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Abstract e

The use of non-systematic flood data for/statistical purposes depends on reliability of
assessment both flood magnitudes andtheir return peried. The earliest known extreme
flood year is usually the beginning of fhe historical record. Even if one properly assess
s the magnitudes of historic floods, thg problem of their return periods remains unsolved.
The matter in hand is that Bsonly;largest flood (XM} is known during whole historical
period and its occutrence marks the Egginning of the historical period and defines its
length (L). It is"Yhe& common practice & usin‘*g the earliest known flood year as the
beginning of the record. It means that the L value selected is an empirical estimate of
1 the lower bound on the effective historical length M. The estimation of the return perj
of XM based on its occurrence (L), i.e. M=1, gives e severe upward bias.l_ProbIem
arises[to estimate the time period (M) representative of the largest observed flood XM.
From the discrete uniform distribution with support 1,2, .. ., M of the probability of the
L position of XM one gets [ = M/2. Therefore M = 2L has been taken as the return
15 pericd of XM and as the effective historical record length as well this time. As in the
systematic petiod (N} all its elements are smaller than XM, one can get M = 2(L + N).
The efficiency of using the largest historical flood (XM) for [arge quantile estimatior[w oF
(i.e. one with return period T =100yr) has been assessed using;ML method with =
various length of systematic record (V) and various estimates of histcrical pericd length
20 M comparing accuracy with the case when systematic records alone (N) are used only.
The simulation procedure used for the purpose incorporates N systematic record and ™
one largest historic flood (XM;) in the period M which appeared in the 1; year backward
from the end of historical period. The simulation result$cr selected distributions, values _
of their paramsters, different N and M values are preefénted in terms of bias and RMSE

25 of the quantile of interest 28 widely discussed.
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1 Introduction

mﬁood engineering usually deals with the determination of the flood of a given
return period T years, i.e. the flood quantile X7 or the design flood. The problems
with the assessment of these parameters result from & short time series (N < T),
unknown probability distribution function of annhual peaks, error corrupted data, the
simplifying assumptions as of identical independently distributed (i.i.d.) data and, in
particular, the assumption of & stationarity of relatively long data series. All these
account for high uncertainty offﬁﬁper quantile estimate. The effect of A sample size
is widely documented for various distribution models and estimation methods, thus
pe, it is obvious that due to a short sample the confidence interval of the design
flood estimate is already vary broad?]g\ddition to Flood Frequency Analysis (FEA)} other
sources of error would result in increasing yei-substartal uncertainty.é;‘j esign flood
estimate. This feature is not appreciated by the designers as they want to have only one
value for designing flood fer related structures. Conversely, e efforis fo improve the
accuracy of estimates of the hydrologic design value, by specifying the various sources
of uncertainty and incorporating them in the analysis produce the opposite effect from
the one intended.

To improve the accuracy of estimates of upper quantiles all possible sources of
additional information and “statistical tricks” are used, such as: independent peaks
above the threshold, seasonal approach, regional analysis, record augmentation by
correlation with longer nearby records and, finally, augmentation of the systematic
records by historical and paleo-flood data.

Frequency analysis of flood data arising from systematic, historical, and paleo-flood
records has been proposed by several investigators (a review Stedinger and Baker,
1987; Frances et al., 1994; MacDonald, 2013). The use of non-systematic flood data
for statistical purposes depends on reliability of assessment;both flood magnitudes
and their return period. If the historical record is available, information about the
floods larger thanlprevailing majority of floods reported in thd systematic record can
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be introduced to the datasets and, if we are lucky, the unique information about the
largest fisedswtal reported floods. Serious difficulties & related to the (un)availability
and (not-) exhaustiveness of historical information, the (low)} quality and (inJaccuracy of
historical sources. As if it was not enough, depending on the number of parameters and
their method of estimation, the estimates of high quantiles are mare or less sensitive
to the largest observed floods.

