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Abstract

Due to their relatively unpredictable characteristics, shallow-landslides represent a risk
for human infrastructures. Multiple shallow-landslides can be triggered by large spread
precipitation events. The event of August 2005 in Switzerland is used in order to pro-
pose a risk model to predict the expected number of landslides based on the precipi-5

tation amounts and lithological units. The spatial distribution of rainfall is characterized
by blending data coming from operational weather radars and a dense network of rain
gauges with an artificial neural network. Lithologies are grouped into four main units,
with similar characteristics. Then, from a landslide inventory containing more than 5000
landslides, a probabilistic relation linking the precipitation amount and the lithology to10

the number of landslides in a 1 km2 cell, is obtained. In a next step, this relation is
used to randomly redistribute the landslides using Monte-Carlo simulations. The prob-
ability for a landslide to reach a building is assessed using stochastic geometry and
the damage cost is assessed from the estimated mean damage cost using an expo-
nential distribution to account for the variability. Although the outputs reproduce well15

the number of landslides, the number of affected buildings is not reproduced by the
model. This seems to results from the human influence on landslide occurrence. Such
a model might be useful to characterize the risk resulting from shallow-landslides and
its variability.

1 Introduction20

Shallow landslides often represent a risk for housing, people and infrastructures. Com-
pared with deep-seated landslides, shallow landslides usually trigger spontaneously,
flow at higher speed and are not likely to affect repeatedly the same location due to
the changes in soil stability conditions (e.g. van Westen et al., 2006; Corominas and
Moya, 2008). Consequently, most research efforts focus on the prediction of their exact25

location and, less frequently, their timing. Several methods for the mapping of landslide
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susceptibility exist and are based on physical models (e.g. Pack et al., 1998; Mont-
gomery and Dietrich, 1994; Godt et al., 2008) or statistical approaches (e.g. Carrara
et al., 1991). Since rainfall has been recognized as being a frequent triggering mech-
anism (e.g. Wieczorek, 1996), many authors, following Campbell (1975) and Caine
(1980), proposed early-warning systems based upon criteria of precipitation intensity5

and duration (e.g. Guzzetti et al., 2008). Other studies also use the antecedent pre-
cipitation as a proxy for considering the groundwater level preceding the precipitation
event (Crozier, 1999; Glade et al., 2000). More direct approaches are based upon the
real-time monitoring of soil moisture (Matsushi and Matsukura, 2007; Baum and Godt,
2010) or the use of transfer functions to estimate the soil water content from precipita-10

tion measurements (Cascini and Versace, 1988; Capparelli and Versace, 2011; Greco
et al., 2013).

Many rainfall-induced large landslide events have been recognized worldwide, for
example in Italy (Crosta, 1998; Crosta and Frattini, 2003; Crosta and Dal Negro, 2003;
Cardinali et al., 2006; Gullà et al., 2008), Spain (Corominas and Moya, 1999), USA15

(Campbell, 1975; Whittaker and McShane, 2012), New Zealand (Crozier et al., 1980;
Glade, 1998; Crozier, 2005), Taiwan (Yu et al., 2006), the Portuguese island of Madeira
(Nguyen et al., 2013) and in Switzerland (Bollinger et al., 2000).

Despite the numerous contributions to the physical understanding of the phe-
nomenon itself (for a broad reference list, although not up to date, see De Vita et al.,20

1998), studies on the assessment of landslide risk are less commonly found in the lit-
erature. Examples of quantitative risk analysis (QRA) at regional scale can be found in
Cardinali et al. (2002), Remondo et al. (2005) or Catani et al. (2005). However, these
studies provide a mean annual risk with no information on the expected distribution of
annual costs. More recently, applications of regional scale QRA providing exceedance25

probabilities were presented in Jaiswal et al. (2011) and Ghosh et al. (2012). Although,
most of the QRA methodologies are developed for local or regional scales, some of
them, as for example Catani et al. (2005), might be applied to a larger area.
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Switzerland was affected in August 2005 by a rainfall event with measured precipita-
tion reaching 324 mm in 6 days. Although floods were the main damage cause, more
than 5000 landslides were reported (Raetzo and Rickli, 2007). Landslide-induced dam-
age has been estimated by Hilker et al. (2007) at 92 million Swiss francs (USD 99
million; debris-flows not included) and represents 4.5 % of the total damage cost.5

As already mentioned by Jaboyedoff and Bonnard (2007) and by Rickli et al. (2008),
landslide density was highly correlated with the total precipitation amount. Following
their ideas, this article proposes a risk model for shallow landslides based on the event
of August 2005. The input parameters of the model include a rainfall and a lithological
map. The map of 6 day rainfall accumulations is constructed by interpolating a high10

resolution rain gauge network using weather radar data as external drift. A geotechnical
map is interpreted in order to group different units into 4 main lithological settings. The
expected number of landslides is predicted as a function of rainfall level conditional to
the lithological type. An intersection probability concept is then employed to predict the
potential number of landslides affecting buildings and the corresponding damage cost.15

The paper is structured as follows. Section 2 details the rainfall event of August
2005 in Switzerland both from a meteorological and lithological viewpoint. Section 3
explains the methodology to assess the landslide probability as a function of rainfall
accumulation and lithological context. Section 4 presents the risk analysis results in
terms of expected number of landslides, number of affected buildings and associated20

cost. Finally, Sects. 5 and 6 discuss and conclude the paper.

2 The rainfall event of August 2005 in Switzerland

2.1 Study area

The study area covers the entire Swiss territory (around 42 000 km2), which extends
from the Jura mountains in the North-West, to the Alps, in the South-East, through the25

Molassic Plateau, where most of the population is concentrated. Special attention is
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given to the location where most of the landslides occurred, which is the central part
of Switzerland, between the cities of Bern and Lucerne (Fig. 1). Landslides occurred
in the tectonic units described below (Trümpy, 1980; University of Bern and FOWG,
2005a,b), which are listed along a northwest-southeast direction (perpendicularly to
the geological structures):5

– Upper Freshwater Molasse from Middle and early Upper Miocene (consisting of
floodplains sediments including puddings, sandstones and silty shales).

– Other types of Molasse (narrower areas of Upper Marine Molasse, Lower Fresh-
water Molasse and Lower Marine Molasse, the lower part of this series being in
Subalpine position).10

– Subalpine Flysch.

– Upper Penninic Flysch (Schlieren Flysch).

– Ultrahelvetic and Helvetic Nappes (including tertiary shallow marine formation and
Cretaceous Limestones from the Wildhorn nappe and Jurassic Limestones from
the Axen nappe).15

Soils (regolith) and loose materials cover most of the time the bedrock. Most of these
shallow and superficial formations have not been mapped, except for the cases where
the formation reaches a sufficient extension or thickness to be considered relevant
at the map scale. This is for example the case of morainic material deposited by the
glaciations during the Quaternary, which is visible at several places, especially on the20

Plateau (Trümpy, 1980). The properties of the local soils strongly depend on the un-
derlying bedrock.

2.2 Description of the precipitation event

The rainfall event of August 2005 in central and eastern Switzerland resulted in se-
vere damage due to flooding and induced slope instabilities (Rotach et al., 2006). The25
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presence of the Alps played a key role in controlling the spatial distribution of rain-
fall due to orographic precipitation enhancement processes. Persistent precipitation
patterns were mostly found on the exposed upwind slopes under northerly and north-
easterly flow conditions as studied by Foresti and Pozdnoukhov (2011) and Foresti
et al. (2012). In particular, the stratiform precipitation was locally enhanced by smaller5

scale orographic features leading to persistent initiation and enhancement of the em-
bedded convection.

The most intense period of the event was observed between 21 and 22 August.
Driven by cyclonic conditions during the first day, the moist air from the Mediterranean
sea circumvented the Austrian Alps and started approaching slightly crosswise the10

northern slopes of the Swiss Alps from the east. The mesoscale flows gradually turned
from easterly to northerly conditions during the second day. The reduced supply of
air moisture was compensated by a stronger upslope rainfall enhancement which ex-
tended the duration of precipitation. The return period for 48 h rainfall accumulations
largely exceeded 100 yr at several weather stations mostly located in the Berner Ober-15

land (Rotach et al., 2006). It is worth mentioning that the uncertainty of this estimation
is quite important as an event of such intensity was never observed in the past at the
considered weather stations.

2.3 Landslide inventory

As a consequence of this extreme rainfall event, many shallow landslides were trig-20

gered, mainly in the Entlebuch part of Lucerne canton and in the Bern canton. Some
deep-seated landslides were observed as well and are mainly located farther south-
east. A landslide inventory has been collected by Raetzo and Rickli (2007) from can-
tonal authorities information and contains 5756 landslides (Fig. 1). Although some ad-
ditional attributes such as the exact timing have been registered for some of the land-25

slides, we only dispose of the version provided in the above publication and, as a result,
we only know the approximate location. The uncertainty about the location of landslides
complicates the analysis of geological context.
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Statistics on the landslides can be found in Raetzo and Rickli (2007) and in Rickli
et al. (2008) and investigations on specific sites in Mueller and Loew (2009) and von
Ruette et al. (2011). The travel distance of shallow landslides has been analyzed for
148 cases and ranges from a few meters up to 500 m (Raetzo and Rickli, 2007). Around
75 % of the landslides traveled less than 100 m and 90 % less than 200 m (Fig. 2).5

2.4 Damage

According to the Swiss Federal Institute for Forest, Snow and Landscape Research
WSL, the 2005 event has been the most costly since the beginning of the collection of
damage data in 1972, with a total damage cost estimated at 1.87 billion swiss francs
(around USD 2 billion). On the other hand, in spite of being the most important event10

recorded, other years have been equally or more damaging regarding landslides in the
past 40 yr (Hilker et al., 2009; WSL, 2012).

