ 0M  ) considered as an estimator of the true quantile XT = F–1(1–1/T;). If in a generated series one gets 180 

max(x1,x2,…,xN)  XM such simulation is ignored which allows us to assume ˆ 2M L . 181 

4. SIMULATION RESULTS 182 

The concise frame of this paper made us to limit the number of models we took into consideration in our 183 
calculations. In order to lessen the number of the figures for all the combinations of CS and CV values we 184 
resigned from three-parameter distributions such as generalised extreme value (GEV) and turned into its two-185 
parameter special forms, namely Gumbel (Gu) and Weibull (We). Another cause was also that, however 186 
theoretically sound, the GEV working perfectly for large samples often fails in far-from-asymptotic samples 187 
which we examine in this study. We scrutinised a number of two- and three-parameter distribution functions in 188 
terms of their best fit to hydrological annual and seasonal peak flows in Poland and it turned out that despite the 189 
regime of the river other models were preferred rather than GEV (Strupczewski et al, 2012, Kochanek et al, 190 
2012). However, the crucial argument after the choice of the parent distribution was the pioneering works of 191 
Frances et al. (1994) that we wanted to continue and develop. Results of simulation experiments are shown for 192 
Gu and We distributions with four values of the coefficient of variation CV = 0.25, 0.5, 0.75, 1.0, with two 193 
different lengths of systematic records N = 15, 50 and the length of effective historical period M = N exp(a) 194 
where a  [0,3]. Due to the limited capacity of this paper without the loss of generality, only the selected results 195 
were presented in Figs. 2-5, namely for CV=0.25 and 1.0; the results for CV=0.5 and 0.75 locate themselves 196 

between those presented in the figures. Results for the correct value of the return period  M̂ M  are compared 197 

with those got for ˆ ,2i iM L L . For completion the results for the systematic record only (i.e. ˆ 0M  ) were 198 

presented in all figures (solid line). Of course, for this case the results do not depend on M and in consequence 199 
on log(M/N).  200 

5. DISCUSSION OF THE RESULTS 201 

 The shorter the gauged record (N) is, the more useful the historical information. 202 
 Using as the estimate of the true return period of largest historical flood (XM) the historical memory length (L) 203 

results in considerable upward bias RB of 1% quantile far exceeding the bias for the systematic record only. Its 204 
value increases with CV (and CS) and with the M/N ratio.  205 

 Using in ML estimation the ˆ 2M L  instead of M̂ L  considerably reduces the bias and further reduction is 206 

obtained for the M̂ M , i.e. for the return period (M) of the largest historical flood XM.  207 
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 Although the use of ˆ 2M L  instead of M̂ L  reduces the bias more than twice, it is still circa 40% larger 208 
than the bias of a known return period M of XM, and comparable or lower than the bias from systematic record 209 
(N) . 210 

 As far as the relative root mean square error (RRMSE) of 1% quantile is concerned, for both Gumbel and 211 
Weibull models one can notice some reduction in its values when one uses L, 2L or M return periods in 212 
comparison to the systematic sample. The worst reduction of RRMSE one gets for L, better for 2L and the best 213 
for M which means that it is worth, at least, considering using a historical measurement XM in upper quantile 214 
estimation and then set the return period of XM to 2L rather than L if we do not know M. 215 

 The reduction in RMSE for both models (Gumbel and Weibull) rises generally with M/N ratio. In other words: 216 
the bigger M (compared to N), the higher distance between RRMSE values got for the sample with additional 217 
historical information and the systematic series. It goes without saying, that for N = 15 one gets better 218 
reduction than for N = 50.  219 

 For the Gumbel model, regardless of the sample return period, L, 2L or M, the relative reduction in RRMSE 220 
compared to systematic samples does not depend on CV. It does not hold for Weibull where the reduction 221 
decreases with CV, e.g. between CV = 0.25 and 1.0 there is usually a few-percent difference which is minimal 222 

(almost marginal) for M̂ M . 223 
 For Gumbel model reduction in comparison to systematic sample for log(M/N) = 3, CV = 0.25 and N = 15 the 224 

reduction gets up to 2.2, 3.6 and 5.3% for L, 2L and M respectively. For N = 50 these numbers are roughly 225 
three times smaller.  226 

 For Weibull the gain in RRMSE is more spectacular and for log(M/N) = 3, N = 15 and CV = 0.25 equals to 3.4, 227 
4 and 4.9% for L, 2L and M respectively (when CV = 1.0 the gain is c.a. four times lower). For N = 50 the 228 
general trend for Weibull remains the same as for N = 15 but the reduction of RRMSE is smaller. 229 

 To sum up the RRMSE issues, the inclusion of the largest historical flood in FFA with ˆ 2M L  (i.e. the 230 
effective historical record length) gives a few-percent reduction in RRMSE of extreme flood estimates. 231 
However, the reduction is circa 20 up to 60% lower than if we took M as the length of simulation period. The 232 
true value of M is not available in reality, so one is doomed to use 2L instead. 233 

 Therefore, to benefit from the largest historical observation every effort should be made to establish M 234 
accurately. 235 

 In the absence of any information about the period preceding the occurrence of XM one should put M̂  equal 236 
2L or 2(L+N). 237 

 The benefit from including the largest historical flood of a given value is measured by the reduction of 238 
RRMSE. It depends on:  239 

i. the length of systematic record (N),  240 
ii. the ratio of the true return period of XM, i.e. M to N ,  241 

iii. the ratio of N to the return period of quantile of interest, 242 
iv. the CV and skewness of the parent distribution.  243 

6. CONCLUSIONS 244 

Errors in historical data reduce, of course, the utility of the data for improvement of the estimation of flood 245 
magnitude at a given return period. In the simulations (Figs. 2-5) it was assumed that the magnitude of the 246 
largest historical flood (XM) was measured without error and the same was assumed for the systematic record. It 247 
is realistic to suppose that the XM flood was measured much less accurately than the gauged record. Error in 248 
estimating the largest historical magnitude (XM) is much more important than error in estimating the date of its 249 
occurrence (e.g. Hosking and Wallis, 1986 a, b). It is significant that inspired by the practice of efforts to 250 
improve the accuracy of estimates of flood quantiles through more realistic assumptions and a fuller use of the 251 
information they give just the opposite effect leads to increased uncertainty of flood estimates. 252 

The next step should be to refer to the general problem of historical information when the applied distribution 253 
model is false, which is always the case (Strupczewski et al., 2002). On the other hand, the uncertainty of the 254 
paleo-historical floods (both in terms of their magnitude and return period) combined with considerable 255 
increases in the complexity of the problem (when compared to analysis of systematic data only) provokes a 256 
fundamental question, whether the whole operation is worth a candle. Therefore, whether to include the paleo-257 
historical information or turn a blind eye to it, is a matter of conscience.  258 
All these generate two important practical problems which we leave for further study, namely: 259 
1. What is the theoretical upper limit of accuracy of high quantile estimation when the theoretical value (i.e. 260 

taken from the parent distribution) of return period for XM is known? 261 
2. Here in our simulation experiment we assumed the knowledge of the true (parent) distribution function. The 262 

role of historical information when the assumed distribution serves as the model of the true distribution 263 
remains, for the time being, unknown. 264 
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Only the solutions to these two problems completed by the consideration of the observation errors in FFA brings 265 
us closer to the answer to the fundamental question stated above, i.e. whether the available paleo-historical 266 
record can give worthwhile improvement in flood estimates. 267 
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