The eariiest and simplest procedures for employing historical and paleo-flood data
were hased on plotting positions and graphical concepts {(Zhang, 1982, 1985; Bernieur
et al., 1986; Wang and Adams, 1984; Hirsch, 1987; Cohn, 1986). The PWM method
and L-moment method were introduced by Ding and Yang (1988), Wang (1990, 1996}
and Hosking (1995). To deal with historical and palec-floods Hosking and Wallis
{19864a, b) applied the maximum likelihood (ML) as the estimation method. Recently
the Bayesian estimation paradigm has been incorporated festhe-pumserse (Vigilione

et al., 2013; Parent and Bernier, 2003; Reis and Stedinger, 2005). It erebleste takes ‘

into account that the historical floods are known with uncertainty, for instance with
lower and upper bounds (in fact the effect of corrupted historical flood magnitudes
was investigated by Hosking and Wallis via MLE mentioned as early as # 1986a, b}
The subject of historical floods currently constitutes one of the main scientific threads
in flood frequency analysis (MacDonald, 2013; Payrastre et al., 2011, 2013). The log
Gumbel, Weibull and Gamma distributions together with maximum likelihood method
were considered by Frances et al. (1994) to tackle systematic and histerical or paleo-
flood data in FFA. To assess the potential statistical gain from historical information

the asymptotic variances of the quantile estimates gaf from the sysiematic records
alone and the combined time-series were compared by means of computer simulation
experiments. The study performed to define the length (M) of historical period indicate
that value of historical data for estimating flood guantiles can vary depending on only
three factors: the relative magnitudes of the length of the systemalic recerd (V) and the
length of the historical peried (M}; the return period (T) of the flood guantile of interest;
and the probability threshold defining the historical floods.
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Most often it is the first historical large flood that is the most remembered (and
described in historical sources) and, therefore, it is usually not considered as important
{or simply not known) what had happened before {Girgu$é and Strupczewski, 1965).
Fs=m Ihe date of the first recorded historical flood is taken as the historical memary
length L, i.e. L becomes the duration of non-systematic period commencing on the
large flood. Even if one properly assess the magnitudes of historic floods, the problem
of their return periods remains unsolved. In most literature examples (specially Benson,
1950; Dalrymple, 1960; IACWD, 1982; Zhang, 1982 and NERG, 1975, p. 177) one
reads that effective length of historical record M used for frequency analysis is always
taken to be the period from the first extraordinary flood to the beginning of the
systematic record, i.e. L. Lhen bt

The matter in hand is that 4se onlyﬂargest flood (XM}is known duringfwhole historical
period and its occurrence marks the beginning of the historical period and defines its
length (L)} (Fig. 1). That is because the beginning of the historical period was somehow
forced by the appearance of the largest flood (XM),but in fact its unusual magnitude
corresponds rather to a longer return period tharf L (or, if in systematic record all
cbservations are smaller than XM, to {L+ N)-period). Consequently, we can expect
the upward bias of the upper quantile estimates if the historical period of length L is
taken in FFA as the non-systematic observation period, or, in other words: the error
comes from an underestimation of the return period (M = L) of XM value.

la:mnﬁqaeﬂe%-theﬂattempts to eliminate or lessen this error lead us fo the
estimation the time period (M) representative of the largest observed flood XM as
accurately as possible. In order to do so, we will carry out the evaluation of the efficiency
of using the largest historical flood (XIM) for large quantile estimation and its comparison
with the case when systematic records alone (N) are used omiy. To keep and preserve
the unspoiled genuine information contained in the observation (XM, L}, the return
period (i) of the largest observed historical flood (XM) should be assessed without
data larger than the XM value from the systematic record.
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It is obvious that the return period of the historical flood assessed on the base of the
year of occurrence (L) represents just the lower limit of its real empirical return pericd
{M). Of course, there is an upper limit as well, which however, can not be estimated
unambiguously. This is 50 hecause, if the occurrence of a large flood was reported in
a given year, for sure a similar or more serious flood a year before would have been
also noted and commented in historical sources (Hirsch and Stedinger, 1987). The
same can be stated for horizon of two, three, four, etc. years. If we could identify this
time span, we would have determined the upper limit of the empirical return period.

The estimation of M based on the date of the first extraordinary flood occurrence
exacerbates an already severe imprecision. By defining as historical floods al! floods
during the M period above a given threshold and taking four different plotting position
formulas, Hirsch and Stedinger (1987) calculated (with the use of Monte Carlo
experiment) the magnitude of the upward bias of the plotting position of the largest
sample elements oceurring when L is taken as the beginning of the historical record.
Doing so they noticed that L is a random variable dependent on the flood-producing
process itself; this would be a violation of the assumption of the plotting position
formulas.