Hilker et al. (2009) divided the damage values into three categories according to
the cause, namely floods, debris flows and landslides (including mud-flows). Land-
slides represent around 4.5 % of the total cost and affected private properties (22 %,15

CHF 16.3 million) and public infrastructures (88 %, CHF 75.6 million) (Hilker et al.,
2007). Private damage includes damage to buildings as well as furnitures, vehicles,
other property damage and loss of profits. Comparatively, public damage includes dam-
age to waterways, roads (except small ones), rail, farming and forests. In addition to
economic consequences, six casualties are to be deplored.20
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3 Risk modeling methodology

3.1 Introduction

The annual risk to property is usually evaluated with the following equation (Dai et al.,
2002; Fell et al., 2005):

R(P D) = P (L)× P (S |L)× V (P |S)×E (1)5

where L denotes the landslide, P the element at risk (property) and S the impact. P (L)
represents the landslide frequency, P (S |L) the spatial probability of the landslide reach-
ing the element at risk, V (P |S) the vulnerability of the element at risk to the landslide
impact and E the element at risk value.10

In the case studies considered in this article, this equation is not used directly since
a single precipitation event is used as an input. However, since this event is used to
redistribute the landslides according to the precipitation event, P (L) is not completely
left out. In a first phase, the spatial distribution of the event rainfall accumulation is es-
timated using data from a dense network of rain gauges and addional C-band weather15

radars (Sect. 3.2). The second phase studies the statistical distribution of landslides
as a function of precipitation intensity and lithological type (Sect. 3.3) and is used to
estimate the probability of landsliding P (L). It must be mentioned that P (L) should also
account for the climatological frequency, which is the probability of the precipitation
event to occur. As the analyses consider only one single event, this probability was set20

to 1 and the term P (L) is only estimated from the distribution of landslides conditional
to the precipitation event. P (S |L) is assessed using principles of stochastic geometry,
and represents the probability of buildings to be affected by circular landslides within
a given cell. This term partially accounts for P (L) since the exact location of the land-
slides within the cell is randomly assigned at this step. The separate estimation of the25

terms V (P |S) and E is not possible as the cost of damages is assessed directly (see
Sect. 3.4).
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3.2 Spatial analysis of rainfall

MeteoSwiss operates an automatic network of 76 weather stations and a dense net-
work of additional 363 rain gauges. The automatic network measures rainfall with
a temporal resolution of 10 min while the second only reports daily accumulations from
05:40 to 05:40 UTC of the next calendar day. An additional network of 3 C-band radars5

is used to measure precipitation with higher spatial resolution. The operational radar
data processing chain for quantitative precipitation estimation (QPE) at MeteoSwiss
includes the removal of ground clutter, correction for the vertical profile of reflectivity in
connection with the bright band effect, climatological rain gauge adjustment, the inter-
polation from polar coordinates to a Cartesian grid, and the use of a fixed climatologi-10

cal Z–R relationship (refer to Germann et al., 2006, for more details). A geostatistical
method for real-time bias adjustment with rain gauges was only recently implemented
by Sideris et al. (2013). For long term evaluation of the radar QPE accuracy against
rain gauges refer to Gabella et al. (2005). The radar QPE product used in this paper is
a 1 km2 ×1 km2 grid of the rainfall accumulation during the period 18–23 August 2005.15

Despite these corrections, the product still contains residual ground clutter and bi-
ases due to the blockage of low level radar beams, in particular in the inner Alpine
valleys. To partially account for these issues, an artificial neural network was applied
to blend the radar-based QPE map with the rain gauge rainfall accumulations. A 3-H-
1 multiLayer perceptron (MLP) was trained to predict the rainfall amount observed at20

the rain gauges as a function of 3 variables: the geographical location represented by
the Swiss Easting and Northing coordinates and the radar QPE product which acts
as an external drift. The geographical coordinates account for the observed biases be-
tween rain gauges and radar-based QPE, which show a significant spatial dependence.
A conjugate gradient algorithm was employed to train the network. A low number of hid-25

den neurons H was chosen to obtain a smooth representation of the spatial rainfall bi-
ases. The optimal model was selected by minimizing the leave-one-out cross-validation
root-mean square error (RMSE). A randomly sampled test set was kept to evaluate the
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expected prediction RMSE, which is of 25.28 mm. No quantitative assessment of the
performance of the MLP model against geostatistical approaches (e.g. Sideris et al.,
2013) was carried out. The regularized MLP solution is a smooth compromise between
the radar and rain gauge measurements. This allows being robust to local radar over-
estimations due to ground clutter and the different sampling volume of radar and rain5

gauge measurements. The Machine Learning Office software was used for the com-
putations (Kanevski et al., 2009).

Figure 3 illustrates the spatial analysis of the rainfall accumulation from 18 to 23 Au-
gust 2005. The highest accumulations are observed on the northern slope of the Alps,
in particular along a line from the Berner Oberland to the mountain range of Saentis.10

The spatial distribution of landslides closely follows the regions with the highest rainfall
totals with some spatial heterogeneity due to the different geological settings.

3.3 Landslide distribution

To be consistent with the precipitation map, the resolution of the landslide distribution
maps has also been set to 1 km2 ×1 km2. For each grid cell, the probability to exceed15

a given number of landslides is computed based on the rainfall amount and the litho-
logical type.

Geology is extracted from the 1 : 200 000 geotechnical map of Switzerland (BFS
GEOSTAT/BUWAL) and transformed from a vector map to a m×n×p cumulative matrix
which gives, for each cell, the proportion of each lithological unit (Figs. 4 and 5). The20

geotechnical types have been simplified into 4 different units, loosely based on the
6 units used by Rickli et al. (2008) to assess the landslide density distribution of the
event:

– Limestone Formations (LF),

– Cristalline Formations (CF),25

– Flysch, Loose material (except moraine), Marls and Claystones (FLMC),
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– Molasse and Moraine (MM).

Cells that contain water (lake or glacier) or that are located on the Swiss border have
a cumulative value below 1 (Fig. 4e). The model is run several times and assigns at
each iteration a unique lithological unit following the probabilities given in the maps
shown in Fig. 4.5

Landslides are transformed from point features to a raster displaying the landslide
number in each cell (Fig. 1). This raster is then multiplied by the cumulative geological
raster (Fig. 4e) to take into account the smaller land surface inside the cell. Indeed,
cells with a total value below one for the geology (borders of Switzerland, lakeshores,
etc.) are taken into account only at some iterations. Therefore, by dividing them with the10

geology allows to maintain a mean number of landslide consistent with the inventory.
The precipitation field has been divided into 15 classes based on given quantiles and

the statistical distribution is shown in Fig. 6. The histogram is highly skewed and only
10 % of the region exceeds 200 mm of rain.

Figure 7 summarizes the data processing workflow. The output of the model is a cu-15

mulative distribution of the landslide number given the geology and the precipitation
amount. To allow a generalization of these results, gamma distributions were fitted to
the data by minimizing the mean square error in order to model the number of land-
slides as a function of precipitation amount. Since the gamma distribution is a continu-
ous distribution whose domain is 0 →∞, it this not exactly suitable to fit discrete data,20

especially as the highest frequency is obtained at a value of 0 (we can indeed expect
that 0 landslides in a cell is always the most frequent, regardless of the precipitation
amount). However, this problem has been solved by shifting the cumulative frequen-
cies to the upper number of landslides to fit the distributions, and by rounding down the
number of landslides obtained for a given quantile when using the inverse distribution25

function.
To estimate the models predictive ability, a second part consists in using the distri-

bution previously assessed to simulate different potential consequences of the precip-
itation event using a Monte-Carlo approach. This step illustrate the uncertainty of the
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model on the consequences of a given precipitation event. Indeed, since we consider
that the landslides are controlled only by the precipitation and the lithology this step
gives the variability resulting from this simplification. The workflow of this step is given
in Fig. 8.

3.4 Impact assessment5

The impact assessment consists of two main steps, which are evaluating how many
buildings will be reached and estimating an associated cost. In order to asses the
number of affected buildings, a concept of stochastic geometry is used. Assuming that
the landslide has the same probability to occur anywhere within the cell, the conditional
probability that any building of the cell is reached if a dimension-less landslide occurs10

is given by the proportion of the cell covered by buildings. To take into account the
landslides dimensions, a buffer is added to the buildings. Indeed, as shown in Fig. 9,
if the landslide is considered to be circular, it will affect a house if its center is located
inside the buffer area (buildings included). As a result, the conditional probability is
calculated considering the surface covered by the houses and their buffers. Since the15

buffers can overlap, the resulting probability considers the intersection with at least
one building. Although landslides are usually not circular but have an elongated shape,
a circle is used in order to simplify the model by avoiding the need to consider a real
geometry. Indeed, for non-circular landslides, the intersection probability cannot be
simply reduced to a single number for each cell, since the intersection does not depend20

only on the position of the center, but also on the orientation of the considered shape.
Since, for a given surface, an elongated shape is more likely to intersect a build-

ing than a round one, the circle diameter is set to 200 m in order to completely in-
clude 90 % of the landslides (Fig. 2). This diameter results in an overestimation of the
landslide surface, but takes indirectly into account the landslide geometry and provide25

a slightly pessimistic risk estimation in terms of number of affected buildings. Thus
a 100 m buffer has been added to the 1 814 667 buildings extracted from the vectorized
landscape model of Switzerland (Vector25, © swisstopo). Then the total surface has
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been compared with each cell surface to obtain the intersection probability (Fig. 10).
It has to be mentioned that intersection is only considered with a boolean approach,
which means that a landslide can affect a building or not, but the potential for one land-
slide to affect several buildings is not considered. It should also be noted that the buffers
are made before cutting shapes into cells in order to take into account the possibility5

for a landslide occurring in a given cell to reach a house located close to the border of
an adjacent cell.

The estimation of the associated cost is more complicated as the value of the build-
ings is not known. This information could be obtained from the buildings insurance
for 19 over 26 cantons for which a public insurance exists and is mandatory. However,10

a suitable vulnerability curve linking the landslide intensity, characterized by parameters
such as depth or area, to the damage rate, is difficult to assess. The lack of knowledge
on the precise landslide characteristics and location as well as the inherent variability
of the elements at risk complicates even more the assessment of the vulnerability (Galli
and Guzzetti, 2007). Therefore, in order to keep the models precision consistent with15

the previous step, we chose not to use a value and vulnerability curve to assess the
damage cost, but to assess it directly from the 2005 event mean damage cost.

The expected damage cost for a given building x is assumed to follow an exponential
distribution with probability density function:

f (x) =
{
λexp(−λx), x ≥ 0
0, x < 0

. (2)20

The distribution is only defined in terms of its first moment λ, which is equal to x̄−1, x̄
being the expected mean damage cost per building assumed for the 2005 event. This
cost is estimated by dividing the total damage cost induced by landslides to private
infrastructures (CHF 16.3 million) by the expected number of affected buildings. The25

latter is obtained by summing over all grid cells the product between the number of
landslides (Fig. 1) and the intersection probability (Fig. 10). This approach results in
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2360 affected buildings, implying a mean cost x̄ of CHF 6907 per building. No uncer-
tainty is considered on this parameter.

The generation of exponential variates is obtained by sampling from the quantile
distribution, which is given by the inverse function of the exponential cumulative distri-
bution as:5

F −1(u) = x = −
ln(1−u)

λ
(3)

where u is a uniformly distributed random number between 0 and 1. The exponentially
distributed damage cost is sampled for each case of impact identified by the model.

The fat-tailed nature of the exponential distribution allows obtaining a more realistic10

estimate of the damage costs than a normal or triangular distribution and does not need
the estimation of the second moment characterizing the variance of the distribution.
The latter is a useful feature as the statistical distribution of the damage costs per
building is not known in our particular case. The lognormal distribution also has heavy
tails and was successfully used to model the cost associated to floods (Merz et al.,15

2004). However, due to the larger number of degrees of freedom, it is also not suitable
for our application.