Similarly, Hosking and Wallis {19864, b} use Monte Carlo {(MC} computer simulation
to assess whether a single paleo-flood estimate, when included in a single-site
Maximum Likelihood (ML) flood frequency analysis procedures, gives a worthwhile

"increase in the acouracy of estimates of exireme floods, They found that the main

factors affecting the utility of this kind of paleological information are the spacification
of the fitted flood frequency (whether it has two or three unknown parameters) and the
size of the measurement eryor of palec-discharge estimates. Errors in estimating the
date of the paleo-flood je“considered & to be of minor importance. For distributions
with higher CV or skewness the difference between the effects of the errors of the
magnitude of paleo-flocd and its return period is smaller.

Note that the randomness of the systematic records time series of i.i.d. variable can
also be sometimes guestioned and undermined, e.g. when the largest value XM of
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a time series intentionally terminates the N-elements’ systematic record. Then the XM

is the last elemeniff the N-element time-series. Such a case may arise when a water
gauge was swept’by a heavy flood (XM) and bw not restored,oﬁ"fenhonalﬁ hetnﬁe

2 Problem formulation o
use ok 8
The cbject of the paper is is 1o assess by meems the maximum likelihood (ML) method &
whether there is any, uae ﬂh% largest flood terminating the time series,assuming its E ]
magnitude (XM) is known. Therefore, the case of data with the largest flood terminating #—
observation period is related to records without it. These two variants are examined by ¢
comparing the bias (8) and the root mean square error (RMSE) of flood quantlles The
two two-parameter distributions, namely Gumbel and Weibull were used wile'? applying
the simulation experiments. The emphasis is pui cn the effect of misspecification of
the return period (M) of the largest historical {paleo-jflood (XM) and on the proper
assessment of the M estimate on the basis of XM occurrence (L). So far, the results of
such research has not been presented in the hydrological literature.
The theoret;cal framework of our research is based on Mammum leellhood

i

systematic and historical information (Frances st al., 1994; Stedinger and Cohn, 1986;
Naulet et al., 2005). [t is assumed that the annual maximum floods are independent
and identically distributed.

2.1 Assessment of the return period M of the XM flood

eall sHirgPos Hirsch and Stedinger (1987} considered that the
time of occurrence of the earliest documented historical flood L is the random variable
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defining a lower bound of the sample size used for computation of plotting positions.
The position L of the largest in M period element (XM} (Fig. 1) is the random variable
being discretely uniformly distributed in the M period, i.e. p,=1/Mfor i=1,2, ., M.
Obviously the magnitude of the largest element (XM} is also a random variable. It can
correspond in the population to a smaller or larger value of the exceedance probability
than 1/M defining the effective return period (Mg) of XM, Therefore the difference
(Mg — L) is not restricted in sign.

Assume that the return interval (M) of XM is known. As L |sLun|formly distributed
variable ini the M length time seties with support L €[0,1,...,M], one gets E(L) = M/2
and V(L) = M /12. In reality M is not known and its assessment is our goal. Taking
the observed L value as the estimate of the expecting value, i.e. L = E(L} we get the
M estimate equal M = 2L, Because regardless of the estimation method the quantile
estimators are not in general linear function of A4, the minimum bias of quantile B(x, X)) =
E[xP(M) X;] does not necessarily correspond to the zero-bias of M, i.e. to M=2L.

If in the systematic period (N) all its elements are smaller than XM, one can get # =
2(L+ N). Note that usually M <« L.

3 Simulation procedure

The simulation procedure incorporates N systematic record and one largest histeric
flood (XM} in the period M,which appeared in the L year backward from the end of
historical period (Fig. 1). Obviously, the systematic record and both magnitude {(XM)
and year of occurrence (L) randomly vary from simulation to simulation. As an estimate
of the length of the historical period shall be successively M = L,2L and the actual
value 1 = M, i.e. the length of the period M in simulation experiment. &
First, generate a gauged record xq, X,. .., Xy of independent random variates from
the assumed (two-parameter) flood-like distribution [F(x)] with parameters chosen fo =
give specified values of CV. Then generate histerical series of the same distribution of
the length M, i.e. ¥y, ¥o....,¥y, and find the maximum event {XM) of the historical
6140 -
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series denoting the time (L} of its occurrence. Since the randem variables (XM)
and L are mutually independent the XM can be generated from the distribution of
the largest element in a M-element series, i.e. F(M}=F p(y) = FM(y), while the
corresponding time of its occurrence (L} from the discrete uniform distribution with
support {1,2,...,M}. Lled '

E:it,&flood fraquency distributionby the method of maximum likelihood.t-tre-fited
dretritmtion has a distribution function F(x,8) and a density function f{x, 8}, where &
is a vector of unknown pararmeters, then the likelihood function (L) is taken to be

) N
u&mw=ﬂ“w=mmmﬂw=xmer#1ume%, (1)

i=1

. o
i.e., the use of incomplete data likelihood, where M = L,2L and M, and for'?ystematic
record only

N
L(8;x) =[] f(x:0). (@)

i=1

Calculaie quantile estimates )‘(T=F'1 (1-1/7,8) for M=1,2 and M and the
systematic record {N) only (i.e. when M = 0), where F~' is the inverse distribution
function of the fitted flood frequency distribution, & is the maximum likelihood estimate
of 8, and T is the return period of interest.