4 Results

The statistical distribution of landslides as a function of precipitation amount and litho-
logical group is given in Fig. 11. The probability to observe a given number of land-20

slides in a given lithological group is a monotonically increasing function of the precip-
itation amount. CF show a very little susceptibility to landslides compared to the other
groups as evidenced by the low number of observed landslides. With similar precipita-
tion amount, MM formations tend to have a higher probability to contain at least one
landslide than FLMC or LF. However this relation is less evident for larger landslide25

numbers.
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Table 1 shows the fitted values of the gamma distribution for the highest five precipita-
tion classes, whereas Fig. 12 display these values graphically. CF were not considered
due to the low number of samples. The α parameter (shape), characterizes the cen-
tral location of the distribution, while the β parameter (inverse scale) characterizes its
dispersion. A general increase in both α and β parameters with precipitation amount5

can be observed, although some values are not following the general linear trend. This
is especially the case for α for the classes with precipitation lower than 184 mm for LF
and lower than 158 mm for FLMC.

The general increase of both parameters is a desirable property and is in accordance
with our prior expectations. In fact, increasing precipitation amounts increase the ex-10

pected number of landslides (represented by α) and the dispersion of the distribution
(represented by β). Higher β values are representative of heavy-tails, which means
that the probability of observing a high number of landslides rises with increasing pre-
cipitation amount.

The spatial distribution of the number of landslides was computed following the pro-15

cedure described in Fig. 8 using both the raw data and the gamma fits. However, since
gamma distributions have been fitted only for the classes containing enough data sam-
ples, raw data have been used instead of gamma distributions when not available. The
mean modeled number of landslide with gamma fits is given in Fig. 13 and is very
similar to the mean number of landslides modeled with raw data. The spatial pattern20

is relatively similar to the spatial distribution of rainfall amounts, with two remarkable
differences. First, the relation between precipitation amount and number of landslides
is not linear, which implies that areas with low precipitation amounts show a null to
very low number of landslides. The second difference is due to the sharp geograph-
ical transitions between the lithological units, which lead to sharp transitions in the25

modeled number of landslides. An illustrative example occurs when moving from the
MM formations the CF, which strongly reduces the number of landslides (see Fig. 4).
These results seems to be in good agreement with the observed distribution landslides
(Fig. 1).
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To evaluate the ability of the gamma fits to reproduce the raw data, maps for the
95th and 98th quantiles have been modeled, still using a Monte-Carlo simulation to
account for the probabilistic aspect of the lithology (Fig. 14). Although the results are
relatively similar for the 95th quantile (with slightly lower values for the gamma fit), the
98th quantile shows more differences. Indeed, the gamma fit seems to underestimate5

the number of landslides observed in the raw data and indicates that the end of the tail
of the distribution is not adequately represented.

4.1 Impact assessment

Although the landslide number is reproduced, the expected number of hit buildings is
almost never reached in the simulations (Fig. 15). Indeed, the expected number of af-10

fected buildings for the event is 2360, whereas the simulations return a mean of around
1860. As a consequence, the damage amount is not reached either since it is derived
from the latter. Tests have been made using a 20 m buffer for the houses and the same
effect was observed. It is not yet clear why the observed total number of hit buildings
is underestimated by the model. One possible reason could be that the landslide lo-15

calization is highly correlated with the buildings location. To test this hypothesis, we
compared the intersection probability of cells within which landslides actually occurs to
the intersection probability of cells in which the mean modeled number of landslides
(Fig. 13) is above 0.5. Considering only these cells allows to keep the most suscepti-
ble cells according to the model. This comparison indicates that the modeled landslides20

tends to occur in cells with lower intersection probability than the actual landslides. This
effect is not clearly visible with a 20 m buffer, but is more obvious with 100 m buffers
(Fig. 16).
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5 Discussion

The landslide model presented in this paper only considers precipitation amounts and
geology as input parameters. However, other variables such as terrain slope, soil thick-
ness and permeability contrast, play a key role in shallow landslide generation. These
variables are either hard to measure over a large domain, e.g. the soil thickness, or5

show spatial variability at scales which are smaller than 1 km2 ×1 km2 resolution, e.g.
the terrain slope. Additionally, the uncertainty of the landslide inventory does not allow
matching the location of the landslide with such high resolution variables. As a conse-
quence, the 1 km2 ×1 km2 resolution model only gives information about the large scale
pre-conditioning factors for landslide generation. Smaller scale features may affect the10

process of landslide triggering in a significant way. Furthermore, this model is based
only on one single event and should be compared with other similar rainfall events. In
particular, it should be compared with similar events producing landslides in different
geological settings, to validate the aggregation of different lithology into four main units.
Indeed, landslides susceptibility might be different in Jura limestones than in Prealpine15

limestones, for example.
The annual probability to overcome a given total damage cost could be assessed by

analyzing different precipitation events, which are weighted based on their frequence of
occurrence (return period). This step is essential in order to obtain a mean annual cost
as well as an exceedance probability curve. One possibility to generate a large number20

of rainfall fields to appropriately represent the full risk estimation could be based on de-
sign storms (Seed et al., 1999). Stochastic rainfall fields could be generated according
to a given return period and be used to simulate the spatial distribution of landslides
under extreme rainfall conditions. Attempts have been made to use a return period in
order to predict landslide triggering but, they were mainly performed at local scale (e.g.25

Iida, 1999; D’Odorico et al., 2005; Iida, 2004; Tarolli et al., 2011) and would therefore
not be suitable for a larger area, since the spatial variability is not taken into account.
On the other hand, the spatial distribution of rainfall by means of radar data has been
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used for early-warning (e.g. Apip et al., 2010), but as far as we know, is has not been
used as in starting point to simulate potential future events.

Another issue concerns the landslide timing. We used the precipitation amount of the
whole event (6 days) as a predictor for landslide occurrence. But, shallow-landslides
are known to be sensitive to the intensity and duration of the rainfall, as well as to5

the hyetograph shape (D’Odorico et al., 2005). There are two main reasons for this
simplification. The first is the lack of data on the exact timing of landslides, which does
not allow analyzing the temporal precipitation pattern preceding their triggering. The
second reason is due to the uncertainty of the radar QPE product, which is higher
when used to analyze rainfall time series at high temporal resolutions, for instance10

hourly or 10 min accumulations. The spatial distribution of QPE accuracy can still be
affected by some residual ground clutter, which overestimates the true rainfall amount,
and by the blockage of low level beams, which leads to the underestimation of ground
rainfall due to using only the beams aloft. Wüest et al. (2010) present a method to
obtain hourly precipitation fields by disaggregating the daily rain gauge measurements15

with higher resolution radar fields. If the timing of landslide occurrence was known,
this dataset would be a valuable source of information. However, the product is not
accompanied by uncertainty estimates. A possible solution could involve the generation
of stochastic ensembles to represent the uncertainty of the radar QPE product with
respect to the automatic network of 76 meteorological stations. This approach was20

recently implemented at MeteoSwiss (Germann et al., 2009) and could be a smart
alternative to integrate ensembles of precipitation fields together with ensembles of
lithological types into the landslide model.

When it comes to the damage cost assessment, due to the lack of information on
the number of affected buildings and corresponding distribution of costs, a few impor-25

tant assumptions were made. The total number of affected buildings was estimated
by means of an intersection probability and this number was used to obtain a mean
cost per hit building. The number of hit buildings is an uncertain estimation since it
depends on the exact location of the landslides inside the cell. Indeed, we consider the
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landslides to be uniformly distributed within a grid cell. This assumption is realistic at
the model scale since every 1 km2 ×1 km2 cell contains slopes that might fail. However,
if susceptible slopes were located, inside of a cell, far from the houses, the modeled
intersection probability would not be null, although it might be the case in reality. We
plan to overcome this issue in the future by using a susceptibility map to constrain the5

landslides location at the intersection probability step.
The distribution of costs was assumed to be exponential, which has a desirable long-

tail property and is completely defined by its mean value. Despite being only defined in
terms of the average costs, the obtained variability is supposed to adequately represent
the reality. Nevertheless, with a mean cost of CHF 6907 per building, the probability to10

overcome CHF 500 000 is 5×10−36, i.e. one case over 1.8×1035. Since the mean price
of a building is around CHF 1 million, this value is quite low as we know that at least one
– but probably more – building has been destroyed. This could be the result of a too
high number of affected buildings (since they have been estimated), which reduces the
mean damage cost, or an indication of the need for using a distribution of damages with15

a fatter tail. However, this confirms the fact that a distribution with a fat tail is suitable.
Nevertheless, since the damage cost varies independently for each affected house and
since the number of affected houses is relatively high in the simulations, the effect of
these parameters variability is attenuated when summing over all the damage costs.
Another problem concerns the absence of data about the type of damage. Therefore,20

we assumed that all of the private costs are related to buildings. This simplification is
not an issue as long as the cost is related to objects located close to or inside the
buildings (furnitures, parked cars), but is more problematic for costs related to loss of
profits for example. However, we suppose that the vast majority is related to buildings.
As a result, this model could be improved considerably if the type of damage was25

known. Thus, the damage assessment part has to be considered more as an example
than as a reference for further vulnerability assessment.

Regarding the number of landslides, hit buildings and the amount of damage in
each simulation, the variability of the results follows more or less a normal distribution
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(Fig. 15). This distribution reflects the uncertainty induced by the lack of knowledge in
the assessment of the consequences of a given precipitation event. Since the model is
based on the observed landslides to redistribute the landslides and assess the conse-
quences, the number of modeled landslides using raw data is logically centered around
the observed value. Gamma fits results tend, on the other hand, to be lower than using5

raw data. This is due, in all likelihood, to the lack of ability of the gamma fits to repro-
duce the high observed numbers of landslides in some single cells. When it comes to
the number of hit buildings, the expected value is hardly ever reproduced. Since the
same concept of intersection probability, with the same buffer value, is used to assess
the expected number of hit buildings of the 2005 event and of the simulation results,10

this should not be observed. Tests with a 20 m buffer gave similar results. By compar-
ing the intersection probability of the cells in which landslides occurred with those of
the cells in which the landslides were modeled, we can observe that the cells in which
landslides occurred have higher intersection probability. Different hypotheses can be
made in order to explain this effect. First, we might have neglected an important pa-15

rameter for the localization of landslides which would be correlated to the built areas,
redistributing then the landslides in less populated areas. A second option could be
related to the quality of the inventory, which would be more complete in urbanized ar-
eas. Correcting this effect would imply a greater total number of landslides, with more
landslides on area with low intersection probability. The third one, which seems to us20

the most probable, would be that the urbanization tends to increase the susceptibility.
Indeed, human activities can contribute to landslides, acting directly as a trigger or indi-
rectly by destabilizing the slope, according to the classification of Michoud et al. (2011).
Since, the trigger of the 2005 event is undeniably the rain, only the latter case can
have played a role. Examples of landslides triggered by rain events on slopes destabi-25

lized by the modification of pore pressure induced by pipe leaks have been observed
in Switzerland, in Les Diablerets (Jaboyedoff and Bonnard, 2007) and in Lutzenberg
(Valley et al., 2004). This second example is especially interesting since the landslide
occurred within an event involving hundreds of landslides and debris-flows, and since
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this particular landslide would not have occurred, thanks to the authors, without the
pipe leak. Besides modifying pore pressure, pipe leaks can also destabilize slopes
by weakening clay minerals (Preuth et al., 2010). In addition, the degradation of old
canalization network led to a landslide in 1930 in La Fouvrière hill in Lyon (France),
killing 39 persons (Allix, 1930; Albenque, 1931). It would therefore be wise to include5

a parameter linked to the buildings to take account of this effect.
All things considered, the model makes simplifications in order to assess risk for

a large area rather than to be precise at local scale. Indeed, the lack of knowledge
and data at the sub-grid scale is balanced by the use of stochastic simulations, which
allows obtaining a probabilistic model for landslide occurrence and associated cost.10

Such kind of model might be useful to provide a rapid damage estimation follow-
ing a precipitation event. Indeed, after a widespread event, the time needed by the
insurance to process all claims is rather long and consequences might need several
months, even years to be known. Applying this model quickly after the event could pro-
vide a rough estimation of the damage costs. In a second step, modeling precipitation15

events assigned to a frequency would make possible the calculation of exceedance
probability curves.

6 Conclusions

This article proposes a model to asses risk due to shallow landslides for a large region
using the data from 2005 event in Switzerland. Distribution of landslides with regard20

to precipitation and lithology is assessed in a first step, then the landslides are redis-
tributed according to the relation obtained. Damage cost is obtained by the mean of an
intersection probability, which gives the probability, if a landslide occurs, that it reaches
a building.

Some improvements have to be made to the model, to corroborate the relation ob-25

tained, and to improve the assessment of the intersection probability, as well as the
distribution of costs. Moreover, the human influence on landslide susceptibility has to
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be evaluate carefully in a further step, since it appears that the landslides locations are
highly correlated with the buildings. This observation tends to indicate that the human
influence on slope stability is substantial. Further developments are also conceivable
to complete the risk analysis by simulating stochastic rainfall events characterized by
a frequency and to analyze the consequences. This would result in a complete risk5

analysis able to provide the temporal distribution of damage costs.
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Schäden und erste Einordnung, chap. Schäden, Bundesamt für Umwelt BAFU, edited by:
Bezzola, G. R. and Hegg, C., Eidg. Forschungsanstalt WSL, Bern and Birmensdorf, Switzer-30

land, 127–148, 2007 (in German). 750, 753
Hilker, N., Badoux, A., and Hegg, C.: The Swiss flood and landslide damage database 1972–

2007, Nat. Hazards Earth Syst. Sci., 9, 913–925, doi:10.5194/nhess-9-913-2009, 2009. 753

771

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

Iida, T.: A stochastic hydro-geomorphological model for shallow landsliding due to rain-
storm, Catena, 34, 293–313, available at: http://www.sciencedirect.com/science/article/
B6VCG-3VTYVWW-5/1/272affa188fa14bbfd4d7290700da4c3, last access: 21 March 2013,
1999. 763

Iida, T.: Theoretical research on the relationship between return period of rainfall and shallow5

landslides, Hydrol. Process., 18, 739–756, doi:10.1002/hyp.1264, 2004. 763
Jaboyedoff, M. and Bonnard, C.: Report on landslide impacts and practices in Switzerland:

Need for new risk assessment strategies, in: The 2007 International Forum on Landslide
Disaster Management, edited by: Ho, K. and Li, V., Geotechnical Division, The Hong Kong
Institution of Engineers, Hong Kong, 79–97, 2007. 750, 76610

Jaiswal, P., van Westen, C. J., and Jetten, V.: Quantitative estimation of landslide risk from
rapid debris slides on natural slopes in the Nilgiri hills, India, Nat. Hazards Earth Syst. Sci.,
11, 1723–1743, doi:10.5194/nhess-11-1723-2011, 2011. 749

Kanevski, M., Pozdnoukhov, A., and Timonin, V.: Machine Learning for Spatial Environmental
Data: Theory, Applications and Software, EPFL Press, Lausanne, Switzerland, 2009. 75615

Matsushi, Y. and Matsukura, Y.: Rainfall thresholds for shallow landsliding derived from
pressure-head monitoring: cases with permeable and impermeable bedrocks in Boso Penin-
sula, Japan, Earth Surf. Processes, 32, 1308–1322, doi:10.1002/esp.1491, 2007. 749

Merz, B., Kreibich, H., Thieken, A., and Schmidtke, R.: Estimation uncertainty of di-
rect monetary flood damage to buildings, Nat. Hazards Earth Syst. Sci., 4, 153–163,20

doi:10.5194/nhess-4-153-2004, 2004. 760
Michoud, C., Derron, M.-H., Jaboyedoff, M., Nadim, F., and Leroi, E.: Classification of landslide-

inducing anthropogenic activities, in: 5th Canadian Conference on Geotechnique and Natural
Hazards, 15–17 May 2011, Kelowna, BC, Canada, 10 pp., 2011. 766

Montgomery, D. and Dietrich, W.: A physically based model for the topographic control on shal-25

low landsliding, Water Resour. Res., 30, 1153–1171, 1994. 749
Mueller, R. and Loew, S.: Predisposition and cause of the catastrophic landslides of August

2005 in Brienz (Switzerland), Swiss J. Geosci., 102, 331–344, doi:10.1007/s00015-009-
1315-3, 2009. 753

Nguyen, H., Wiatr, T., Fernández-Steeger, T., Reicherter, K., Rodrigues, D., and Azzam, R.:30

Landslide hazard and cascading effects following the extreme rainfall event on Madeira Island
(February 2010), Nat. Hazards, 65, 635–652, 2013. 749

772



D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

Pack, R., Tarboton, D. G., and Goodwin, C. N.: The SINMAP approach to terrain stability
mapping, in: 8th Congress of the International Association of Engineering Geology, 21–25
September 1998, Vancouver, British Columbia, Canada, 8 pp., 1998. 749

Preuth, T., Glade, T., and Demoulin, A.: Stability analysis of a human-influenced landslide in
eastern Belgium, Geomorphology, 120, 38–47, doi:10.1016/j.geomorph.2009.09.013, 2010.5

767
Raetzo, H. and Rickli, C.: Ereignisanalyse Hochwasser 2005: Teil 1 – Prozesse, Schäden und
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Table 1. Fitted parameters of the gamma distribution.

Precipitation LF FLMC MM
[mm] α β α β α β

114–134 0.0323 1.4438 0.1347 0.7346 0.0683 1.0392
134–158 0.3604 0.5403 0.2241 0.9303 0.0801 2.6114
158–184 0.1927 0.9673 0.1288 2.1937 0.1531 4.3495
184–219 0.0839 3.7578 0.2026 2.7379 0.2265 6.0948
219–321 0.1214 7.0373 0.2457 5.4336 0.4966 4.4464
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the expected distribution of annual costs. More recently, ap-70

plications of regional scale QRA providing exceedance prob-

abilities were presented in Jaiswal et al. (2011) and Ghosh

et al. (2012). Although, most of the QRA methodologies are

developed for local or regional scales, some of them, as for

example Catani et al. (2005), might be applied to a larger75

area.

Switzerland was affected in August 2005 by a rain-

fall event with measured precipitation reaching 324 mm in

6 days. Although floods were the main damage cause,

more than 5000 landslides were reported (Raetzo and Rickli,80

2007). Landslide-induced damage has been estimated by

Hilker et al. (2007) at 92 million Swiss francs (99 million $;

debris-flows not included) and represents 4.5 % of the total

damage cost.

As already mentioned by Jaboyedoff and Bonnard (2007)85

and by Rickli et al. (2008), landslide density was highly cor-

related with the total precipitation amount. Following their

ideas, this article proposes a risk model for shallow land-

slides based on the event of August 2005. The input pa-

rameters of the model include a rainfall and a lithological90

map. The map of 6-day rainfall accumulations is constructed

by interpolating a high resolution rain gauge network using

weather radar data as external drift. A geotechnical map is

interpreted in order to group different units into 4 main litho-

logical settings. The expected number of landslides is pre-95

dicted as a function of rainfall level conditional to the litho-

logical type. An intersection probability concept is then em-

ployed to predict the potential number of landslides affecting

buildings and the corresponding damage cost.

The paper is structured as follows. Section 2 details the100

rainfall event of August 2005 in Switzerland both from a me-

teorological and lithological viewpoint. Section 3 explains

the methodology to assess the landslide probability as a func-

tion of rainfall accumulation and lithological context. Sec-

tion 4 presents the risk analysis results in terms of expected105

number of landslides, number of affected buildings and as-

sociated cost. Finally, Section 5 and Section 6 discuss and

conclude the paper.

2 The rainfall event of August 2005 in Switzerland

2.1 Study area110

The study area covers the entire Swiss territory (around

42 000 km2), which extends from the Jura mountains in the

North-West, to the Alps, in the South-East, through the Mo-

lassic Plateau, where most of the population is concentrated.

Special attention is given to the location where most of the115

landslides occurred, which is the central part of Switzerland,

between the cities of Bern and Lucerne (Fig. 1). Landslides

occurred in the tectonic units described below (Trümpy,

1980; University of Bern and FOWG, 2005a,b), which are

30

1

0 50 10025
Kilometers

Basel

Zurich

Bern

Lausanne

Geneva

Lucerne

Fig. 1. Number of landslides in 1 km2 cells (after Raetzo and Rickli,

2007, hillshade: © Swisstopo)

listed along a northwest-southeast direction (perpendicularly120

to the geological structures) :

– Upper Freshwater Molasse from Middle and early Up-

per Miocene (consisting of floodplains sediments in-

cluding puddings, sandstones and silty shales)

– Other types of Molasse (narrower areas of Upper Ma-125

rine Molasse, Lower Freshwater Molasse and Lower

Marine Molasse, the lower part of this series being in

Subalpine position)

– Subalpine Flysch

– Upper Penninic Flysch (Schlieren Flysch)130

– Ultrahelvetic and Helvetic Nappes (including tertiary

shallow marine formation and Cretaceous Limestones

from the Wildhorn nappe and Jurassic Limestones from

the Axen nappe)

Soils (regolith) and loose materials were deposited on top135

of the geological formations during the Quaternary. Most

of these shallow and superficial formations have not been

mapped, except for the cases where the formation reaches

a sufficient extension or thickness to be considered relevant

at the map scale. This is for example the case of morainic140

material deposited by the glaciations during the Quaternary,

which is visible at several places, especially on the Plateau

(Trümpy, 1980). The properties of the local soils strongly

depend on the underlying bedrock.