Repeat the above steps a large number of times (/) and calculate the mean and
variance of )?T, and hence the relative bias RB and relative RMSE of XT taking
M;=L; 2L; and M and the systematic record (N) only (¥ = 0), considered as an
estimator of the true guantile X7 = F‘1(1 —1/T;8). li in a generated series one gsts
max(xy, Xy, .. ., X} = XM such simulation is ignored which allows us to assume =2L
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4 Simulation resulis

The concise frame of this paper made us 2 limit the number of models we tock into
consideration in our calculations. In order to lessen the number of the figures for all
the combinations of CS and CV values we resigned from three-parameter distributions
such as generalised extreme value (GEV) and turned into its two-parameter special
forms, namely Gumbel (Gu) and Weibull (We). Another cause was also that, however
theoretically sound, the GEV working perfectly for large samples often fails in far-
from-asymptotic samples which we examingf{in this study. We scrutinised a number of
two- and three-parameter distribution functions in terms of their best fit to hydrological
annual and seasonal peak flows in Poland and it turned out that despite the regime
of the river, other models were preferred rather than GEV (Strupczewski et al., 2012,
Kochanek et al., 2012). However, the crucial argument after the choice of the parent
distribution was the pioneering works of Frances et al. (1994} that we wanted fo
continue and develop. Results of simulation experiments are shown for Gu and We
distributions with four values of the coefficient of variation CV =0.25, 0.5, 0.75, 1.0,

wd two lengthsof systematic records N =15, 50;and the length of effective historical

(‘\.1 “&-?:t

20

25

period M = Nexp(a) where a € [0,3]. Due to the limited capacity of this paper without
the loss of generality, only the selected results were presented in Figs. 2-5, namely
for CV = (.25 and 1.0; the resulis for CV = 0.5 and 0.75 locate themselves between
those presented in the figures. Results $ef for the correct value of the return period
(¥ = M) are compared with those et for M = L., 21;. For completion the results for the
systematic record only (i.e. # = 0) were presented in all figures (solid line). Of course,
for this case the results does not depend on M and 4 consequence cn log{M/N).
as oo
5 Discussion of the results

— The shorter the gauged record (N} is, the more useful 3 the historical information.

— Using as the estimate of the true return peried of largest historical flood (XM) the
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historical memory length (L} results in considerable upward bias RB of 1%
quantile,far exceeding the bias for the systematic record only. Its value fe-growing

with CV (and CS) and with the M/N ratio. WerRaes

Using in ML estimafion the M =2Linstead of M = L considerablelreduces the bias
and further reduct®® i obtained for the i1 = M, i.e. for the retumn period (M) of
the largest historical flood XM.

Although the use of M = 2L instead of M = L reduces the bias more than twice,
it is still circa 40 % larger than the bias of a known return pericd M of XM, and
comparable or lower than the bias from systematic record (N).

As far as the relative root mean square error (RRMSE) of 1% quantile is
concerned, for both Gumbel and Weibull models cne can notice a considerable
reduction in its values when one uses L, 2L or M return periods in comparison
to the systematic sample. The worst reduction of RRMSE one gets for L, better
for 2L and the best for M which means that it is worth, first of all, employing the
historical measurement XM in upper quantile estimation and then set the refurn
period of XM to 21 rather than L if we do not know M.

The reduction in RMSE for both models (Gumbel and Weibull} rises generally with
M/N ratio. In other words: the bigger M (compared to N}, the higher distance
between RRMSE values got for the sample with additional historical information
and the systematic series. [t goes without saying, that for N = 15 one gets better
reduction than for N = 50.

For the Gumbel model, regardlessithe sample return period, L, 2L or M, the
relative reduction in RRMSE compared to systematic samples does not depend
on GV. [t does not hold for Weibull where the reduction decreases with CV, e.g.
between C, =0.25 and 1.0 there is usually a few-percent difference which is
minimal {almost marginal) for # = M.
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For Gumbel model reduction in comparison to systematic sample for iog(M/N} =
3 and N =15 the reduction gets up even to 19, 32 and 46% for L, 2L and M
respectively. For N = 50 the numbers drop roughly by half.