2.2 Description of the precipitation event145

The rainfall event of August 2005 in central and eastern

Switzerland resulted in severe damage due to flooding and

induced slope instabilities (Rotach et al., 2006). The pres-

ence of the Alps played a key role in controlling the spa-

Fig. 1. Number of landslides in 1 km2 cells (after Raetzo and Rickli, 2007, hillshade: © Swis-
stopo).
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Fig. 2. Relative and cumulative frequency of the distance traveled

by 148 landslides (Raetzo and Rickli, 2007).

tial distribution of rainfall due to orographic precipitation en-150

hancement processes. Persistent precipitation patterns were

mostly found on the exposed upwind slopes under northerly

and north-easterly flow conditions as studied by Foresti and

Pozdnoukhov (2011) and Foresti et al. (2012). In particular,

the stratiform precipitation was locally enhanced by smaller155

scale orographic features leading to persistent initiation and

enhancement of the embedded convection.

The most intense period of the event was observed be-

tween the 21 and 22 August. Driven by cyclonic conditions

during the first day, the moist air from the Mediterranean160

sea circumvented the Austrian Alps and started approaching

slightly crosswise the northern slopes of the Swiss Alps from

the east. The mesoscale flows gradually turned from easterly

to northerly conditions during the second day. The reduced

supply of air moisture was compensated by a stronger up-165

slope rainfall enhancement which extended the duration of

precipitation. The return period for 48h rainfall accumula-

tions largely exceeded 100 years at several weather stations

mostly located in the Berner Oberland (Rotach et al., 2006).

It is worth mentioning that the uncertainty of this estimation170

is quite important as an event of such intensity was never ob-

served in the past at the considered weather stations.

2.3 Landslide inventory

As a consequence of this extreme rainfall event, many shal-

low landslides were triggered, mainly in the Entlebuch part175

of Lucerne canton and in the Bern canton. Some deep-seated

landslides were observed as well and are mainly located far-

ther south-east. A landslide inventory has been collected by

Raetzo and Rickli (2007) from cantonal authorities informa-

tion and contains 5’756 landslides (Fig. 1). Although some180

additional attributes such as the exact timing have been reg-

istered for some of the landslides, we only dispose of the

version provided in the above publication and, as a result, we

only know the approximate location. The uncertainty about

the location of landslides complicates the analysis of geolog-185

ical context.

Statistics on the landslides can be found in Raetzo and

Rickli (2007) and in Rickli et al. (2008) and investigations

on specific sites in Mueller and Loew (2009) and von Ruette

et al. (2011). The travel distance of shallow landslides has190

been analyzed for 148 cases and ranges from a few meters

up to 500 m (Raetzo and Rickli, 2007). Around 75% of the

landslides traveled less than 100 m and 90% less than 200 m

(Fig. 2).

2.4 Damage195

According to the Swiss Federal Institute for Forest, Snow and

Landscape Research WSL, the 2005 event has been the most

costly since the beginning of the collection of damage data

in 1972, with a total damage cost estimated at 1.87 billion

swiss francs (around 2 billion US$). On the other hand, in200

spite of being the most important event recorded, other years

have been equally or more damaging regarding landslides in

the past 40 years (Hilker et al., 2009; WSL, 2012).

Hilker et al. (2009) divided the damage values into three

categories according to the cause, namely floods, debris205

flows and landslides (including mud-flows). Landslides rep-

resent around 4.5 % of the total cost and affected private

properties (22 %, 16.3 million CHF) and public infrastruc-

tures (88 %, 75.6 million CHF) (Hilker et al., 2007). Private

damage includes damage to buildings as well as furnitures,210

vehicles, other property damage and loss of profits. Compar-

atively, public damage includes damage to waterways, roads

(except small ones), rail, farming and forests. In addition to

economic consequences, six casualties are to be deplored.

3 Risk modeling methodology215

3.1 Introduction

The annual risk to property is usually evaluated with the fol-

lowing equation (Dai et al., 2002; Fell et al., 2005) :

R(PD)=P (L)×P (S|L)×V (P |S)×E (1)

where L denotes the landslide, P the element at risk (prop-220

erty) and S the impact. P (L) represents the landslide fre-

quency, P (S|L) the spatial probability of the landslide reach-

ing the element at risk, V (P |S) the vulnerability of the ele-

ment at risk to the landslide impact and E the element at risk

value.225

In the case studies considered in this article, this equation

is not used directly since a single precipitation event is used

as an input. However, since this event is used to redistribute

the landslides according to the precipitation event, P (L) is

not completely left out. In a first phase, the spatial distri-230

bution of the event rainfall accumulation is estimated using

Fig. 2. Relative and cumulative frequency of the distance traveled by 148 landslides (Raetzo
and Rickli, 2007).
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data from a dense network of rain gauges and addional C-

band weather radars (Section 3.2). The second phase studies

the statistical distribution of landslides as a function of pre-

cipitation intensity and lithological type (Section 3.3) and is235

used to estimate the probability of landsliding P (L). It must

be mentioned that P (L) should also account for the clima-

tological frequency, which is the probability of the precipi-

tation event to occur. As the analyses consider only one sin-

gle event, this probability was set to 1 and the term P (L) is240

only estimated from the distribution of landslides conditional

to the precipitation event. P (S|L) is assessed using princi-

ples of stochastic geometry, and represents the probability of

buildings to be affected by circular landslides within a given

cell. This term partially accounts for P (L) since the exact lo-245

cation of the landslides within the cell is randomly assigned

at this step. The separate estimation of the terms V (P |S) and

E is not possible as the cost of damages is assessed directly

(see Section 3.4).

3.2 Spatial analysis of rainfall250

MeteoSwiss operates an automatic network of 76 weather

stations and a dense network of additional 363 rain gauges.

The automatic network measures rainfall with a temporal res-

olution of 10 minutes while the second only reports daily

accumulations from 05:40 to 05:40 UTC of the next calen-255

dar day. An additional network of 3 C-band radars is used

to measure precipitation with higher spatial resolution. The

operational radar data processing chain for quantitative pre-

cipitation estimation (QPE) at MeteoSwiss includes the re-

moval of ground clutter, correction for the vertical profile of260

reflectivity in connection with the bright band effect, clima-

tological rain gauge adjustment, the interpolation from polar

coordinates to a Cartesian grid, and the use of a fixed cli-

matological Z-R relationship (refer to Germann et al., 2006,

for more details). A geostatistical method for real-time bias265

adjustment with rain gauges was only recently implemented

by Sideris et al. (2013). For long term evaluation of the

radar QPE accuracy against rain gauges refer to Gabella et al.

(2005). The radar QPE product used in this paper is a 1x1

km2 grid of the rainfall accumulation during the period 18–270

23 of August 2005.

Despite these corrections, the product still contains resid-

ual ground clutter and biases due to the blockage of low level

radar beams, in particular in the inner Alpine valleys. To

partially account for these issues, an artificial neural network275

was applied to blend the radar-based QPE map with the rain

gauge rainfall accumulations. A 3-H-1 multiLayer percep-

tron (MLP) was trained to predict the rainfall amount ob-

served at the rain gauges as a function of 3 variables: the

geographical location represented by the Swiss Easting and280

Northing coordinates and the radar QPE product which acts

as an external drift. The geographical coordinates account

for the observed biases between rain gauges and radar-based

QPE, which show a significant spatial dependence. A conju-
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Fig. 3. Total rainfall accumulation from 18 to 23 August 2005 [mm]

estimated by MLP. Dots represent the stations used for the interpo-

lation

gate gradient algorithm was employed to train the network.285

A low number of hidden neurons H was chosen to obtain

a smooth representation of the spatial rainfall biases. The

optimal model was selected by minimizing the leave-one-

out cross-validation root-mean square error (RMSE). A ran-

domly sampled test set was kept to evaluate the expected pre-290

diction RMSE, which is of 25.28 mm. No quantitative as-

sessment of the performance of the MLP model against geo-

statistical approaches (e.g., Sideris et al. (2013)) was carried

out. The regularized MLP solution is a smooth compromise

between the radar and rain gauge measurements. This allows295

being robust to local radar over-estimations due to ground

clutter and the different sampling volume of radar and rain

gauge measurements. The Machine Learning Office software

was used for the computations (Kanevski et al., 2009).

Fig. 3 illustrates the spatial analysis of the rainfall accu-300

mulation from the 18 to the 23 August 2005. The highest ac-

cumulations are observed on the northern slope of the Alps,

in particular along a line from the Berner Oberland to the

mountain range of Saentis. The spatial distribution of land-

slides closely follows the regions with the highest rainfall305

totals with some spatial heterogeneity due to the different ge-

ological settings.

3.3 Landslide distribution

To be consistent with the precipitation map, the resolution of

the landslide distribution maps has also been set to 1x1 km2.310

For each grid cell, the probability to exceed a given number

of landslides is computed based on the rainfall amount and

the lithological type.

Geology is extracted from the 1:200 000 geotechnical map

of Switzerland (BFS GEOSTAT/BUWAL) and transformed315

from a vector map to a m×n×p cumulative matrix which

Fig. 3. Total rainfall accumulation from 18 to 23 August 2005 [mm] estimated by MLP. Dots
represent the stations used for the interpolation.
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Fig. 4. Probabilistic lithological maps showing the proportion of each lithological unit. Values range from green (lithological group sligthly

present) to blue, whereas white means that the lithological group is non-existent in the cell; A: Limestone formations (LF); B: Cristalline

formations (CF), C: Flysch, Loose material (except moraine), marls and claystones (FLMC), D: Molasse and Moraine (MM) and E: total.

In map E, white tones mark the absence of lithological formations (i.e. lakes, glaciers) and other countries, while green tones depict their

partial presence within the model cell, which occurs when the cumulative proportion of the 4 units is below 1.

gives, for each cell, the proportion of each lithological unit

(Fig. 4 and 5). The geotechnical types have been simplified

into 4 different units, loosely based on the 6 units used by

Rickli et al. (2008) to assess the landslide density distribution320

of the event :

– Limestone formations (LF)

– Cristalline formations (CF)

– Flysch, Loose material (except moraine), marls and

claystones (FLMC)325

– Molasse and Moraine (MM)

Cells that contain water (lake or glacier) or that are located

on the Swiss border have a cumulative value below 1 (Fig. 4

E). The model is run several times and assigns at each it-

eration a unique lithological unit following the probabilities330

given in the maps shown in Fig. 4.

Landslides are transformed from point features to a raster

displaying the landslide number in each cell (Fig. 1). This

raster is then multiplied by the cumulative geological raster

(Fig. 4 E) to take into account the smaller land surface inside335

the cell. Indeed, cells with a total value below one for the

geology (borders of Switzerland, lakeshores, etc) are taken

into account only at some iterations. Therefore, by dividing

Fig. 4. Probabilistic lithological maps showing the proportion of each lithological unit. Values
range from green (lithological group sligthly present) to blue, whereas white means that the
lithological group is non-existent in the cell; (A) Limestone Formations (LF); (B) Cristalline
Formations (CF), (C) Flysch, Loose material (except moraine), Marls and Claystones (FLMC),
(D) Molasse and Moraine (MM) and (E) total. In map (E), white tones mark the absence of
lithological formations (i.e. lakes, glaciers) and other countries, while green tones depict their
partial presence within the model cell, which occurs when the cumulative proportion of the
4 units is below 1.
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Fig. 5. Schematic transformation of the geotechnical map into a

m×n× p matrix which gives for each cell the lithological units

cumulative distribution. A lithology is assigned at each model it-

eration by choosing a random number u. For example, if u= 0.6
in the lower left cell, since 0.5< u< 0.8, the second geology is

assigned
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Fig. 6. Cumulative distribution of the spatial precipitation amounts.