For Weibull the gain in RRMSE is even more spectacular and for M = N =15 and
CV =0.25 equals to 44, 53 and 64 % (1) for L, 21 and M respectively (when CV =
1.0 the gain is slightly lower). For N = 50 the general trend for Weibull remains the
same as for N = 15 but the reduction of RRMSE is slightly smaller.

To sum up the RAMSE issues, the inclusion of the largest historical flood in
FFA with i1 = 2L (i.e. the effective historical record length) gives the substantial
reduction in RRMSE of extreme flood estimates, however it is circa 40 % lower
than if the length of simulation period M is taken, which is not available in reality
and one is doomed to use 2L instead.

Therefore, to benefit from the largest historical observation every effort should be
made to establish M accurately.

In the absence of any information about the period preceding the occurrence of
XM one should put M equal 2L or 2{L + N}.

The benefit from including the largest historical flood is measured by the reduction
of RRMSE. It depends on: '
i. the length of systematic record (N),
ii. the ratic of the true return period of XM, i.e. Mfo N,
iii. the ratic of N to the return pericd of quantile of interest,
iv. the CV and skewness of the parent distribution.
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6 Conclusions
(S

Errors lﬂohISTOI’ICBJ data reduce, of course, thé utility of the data for improvementjthe
estimatg of & flood magnitude at rhe.glve return period. In the simulations (Figs. 2—
B) it was assumed that the magnitude of largest historical flood (XM) was measured
without error and the same was assumed fonsystematic record. It is realistic to suppose
that the XM flood was measured much less accurataXhan the gauged record. Error in
estimating the largest historical magnitude (XM} is much mere impaortant than error in
astimating the date of its occurrence (e.g. Hosking and Wallis, 19864, b). It is significant
that inspired by the practice of efforts to improve the accuracy of estimates of flood
quantiles through more realistic assumptlons and a fuller use of the information they
give just the opposite effect Ieadmgto increased uncertainty of flood estimates.

e Mext step should be to refer to the general problem of historical information when

15

(_g,-uf;'\k-': LY

20

25

20

25

the applied distribution modet is false, \5&2&3 always the case (Strupczewski et al.,
2002). On the other hand, the uncertainty of the palso-historical floods (both in terms
of their magnitude and return periocd) combined with considerable increases e the
comptiegtien of the problem (when compared to analysis of systematic data only)
provokes a fundamental question, whether the whole operation is worth*8%%
Therefore, whether to include the paleo-histeorical information or turn a blind eye to
it, is a matter of conscience.

All these generate two important practical problems which we leave for further study,
namely:

1. What is the upper limit of accuracy of high quantile estimation when the theoretical
value (i.e. taken from the parent distribution) of return pericd for XM is known?

2. Here in our simulation experiment we assumed the knowledge of the true
(parent) distribution function. The role of historical information when the assumed
distribution serves as the model of the true distribution remains, for the time being,
unknown.
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Only the solutions to these two problems completed by the consideration of the
observation errors in FFA brings us closer to the answer to the fundamental question
stated above.
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Gumbel - Relative bias

Fig. 1. The case of N systematic and cne largest flood in the beginning of historical period.
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Fig. 2. Relative bias (RB) and relative root mean square error (RRMSE) of 5(T:100 as a function
of gauge record length N and historic period M for #4; = 0,1, 2L, M. Parent distribution Gumbe!
with CV equal: 0.25 and 1.0 and N = 15. Fitied distribulion Gumbel.
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Fig. 3. RB and RAMSE of XT=,OD as a function of gauge record length A and historic period M

for i, = 0,L,,2L,, M. Parent distribution
distribution Gumbel.
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Weibull - Relative bias.
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Fig. 4. BB and RRMSE of X;_,,, as a function of gauge record length N and historic period M
for M, = 0,L;,2L;, M. Parent distribution Weibull with CV equal 0.25 and 1.0 and N = 15. Fitted

distribution Weibull.
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Fig. 5. RB and RRMSE of X:_1c0 as a function of gauge record length A and historic period M
for M, = 0,L,,2L,, M. Parent disiribution Weibull with CV equal 0.25 and 1.0 and N = 50. Fitled

distribution Weibull.
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