Dots show the class limits and are rounded to the upper value.

them with the geology allows to maintain a mean number of

landslide consistent with the inventory.340

The precipitation field has been divided into 15 classes

based on given quantiles and the statistical distribution is

shown in Fig. 6. The histogram is highly skewed and only

10 % of the region exceeds 200 mm of rain.

Fig. 7 summarizes the data processing workflow. The out-345

put of the model is a cumulative distribution of the landslide

number given the geology and the precipitation amount. To
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Fig. 7. Flow diagram showing the assessment methodology used to

obtain the cumulative frequency of landslide number per lithologi-

cal unit and precipitation class.

allow a generalization of these results, gamma distributions

were fitted to the data by minimizing the mean square er-

ror in order to model the number of landslides as a function350

of precipitation amount. Since the gamma distribution is a

continuous distribution whose domain is 0→∞, it this not

exactly suitable to fit discrete data, especially as the highest

frequency is obtained at a value of 0 (we can indeed expect

that 0 landslides in a cell is always the most frequent, re-355

gardless of the precipitation amount). However, this problem

has been solved by shifting the cumulative frequencies to the

upper number of landslides to fit the distributions, and by

rounding down the number of landslides obtained for a given

quantile when using the inverse distribution function.360

To estimate the models predictive ability, a second part

consists in using the distribution previously assessed to sim-

ulate different potential consequences of the precipitation

event using a Monte-Carlo approach. This step illustrate the

uncertainty of the model on the consequences of a given pre-365

cipitation event. Indeed, since we consider that the landslides

are controlled only by the precipitation and the lithology this

step gives the variability resulting from this simplification.

The workflow of this step is given in Fig. 8.

3.4 Impact assessment370

The impact assessment consists of two main steps, which are

evaluating how many buildings will be reached and estimat-

ing an associated cost. In order to asses the number of af-

fected buildings, a concept of stochastic geometry is used.

Assuming that the landslide has the same probability to oc-375

cur anywhere within the cell, the conditional probability that

any building of the cell is reached if a dimension-less land-

slide occurs is given by the proportion of the cell covered by

buildings. To take into account the landslides dimensions, a

buffer is added to the buildings. Indeed, as shown in Fig. 9,380

Fig. 5. Schematic transformation of the geotechnical map into a m×n×p matrix which gives
for each cell the lithological units cumulative distribution. A lithology is assigned at each model
iteration by choosing a random number u. For example, if u = 0.6 in the lower left cell, since
0.5 < u < 0.8, the second geology is assigned.
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cumulative distribution. A lithology is assigned at each model it-

eration by choosing a random number u. For example, if u= 0.6
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Fig. 6. Cumulative distribution of the spatial precipitation amounts.

Dots show the class limits and are rounded to the upper value.

them with the geology allows to maintain a mean number of

landslide consistent with the inventory.340

The precipitation field has been divided into 15 classes

based on given quantiles and the statistical distribution is

shown in Fig. 6. The histogram is highly skewed and only

10 % of the region exceeds 200 mm of rain.

Fig. 7 summarizes the data processing workflow. The out-345
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obtain the cumulative frequency of landslide number per lithologi-

cal unit and precipitation class.

allow a generalization of these results, gamma distributions

were fitted to the data by minimizing the mean square er-

ror in order to model the number of landslides as a function350

of precipitation amount. Since the gamma distribution is a

continuous distribution whose domain is 0→∞, it this not

exactly suitable to fit discrete data, especially as the highest

frequency is obtained at a value of 0 (we can indeed expect

that 0 landslides in a cell is always the most frequent, re-355

gardless of the precipitation amount). However, this problem

has been solved by shifting the cumulative frequencies to the

upper number of landslides to fit the distributions, and by

rounding down the number of landslides obtained for a given

quantile when using the inverse distribution function.360

To estimate the models predictive ability, a second part

consists in using the distribution previously assessed to sim-

ulate different potential consequences of the precipitation

event using a Monte-Carlo approach. This step illustrate the

uncertainty of the model on the consequences of a given pre-365

cipitation event. Indeed, since we consider that the landslides

are controlled only by the precipitation and the lithology this

step gives the variability resulting from this simplification.

The workflow of this step is given in Fig. 8.

3.4 Impact assessment370

The impact assessment consists of two main steps, which are

evaluating how many buildings will be reached and estimat-

ing an associated cost. In order to asses the number of af-

fected buildings, a concept of stochastic geometry is used.

Assuming that the landslide has the same probability to oc-375

cur anywhere within the cell, the conditional probability that

any building of the cell is reached if a dimension-less land-

slide occurs is given by the proportion of the cell covered by

buildings. To take into account the landslides dimensions, a

buffer is added to the buildings. Indeed, as shown in Fig. 9,380

Fig. 6. Cumulative distribution of the spatial precipitation amounts. Dots show the class limits
and are rounded to the upper value.
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eration by choosing a random number u. For example, if u= 0.6
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Dots show the class limits and are rounded to the upper value.

them with the geology allows to maintain a mean number of

landslide consistent with the inventory.340

The precipitation field has been divided into 15 classes

based on given quantiles and the statistical distribution is

shown in Fig. 6. The histogram is highly skewed and only

10 % of the region exceeds 200 mm of rain.

Fig. 7 summarizes the data processing workflow. The out-345

put of the model is a cumulative distribution of the landslide

number given the geology and the precipitation amount. To
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Fig. 7. Flow diagram showing the assessment methodology used to

obtain the cumulative frequency of landslide number per lithologi-

cal unit and precipitation class.

allow a generalization of these results, gamma distributions

were fitted to the data by minimizing the mean square er-

ror in order to model the number of landslides as a function350

of precipitation amount. Since the gamma distribution is a

continuous distribution whose domain is 0→∞, it this not

exactly suitable to fit discrete data, especially as the highest

frequency is obtained at a value of 0 (we can indeed expect

that 0 landslides in a cell is always the most frequent, re-355

gardless of the precipitation amount). However, this problem

has been solved by shifting the cumulative frequencies to the

upper number of landslides to fit the distributions, and by

rounding down the number of landslides obtained for a given

quantile when using the inverse distribution function.360

To estimate the models predictive ability, a second part

consists in using the distribution previously assessed to sim-

ulate different potential consequences of the precipitation

event using a Monte-Carlo approach. This step illustrate the

uncertainty of the model on the consequences of a given pre-365

cipitation event. Indeed, since we consider that the landslides

are controlled only by the precipitation and the lithology this

step gives the variability resulting from this simplification.

The workflow of this step is given in Fig. 8.

3.4 Impact assessment370

The impact assessment consists of two main steps, which are

evaluating how many buildings will be reached and estimat-

ing an associated cost. In order to asses the number of af-

fected buildings, a concept of stochastic geometry is used.

Assuming that the landslide has the same probability to oc-375

cur anywhere within the cell, the conditional probability that

any building of the cell is reached if a dimension-less land-

slide occurs is given by the proportion of the cell covered by

buildings. To take into account the landslides dimensions, a

buffer is added to the buildings. Indeed, as shown in Fig. 9,380

Fig. 7. Flow diagram showing the assessment methodology used to obtain the cumulative
frequency of landslide number per lithological unit and precipitation class.
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Fig. 8. Flow diagram showing the assessment methodology used to

obtain the number of affected buildings.

Fig. 9. Schematic example of intersection probability. The houses

(in grey) are expanded with a buffer (in green). Thus, if the center

of a circular landslide (in brown), with a radius equal to the buffer

distance, occurs inside of the buildings + buffer area , the land-

slide is assumed to reach a house. The probability of intersection

is then given by the ratio of the buildings + buffer area with the to-

tal area. In this example, the probability that a landslide, knowing

it occurs, reaches a house is 0.158. The buffer permits to simplify

the intersection probability calculation since landslides can then be

considered as points, without however neglecting their surface. The

intersection probability of a point and a surface is indeed easier to

calculate than the intersection probability of two shapes.

if the landslide is considered to be circular, it will affect a

house if its center is located inside the buffer area (buildings

included). As a result, the conditional probability is calcu-

lated considering the surface covered by the houses and their

High

Low

0 50 10025
Kilometers

Fig. 10. Intersection probability map displaying the conditional

probability for a 100 m radius circular landslide to affect a house

for each cell of the model. High means that the probability is equal

or close to one, yellow that it is close to 0, whereas white indicate a

null probability (hillshade: © Swisstopo)

buffers. Since the buffers can overlap, the resulting probabil-385

ity considers the intersection with at least one building. Al-

though landslides are usually not circular but have an elon-

gated shape, a circle is used in order to simplify the model

by avoiding the need to consider a real geometry. Indeed,

for non-circular landslides, the intersection probability can-390

not be simply reduced to a single number for each cell, since

the intersection does not depend only on the position of the

center, but also on the orientation of the considered shape.

Since, for a given surface, an elongated shape is more

likely to intersect a building than a round one, the circle di-395

ameter is set to 200 m in order to completely include 90%

of the landslides (Fig. 2). This diameter results in an over-

estimation of the landslide surface, but takes indirectly into

account the landslide geometry and provide a slightly pes-

simistic risk estimation in terms of number of affected build-400

ings. Thus a 100 m buffer has been added to the 1 814 667

buildings extracted from the vectorized landscape model of

Switzerland (Vector25, © swisstopo). Then the total surface

has been compared with each cell surface to obtain the inter-

section probability (Fig. 10). It has to be mentioned that in-405

tersection is only considered with a boolean approach, which

means that a landslide can affect a building or not, but the po-

tential for one landslide to affect several buildings is not con-

sidered. It should also be noted that the buffers are made be-

fore cutting shapes into cells in order to take into account the410

possibility for a landslide occurring in a given cell to reach a

house located close to the border of an adjacent cell.

The estimation of the associated cost is more complicated

as the value of the buildings is not known. This information

could be obtained from the buildings insurance for 19 over 26415

cantons for which a public insurance exists and is mandatory.

However, a suitable vulnerability curve linking the landslide

Fig. 8. Flow diagram showing the assessment methodology used to obtain the number of af-
fected buildings.
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obtain the number of affected buildings.

Fig. 9. Schematic example of intersection probability. The houses

(in grey) are expanded with a buffer (in green). Thus, if the center

of a circular landslide (in brown), with a radius equal to the buffer

distance, occurs inside of the buildings + buffer area , the land-

slide is assumed to reach a house. The probability of intersection

is then given by the ratio of the buildings + buffer area with the to-

tal area. In this example, the probability that a landslide, knowing

it occurs, reaches a house is 0.158. The buffer permits to simplify

the intersection probability calculation since landslides can then be

considered as points, without however neglecting their surface. The

intersection probability of a point and a surface is indeed easier to

calculate than the intersection probability of two shapes.

if the landslide is considered to be circular, it will affect a

house if its center is located inside the buffer area (buildings

included). As a result, the conditional probability is calcu-

lated considering the surface covered by the houses and their
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Fig. 10. Intersection probability map displaying the conditional

probability for a 100 m radius circular landslide to affect a house

for each cell of the model. High means that the probability is equal

or close to one, yellow that it is close to 0, whereas white indicate a

null probability (hillshade: © Swisstopo)

buffers. Since the buffers can overlap, the resulting probabil-385

ity considers the intersection with at least one building. Al-

though landslides are usually not circular but have an elon-

gated shape, a circle is used in order to simplify the model

by avoiding the need to consider a real geometry. Indeed,

for non-circular landslides, the intersection probability can-390

not be simply reduced to a single number for each cell, since

the intersection does not depend only on the position of the

center, but also on the orientation of the considered shape.

Since, for a given surface, an elongated shape is more

likely to intersect a building than a round one, the circle di-395

ameter is set to 200 m in order to completely include 90%

of the landslides (Fig. 2). This diameter results in an over-

estimation of the landslide surface, but takes indirectly into

account the landslide geometry and provide a slightly pes-

simistic risk estimation in terms of number of affected build-400

ings. Thus a 100 m buffer has been added to the 1 814 667

buildings extracted from the vectorized landscape model of

Switzerland (Vector25, © swisstopo). Then the total surface

has been compared with each cell surface to obtain the inter-

section probability (Fig. 10). It has to be mentioned that in-405

tersection is only considered with a boolean approach, which

means that a landslide can affect a building or not, but the po-

tential for one landslide to affect several buildings is not con-

sidered. It should also be noted that the buffers are made be-

fore cutting shapes into cells in order to take into account the410

possibility for a landslide occurring in a given cell to reach a

house located close to the border of an adjacent cell.

The estimation of the associated cost is more complicated

as the value of the buildings is not known. This information

could be obtained from the buildings insurance for 19 over 26415

cantons for which a public insurance exists and is mandatory.

However, a suitable vulnerability curve linking the landslide

Fig. 9. Schematic example of intersection probability. The houses (in grey) are expanded with
a buffer (in green). Thus, if the center of a circular landslide (in brown), with a radius equal to
the buffer distance, occurs inside of the buildings + buffer area, the landslide is assumed to
reach a house. The probability of intersection is then given by the ratio of the buildings + buffer
area with the total area. In this example, the probability that a landslide, knowing it occurs,
reaches a house is 0.158. The buffer permits to simplify the intersection probability calculation
since landslides can then be considered as points, without however neglecting their surface.
The intersection probability of a point and a surface is indeed easier to calculate than the
intersection probability of two shapes.
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obtain the number of affected buildings.

Fig. 9. Schematic example of intersection probability. The houses

(in grey) are expanded with a buffer (in green). Thus, if the center

of a circular landslide (in brown), with a radius equal to the buffer

distance, occurs inside of the buildings + buffer area , the land-

slide is assumed to reach a house. The probability of intersection

is then given by the ratio of the buildings + buffer area with the to-

tal area. In this example, the probability that a landslide, knowing

it occurs, reaches a house is 0.158. The buffer permits to simplify

the intersection probability calculation since landslides can then be

considered as points, without however neglecting their surface. The

intersection probability of a point and a surface is indeed easier to

calculate than the intersection probability of two shapes.

if the landslide is considered to be circular, it will affect a

house if its center is located inside the buffer area (buildings

included). As a result, the conditional probability is calcu-

lated considering the surface covered by the houses and their
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Fig. 10. Intersection probability map displaying the conditional

probability for a 100 m radius circular landslide to affect a house

for each cell of the model. High means that the probability is equal

or close to one, yellow that it is close to 0, whereas white indicate a

null probability (hillshade: © Swisstopo)

buffers. Since the buffers can overlap, the resulting probabil-385

ity considers the intersection with at least one building. Al-

though landslides are usually not circular but have an elon-

gated shape, a circle is used in order to simplify the model

by avoiding the need to consider a real geometry. Indeed,

for non-circular landslides, the intersection probability can-390

not be simply reduced to a single number for each cell, since

the intersection does not depend only on the position of the

center, but also on the orientation of the considered shape.

Since, for a given surface, an elongated shape is more

likely to intersect a building than a round one, the circle di-395

ameter is set to 200 m in order to completely include 90%

of the landslides (Fig. 2). This diameter results in an over-

estimation of the landslide surface, but takes indirectly into

account the landslide geometry and provide a slightly pes-

simistic risk estimation in terms of number of affected build-400

ings. Thus a 100 m buffer has been added to the 1 814 667

buildings extracted from the vectorized landscape model of

Switzerland (Vector25, © swisstopo). Then the total surface

has been compared with each cell surface to obtain the inter-

section probability (Fig. 10). It has to be mentioned that in-405

tersection is only considered with a boolean approach, which

means that a landslide can affect a building or not, but the po-

tential for one landslide to affect several buildings is not con-

sidered. It should also be noted that the buffers are made be-

fore cutting shapes into cells in order to take into account the410

possibility for a landslide occurring in a given cell to reach a

house located close to the border of an adjacent cell.

The estimation of the associated cost is more complicated

as the value of the buildings is not known. This information

could be obtained from the buildings insurance for 19 over 26415

cantons for which a public insurance exists and is mandatory.

However, a suitable vulnerability curve linking the landslide

Fig. 10. Intersection probability map displaying the conditional probability for a 100 m radius
circular landslide to affect a house for each cell of the model. High means that the probability
is equal or close to one, yellow that it is close to 0, whereas white indicate a null probability
(hillshade: © Swisstopo).
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Fig. 11. Landslide relation with precipitation and lithological group. The curves for small precipitation amounts are not visible because of

the low number of landslides. Note that scales are not similar. Numbers between brackets are respectively the number of cells in the class

and the number of landslides in the cells, averaged over the iterations.

intensity, characterized by parameters such as depth or area,

to the damage rate, is difficult to assess. The lack of knowl-

edge on the precise landslide characteristics and location as420

well as the inherent variability of the elements at risk com-

plicates even more the assessment of the vulnerability (Galli

and Guzzetti, 2007). Therefore, in order to keep the mod-

els precision consistent with the previous step, we chose not

to use a value and vulnerability curve to assess the damage425

cost, but to assess it directly from the 2005 event mean dam-

age cost.

The expected damage cost for a given building x is as-

sumed to follow an exponential distribution with probability

density function:430

f(x)=

{
λexp(−λx), x≥ 0
0, x< 0

(2)

The distribution is only defined in terms of its first mo-

ment λ, which is equal to x̄−1, x̄ being the expected mean

damage cost per building assumed for the 2005 event. This

cost is estimated by dividing the total damage cost induced435

by landslides to private infrastructures (16.3 million CHF) by

the expected number of affected buildings. The latter is ob-

tained by summing over all grid cells the product between the

number of landslides (Fig. 1) and the intersection probability

(Fig. 10). This approach results in 2 360 affected buildings,440

implying a mean cost x̄ of 6 907 CHF per building. No un-

certainty is considered on this parameter.

The generation of exponential variates is obtained by sam-

pling from the quantile distribution, which is given by the

inverse function of the exponential cumulative distribution445

as:

F−1(u)=x=− ln(1−u)

λ
(3)

where u is a uniformly distributed random number between 0

and 1. The exponentially distributed damage cost is sampled

for each case of impact identified by the model.450

The fat-tailed nature of the exponential distribution allows

obtaining a more realistic estimate of the damage costs than

a normal or triangular distribution and does not need the esti-

mation of the second moment characterizing the variance of

the distribution. The latter is a useful feature as the statistical455

distribution of the damage costs per building is not known

in our particular case. The lognormal distribution also has

heavy tails and was successfully used to model the cost as-

sociated to floods (Merz et al., 2004). However, due to the

larger number of degrees of freedom, it is also not suitable460

for our application.

Fig. 11. Landslide relation with precipitation and lithological group. The curves for small precip-
itation amounts are not visible because of the low number of landslides. Note that scales are
not similar. Numbers between brackets are respectively the number of cells in the class and the
number of landslides in the cells, averaged over the iterations.
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Fig. 12. Fitted parameters for α and β of the gamma distribution

4 Results

The statistical distribution of landslides as a function of pre-

cipitation amount and lithological group is given in Fig. 11.

The probability to observe a given number of landslides in a465

given lithological group is a monotonically increasing func-

tion of the precipitation amount. CF show a very little sus-

ceptibility to landslides compared to the other groups as ev-

idenced by the low number of observed landslides. With

similar precipitation amount, MM formations tend to have470

a higher probability to contain at least one landslide than

FLMC or LF. However this relation is less evident for larger

landslide numbers.

Table 1 shows the fitted values of the gamma distribution

for the highest five precipitation classes, whereas Fig. 12 dis-475

play these values graphically. CF were not considered due to

the low number of samples. The α parameter (shape), char-

acterizes the central location of the distribution, while the β
parameter (inverse scale) characterizes its dispersion. A gen-

eral increase in both α and β parameters with precipitation480

amount can be observed, although some values are not fol-

lowing the general linear trend. This is especially the case
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Fig. 13. Mean modeled number of landslides with the gamma func-

tions. X et Y labels are the Swiss Easting and Swiss Northing coor-

dinates [km].)

for α for the classes with precipitation lower than 184 mm

for LF and lower than 158 mm for FLMC.

The general increase of both parameters is a desirable485

property and is in accordance with our prior expectations. In

fact, increasing precipitation amounts increase the expected

number of landslides (represented by α) and the dispersion of

the distribution (represented by β). Higher β values are rep-

resentative of heavy-tails, which means that the probability490

of observing a high number of landslides rises with increas-

ing precipitation amount.

The spatial distribution of the number of landslides was

computed following the procedure described in Fig. 8 using

both the raw data and the gamma fits. However, since gamma495

distributions have been fitted only for the classes contain-

ing enough data samples, raw data have been used instead of

gamma distributions when not available. The mean modeled

number of landslide with gamma fits is given in Fig. 13 and

is very similar to the mean number of landslides modeled500

with raw data. The spatial pattern is relatively similar to the

spatial distribution of rainfall amounts, with two remarkable

differences. First, the relation between precipitation amount

and number of landslides is not linear, which implies that

areas with low precipitation amounts show a null to very505

low number of landslides. The second difference is due to

the sharp geographical transitions between the lithological

units, which lead to sharp transitions in the modeled number

of landslides. An illustrative example occurs when moving

from the MM formations the CF, which strongly reduces the510

number of landslides (see Fig. 4). These results seems to be

in good agreement with the observed distribution landslides

(Fig. 1).

To evaluate the ability of the gamma fits to reproduce the

raw data, maps for the 95th and 98th quantiles have been515

Fig. 12. Fitted parameters for α and β of the gamma distribution.
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The statistical distribution of landslides as a function of pre-

cipitation amount and lithological group is given in Fig. 11.

The probability to observe a given number of landslides in a465

given lithological group is a monotonically increasing func-

tion of the precipitation amount. CF show a very little sus-

ceptibility to landslides compared to the other groups as ev-

idenced by the low number of observed landslides. With

similar precipitation amount, MM formations tend to have470

a higher probability to contain at least one landslide than

FLMC or LF. However this relation is less evident for larger

landslide numbers.

Table 1 shows the fitted values of the gamma distribution

for the highest five precipitation classes, whereas Fig. 12 dis-475

play these values graphically. CF were not considered due to

the low number of samples. The α parameter (shape), char-

acterizes the central location of the distribution, while the β
parameter (inverse scale) characterizes its dispersion. A gen-

eral increase in both α and β parameters with precipitation480

amount can be observed, although some values are not fol-

lowing the general linear trend. This is especially the case
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Fig. 13. Mean modeled number of landslides with the gamma func-

tions. X et Y labels are the Swiss Easting and Swiss Northing coor-

dinates [km].)

for α for the classes with precipitation lower than 184 mm

for LF and lower than 158 mm for FLMC.

The general increase of both parameters is a desirable485

property and is in accordance with our prior expectations. In

fact, increasing precipitation amounts increase the expected

number of landslides (represented by α) and the dispersion of

the distribution (represented by β). Higher β values are rep-

resentative of heavy-tails, which means that the probability490

of observing a high number of landslides rises with increas-

ing precipitation amount.

The spatial distribution of the number of landslides was

computed following the procedure described in Fig. 8 using

both the raw data and the gamma fits. However, since gamma495

distributions have been fitted only for the classes contain-

ing enough data samples, raw data have been used instead of

gamma distributions when not available. The mean modeled

number of landslide with gamma fits is given in Fig. 13 and

is very similar to the mean number of landslides modeled500

with raw data. The spatial pattern is relatively similar to the

spatial distribution of rainfall amounts, with two remarkable

differences. First, the relation between precipitation amount

and number of landslides is not linear, which implies that

areas with low precipitation amounts show a null to very505

low number of landslides. The second difference is due to

the sharp geographical transitions between the lithological

units, which lead to sharp transitions in the modeled number

of landslides. An illustrative example occurs when moving

from the MM formations the CF, which strongly reduces the510

number of landslides (see Fig. 4). These results seems to be

in good agreement with the observed distribution landslides

(Fig. 1).

To evaluate the ability of the gamma fits to reproduce the

raw data, maps for the 95th and 98th quantiles have been515

Fig. 13. Mean modeled number of landslides with the gamma functions. X- and Y-labels are
the Swiss Easting and Swiss Northing coordinates [km].
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Table 1. Fitted parameters of the gamma distribution.

Precipitation LF FLMC MM

[mm] α β α β α β

114–134 0.0323 1.4438 0.1347 0.7346 0.0683 1.0392

134–158 0.3604 0.5403 0.2241 0.9303 0.0801 2.6114

158–184 0.1927 0.9673 0.1288 2.1937 0.1531 4.3495

184–219 0.0839 3.7578 0.2026 2.7379 0.2265 6.0948

219–321 0.1214 7.0373 0.2457 5.4336 0.4966 4.4464
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Fig. 14. 95th and 98th percentiles of the number of landslides using raw data (first row) and gamma fits (second row). The third presents the

difference between the raw and gamma fits of both percentiles

modeled, still using a Monte-Carlo simulation to account for

the probabilistic aspect of the lithology (Fig. 14). Although

the results are relatively similar for the 95th quantile (with

slightly lower values for the gamma fit), the 98th quantile

Fig. 14. 95th and 98th percentiles of the number of landslides using raw data (first row) and
gamma fits (second row). The third presents the difference between the raw and gamma fits of
both percentiles.
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shows more differences. Indeed, the gamma fit seems to un-520

derestimate the number of landslides observed in the raw data

and indicates that the end of the tail of the distribution is not

adequately represented.

4.1 Impact assessment

Although the landslide number is reproduced, the expected525

number of hit buildings is almost never reached in the sim-

ulations (Fig 15). Indeed, the expected number of affected

buildings for the event is 2 360, whereas the simulations re-

turn a mean of around 1 860. As a consequence, the damage

amount is not reached either since it is derived from the lat-530

ter. Tests have been made using a 20 m buffer for the houses

and the same effect was observed. It is not yet clear why the

observed total number of hit buildings is underestimated by

the model. One possible reason could be that the landslide

localization is highly correlated with the buildings location.535

To test this hypothesis, we compared the intersection proba-

bility of cells within which landslides actually occurs to the

intersection probability of cells in which the mean modeled

number of landslides (Fig. 13) is above 0.5. Considering only

these cells allows to keep the most susceptible cells accord-540

ing to the model. This comparison indicates that the mod-

eled landslides tends to occur in cells with lower intersec-

tion probability than the actual landslides. This effect is not

clearly visible with a 20 m buffer, but is more obvious with

100 m buffers (Fig. 16).545

5 Discussion

The landslide model presented in this paper only consid-

ers precipitation amounts and geology as input parameters.

However, other variables such as terrain slope, soil thickness

and permeability contrast, play a key role in shallow land-550

slide generation. These variables are either hard to measure

over a large domain, e.g. the soil thickness, or show spatial

variability at scales which are smaller than 1x1 km2 resolu-

tion, e.g. the terrain slope. Additionally, the uncertainty of

the landslide inventory does not allow matching the location555

of the landslide with such high resolution variables. As a

consequence, the 1x1 km2 resolution model only gives in-

formation about the large scale pre-conditioning factors for

landslide generation. Smaller scale features may affect the

process of landslide triggering in a significant way. Further-560

more, this model is based only on one single event and should

be compared with other similar rainfall events. In particular,

it should be compared with similar events producing land-

slides in different geological settings, to validate the aggre-

gation of different lithology into four main units. Indeed,565

landslides susceptibility might be different in Jura limestones

than in Prelpine limestones, for example.

The annual probability to overcome a given total damage

cost could be assessed by analyzing different precipitation
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Fig. 15. Number of landslides, number of hit buildings and damage

amount calculated from raw data (blue solid line) and gamma fits

(red dashed line). Mean value x̄ for each line is displayed on the

graph, whereas black dots correspond to the data of the event or the

expected number of affected buildings.

events, which are weighted based on their frequence of oc-570

currence (return period). This step is essential in order to ob-

tain a mean annual cost as well as an exceedance probability

curve. One possibility to generate a large number of rainfall

fields to appropriately represent the full risk estimation could

be based on design storms (Seed et al., 1999). Stochastic575

rainfall fields could be generated according to a given return

period and be used to simulate the spatial distribution of land-

slides under extreme rainfall conditions. Attempts have been

made to use a return period in order to predict landslide trig-

gering but, they were mainly performed at local scale (e. g.,580

Iida, 1999; D’Odorico et al., 2005; Iida, 2004; Tarolli et al.,

2011) and would therefore not be suitable for a larger area,

since the spatial variability is not taken into account. On the

Fig. 15. Number of landslides, number of hit buildings and damage amount calculated from raw
data (blue solid line) and gamma fits (red dashed line). Mean value x̄ for each line is displayed
on the graph, whereas black dots correspond to the data of the event or the expected number
of affected buildings.
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Fig. 16. Comparison of the intersection probability for the cells in which landslides occurred and in which landslides have been modeled

(cells with a mean above 0.5 have been kept). As a comparison, the distribution over all Switzerland is shown

other hand, the spatial distribution of rainfall by means of

radar data has been used for early-warning (e. g., Apip et al.,585

2010), but as far as we know, is has not been used as in start-

ing point to simulate potential future events.

Another issue concerns the landslide timing. We used the

precipitation amount of the whole event (6 days) as a pre-

dictor for landslide occurrence. But, shallow-landslides are590

known to be sensitive to the intensity and duration of the rain-

fall, as well as to the hyetograph shape (D’Odorico et al.,

2005). There are two main reasons for this simplification.

The first is the lack of data on the exact timing of landslides,

which does not allow analysing the temporal precipitation595

pattern preceding their triggering. The second reason is due

to the uncertainty of the radar QPE product, which is higher

when used to analyse rainfall time series at high temporal

resolutions, for instance hourly or 10 minute accumulations.

The spatial distribution of QPE accuracy can still be affected600

by some residual ground clutter, which overestimates the true

rainfall amount, and by the blockage of low level beams,

which leads to the underestimation of ground rainfall due to

using only the beams aloft. Wüest et al. (2010) present a

method to obtain hourly precipitation fields by disaggregat-605

ing the daily rain gauge measurements with higher resolu-

tion radar fields. If the timing of landslide occurrence was

known, this dataset would be a valuable source of informa-

tion. However, the product is not accompanied by uncer-

tainty estimates. A possible solution could involve the gen-610

eration of stochastic ensembles to represent the uncertainty

of the radar QPE product with respect to the automatic net-

work of 76 meteorological stations. This approach was re-

cently implemented at MeteoSwiss (Germann et al., 2009)

and could be a smart alternative to integrate ensembles of615

precipitation fields together with ensembles of lithological

types into the landslide model.

When it comes to the damage cost assessment, due to the

lack of information on the number of affected buildings and

corresponding distribution of costs, a few important assump-620

tions were made. The total number of affected buildings

was estimated by means of an intersection probability and

this number was used to obtain a mean cost per hit build-

ing. The number of hit buildings is an uncertain estimation

since it depends on the exact location of the landslides inside625

the cell. Indeed, we consider the landslides to be uniformly

distributed within a grid cell. This assumption is realistic at

the model scale since every 1x1 km2 cell contains slopes that

might fail. However, if susceptible slopes were located, in-

side of a cell, far from the houses, the modeled intersection630

probability would not be null, although it might be the case

in reality. We plan to overcome this issue in the future by us-

ing a susceptibility map to constrain the landslides location

at the intersection probability step.

The distribution of costs was assumed to be exponential,635

which has a desirable long-tail property and is completely de-

fined by its mean value. Despite being only defined in terms

of the average costs, the obtained variability is supposed to

adequately represent the reality. Nevertheless, with a mean

cost of CHF 6 907 per building, the probability to overcome640

500 000 CHF is 5×10−36, i. e. one case over 1.8×1035.

Since the mean price of a building is around one million CHF,

this value is quite low as we know that at least one – but prob-

ably more – building has been destroyed. This could be the

result of a too high number of affected buildings (since they645

have been estimated), which reduces the mean damage cost,

or an indication of the need for using a distribution of dam-

ages with a fatter tail. However, this confirms the fact that

a distribution with a fat tail is suitable. Nevertheless, since

Fig. 16. Comparison of the intersection probability for the cells in which landslides occurred
and in which landslides have been modeled (cells with a mean above 0.5 have been kept). As
a comparison, the distribution over all Switzerland is shown.
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